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Abstract 24 

In the last few million years, the hominin brain more than tripled in size. Comparisons 25 

across evolutionary lineages suggest that this expansion may be part of a broader trend toward 26 

larger, more complex brains in many taxa. Efforts to understand the evolutionary forces driving 27 

brain expansion have focused on climatic, ecological, and social factors. Here, building on existing 28 

research on learning, we analytically and computationally model the predictions of two closely 29 

related hypotheses: The Cultural Brain Hypothesis and the Cumulative Cultural Brain Hypothesis. 30 

The Cultural Brain Hypothesis posits that brains have been selected for their ability to store and 31 

manage information, acquired through asocial or social learning. The model of the Cultural Brain 32 

Hypothesis reveals relationships between brain size, group size, innovation, social learning, mating 33 

structures, and the length of the juvenile period that are supported by the existing empirical 34 

literature. From this model, we derive a set of predictions—the Cumulative Cultural Brain 35 

Hypothesis—for the conditions that favor an autocatalytic take-off characteristic of human 36 

evolution. This narrow evolutionary pathway, created by cumulative cultural evolution, may help 37 

explain the rapid expansion of human brains and other aspects of our species’ life history and 38 

psychology. 39 
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In the last few million years, the cranial capacity of the human lineage dramatically 45 

increased, more than tripling in size (Bailey & Geary, 2009; Schoenemann, 2006; Striedter, 2005). 46 

This rapid expansion may be part of a gradual and longer-term trend toward larger, more complex 47 

brains in many taxa (Balanoff, Bever, Rowe, & Norell, 2013; Dunbar & Shultz, 2007; Roth & 48 

Dicke, 2005; Shultz & Dunbar, 2010a; Striedter, 2005). These patterns of increasing brain size are 49 

puzzling since brain tissue is energetically expensive (Aiello & Wheeler, 1995; Elia, 1999; Foley, 50 

Lee, Widdowson, Knight, & Jonxis, 1991; Isler & Van Schaik, 2006; Kotrschal et al., 2013; 51 

Lieberman, 2011). Efforts to understand the evolutionary forces driving brain expansion have 52 

focused on climatic, ecological, and social factors (Bailey & Geary, 2009; Dunbar, 2003; 53 

Schoenemann, 2006; Striedter, 2005; van Schaik & Burkart, 2011). Here we provide an integrated 54 

model that attempts to explain both the broader patterns across taxa and the human outlier. To do 55 

this, we develop an analytic model and agent-based simulation based on the Cultural Brain 56 

Hypothesis (CBH): the idea that brains have been selected for their ability to store and manage 57 

information via some combination of individual (asocial) or social learning (Henrich, 2016; Heyes, 58 

2012; Muthukrishna, 2015; Muthukrishna & Henrich, 2016; Reader, Hager, & Laland, 2011; 59 

Whiten & Van Schaik, 2007). That is, we develop the idea that bigger brains have evolved for 60 

more learning and better learning. The information acquired through these various learning 61 

processes is locally adaptive, on average, and could be related to a wide range of behavioural 62 

domains, which could vary from species to species. The forms of learning we model could 63 

plausibly apply to problems such as finding resources, avoiding predators, locating water, 64 

processing food, making tools, and learning skills, as well as to more social strategies related to 65 

deception, coercion, manipulation, coordination or cooperation. Our theoretical results suggest that 66 

the same underlying selective process that led to widespread social learning (Hoppitt & Laland, 67 
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2013) may also explain the correlations observed across species in variables related to brain size, 68 

group size, social learning, innovation, and life history. Moreover, the parameters in the formal 69 

representation of our theory offer hypotheses for why brains have expanded more in some lineages 70 

than others (Dunbar & Shultz, 2007; van Schaik, Isler, & Burkart, 2012).  71 

Building on the Cultural Brain Hypothesis, our theoretical model also makes a set of 72 

predictions that we call the Cumulative Cultural Brain Hypothesis (CCBH). These predictions are 73 

derived from the parameters within that CBH model that favor an autocatalytic take-off in brain 74 

size, adaptive knowledge, group size, learning, and life history characteristic of human evolution. 75 

The CCBH has precedents in other models describing the processes that led to human uniqueness 76 

(see Boyd & Richerson, 1996; Dean, Kendal, Schapiro, Thierry, & Laland, 2012; Dean, Vale, 77 

Laland, Flynn, & Kendal, 2014; Henrich, 2016; Henrich & McElreath, 2003; Herrmann, Call, 78 

Hernández-Lloreda, Hare, & Tomasello, 2007; Heyes, 2012; Lewis & Laland, 2012; Reader et al., 79 

2011). Since the CCBH is not a separate model, but instead additional predictions derived from 80 

the CBH model, this approach both seats humans within the broad primate spectrum created by 81 

the selection pressures we specify, and also accounts for our peculiarities and unusual evolutionary 82 

trajectory. That is, the same mechanisms that lead to widespread social learning can also open up 83 

a novel evolutionary bridge to a highly cultural species under some specific and narrow 84 

conditions—the CCBH. When these conditions are met, social learning may cause a body of 85 

adaptive information to accumulate over generations. This accumulating body of information can 86 

lead to selection for brains better at social learning as well as storing and managing this adaptive 87 

knowledge. Larger brains, better at social learning, then further foster the accumulation of adaptive 88 

information. This creates an autocatalytic feedback loop that enlists sociality, social learning, and 89 

life history to drive up both brain size and adaptive knowledge in a culture-gene co-evolutionary 90 
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duet—the uniquely human pathway. The juvenile period expands to provide more time for social 91 

learning. As biological limits on brain size are reached (e.g. due to difficulties in birthing larger 92 

brains, even in modern populations, see Lipschuetz et al., 2015), increases in the complexity and 93 

amount of adaptive knowledge can take place through other avenues, such as division of 94 

information (and ultimately, division of labor), mechanisms for increasing transmission fidelity, 95 

such as compulsory formal schooling, and further expansion of the “adolescent” period between 96 

fertility and reproduction, spent in additional education (i.e. delayed birth of first child). 97 

(Muthukrishna & Henrich, 2016). This process modifies human characteristics in a manner 98 

consistent with more effectively acquiring, storing, and managing cultural information. 99 

The CBH and CCBH are related, and can be explored with the same model, but we keep 100 

them conceptually distinct for two reasons. First, the cumulative culture-gene co-evolutionary 101 

process produces cultural products, like sophisticated multi-part tools and food processing 102 

techniques, that no single individual could reinvent in their lifetime (despite having a big brain 103 

capable of potent individual learning; Henrich, 2016). The evolution of a second inheritance 104 

system—culture—is a qualitative shift in the evolutionary process that demands analyses and data 105 

above and beyond that required for the CBH. Second, it’s possible that either one of these 106 

hypotheses could hold without the other fitting the evidence—that is, it might be the CCBH 107 

explains the evolutionary trajectory of humans, but the CBH doesn’t explain the observed patterns 108 

in social learning, brain size, group and life history in primates (or other taxa); or, vice-versa.  109 

Our approach is distinct, but related to the Social Brain Hypothesis (SBH; Dunbar, 1998), 110 

which argues that brains have primarily evolved for dealing with the complexities of social life in 111 

larger groups (e.g., keeping track of individuals, Machiavellian reasoning, and so on). Initial 112 

evidence supporting the SBH was an empirical relationship shown between social group size in 113 
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primates and some measure of brain size (different measures of brain size are typically highly 114 

correlated; Dunbar, 2009). Though this relationship does not hold outside the primate order, 115 

broader versions of the SBH that encompass other aspects of social cognition have been informally 116 

proposed with corresponding evidence from comparative studies. For example, a relationship has 117 

been shown between brain size and regular association in mammalian orders (Shultz & Dunbar, 118 

2010a; Shultz & Dunbar, 2007), mating structure in birds and mammals (Shultz & Dunbar, 2007), 119 

and social structure and behavioral repertoire in whales and dolphins (Fox, Muthukrishna, & 120 

Shultz, 2017). Efforts to formally explore these ideas isolate three distinct evolutionary 121 

mechanisms. First, McNally and collaborators have explored the Machiavellian arms race between 122 

cooperation and deception (McNally, Brown, & Jackson, 2012; McNally & Jackson, 2013). 123 

Second, Dávid-Barrett and Dunbar (2013) simulate a relationship between coordination costs and 124 

group size showing that more complex coordination (and therefore higher cognitive complexity) 125 

is required as group size increases. Finally, exploring a distinct third mechanism, Gavrilets and 126 

Vose (2006) simulate an evolutionary competition among males for females in which males can 127 

evolve larger brains with learning abilities that permit them to acquire more effective strategies.  128 

In his seminal paper, Humphrey (1976) highlighted the importance of social learning, along 129 

with several other social factors. The theory presented here is therefore consistent with this and 130 

other early research that emphasized the learning aspects of the social brain (Humphrey, 1976; 131 

Jolly, 1966; Whiten & Byrne, 1988a; 1988b; for a more recent discussion, see Whiten & van 132 

Schaik, 2007). However, while many verbal descriptions of the SBH are general enough to 133 

encompass most aspects of the CBH, formal instantiations of the SBH each focus on quite distinct 134 

evolutionary mechanisms: (1) deception and cooperation, (2) coordination between group 135 

members, and (3) learning social strategies. To make progress, we argue that it’s crucial to 136 
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distinguish the various evolutionary mechanisms that have often been clumped under the “social 137 

brain” rubric, and then test for the action of these various mechanisms (which need not be mutually 138 

exclusive).  139 

The CBH and CCHB are a deliberate shift in focus from “social” to “learning”; a shift with 140 

precedence in other theories, most informally expressed (for example, see Pradhan, Tennie, & van 141 

Schaik, 2012; Reader et al., 2011; Reader & Laland, 2002; van Schaik & Burkart, 2011; van Schaik 142 

et al., 2012; Whiten & Van Schaik, 2007). There are, however, some clear departures from most 143 

previous approaches. First, crucial to this shift from social to learning is that group size evolves 144 

endogenously, rather than as a product of externalities (such as avoidance of predators). Second, 145 

learning is assumed to be more general than the skills and cognition required for social living. 146 

Individuals could learn skills and knowledge for social coordination, cooperation, and competition, 147 

such as social strategies to improve mating, as in Gavrilets and Vose (2006). But equally, these 148 

skills and knowledge may be related to other fitness relevant domains, such as ecological 149 

information about finding food or making tools. Indeed, the generality of adaptive knowledge is 150 

critical to the CCBH and the human take-off. In our approach, the potential for a runaway process 151 

to explain the human outlier arises neither from a Machiavellian arms race (McNally et al., 2012; 152 

McNally & Jackson, 2013) nor from sexual selection (Gavrilets & Vose, 2006), but instead from 153 

the rise of cumulative cultural evolution as a second system of inheritance. Ecological factors are 154 

considered in the CBH in terms of survival returns on adaptive knowledge (e.g. easier acquisition 155 

of more calories or easier avoidance of predators, where easier means requiring less knowledge). 156 

To further develop the CBH and CCBH, our models explore the interaction and 157 

coevolution of (1) learned adaptive knowledge and (2) genetic influences on brain size 158 

(storage/organizational capacity), asocial learning, social learning, and an extended juvenile period 159 
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with the potential for payoff-biased oblique social learning. We explicitly model population 160 

growth and carrying capacity alongside genes and culture in order to theorize potential 161 

relationships between group size and other parameters, like brain size and adaptive knowledge, 162 

and also to examine the effects of sociality on the co-evolutionary process through two different 163 

parameters. We assume carrying capacity is increased by the possession of adaptive knowledge 164 

(e.g., more calories, higher quality foods, better predator avoidance). Our model incorporates 165 

ecological factors and phylogenetic constraints by considering different relationships between 166 

birth/death rates and both brain size and adaptive knowledge. This allows us to formalize (and in 167 

particular, simulate) these evolutionary processes for taxa facing diverse phylogenetic and 168 

ecological constraints. 169 

Models 170 

We begin by laying out the key assumptions underlying both the analytical and simulation 171 

models. Then, using adaptive dynamics, we present our analytical model. From this model, we 172 

derive some key insights without the complexities of simulation. We then build on the analytic 173 

solutions to fully explore the mechanisms underlying these insights using an evolutionary 174 

simulation. This simulation also allows us to relax some of our assumptions, allowing oblique 175 

learning, learning biases, and life history to evolve and explicitly tracking group size. 176 

We present the key insights and predictions of our model in three ways. First, we explain 177 

the conditions under which we expect relationships between our variables and how the size of 178 

these relationships is affected by our parameters. In doing so, we verbally describe the core logic 179 

underlying the theory. Second, we compare our predictions to existing data, plotting our simulation 180 

results side-by-side with this existing data. If our predictions were inconsistent with existing 181 
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empirical correlations, this would pose a significant challenge to our theory. Finally, we derive the 182 

Cumulative Cultural Brain Hypothesis predictions, laying out the narrow evolutionary regime 183 

under which an autocatalytic interaction between cultural and genetic inheritance is most likely to 184 

generate a human-like take-off. 185 

Assumptions 186 

Three key assumptions underlie our theory: 187 

1. Larger and more complex brains are more costly than less complex brains because they 188 

require more calories, are harder to birth, take longer to develop, and have organizational 189 

challenges. Therefore, ceteris paribus, increasing brain size/complexity decreases an 190 

organism’s fitness. For simplicity, we assume that brain size, complexity, and organization 191 

(e.g., neuronal density) are captured by a single state variable, which we will refer to as 192 

“size”.  193 

2. A larger brain correlates with an increased capacity and/or complexity that allows for the 194 

storage and management of more adaptive knowledge. Adaptive knowledge could 195 

potentially relate to locating food, avoiding predators, securing mates, processing resources 196 

(detoxification, increased calorie release), hunting game, identifying medicinal plants, 197 

making tools, and so on.  198 

3. More adaptive knowledge increases an organism’s fitness either by increasing its number 199 

of offspring compared to conspecifics and/or by reducing its probability of dying before 200 

reproduction. Adaptive knowledge can be acquired asocially, through experience and 201 

causal reasoning, or socially, by learning from others.  202 

The logic that follows from these key assumptions is first formalized using an analytic 203 

approach—an adaptive dynamics evolutionary model (Doebeli, Hauert, & Killingback, 2004). 204 
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This model captures the logic and several of the key predictions of the CBH. We then simulate the 205 

logic to capture the co-evolutionary dynamics needed to generate the CCBH. 206 

Analytical Model 207 

To explore the evolutionary adaptive dynamics of the CBH, we begin with individuals 𝑖 208 

represented by three continuous variables: brain size 𝑏𝑖, adaptive knowledge 𝑎𝑖, and reliance on 209 

social learning (over asocial learning; e.g. time spent), 𝑠𝑖. We will initially ignore the evolution of 210 

oblique learning, learning biases, and population structure, and assume that individuals using 211 

social learning use oblique learning and learning biases to hone in on the target individual with the 212 

most adaptive knowledge. We will relax this assumption in our simulation and allow oblique 213 

learning, learning biases, life history, and population structure to endogenously evolve. Table 1 is 214 

a handy key for the variables in our analytic model. 215 

Table 1. Variables for analytic model. 216 

Variable Description Values 

𝑏𝑖 Brain size of individual 𝑖 [0, ∞] 
𝑎𝑖 Adaptive knowledge of individual 𝑖 [0, 𝑏𝑖] 
𝑠𝑖 Reliance on social learning (over asocial learning) of individual 

𝑖 
[0,1] 

𝜏 Transmission fidelity [0,1] 
𝜁 Asocial learning efficacy [0,1] 
𝑟 Per capita birth rate ≥ 0 
𝑑 Per capita death rate ≥ 0 
𝜙 Scaling coefficient used to scale relationship between adaptive 

knowledge and 𝑟 
≥ 0 

𝛽 Scaling constant relating brain size to death rate (similar to 𝜅 in 

simulation) 
≥ 0 

𝜆 Death rate mitigation (e.g. richness of ecology) used to scale 

effect of 𝑎𝑖 in reducing 𝑑 
≥ 0 

𝑛 Increase in population size [−∞, ∞] 

 217 

Individual 𝑖  has two routes to acquire adaptive knowledge 𝑎𝑖 : (1) through asocial 218 

(individual) learning as a function of their own brain size 𝑏𝑖 and (2) through social learning as a 219 
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function of the target model from whom they learn (𝑎𝑚). The proportion of time or propensity to 220 

use social over asocial learning is given by 𝑠𝑖. Thus adaptive knowledge is given by: 221 

𝑎𝑖 = 𝑠𝑖 ∙ 𝜏 ∙ 𝑎𝑚 + (1 − 𝑠𝑖) ∙ 𝜁 ∙ 𝑏𝑖 (1) 

Where 𝜏 is transmission fidelity (how well an individual can learn from a model), 𝜁 is 222 

asocial learning efficacy (how effectively an individual can use their brain to figure things out), 223 

and 𝑎𝑚 is the adaptive knowledge possessed by the individual in the parent generation from whom 224 

they are learning (e.g. model with maximal 𝑎 or model with average 𝑎, etc).  225 

The parameters 𝜏 and 𝜁 in Equation 1 are abstractions of more complicated details covered 226 

in other work. By outsourcing the evolution of these features to other models, we can focus on the 227 

core of the CBH argument; i.e. how learning, brain size, knowledge, sociality, and life history are 228 

interconnected. Examples of this earlier works include, Lewis and Laland (2012) model of the 229 

relationship between transmission fidelity and the rate of trait loss, showing that sufficiently high 230 

transmission fidelity is necessary for cumulative culture, even more so than novel invention, 231 

incremental improvement, and recombination. Relatedly, building on work by Henrich (2004), 232 

Mesoudi (2011) models how increases in cumulative culture (driven by, for example, sociality) 233 

are more difficult for each generation to acquire. Thus, selection favors mechanisms to increase 234 

transmission fidelity. Muthukrishna and Henrich (2016) discuss the many mechanisms to increase 235 

transmission fidelity as adaptive knowledge accumulates. Mechanisms such as explicit teaching 236 

may not be required in a small-scale society, but in a large-scale society, not only is explicit 237 

teaching required, but also formal institutionalized schooling from a variety of teachers. Thus, 𝜏 238 

could include individuals’ cognitive abilities (itself increased by culture; see Muthukrishna & 239 

Henrich, 2016), but also greater social tolerance, more interactions or opportunities for interaction, 240 

and some passive or active teaching by models, and so on (for more examples, see Dean et al., 241 
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2012; Muthukrishna & Henrich, 2016; Whiten & Erdal, 2012). Transmission fidelity could be 242 

broken down into constraints and endogenous state variables for genetic, cultural, and social 243 

factors, as well as interactions between these (e.g. genes for sociality), but for the purposes of 244 

expressing our argument, here we capture all this with 𝜏.  245 

Similarly, our model relies on the idea that “bigger” brains will be better at solving novel 246 

problems, and figuring stuff out (Deaner, Isler, Burkart, & van Schaik, 2007; Sol, Bacher, Reader, 247 

& Lefebvre, 2008). As Deaner et al. (2007) analyses reveal, at least in primates, the best predictor 248 

of cognitive ability is overall brain size. But, as with transmission fidelity, many factors will 249 

influence individuals’ ability to use their brains, such as constraints on time (for trial and error 250 

learning) or energy. These constraints are captured by 𝜁.  251 

We take an evolutionary adaptive dynamics approach to find the evolutionary stable 252 

strategies (ESS) in our model. This approach involves assuming a monomorphic population and 253 

then looking at the “invasibility” of the population to a mutant (in variables of interest) with 254 

slightly different values. Appropriate to the dynamics we are interested in, this analytic method 255 

assumes mutations are small (i.e. we are not exploring competition between two vastly different 256 

groups).  257 

Social Learning 258 

To determine the average adaptive knowledge in a population that is monomorphic for 259 

resident genotype (𝑠, 𝑏), we’ll initially assume that genotype is fixed over the course of learning. 260 

We’ll assume that the learning process leads to a distribution of adaptive knowledge values in the 261 

population and that individuals using social learning select a model using payoff-biased learning, 262 

choosing to learn from the model with the maximal possible value of adaptive knowledge 263 

𝑎𝑚𝑎𝑥 (i.e., they learn from the rare individual who has attained the maximal value). In the 264 
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simulation, we will relax this assumption and allow oblique learning (learning from non-genetic 265 

parents) and learning bias to evolve. Assuming individuals do learn from the best model when 266 

social learning, the mean adaptive knowledge in the population is given by: 267 

𝑎̅(𝑠, 𝑏) = 𝑠 ∙ 𝜏 ∙ 𝑎𝑚𝑎𝑥 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏 (2) 

We further assume that the maximal adaptive knowledge is constrained by the brain size 268 

of the learner, such that 𝑎𝑚𝑎𝑥 = 𝜈𝑏, where 𝜈 > 0 is some scaling parameter. As we shall see, the 269 

insights of the model are independent of the specific value of the 𝜈 scaling. Thus, Equation 2 270 

becomes: 271 

𝑎̅(𝑠, 𝑏) = 𝑠 ∙ 𝜏 ∙ 𝜈 ∙ 𝑏 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏 (2a) 

We can now easily understand the adaptive dynamics of the social learning trait ( 𝑠) 272 

assuming more adaptive knowledge has a higher payoff. For a given brain size (𝑏), we simply 273 

compare 𝜏𝜈𝑏 and 𝜁𝑏: if 𝜏𝜈𝑏 > 𝜁𝑏, then it pays to increase 𝑠 as much as possible to maximize 274 

adaptive knowledge (i.e. 𝑠 → 1); conversely, if 𝜏𝜈𝑏 < 𝜁𝑏, then it pays to decrease 𝑠 as much as 275 

possible to maximize adaptive knowledge (i.e. 𝑠 → 0). This will be true as long as individuals have 276 

access to a range of models and are learning from the model with the greatest adaptive knowledge. 277 

Given these conditions, the key to reliance on social learning is the ability to learn with high fidelity 278 

and the key to reliance on asocial learning is the ability to efficiently use one’s brain to learn by 279 

oneself. Further, if there is some limitation on accessing the model with the maximal adaptive 280 

knowledge, such as ineffective payoff biased learning making it difficult to identify who has the 281 

most adaptive knowledge or too small or disconnected a population for at least one individual to 282 

consistently reach this maximal value every generation, then the evolution of social learning is 283 

also going to depend on the maximal adaptive knowledge learners have access to. We explore 284 

these dynamics in the simulation model. 285 
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Brain Size 286 

To determine the adaptive dynamics of brain size, we need an ecological model for 287 

monomorphic populations (i.e. for populations that consist of a single resident type (𝑠, 𝑏). To do 288 

this, we need to specify how the various traits affect the birth and death rates in the model. We use 289 

a logistic ecological model: 290 

𝑑𝑁

𝑑𝑡
= (𝑟 − 𝑑) ∙ 𝑁 (3) 

Here 𝑁 is population density, 𝑟 is the per capita birth rate of the resident and 𝑑 is the per 291 

capita death rate of the resident. Next, we specify the per capita birth rate (𝑟) and death rate (𝑑). 292 

We assume the birth rate 𝑟  decreases with population size (density dependence influencing 293 

carrying capacity), but that that decrease is slower with increased adaptive knowledge (e.g. 294 

allowing you to support more offspring or outcompete competitors in access to mating 295 

opportunities). The birth rate (𝑟) is given by: 296 

𝑟 = 𝜌 (1 −
𝑁

𝑘0 + 𝑘1𝑎̅
) 

= 𝜌 (1 −
𝑁

𝑘0 + 𝑘1(𝑠 ∙ 𝜏 ∙ 𝜈 ∙ 𝑏 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏)
) 

(4) 

Where 𝜌 is the maximal birth rate and that dependence leads to a linear decrease in the 297 

birth rate given by the second half of Equation 4. This linear decrease is assumed to be influenced 298 

by the mean adaptive knowledge (𝑎̅) , such that more adaptive knowledge leads to a larger 299 

denominator, slowing the decrease with density dependence (allowing for a higher effective 300 

carrying capacity). 𝑘0 and 𝑘1 are positive parameters, which we set to 1, without loss of generality, 301 

in the following analyses. 302 
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We assume that a larger brain is more costly than a smaller brain in terms of death rate 303 

(e.g. higher calorie requirements), but that more adaptive knowledge lowers the death rate (e.g. 304 

finding food or evading predators). The death rate (𝑑) is given by: 305 

𝑑 = 𝛽 ∙ 𝑏𝑛 ∙ 𝑒−𝜆𝑎
𝑏⁄  (5) 

This function assumes that the cost of brains scales up in a polynomial fashion (e.g. 𝑛 =306 

2), but that the reduction in the death rate through adaptive knowledge is an exponential decay, 307 

where adaptive knowledge is bounded by brain size (i.e. 𝑎 ≤ 𝜈𝑏). Here 𝛽 scales the maximum 308 

brain size and 𝜆 scales the death rate reducing payoff to adaptive knowledge. The degree to which 309 

adaptive knowledge can offset brain size is a ratio of adaptive knowledge to brain size (adaptive 310 

knowledge is constrained by brain size regardless of learning mechanism and as brains grow, more 311 

knowledge is required to provide an equivalent offset) and 𝜆. The 𝜆 parameter allows us to adjust 312 

the extent to which adaptive knowledge can offset the costs of brain size, where 𝜆 = 0 indicates 313 

no offset. The 𝜆 parameter can be interpreted as how much adaptive knowledge one requires to 314 

unlock the fitness-enhancing advantages. For example, in a calorie-rich environment where only 315 

a little skill or knowledge is required to access calories (e.g. simply remembering food locations), 316 

𝜆 would be high. Conversely, in a calorie-poor environment where a lot of skills or knowledge are 317 

required to access fewer calories (e.g. food needs significant preparation before safe consumption), 318 

𝜆 would be low. In the analytic model, the decrease to the death rate through adaptive knowledge 319 

becomes a constant since adaptive knowledge is a function of brain size (and parameters affecting 320 

learning efficiency), but although this will not affect the dynamics of the model, it will affect the 321 

final brain sizes. We fully explore this in the simulation. 322 
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Given a resident (𝑠, 𝑏), the equilibrium population size of the resident is determined by the 323 

solution to Equation 3: 324 

𝑟(𝑁∗) = 𝑑(𝑏) (6) 

Since we know that 𝑠 → 0 when 𝜏𝜈 < 𝜁 and 𝑠 → 1 when 𝜏𝜈 > 𝜁, we can consider these 325 

two cases, asocial learners and social learners, separately and then compare the outcomes of these 326 

two regimes. 327 

Asocial learners (𝑠 = 0) 328 

To determine the adaptive dynamics of brain size, consider a mutant (designated by 329 

subscript “m”) with brain 𝑏𝑚. This mutant’s adaptive knowledge based on Equation 1 will be 330 

𝑎𝑚 = 𝜁𝑏𝑚, since 𝑠 = 0. Using the same ecological assumptions as before for a mutant type 𝑏𝑚, 331 

and assuming the mutant is rare and growing (initially) in a resident population that is at its 332 

ecological equilibrium 𝑁∗, the per capita growth rate of the mutant, its invasion fitness, is: 333 

𝑓(𝑏, 𝑏m) = 𝑟𝑚(𝑁∗) − 𝑑(𝑏𝑚) 

=  𝜌 (1 −
𝑁∗

1 + 𝑎𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝑎𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜁𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝜁𝑏𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜁𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒−𝜆𝜁 

(7) 

To examine the adaptive dynamics of brain size, we need to calculate the selection gradient 334 

by taking the derivative of the invasion fitness 𝑓 with respect to the mutant trait 𝑏𝑚 and evaluate 335 

this derivative at the resident value 𝑏. To calculate if these equilibria are stable, we will calculate 336 

the second derivative. If the second derivative is negative, then the value is a convergent stable 337 

ESS. For those unfamiliar with this approach, it may be helpful to use a physical analog—distance, 338 
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speed, and acceleration (or more accurately, displacement, velocity, and acceleration). The 339 

derivative of distance over time (metres) is speed (metres per second). The second derivative 340 

(derivative of speed) is acceleration (metres per second per second). The adaptive dynamics 341 

approach is the equivalent of looking at when an object is stationary (i.e. speed—derivative of 342 

distance—is 0) and confirming that these “equilibria” stationary points are convergent by 343 

confirming that objects decelerate around these points (i.e. acceleration—second derivative—is 344 

negative). If the second derivative were positive, objects would increase speed and move away 345 

from this stationary point, or in the present case, there would be positive selection for mutants 346 

away from this equilibrium. Let us calculate the selection gradient for brain size: 347 

𝑑𝑏

𝑑𝑡
=

𝛿𝑓

𝛿𝑏𝑚
|𝑏𝑚=𝑏 =

𝜌𝜁𝑁∗

(1 + 𝜁𝑏)2
− 𝑛𝛽𝑒−𝜆𝜁𝑏𝑛−1 (8) 

From Equation 8 we can see that if 𝑛 > 1, 𝑑𝑏 𝑑𝑡⁄ < 0 for large 𝑏 and 𝑑𝑏 𝑑𝑡⁄ > 0 for small 348 

𝑏, which suggests that there is some intermediate ESS value for brain size (𝑏∗). It is straightforward 349 

to check that the second derivative of the invasion fitness function (Equation 8) with respect to the 350 

mutant trait and evaluated at the resident trait is always negative and therefore the singular strategy 351 

𝑏∗ is a CSS (i.e., a convergent stable ESS). This equilibrium brain value (i.e. when 𝑑𝑏 𝑑𝑡⁄ = 0) is 352 

difficult to solve for a generic polymial 𝑛. To calculate a solution, we can select a reasonable 353 

polynomial (e.g. 𝑛 = 2, which we use in the simulation) and solve for 𝑑𝑏 𝑑𝑡⁄ = 0. As long as 354 

brain size is positive, the relationship between brain size and the death rate will be superlinear and 355 

monotonous; our qualitative results should be robust to the specific polynomial used. Here is the 356 

equilibrium brain size for 𝑛 = 2: 357 

𝑏∗ =
−𝛽 + √𝛽2 + 3𝜌𝜁2𝛽𝑒𝜆𝜁

3𝜁𝛽
 (9) 
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We need to compare the equilibrium brain size among asocial learners expressed in 358 

Equation 9 with the equilibrium brain size among social learners, so let’s now calculate the 359 

dynamics for social learners. 360 

Social learners (𝑠 = 1 ) 361 

To determine the adaptive dynamics of brain size, consider a mutant (designated by 362 

subscript “m”) with brain 𝑏𝑚. This mutant’s adaptive knowledge based on Equation 1 will be 363 

𝑎𝑚 = 𝜏𝜈𝑏𝑚, since 𝑠 = 1. Using the same ecological assumptions as before for a mutant type 𝑏𝑚, 364 

and assuming the mutant is rare and growing (initially) in a resident population that is at its 365 

ecological equilibrium 𝑁∗, the per capita growth rate of the mutant, its invasion fitness, is: 366 

𝑓(𝑏res, 𝑏m) = 𝑟𝑚(𝑁∗) − 𝑑(𝑏𝑚) 

=  𝜌 (1 −
𝑁∗

1 + 𝑎𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝑎𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜏𝜈𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝜏𝜈𝑏𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜏𝜈𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒−𝜆𝜏𝜈 

(10) 

As before, to examine the adaptive dynamics of brain size, we need to calculate the 367 

selection gradient by taking the derivative of the invasion fitness 𝑓 with respect to the mutant trait 368 

𝑏𝑚 and evaluate this derivative at the resident value 𝑏𝑟𝑒𝑠. To calculate if these equilibria are stable, 369 

we will calculate the second derivative. If the second derivative is negative, then the value is a 370 

convergent stable ESS. Let us calculate the selection gradient for the brain size of social learners: 371 

𝑑𝑏

𝑑𝑡
=

𝛿𝑓

𝛿𝑏𝑚
|𝑏𝑚=𝑏𝑟𝑒𝑠

=
𝜌𝜏𝜈𝑁∗

(1 + 𝜏𝜈𝑏)2
− 𝑛𝛽𝑒−𝜆𝜏𝜈𝑏𝑛−1 (11) 
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As with asocial learners, from Equation 11 we can see that if 𝑛 > 1, 𝑑𝑏 𝑑𝑡⁄ < 0 for large 372 

𝑏 and 𝑑𝑏 𝑑𝑡⁄ > 0 for small 𝑏, which suggests that there is some intermediate ESS value for brain 373 

size (𝑏∗). It is straightforward to check that the second derivative of the invasion fitness function 374 

(Equation 11) with respect to the mutant trait and evaluated at the resident trait is always negative 375 

and therefore the singular strategy 𝑏∗ is a CSS (i.e., a convergent stable ESS). We can set 𝑛 = 2 376 

and calculate this equilibrium brain value (i.e. when 𝑑𝑏 𝑑𝑡⁄ = 0): 377 

𝑏∗ =
−𝛽 + √𝛽2 + 3𝜌𝜏2𝜈2𝛽𝑒𝜆𝜁

3𝜏𝜈𝛽
 (12) 

Equation 12 is functionally similar to Equation 9, but the equilibrium brain size for asocial 378 

and social learners will be different. Moreover, since to enter the realm of social learning, 𝜏𝜈𝑏 >379 

𝜁𝑏, social learners, ceteris paribus, will have larger equilibrium brain sizes than asocial learners. 380 

However, transmission fidelity, asocial learning efficacy, and the payoff for adaptive knowledge 381 

(e.g. richness of the environment) are all going to affect the equilibrium brain size. We can derive 382 

a set of predictions from the insights gained from this model. 383 

Predictions 384 

The key predictions from the analytical model are that: 385 

1. Increased reliance on social learning requires high transmission fidelity (relative to 386 

the ability to generate knowledge by oneself). 387 

2. Extreme reliance on social learning also assumes access to a range of models with 388 

different amounts of adaptive knowledge (determined by population size and 389 

interconnectedness and assuming an ability to select and learn from models with 390 

more adaptive knowledge; see Henrich, 2004; Henrich et al., 2016; Muthukrishna 391 

& Henrich, 2016).  392 
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3. A greater return on adaptive knowledge (affected by 𝜆 ; e.g. richness of 393 

environment) increases brain size (and may therefore explain different 394 

encephalization slopes across tax). Assuming an exponential return on adaptive 395 

knowledge, the environment will have a larger effect on social learners. 396 

However, there are several assumptions and implications underlying these basic insights, 397 

such as: 398 

1. Social learners face a bootstrapping problem of where the initial knowledge comes 399 

from.  400 

2. The birth rate and the indirect relationships that affect actual population size will 401 

also affect brain size (and adaptive knowledge).  402 

3. Species that do enter an extreme of social learning (such as humans) are on a 403 

treadmill, requiring higher transmission fidelity and more adaptive knowledge to 404 

sustain their large brains. A loss in either transmission fidelity or access to adaptive 405 

knowledge would drive the species towards a smaller brains.  406 

Brain size and reliance on social over asocial learning will depend on factors that affect 407 

availability of adaptive knowledge, which are themselves affected by learning strategies and 408 

adaptive knowledge. In other words, there are a range of co-evolutionary dynamics that we have 409 

assumed or abstracted away in order to solve this model analytically, but which are crucial to 410 

capture and understand the full range of evolutionary dynamics. To understand the conditions 411 

under which social learning might emerge (and perhaps more interestingly, extreme reliance on 412 

social learning), we need to explore these co-evolutionary dynamics. We explore these full set of 413 

variables and explore these dynamics through an evolutionary simulation. An evolutionary 414 

simulation also allows us to properly account for population size, population structure, more 415 
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sophisticated learning strategies, and life history. This model will bolster and expand on our 416 

analytic model and reveal the conditions where adaptive knowledge and brain size will increase. 417 

Simulation Model 418 

To explore the culture-gene co-evolutionary dynamics, we constructed an evolutionary 419 

simulation that extends our analytic model. In our simulation, individuals are born, learn asocially 420 

or socially from their parent with some probability, potentially update by asocial learning or by 421 

socially learning from more successful members of their group during an extended juvenile period, 422 

migrate between demes, and die or survive based on their brain size and adaptive knowledge. 423 

Individuals who survive this process give birth to the next generation. We are mainly interested in 424 

the effects of natural selection and learning, so we use a haploid model and ignore non-selective 425 

forces such as sex, gene recombination, epistasis, and dominance. The lifecycle of the model, as 426 

well as all variables and parameters, are shown in Figure 1 below. 427 
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Figure 1. Lifecycle of simulation. On the left we define all individual evolving variables and 429 

constants. Parameters are defined within the relevant life stage. 430 

This simulation was written in C++ by MM (code in Supplemental Materials). To reduce 431 

bugs, two computer science undergraduate research assistants wrote a suite of unit tests using 432 

Google’s C++ Testing Framework. These CS students also independently reviewed the code. The 433 

simulation begins with 50 demes, each with a population of 10 individuals. Throughout the 434 

simulation, the number of demes was fixed at 50. In early iterations of the model, we explored 435 

increasing the number of demes to 100 for some of the parameter space and found no significant 436 

impact on the results. Our starting population of 10 individuals is roughly equivalent to a real 437 

population of 40 individuals, assuming two sexes and one offspring per parent (4 × 10). As a 438 

reference, mean group size in modern primates ranges from 1 to 70 (Dunbar, 2009).  439 

Each individual 𝑖 in deme 𝑗 has a brain of size 𝑏𝑖𝑗 with a fitness cost that increases with 440 

increasing brain size. Adaptive knowledge is represented by 𝑎𝑖𝑗, where 0 ≤ 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗. Increasing 441 

adaptive knowledge can mitigate the selection cost of a larger brain, but such knowledge is limited 442 

by brain size.  443 

Our simulations begin with individuals who have no adaptive knowledge, but the ability to 444 

fill their 𝑏𝑖𝑗 = 1.0 sized brains with adaptive knowledge through asocial and/or social learning 445 

with some probability. To explore the idea that juvenile periods can be extended to lengthen the 446 

time permitted for learning, we have included two stages of learning. In both learning stages, the 447 

probability of using social learning rather than asocial learning is determined by an evolving social 448 

learning probability variable (𝑠𝑖𝑗). We began our simulations with the social learning probability 449 

variable set to zero (i.e. at the beginning of the simulation, all individuals are asocial learners). To 450 
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explore the invasion of asocial learners into a world of social learners, we also ran the simulation 451 

with the social learning probability variable set to one (i.e. at the beginning of the simulation, all 452 

individuals are social learners). Although social learning is widespread in the animal kingdom 453 

(Hoppitt & Laland, 2013), a realistic starting point is closer to pure asocial learning. Nevertheless, 454 

the simulations starting with social learners were often useful in understanding these dynamics, 455 

so, in some cases, we report these results, as well. 456 

Asocial learning allows for the acquisition of adaptive knowledge, independent of the 457 

adaptive knowledge possessed by other individuals. In contrast, social learning allows for vertical 458 

acquisition of adaptive knowledge possessed by the genetic parent in the first learning stage or 459 

oblique acquisition from more knowledgeable members of the deme (from the parental generation) 460 

in the second learning stage. The tendency to learn from models other than the genetic parent is 461 

determined by a genetically evolving oblique learning probability variable ( 𝑣𝑖𝑗 ). Thus, the 462 

simulation does not assume oblique learning or a second stage of learning (a misplaced critique of 463 

related models in our opinion; Henrich et al., in press; Vaesen, Collard, Cosgrove, & Roebroeks, 464 

2016; but a critique not relevant to the present model). The probability of engaging in a second 465 

round of oblique social learning is a proxy for the length of the juvenile period. In the second stage 466 

of learning, if an individual tries to use social learning, but does not use oblique learning, no 467 

learning takes place beyond the first stage. This creates an initial advantage for asocial learning 468 

and cost for evolution to extend learning into an extended juvenile period. We also allow the ability 469 

to select a model with more adaptive knowledge (for oblique learning) to evolve through a payoff-470 

bias ability variable (𝑙𝑖𝑗).  471 

These simulations result in a series of predicted relationships between brain size, group 472 

size, adaptive knowledge, asocial/social learning, mating structure, and the juvenile period. Some 473 
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of these relationships have already been revealed in the empirical literature and thus provide 474 

immediate tests of our theory. Specifically, several authors have shown positive relationships 475 

(notably in primates) between (1) brain size and social group size (Barton, 1996; Dunbar & Shultz, 476 

2007; Dunbar, 1998), (2) brain size and social learning (Lefebvre, 2013; Reader & Laland, 2002), 477 

(3) brain size and length of juvenile period (Charvet & Finlay, 2012; Isler & van Schaik, 2009; 478 

Joffe, 1997; Walker, Burger, Wagner, & Von Rueden, 2006), and (4) group size and the length of 479 

the juvenile period (Joffe, 1997).  480 

Various hypotheses have been proposed for these relationships. Here we argue that they 481 

are all a consequence of a singular evolutionary process, the dynamics of which the CBH models 482 

reveal. In addition, we find that different rates of evolutionary change and the size of these 483 

relationships across taxa (Shultz & Dunbar, 2010a) may be accounted for by the extent to which 484 

adaptive knowledge reduces the death rate (𝜆 in our model). As in the analytical model, the 𝜆 485 

parameter can be interpreted as being part of the resource richness of the ecology. Richer ecologies 486 

offer more ‘bang for the buck’, for example, more calories unlocked for less knowledge, allowing 487 

individuals to better offset the size of their brains. Higher 𝜆 suggest a richer ecology. Indeed, 488 

research among primates has revealed that factors affecting access to a richer ecology—home 489 

range size or the diversity of food sources—are associated with brain size (Clutton‐Brock & 490 

Harvey, 1980; Harvey & Krebs, 1990). Thus, our model may help explain why both social and 491 

ecological variables seem to be variously linked to brain size. 492 

The dynamics of our model also reveal the ecological conditions, social organization and 493 

evolved psychology most likely to lead to the realm of cumulative cultural evolution, the pathway 494 

to modern humans. These predictions capture the CCBH. Our model indicates the following 495 
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pathway. Under some conditions, brains will expand to improve asocial learning and thereby create 496 

more adaptive knowledge. This pool of adaptive knowledge leads to selection favoring an 497 

immense reliance on social learning, with selective oblique transmission, allowing individuals to 498 

exploit this pool of growing knowledge. Rogers’ (1988) paradox, whereby social learners benefit 499 

from exploiting asocial learners’ knowledge, but do not themselves generate adaptive knowledge, 500 

is solved by selective oblique social learning transmitting accidental innovations to the next 501 

generation. Under some conditions, an interaction between brain size, adaptive knowledge, and 502 

sociality (deme size and interconnectedness) emerges, creating an autocatalytic feedback loop that 503 

drives all three—the beginning of cumulative cultural evolution. 504 

The Lifecycle 505 

Individuals go through four distinct life stages (see Figure 1): Individuals (1) are born with 506 

genetic traits similar to their parents, with some mutation, (2A) learn adaptive knowledge socially 507 

from their parents or through asocial learning independent of their parents, (2B) go through a 508 

second stage of learning adaptive knowledge through asocial or oblique social learning, (3) migrate 509 

between demes, and (4) die or survive to reproduce the next generation. Fecundity and viability 510 

selection (birth and death) are expressed separately, allowing us to disentangle the effect of 511 

adaptive knowledge on outcompeting conspecifics and on reducing the risk of dying before 512 

reproduction.  513 

Stage 1: The Birth Stage 514 

In the birth stage, the individuals who survive the selection stage (Stage 4) give birth to the 515 

next generation. 516 

Adaptive Knowledge and the Number of Offspring. We assume that demes with greater 517 

mean adaptive knowledge can sustain a larger population. We formalized this assumption in 518 
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Equation 13 by linking 𝑘𝑗, which affects the carrying capacity of the deme, to the mean adaptive 519 

knowledge of the individuals in the deme (𝐴𝑗) and some minimum value that we set to our starting 520 

group size (𝑁𝑗0
= 10). The relationship between mean adaptive knowledge and 𝑘𝑗  is scaled by 𝜒, 521 

but adjusting this coefficient resulted in a computationally intractable deme size as adaptive 522 

knowledge accumulated. Therefore, we set this coefficient to a constant value (𝜒 = 10) and left 523 

exploration of this parameter for a future model. The deme size (𝑁𝑗𝑡
) in the current generation (𝑡) 524 

and 𝑘𝑗  are then used to calculate the total expected number of offspring (𝑁𝑗𝑡+1
) in the next 525 

generation (𝑡 + 1) using the discrete logistic growth function in Equation 14, where 𝜌  is the 526 

generational growth rate. Initial simulations suggested that 𝜌 only affected the rate of evolution 527 

rather than the qualitative outcomes. We selected a reasonable value (𝜌 = 0.8) based on Pianka 528 

(2011). 529 

𝑘𝑗  = 𝜒 𝐴𝑗 + 𝑁𝑗0
 (13) 

𝑁𝑗𝑡+1
=

𝑁𝑗𝑡
𝑒𝜌

1 + (
𝑁𝑗𝑡

𝑘𝑗
(𝑒𝜌 − 1))

 
(14) 

Equation 14 tells us the Expected Value for the number of offspring based on current deme 530 

size and 𝑘𝑗  (based on deme mean adaptive knowledge). However, this does not tell us which 531 

individuals within the deme gave birth to the offspring. We assume that more adaptive knowledge 532 

increases an individual’s birth rate. We parameterized the strength of the relationship between 533 

adaptive knowledge and birth rate (fecundity selection). A potential parent’s (𝑖𝑗) probability of 534 

giving birth (𝑝𝑖𝑗) is given by their sigmoid transformed adaptive knowledge value (Equation 15) 535 

as a fraction of the sum of all transformed adaptive knowledge values of individuals in the deme 536 

(Equation 16). The transformation is adjusted by 𝜑 , allowing us to study the importance of 537 
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fecundity selection. For example, we can turn off fecundity selection entirely by setting 𝜑 = 0: A 538 

world with no reproductive skew; all potential parents have the same probability of giving birth. 539 

The more we turn up 𝜑, the more we have a winner-takes-all world, where to win, one has to 540 

acquire adaptive knowledge. This is crucial in thinking about how, for example, our culture-gene 541 

co-evolutionary process is influenced by social organization and mating structures that create high 542 

reproductive skew.  543 

One mechanism underlying reproductive skew is mating structure. A perfectly 544 

monogamous pair-bonded society with no differential selection at the birthing stage would have 545 

𝜑 = 0. Increasing 𝜑 allows for an increase in polygyny from “monogamish” (mostly pair-bonded) 546 

societies at low values of 𝜑 to highly polygynous winner-takes-all societies where males with the 547 

most adaptive knowledge have significantly more offspring (see Figure 2). Our model suggests 548 

that in more polygynous societies, where selection is high, variation is reduced. This allows for 549 

the initial rapid evolution of larger brains, but with little or no variation, populations are unable to 550 

use social learning to increase their adaptive knowledge and are more likely to go extinct. At the 551 

other extreme, evolutionary forces are quashed when 𝜑 = 0. Social learning and the advent of 552 

culture-gene coevolution are more likely to occur when reproductive skew is supressed, such as in 553 

monogamish or cooperative/communal breeding societies or where sharing norms result in shared 554 

benefits despite skew in ability or success (see Hill & Hurtado, 2009; Hooper, Ross, Mulder, & 555 

al., 2016; Lansing et al., 2008). Of course, some argue that culture supports, or is responsible for, 556 

such mating structures in humans, which would require us to endogenize 𝜑. In our model, we treat 557 

𝜑 as a parameter. 558 

𝑎𝑖𝑗
𝑇 =

1

1 + 𝑒−𝜑(𝑎𝑖𝑗−𝐴𝑗)
 (15) 
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𝑝𝑖𝑗 =
𝑎𝑖𝑗

𝑇

∑ 𝑎𝑖𝑗
𝑇𝑁𝑗

𝑖=1

 
(16) 

 559 

Figure 2. The effect of 𝝋 on transforming adaptive knowledge. Here the mean adaptive 560 

knowledge of the deme is 1 (𝑨𝒋 = 𝟏). 561 

We assume that more individual adaptive knowledge (𝑎𝑖𝑗
𝑇 ) is associated with increased 562 

relative fertility. Using a binomial distribution, we instantiate the expected number of offspring 563 

𝑛𝑖𝑗  for each parent. A binomial distribution Β(𝑛, 𝑝) describes the number of successes in a 564 

sequence of 𝑛 binary experiments (in our model, have offspring vs. don’t have offspring). The 565 

probability of success in any particular ‘coin flip’ is given by 𝑝. For each parent, we draw a value 566 

from a binomial distribution where the number of experiments is the Expected Value for the 567 

number of offspring in the deme (𝑛 = 𝑁𝑗𝑡+1 ) and the probability is calculated by Equation 16, i.e. 568 
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from Β(𝑁𝑗𝑡+1
, 𝑝𝑖𝑗). By drawing these values from a binomial distribution, the sum of Expected 569 

Values for the offspring of all parents is 𝑁𝑗𝑡+1
 (i.e. 𝑁𝑗𝑡+1

= ∑ 𝐸[Β(𝑁𝑗𝑡+1
, 𝑝𝑖𝑗)] = 𝐸 [∑ 𝑛𝑖𝑗

𝑁𝑗

𝑖=1
]

𝑁𝑗

𝑖=1
).  570 

Genetic Transmission and Mutation. The offspring (designated by a prime symbol) born 571 

to a parent are endowed with genetic characteristics similar to their parents. These offspring 572 

acquire four genetic traits from their parents—their brain size (𝑏′𝑖𝑗), social learning probability 573 

(𝑠′𝑖𝑗), oblique learning probability (𝑣′𝑖𝑗), and oblique learning bias (𝑙′𝑖𝑗). For each trait, newborn 574 

individuals have a 1 − 𝜇 probability of having the same value as their parents (𝑏𝑖𝑗, 𝑠𝑖𝑗 , 𝑣𝑖𝑗 , 𝑙𝑖𝑗). If 575 

a mutation takes place, new values are drawn from a normal distribution with a mean of their 576 

parent value and a standard deviation 𝜎𝑠 for 𝑠𝑖𝑗
′ , 𝜎𝑣 for 𝑣′𝑖𝑗, 𝜎𝑙 for 𝑙, and 𝜎𝑣 for 𝑣′𝑖𝑗 and 𝜎𝑏𝑏𝑖𝑗 for 577 

𝑏𝑖𝑗
′ . The standard deviations of 𝑠𝑖𝑗

′  and 𝑣𝑖𝑗
′  are not scaled by the mean, since these are probabilities 578 

and therefore bounded [0,1]. Although 𝑙𝑖𝑗
′  is not bounded, we do not scale the standard deviation 579 

by the mean, because small changes in 𝑙𝑖𝑗
′  have a large effect on learning bias, due to the sigmoid 580 

function. Once offspring have been endowed with genetic characteristics, they then acquire 581 

adaptive knowledge. Their method and ability to acquire adaptive knowledge is affected by their 582 

genetic traits. 583 

Stage 2: Learning 584 

Asocially learned adaptive knowledge values (𝑎𝑖𝑗
′ ) are drawn from a normal distribution 585 

based on an individual’s brain size: 𝑁(𝜁𝑏𝑖𝑗
′ , 𝜎𝑎𝜁𝑏𝑖𝑗

′ ). Socially learned adaptive knowledge values 586 

are drawn from a similar normal distribution, but with a mean of the model’s ( 𝑡 ) adaptive 587 

knowledge value scaled by transmission fidelity (𝜏): 𝑁(𝜏𝑎𝑡𝑗, 𝜎𝑎𝜏𝑎𝑡𝑗). Figure 3 below illustrates 588 

the distributions from which these values are drawn and the effect of 𝜁 and 𝜏. 589 
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 590 

(a) 591 

 592 

(b) 593 

Figure 3. Illustration of distributions for how asocial learning and social learning acquire 594 

adaptive knowledge. In (a) an asocial learner has a higher probability of drawing a value 595 

closer to their brain size if 𝜻 is higher. In (b) a social learner has a higher probability of 596 

drawing a value closer to their model’s adaptive knowledge value if 𝝉 is high. Note that in 597 

both cases, adaptive knowledge cannot exceed brain size (𝒂𝒊𝒋 ≤ 𝒃𝒊𝒋).
i 598 

For both asocial and social learning, an individual’s adaptive knowledge may not exceed 599 

their brain size. But, compared to social learning, asocial learning enables the immediate 600 

acquisition of adaptive knowledge based on one’s own brain size. Social learning is dependent on 601 
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the adaptive knowledge possessed by parents, or those in the parents’ generation within the same 602 

deme, if selection extends the learning phrase through a juvenile period.  603 

In Stage 2A, newborn individuals 𝑖𝑗
′ can socially acquire adaptive knowledge from their 604 

parent 𝑖 with probability 𝑠𝑖𝑗
′ . If newborns do not learn from their parents (1 − 𝑠𝑖𝑗

′ ), they learn 605 

asocially instead.  606 

In Stage 2B, individuals 𝑖𝑗
′ may update their adaptive knowledge through asocial learning 607 

with probability (1 − 𝑠𝑖𝑗
′ ) in the same manner as Stage 2A or obliquely from non-parents with 608 

probability 𝑠𝑖𝑗
′ 𝑣𝑖𝑗

′ . Individuals who do not asocially learn nor obliquely learn do no further learning. 609 

This allows us to study conditions under which oblique learning emerges during this extended 610 

learning period. Crucially, oblique learning has to out-compete a second round of asocial learning.  611 

We adjust the strength of the relationship between a potential model’s (𝑚 ) adaptive 612 

knowledge and their likelihood of being modeled using the learner’s 𝑙𝑖𝑗
′  variable in the sigmoid 613 

tranformation function (15). A potential model’s (𝑡𝑗) probability of being selected (𝑝𝑡𝑗) is given 614 

by (16). Notice that these have the same functional form as Equations 15 and 16, and thus the 615 

transformation is similar to Figure 2.  Both asocial and social learning only update adaptive 616 

knowledge values if these values are larger than those acquired during the first stage of learning, 617 

Stage 2A.  618 

𝑎𝑚𝑗
𝑇 =

1

1 − 𝑒−𝑙𝑖𝑗(𝑎𝑚𝑗−𝐴𝑗)
 (17) 

𝑝𝑚𝑗 =
𝑎𝑚𝑗

𝑇

∑ 𝑎𝑚𝑗
𝑇𝑁𝑗

𝑖=1

 
(18) 
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Note, since we are interested in the evolution of social learning, we stacked the deck 619 

somewhat against social learning. Individuals have a 𝑠𝑖𝑗
′ − 𝑠𝑖𝑗

′ 𝑣𝑖𝑗
′  chance of not doing any learning 620 

during Stage 2B. This creates an initial disadvantage for social learning, since any selection for 621 

social learning in Stage 2A risks missing out on a second round of asocial learning in Stage 2B. 622 

Stage 3: Migration 623 

Individuals migrate to a randomly chosen deme (not including their own) with probability 624 

𝑚 . All demes have the same probability of immigration. Individuals retain their adaptive 625 

knowledge and genetic traits. There is no selection during migration; all individuals survive the 626 

journey. 627 

Stage 4: Selection Based on Brain Size and Adaptive Knowledge 628 

We formalized the assumption that larger, more complex brains are also more costly using 629 

a quadratic function to link brain size to maximum death rate (𝑐𝑚𝑎𝑥), capturing the idea that the 630 

costs of large brains escalate non-linearly with size. In early simulations, we also tested an 631 

exponential function, but our exploration revealed no important qualitative differences between 632 

the functions.  633 

To formalize the assumption that individuals with more adaptive knowledge are less likely 634 

to die ceteris paribus, we use the negative exponential function in Equation 19. The 𝜆 parameter 635 

in Equation 19 was varied between simulations and was used to determine the extent to which 636 

adaptive knowledge can offset the costs of brain size, where 𝜆 = 0 indicates no offset. As in our 637 

analytical model, the 𝜆  parameter can be interpreted as how much adaptive knowledge one 638 

requires to unleash fitness-enhancing advantages.  639 
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𝑑′𝑖𝑗 = 𝑐𝑚𝑎𝑥𝑒
−𝜆

𝑎𝑖𝑗
′

𝑏′𝑖𝑗  

(19) 

 640 

This function captures the idea that the increasing costs of big brains can be offset by more 641 

adaptive knowledge. We set 𝑐𝑚𝑎𝑥 = 𝛽𝑏2 ; 𝛽 = 1 10000⁄  in our simulation). This results in a 642 

maximum empty brain size of 𝑏 = 100. The choice of setting the maximum empty brain size to 643 

𝑏 = 100 was somewhat arbitrary, but allowed for a reasonable size brains to see a range of 644 

evolutionary behavior (it just sets the scaling).  We illustrate the effect of 𝜆 in Figure 4 below. 645 

 646 

Figure 4. Reduction in death rate for different values of 𝝀 for a given brain size (𝒃 = 𝟓𝟎 in 647 

this example). 648 
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Summary 649 

These basic assumptions generate conflicting selection pressures for (1) more adaptive 650 

knowledge and (2) smaller brains. Under some conditions, the cost of having a larger brain is offset 651 

by the increased knowledge capacity of larger brains. If adaptive knowledge were freely available, 652 

there would be no constraint on the co-evolution of brains and adaptive knowledge; both would 653 

ratchet upward. In general, three related constraints prevent this from happening:  654 

1. Adaptive knowledge does not always exist in the environment to fill a larger brain.  655 

2. Larger brains without adaptive knowledge are costly without any offsetting 656 

benefits. This is especially true for social learners with brains larger than their 657 

parents, since this additional brain space cannot immediately be utilized.  658 

3. Increases in brain size show diminishing returns; brain costs increase at a greater 659 

than linear rate.  660 

We simulated a range of space within each parameter set for low, middle, and high values 661 

of other parameters for which we found interactions and realistic values of all other parameters. 662 

The range for each parameter was as follows: 𝜑[0.0,1.0], 𝜏[0.75,1.0], 𝜁[0.1,0.9], 𝑚[0.0,0.2], and 663 

𝜆[0.0,2.0].  664 

To give our populations enough time to evolve, we ran our simulation for 200,000 665 

generations. Assuming 25-30 years per generation (Fenner, 2005), this represents 5-6 million years 666 

of evolution, approximately the time since the hominin split from chimpanzees (Kumar, Filipski, 667 

Swarna, Walker, & Hedges, 2005). With a few exceptions, this guarantees that our genetically 668 

evolved variables have hit quasi-equilibrium. To account for stochastic variation in simulation 669 

outcomes, we performed 5 iterations per set of unique parameters and averaged the results across 670 

these. Unlike the other parameters, learning bias 𝑙 did not generally reach equilibrium; however, 671 
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we would not expect it to do so since higher 𝑙 values continue to provide an advantage in selecting 672 

models, such that 𝑙  should slow down but continue to approach ∞. In our model, 𝑙  is a one-673 

dimensional state variable that captures better and worse ability to select models, but of course in 674 

the real world, there are a range of strategies and biases that have evolved to solve the problem of 675 

selecting models with more adaptive knowledge. For a discussion of the evolution of these biases 676 

and strategies and the trade-offs between them, see Chudek, Muthukrishna, and Henrich (2015) 677 

and Henrich (2016). For a list of such biases and strategies, see Rendell et al. (2010). 678 

Results 679 

We begin by discussing the underlying processes that have led to the relationships between 680 

brain size, group size, social learning, and life history observed in the literature. We discuss the 681 

effect of our different parameters in creating these relationships and driving evolutionary patterns. 682 

To benchmark the predictions derived by our model, we treat the quasi-equilibrium 683 

outcomes of each of our simulation runs as “quasi-species”, with state variables representing the 684 

characteristics of each species. We qualitatively compare these simulation outcomes to existing 685 

empirical findings in the literature. Then, we focus on the CCBH and examine the conditions that 686 

favor substantial amounts of cumulative cultural evolution. The goal here is to understand the 687 

conditions under which the interaction between social learning, brain size, group size, sociality 688 

and life history generates the kind of auto-catalytic take-off required to explain the last two million 689 

years of human evolution.  690 

The Cultural Brain Hypothesis 691 

Overall, our evolutionary simulations produce patterns that are consistent with the existing 692 

empirical data, though, of course, our simulation produces many patterns that have not yet been 693 
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examined. The causal relationships underlying these patterns—the CBH and our simulated 694 

instantiation of it—are outlined in Figure 5 below. Before digging into the details, we summarize 695 

these relationships as follows: 696 

1. Larger brains allow for more adaptive knowledge. More adaptive knowledge can, in turn, 697 

exert a selection pressure for larger brains.  698 

2. More adaptive knowledge allows for larger potential carrying capacity. Consistent with our 699 

analytical model, when there is sufficient adaptive knowledge and transmission fidelity is 700 

high enough, there is selection for social learning to take advantage of the adaptive 701 

knowledge; larger groups produce more adaptive knowledge that can be exploited by those 702 

with better social learning abilities.  703 

3. Large groups of individuals who primarily rely on social learning have larger bodies of 704 

knowledge than those who rely on asocial learning, exerting a selection pressure for an 705 

extended juvenile period in which more adaptive knowledge can be learned (and created). 706 

4. An extended juvenile period (e.g. adolescence) is a period of reliance on oblique learning 707 

(learning from non-genetic parents in the group), which creates a selection pressure for 708 

learning biases better able to select individuals and knowledge to learn (better learning 709 

abilities and tendency to learn from non-genetic models reinforce each other in a world of 710 

plentiful and accumulating adaptive knowledge).  711 

5. Oblique learning and learning biases lead to the realm of cumulative cultural evolution. 712 

The length of the juvenile period (period between weaning and sexual maturity) varies 713 

across species (Joffe, 1997; Walker et al., 2006), but adolescence (period between sexual 714 

maturity and reproduction) may be uniquely human (possible exceptions include elephants 715 
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(Evans & Harris, 2008) and orca (Olesiuk, Bigg, & Ellis, 1990)). Adolescence may 716 

represent a period of oblique social learning, a key to cumulative cultural evolution. 717 

The Cultural Brain Hypothesis predicts that brain size, group size, adaptive knowledge, 718 

and the length of juvenile period should be positively intercorrelated among taxa with greater 719 

dependence on social learning, but are generally weaker or non-existent among taxa with little 720 

social learning. There has been less empirical data published for species with little social learning, 721 

perhaps due to a bias toward only publishing statistically significant relationships, making the 722 

asocial regime predictions more difficult to test. 723 

 724 

Figure 5. Here we illustrate the causal relationships predicted by the Cultural Brain 725 

Hypothesis. Larger brains allow for the storage and management of more information. 726 

More adaptive knowledge supports larger brains and larger groups. Larger groups possess 727 

more adaptive knowledge for social learning to exploit. Sufficiently large groups of social 728 

learners with sufficient knowledge create a selection pressure for a longer juvenile period 729 

for social learners to acquire knowledge selectively via biased oblique learning. 730 

The strength of these relationships, overall brain size, and the evolution of different regimes 731 

vary, depending on the other parameters in our model. These include ecological factors such as the 732 

richness of the ecology (𝜆) as well as other factors that are themselves products of evolution (which 733 

we’ve held fixed as phylogenetic constraints): reproductive skew or mating structure ( 𝜑 ), 734 
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transmission fidelity (𝜏), and asocial learning efficacy (𝜁 ). Other models have theorized the 735 

evolution of these structures, tendencies, and abilities, but here we are interested in the effect of 736 

these factors on the co-evolutionary processes shown in Figure 5.  737 

Effect of Parameters 738 

Richness of the Ecology (𝛌) 739 

Our simulation suggests that the richness of the ecology may be one factor that predicts 740 

both the rate of brain evolution and sociality. In a rich ecology (higher 𝜆), less adaptive knowledge 741 

is needed to unlock more calories, evade more predators, and so on, allowing for larger brains; i.e. 742 

adaptive knowledge offers more “bang for the buck”. For those in the realm of social learning, in 743 

richer ecologies, we see greater reliance on social learning and larger brains (see Figure 6). Thus 744 

the CBH suggests that the empirical correlation that has been shown between sociality and the 745 

differential rate of brain expansion between taxa (Shultz & Dunbar, 2010a) may be explained by 746 

a third variable: richness of the ecology. 747 

 748 
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 749 

(a) 750 

 751 

(b) 752 
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 753 

 (c) 754 

Figure 6. Here we show the effect of richness of the ecology on brain size and social 755 

learning. These are aggregated over a range of other parameters (a) Mean brain size 756 

showing the encephalization slope for different values of 𝝀. Richer ecologies have a steeper 757 

slope for brain evolution. (b) Mean social learning showing the slopes over time. Richer 758 

ecologies support more social learning when social learning is adaptive. (c) This is made 759 

clear in the same plot for a narrower range of other parameters (𝝉 = 𝟏 and 𝜻 = 𝟎. 𝟕). 760 

Reproductive Skew or Mating Structure (𝛗) 761 

We model the effect of mating structure or reproductive skew using 𝜑. The 𝜑 parameter 762 

affects the relationship between individual adaptive knowledge and the mating competition. When 763 

𝜑 = 0 , all individuals have the same probability of reproducing regardless of their adaptive 764 

knowledge. This corresponds to a perfectly monogamous society with no fecundity selection. As 765 

𝜑 increases, we enter into a slightly ‘monogamish’ or human cooperative breeding society (where 766 

reproductive skew is limited; Hill & Hurtado, 2009) and then to a polygynous society for very high 767 
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values of 𝜑. Increasing 𝜑, increases the strength of selection for more adaptive knowledge, but the 768 

results of this increase in fecundity selection may be surprising.  769 

First, brain size increases with 𝜑 (Figure 7a), but this relationship is misleading, because 770 

the extinction rate also increases with higher 𝜑  (Figure 7c). Extinction rates go up, because 771 

variance is reduced with too high fecundity selection. More adaptive knowledge is sought at any 772 

cost, but in a world with little adaptive knowledge, the best way to acquire this knowledge is via 773 

asocial learning. This leads to populations getting stuck in the world of asocial learning without 774 

the necessary variance (some attendance and learning from conspecifics) to take advantage of the 775 

existing body of adaptive knowledge.  776 

Second, for these same reasons, Figure 7b reveals the tendency to use social learning 777 

decreases with greater reproductive skew. We return to this when we discuss the Cumulative 778 

Cultural Brain Hypothesis. 779 

 780 

(a) 781 
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 782 

(b) 783 

 784 

 (c) 785 

Figure 7. Bean plots showing the distribution of (a) brain size and (b) social learning means 786 

for different values of 𝛗. The dotted horizontal line shows the global mean and the bolded 787 

horizontal lines show the group means. Bean plots show the distribution of values. (c) Plot 788 

showing the rate of extinction for different values of 𝛗. 789 

Empirically, these patterns are consistent with current data: brain size correlates with 790 

mating structure in both mammalian and avian lineages (Shultz & Dunbar, 2010a; Shultz & 791 
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Dunbar, 2010b). Indeed, the relatively high rates of social learning in avian species may be due to 792 

their relatively low reproductive skews.  793 

Transmission Fidelity and Asocial Learning Efficacy (𝛕 and 𝛇) 794 

Transmission fidelity (𝜏) affects the degree of loss of information in the transmission of 795 

adaptive knowledge from cultural models to learners. Asocial learning efficacy (𝜁) affects the 796 

efficiency with which individuals can generate new adaptive knowledge based on their own brain 797 

size. In a world of asocial learners, the parameters under which social learning is favored is narrow 798 

(recapitulating the insight from Boyd & Richerson, 1996). By starting in a world where the 799 

ancestral population has a lot of social learning, we gain two key insights. First, since there is little 800 

adaptive knowledge for social learners to take advantage of, we see that asocial learning is initially 801 

favored. We discuss this in detail in Section 3 of the Results. Second, with an expanded range in 802 

which social learning is favored, we see how 𝜏 and 𝜁 interact in interesting ways to affect the 803 

evolution of social learning with consequent effects on brain size, population size, etc. In Figure 804 

8, we plot transmission fidelity against social learning for different levels of asocial learning 805 

efficacy where simulations were started with all social learners. Figure 8 shows how social learners 806 

can stand on the shoulders of effective asocial learners whose knowledge they exploit. Social 807 

learners benefit from smart ancestors.  808 

Although we treat 𝜏 and 𝜁 as parameters in our model, we suspect that if they were allowed 809 

to evolve, they would both be pushed higher, as would reliance on social learning. And of course, 810 

larger brains that evolve via social learning will also be capable of more potent asocial learning 811 

since asocial learning is dependent on brain size—both in our model and in reality (see 812 

Muthukrishna & Henrich, 2016). We will return to this when we discuss the Cumulative Cultural 813 

Brain Hypothesis. 814 
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𝜁 = 0.1 𝜁 = 0.4 

 

𝜁 = 0.7 

Figure 8. Bean plots showing the distribution of social learning for different values of 815 

transmission fidelity (𝝉) and asocial learning efficacy (𝜻). The dotted horizontal line shows 816 

the global mean and the bolded horizontal lines show the group means. Bean plots show the 817 
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distribution of values. Transmission fidelity interacts with asocial learning efficacy to 818 

generate high equilibrium reliance on social learning. 819 

To most effectively compare our theoretical findings to the existing empirical data, we 820 

subject our simulation output to the same kinds of analyses used by researchers in the empirical 821 

literature. Of course, this comparison is qualitative: we didn’t select parameter values to fit the 822 

empirical literature, but instead sought to use a wide range of plausibly realistic values, so we don’t 823 

expect exact matches between the empirical correlations and our theoretical predictions. There’s 824 

little doubt that some of our parameter setting never or rarely occur in the real world. 825 

Predictions 826 

Our range of parameters results in a range of simulated quasi-species (referred to as 827 

“species” from herein) with predicted relationships between the characteristics of these species. 828 

We have 4 key parameters in our model: Reproductive skew (mating structure; 𝜑), transmission 829 

fidelity (𝜏), asocial learning efficacy (𝜁), and richness of the ecology (𝜆). Each represents different 830 

ecological and phylogenetic constraints. The species that emerge under different combinations of 831 

these conditions can be partitioned into at least two regimes (Figure 9): species that mostly rely on 832 

(1) asocial learning or (2) social learning. A k-cluster analysis on the mean social learning value 833 

(𝑠) for each simulation run suggests that the threshold between these regimes is approximately 834 

50%. Note that the relative count size of the two regimes is a reflection of the range of parameters 835 

we chose rather than a reflection of the world (e.g., transmission fidelity values greater than 75%, 836 

rather than from 0% to 100%). Under some conditions, a species that mainly relies on social 837 

learning can enter into the realm of cumulative cultural evolution. The conditions that predict this 838 

transition are the basis of the CCBH. The relationships between equilibrium state variable values 839 
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differ considerably between these two regimes and so we analyze them separately. The species 840 

that mostly rely on social learning include those in the realm of cumulative cultural evolution.  841 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/209007doi: bioRxiv preprint 

https://doi.org/10.1101/209007
http://creativecommons.org/licenses/by-nc-nd/4.0/


Muthukrishna, Doebeli, Chudek, & Henrich     48 

 

 842 

 (a) 843 

 844 

(b) 845 

Under most 

conditions, 

selection creates 

mostly asocial 

learners, some of 

whom maintain a 

small reliance on 

social learning. 

 

Under a narrow 

range of conditions, 

cumulative cultural 

evolution drives 

species to an 

extreme reliance on 

social over asocial 

learning 
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Figure 9. Histogram of mean social learning probability (𝒔). Under most conditions, 846 

selection creates individuals primarily reliant on asocial learning, some of whom maintain 847 

a small reliance on social learning. Under a narrow range of conditions, cumulative 848 

cultural evolution drives species to an extreme reliance on social over asocial learning. 849 

Consistent with previous models (e.g. Boyd & Richerson, 1996), this range of conditions 850 

expands if social learning is assumed to exist in the ancestral species; i.e., if we start the 851 

simulation with social learners. (b) Histogram of mean social learning probability (𝒔) when 852 

simulations began with all social learners (𝒔 = 𝟏. 𝟎). 853 

To confirm that the relationships we report are not driven by cumulative cultural species 854 

(humans or hominins), we also ran a k-cluster analysis assuming 3 regimes. This analysis split 855 

species into primarily asocial learners (𝑠 < 0.20; e.g., beetles and buffalo), a few species with 856 

some reliance on social learning (0.20 < 𝑠 < 0.66; e.g., capuchins and chimpanzees), and species 857 

that are almost entirely reliant on social learning (𝑠 > 0.66; e.g., humans, hominins, and close 858 

cousins). We then show that the relationships we find among species that mainly rely on asocial 859 

learning (𝑠 < 0.50) also hold among highly asocial learning species (𝑠 < 0.20), and relationships 860 

we find among species that mainly rely on social learning (𝑠 > 0.50) also hold among species with 861 

some social learning (0.20 < 𝑠 < 0.66).  862 

Testing Predictions 863 

We can test our theoretically-derived qualitative predictions by comparing the species that 864 

emerge in our simulation with empirical data. Table 2 reports the relationships between the evolved 865 

characteristics of our species for each regime in our range of parameters. Below, we feature 4 key 866 

predicted relationships—(1) brain size vs. group size, (2) brain size vs. social learning, (3) brain 867 

size vs. juvenile period, and (4) group size vs. juvenile period. 868 
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 869 

Table 2. Correlations for each regime across our entire parameter space. Correlations 870 

between log mean brain size, log mean adaptive knowledge, log mean group size, mean 871 

social learning, and mean juvenile period with 95% confidence intervals in brackets. The 872 

table has been color coded from red (𝒓 = −𝟏) to white (𝒓 = 𝟎) to blue (𝒓 = 𝟏) for ease of 873 

comprehension. The upper table has correlations across the entire parameter space. The 874 

lower table has primarily asocial learners (𝒔 <. 𝟓) in the bottom triangle and primarily 875 

social learners (𝒔 >. 𝟓) in the top triangle. Following the empirical literature, social 876 

learning is defined as the number of observed incidents of social learning. Thus, we 877 

multiplied 𝒔 by mean group size (𝑵), and then following the empirical work, added 3, and 878 

took the natural log (Reader & Laland, 2002). The juvenile period is defined as the 879 

probability of socially learning in a second round of learning (𝒔𝒗). Higher 𝒔𝒗 values should 880 

demand a longer juvenile period. 881 

Evolving 

characters 

Brains 
Adaptive 

Knowledge 
Group Size 

Social 

Learning 

Juvenile 

Period 

log(𝑏̅) log(𝑎̅) log(𝑁̅) log(3 + 𝑁𝑠̅̅̅̅ ) 𝑠𝑣̅̅ ̅ 
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e log(𝑏̅) 1     

log(𝑎̅) 0.81 [.78,.82] 1    

log(𝑁̅) 0.51 [.48,.53] 0.62 [.60,.64] 1   

log(3 + 𝑁𝑠̅̅̅̅ ) 0.17 [.14,.20] 0.42 [.39,.45] 0.64 [.62,.66] 1  

𝑠𝑣̅̅ ̅ 0.05 [.01,.08] 0.24 [.21,.27] 0.27 [.24,.30] 0.81 [.80,.82] 1 
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: 
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&
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to
p

 log(𝑏̅) 1 0.99 [.98,.99] 0.72 [.67,.75] 0.72 [.68,.76] 0.17 [.09,.25] 

log(𝑎̅) 0.78 [.77,.80] 1 0.69 [.65,.74] 0.70 [.66,.74] 0.15 [.06,.23] 

log(𝑁̅) 0.42 [.39,.45] 0.55 [.53,.58] 1 0.98 [.98,.98] 0.22 [.14,.30] 

log(3 + 𝑁𝑠̅̅̅̅ ) -0.23 [-.26,-.19] 0.13 [.10,.17] 0.61 [.58,.63] 1 0.22 [.14,.30] 

𝑠𝑣̅̅ ̅ -0.53 [-.56,-.51] -0.34 [-.37,-.30] -0.21 [-.25,-.18] 0.42 [.39,.45] 1 

 882 

 883 
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 884 

Brain Size and Group Size 885 

As Table 2 shows, our model indicates that among species that mainly rely on social 886 

learning (defined as 𝑠 > 0.5) , the relationship between brain size and group size is 𝑟 =887 

0.72 [0.68,0.76]. Among species with some social learning (0.20 < 𝑠 < 0.66), the correlation is 888 

similarly, 𝑟 = 0.72 [0.66,0.77]. In contrast, our model predicts that among taxa that rely more on 889 

asocial learning, the relationship is much weaker, 𝑟 = 0.42 [0.39,0.45]. Among highly asocial 890 

learners (𝑠 < 0.20), the correlation is 𝑟 = 0.35 [0.30,0.37]. 891 

The empirical literature has established a strong positive relationship between brain size 892 

and group size in primates, but not in other taxa (Dunbar, 2009; Fox et al., 2017; Pérez‐Barbería, 893 

Shultz, & Dunbar, 2007; Shultz & Dunbar, 2007). In primates, the correlation between relative 894 

neocortex size and group size is somewhere between 𝑟 = 0.48 to 𝑟 = 0.61 (Barton, 1996). We 895 

contrast our theoretical predictions to the empirical data in Figure 10. In support of the SBH, 896 

researchers have noted that in other taxa, brain size correlates with measures of sociality or social 897 

group complexity (e.g., among non-primate mammals Fox et al., 2017; Shultz & Dunbar, 2010a; 898 

Shultz & Dunbar, 2007) and with mating structure (e.g. among birds; Shultz & Dunbar, 2010b). 899 

However, why group size correlates with brain size in some taxa and not others remains a mystery 900 

(Dunbar & Shultz, 2007). The CBH offers an explanation, predicting that the strength of the 901 

relationship between brain size and group size increases with reliance on social learning due to 902 

larger groups offering a greater number of opportunities for social learning and a greater amount 903 

of information to learn. Thus, for example, we should expect (and do see) a relationship between 904 
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brain size and group size in primates, but not ungulates or carnivores (who display less social 905 

learning; van Schaik & Burkart, 2011). 906 

  907 
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(A) Theoretical (B) Empirical 

 

 

Figure 10. Brain size and group size. (A) Our model’s empirical correlations between brain 908 

size and group size (𝒓 = 𝟎. 𝟒𝟐 [Asocial], 𝒓 = 𝟎. 𝟕𝟐 [Social]). (B) Empirical correlation 909 

between brain size and group size from Barton (1996) is somewhere between 𝒓 = 𝟎. 𝟒𝟖 to 910 

𝒓 = 𝟎. 𝟔𝟏. 911 

Notably, the algorithms in our theoretical model do not specify a direct relationship 912 

between brain size and group size or group size and brain size—these relationships just emerge. 913 

Instead, the CBH assumes that larger brains are better at storing and managing adaptive 914 

knowledge. There are two pathways to acquire that knowledge: asocial learning and social 915 

learning. Groups with higher mean adaptive knowledge have a higher carrying capacity, thus taxa 916 

more reliant on asocial learning generally also have a positive relationship between brain size and 917 

group size in our model. For taxa more reliant on social learning, larger groups also have more 918 

adaptive knowledge to exploit, raising the mean adaptive knowledge of the group and therefore 919 

the carrying capacity. Thus, our model predicts a stronger relationship between brain size and 920 

group size among taxa more reliant on social learning (compared to those more reliant on asocial 921 

learning).  922 

Brain Size and Social Learning 923 
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Our simulations reveal a positive relationship between brain size and social learning across 924 

species. Among species that primarily rely on social learning (𝑠 >  0.5), the relationship between 925 

brain size and social learning is 𝑟 = 0.72 [0.68,0.76]. Among species with some social learning 926 

( 0.20 < 𝑠 < 0.66 ), the correlation is 𝑟 = 0.58 [0.49,0.65] . However, among species that 927 

primarily rely on asocial learning ( 𝑠 <  0.5 ), the relationship is negative, 𝑟 =928 

−0.23 [−0.26, −0.19]  and similarly in strongly asocial learning species, ( 𝑠 < 0.20 ): 𝑟 =929 

−0.24 [−0.27, −0.20]. Most asocial learning species remain small brained, but those that do 930 

acquire larger brains via genetically-hardwired asocial learning do so at the expense of much 931 

reliance on social learning abilities.  932 

It bears emphasis that the trade-off here is between time or effort spent on asocial vs. social 933 

learning, not between brain tissue allocation. If you are doing asocial learning—say running trial 934 

and error to improve a tool—you can’t be carefully watching others at the same time. Or, 935 

alternatively, sometimes the suggested behavior delivered by asocial vs. social learning processes 936 

will be contradictory, and organisms have to decide which source they will rely on. In both of these 937 

senses, there’s an unavoidable trade-off between social and asocial learning. However, in our 938 

model, bigger brains are always better at asocial learning (when they do it), even if the selection 939 

pressure that drove that brain expansion was due to the effects of social learning. That is, we 940 

assume complementarity as suggested by Reader et al. (2011); and Reader and Laland (2002).  941 

From the empirical literature, social learning is measured by observational counts of social 942 

learning events, and reveals a correlation with brain size of 𝑟 = 0.69, 𝑝 < 0.001 (𝑟 = 0.36, 𝑝 <943 

0.05, controlling for phylogeny) for primates (Lefebvre, 2013; Reader & Laland, 2002). To better 944 

match our social learning probability, 𝑠, to the empirically available results, we assumed that 945 
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simulated species with larger populations and higher 𝑠 values would generate greater numbers of 946 

observational counts (linearly). Thus, we multiplied 𝑠 by mean group size (𝑁), and then following 947 

the existing empirical approach, added 3, and took the natural log (Reader & Laland, 2002). A 948 

similar relationship has been shown for birds using indirect measures of opportunities for social 949 

learning (e.g. number of caretakers; van Schaik et al., 2012). Figure 11 contrasts our predicted 950 

relationship with the empirical literature.  951 

(A) Theoretical (B) Empirical 

  
 

Figure 11. Brain size and social learning. (A) Our model’s empirical correlations between 952 

brain size and incidences of social learning (𝒓 = −𝟎. 𝟐𝟑 [Asocial], 𝒓 = 𝟎. 𝟕𝟐 [Social]). (B) 953 

Empirical correlation between brain size and incidences of social learning among primates 954 

from Reader and Laland (2002) is 𝒓 = 𝟎. 𝟔𝟗  (𝒓 = 𝟎. 𝟑𝟔 controlling for phylogeny). A 955 

similar relationship has been shown for birds using indirect measures of opportunities for 956 

social learning (e.g. number of caretakers; van Schaik et al., 2012). 957 

Brain Size and Juvenile Period 958 

Our simulation does not explicitly model the length of the extended juvenile period, but 959 

does include 2 periods of learning. In the first period, individuals can learn socially from their 960 
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genetic parent or asocially by themselves. In the second period, individuals with a low 𝑠 value are 961 

likely to update their knowledge asocially, while those with higher 𝑠 values only updated their 962 

knowledge obliquely based on their 𝑣  value; individuals had a 1 − 𝑠  probability of updating 963 

asocially, 𝑠𝑣  probability of updating socially and an 𝑠 − 𝑠𝑣  probability of doing no further 964 

learning. Thus, 𝑠𝑣 represents an extended juvenile period in which learners could use payoff-965 

biased oblique transmission to update their knowledge. Larger 𝑠𝑣 values should demand a longer 966 

juvenile period. 967 

Our model indicates that among species that mainly rely on social learning (𝑠 > 0.5), the 968 

relationship between brain size and the length of the extended juvenile period is 𝑟 =969 

0.17 [0.09,0.25]. This positive relationship only occurs when we include highly social learners 970 

(𝑠 > 0.66). The relationship between brain size and the length of an extended juvenile period 971 

disappears or is negative among species with only a moderate reliance on social learning (0.20 <972 

𝑠 < 0.66 ), 𝑟 = −0.08 [−0.20, 0.04] , more reliant on asocial learning ( 𝑠 < 0.5 ), 𝑟 =973 

−0.53 [−0.56, −0.51], or are highly asocial (𝑠 < 0.20), 𝑟 = −0.59 [−0.61, −0.56]. Thus, we 974 

argue that an extended juvenile period evolves to support more opportunities to engage in social 975 

learning.  976 

Our extended juvenile period most closely represents an adolescent period (the period from 977 

sexual maturity to sexual reproduction), where additional biased oblique social learning occurs. 978 

Adolescence is rare, occurring in humans, possibly elephants (Evans & Harris, 2008) and some 979 

orca (Olesiuk et al., 1990), and some members of cooperative breeding species (Hawn, Radford, 980 

& du Plessis, 2007). Nonetheless, positive relationships between brain size and the length of the 981 

juvenile period (weaning age to sexual reproduction) have been shown directly in primates 982 
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(Charvet & Finlay, 2012; Joffe, 1997; Walker et al., 2006) and indirectly via age to sexual maturity 983 

in a variety of taxa (Isler & van Schaik, 2009). The correlation for primates is 𝑟 = 0.61, 𝑝 = 0.037 984 

(Joffe, 1997). Though the comparison is imperfect, we show the relationship between brain size 985 

and length of the extended juvenile period side by side with the relationship between brain size 986 

and the juvenile period in primates in Figure 12 below. 987 

  988 
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(A) Theoretical (B) Empirical 

 

 

Figure 12. Brain size and the juvenile period. (A) Our model’s empirical correlations 989 

between brain size and the length of the extended juvenile period (𝒓 = −𝟎. 𝟓𝟑 [Asocial], 990 

𝒓 = 𝟎. 𝟏𝟕 [Social]). (B) Empirical correlation between brain size and juvenile period among 991 

primate species from Joffe (1997) is 𝒓 = 𝟎. 𝟔𝟏. 992 

Group Size and Juvenile Period 993 

Since an extended juvenile period primarily evolves in the presence of large amounts of 994 

adaptive knowledge that requires more opportunities for social learning, we should also expect to 995 

see a positive relationship between group size and the juvenile period among highly social learners. 996 

Indeed, our model indicates that among species that mainly rely on social learning (𝑠 > 0.5), the 997 

relationship between group size and the length of the juvenile period is 𝑟 = 0.22 [0.14,0.30]. As 998 

with the relationship between brain size and the length of the extended juvenile period (and for 999 

related reasons), this positive relationship only occurs when we include highly social learners (𝑠 >1000 

0.66). The relationship between brain size and the length of an extended juvenile period disappears 1001 

or is negative among species with only a moderate reliance on social learning (0.20 < 𝑠 < 0.66), 1002 

𝑟 = −0.05 [−0.16, 0.07], mainly rely on asocial learning (𝑠 < 0.5), 𝑟 = −0.21 [−0.25, −0.18], 1003 

or are highly reliant on asocial learning (𝑠 < 0.20), 𝑟 = −0.12 [−0.16, −0.08]. For highly social 1004 
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learning species, this positive relationship is an indirect consequence of social learners having 1005 

access to more knowledge in larger groups, creating a stronger selection pressure for a longer 1006 

juvenile period in which to take advantage of this knowledge. This, in turn, raises the average 1007 

adaptive knowledge of the group, allowing for larger groups. Empirically, in primates, the 1008 

relationship between absolute juvenile period length (we were unable to find the weaning age to 1009 

sexual maturity measure; sexual maturity to sexual reproduction is non-existent) and mean group 1010 

size is 𝑟 = 0.57, 𝑝 = 0.007 (Joffe, 1997). In Figure 13 below, we contrast our predictions against 1011 

the empirical results. Joffe (1997) did not provide a comparison plot, but we have generated one 1012 

from his data. 1013 

 1014 

(A) Theoretical (B) Empirical 

 

 

  

Figure 13. Group size and the juvenile period. (A) Our model’s empirical correlations 1015 

between group size and the length of the juvenile period (𝒓 = −𝟎. 𝟐𝟏 [Asocial], 𝒓 = 𝟎. 𝟐𝟐 1016 

[Social]). (B) Empirical correlation between group size and the length of the juvenile period 1017 

among primates from Joffe (1997) is 𝒓 = 𝟎. 𝟓𝟕. 1018 

The Cumulative Cultural Brain Hypothesis 1019 
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Beyond the hypothesis that social learning, brain size, adaptive knowledge, and group size 1020 

may have coevolved so as to create the patterns found in the empirical literature, we are also 1021 

interested in the conditions under which these variables might interact synergistically to create 1022 

highly social species with large brains and substantial accumulations of adaptive knowledge 1023 

(humans). To assess when an accumulation of adaptive knowledge becomes cumulative cultural 1024 

evolution, we apply a standard definition of cumulative cultural products as being those products 1025 

that a single individual could not invent by themselves in their lifetime. To calculate this for our 1026 

species, we ask what the probability is that an individual with the average brain size of the species 1027 

would invent the mean level of adaptive knowledge in that species via asocial learning.  1028 

Formalization of Cumulative Culture 1029 

The probability of an individual 𝑖 in deme 𝑗 acquiring the mean deme adaptive knowledge 1030 

𝐴𝑗  through asocial learning is given by Equation 20. Asocial learners draw their adaptive 1031 

knowledge value from a normal distribution with mean of their brain size scaled by 𝜁. Thus the 1032 

probability of acquiring 𝑎𝑖𝑗 ≥ 𝐴𝑗 is the integral from this mean value or greater over the asocial 1033 

learning distribution. Note that this gives the probability of an individual acquiring that level of 1034 

adaptive knowledge. The probability that the mean adaptive knowledge of the deme is reached 1035 

through asocial learning is this probability to the power of the number of individuals in the deme 1036 

(𝑃[𝑎𝑖𝑗 ≥ 𝐴𝑗]
𝑁𝑗

)—a slim chance indeed. 1037 

𝑃[𝑎𝑖𝑗 ≥ 𝐴𝑗] = ∫ 𝑁(𝜁𝑏𝑖𝑗, 𝜎𝑎𝜁𝑏𝑖𝑗)
∞

𝐴𝑗

 
(20) 

We set a low, albeit arbitrary, threshold where the probability of any individual acquiring this level 1038 

of adaptive knowledge through asocial learning is less than 0.1%. At this level, the probability that 1039 
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an entire population would develop that level of adaptive knowledge through asocial learning is 1040 

0.001𝑁𝑗 , i.e., exceedingly unlikely. Thus, mean levels of adaptive knowledge that are so 1041 

exceedingly unlikely to have been acquired through asocial learning can be attributed to 1042 

cumulative cultural evolution. In Figure 14 below, we plot brain size against the probability of 1043 

acquiring that amount of information. 1044 

 1045 

(a)                                                                           (b) 1046 

Figure 14. Cumulative Culture and Brain Size. Circle size indicates the mean population 1047 

size. More red indicates high probability of acquiring knowledge through asocial learning 1048 

and more blue indicates a low probability. The darkest blue circles in the bottom right are 1049 

the simulations that cross the threshold into the cumulative cultural realm. (a) Log mean 1050 

brain size against the probability of acquiring the mean adaptive knowledge in the group 1051 

via asocial learning. (b) Here we show the same data zoomed in-between 0 and 1%. 1052 

Next, we can look at what parameters increase and decrease the probability of entering into 1053 

the realm of cumulative cultural evolution, on the bottom right corner of Figure 14a: those large-1054 
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brained species with a lot of adaptive knowledge, which they were unlikely to acquire without 1055 

cumulative cultural evolution. 1056 

Transmission Fidelity Drives Larger Brains 1057 

The simulation predicts that transmission fidelity is the key to entering into the realm of 1058 

cumulative cultural evolution. When the model begins with widespread social learning, we see a 1059 

threshold effect, where for very high fidelity transmission (𝜏 > 0.85), social learning and large 1060 

brains evolve under a wide range of parameters. However, when we begin with primarily asocial 1061 

learners (more plausible), this threshold increases to nearly 100% (see Figure 16). The degree of 1062 

these results may be exaggerated by our “stacking the deck” against social learning, but the overall 1063 

results are consistent with previous models that argue that transmission fidelity is the key to 1064 

cumulative cultural evolution (Lewis & Laland, 2012). And also with models that show that there 1065 

is a fitness valley that needs to be crossed to enter into the realm of cumulative culture and reliance 1066 

on social learning (Boyd & Richerson, 1996). When social learning is already present in the 1067 

population, species can enter the realm of cumulative cultural evolution under a wider range of 1068 

parameters—that is, the more pre-existing social learning exists, the shallower the fitness valley 1069 

that needs crossing.  1070 

Embedded in 𝜏, and eventually oblique learning and learning bias, are cognitive abilities 1071 

like theory of mind, the ability to recognize, distinguish, and imitate potential models, but also 1072 

teaching and social tolerance. We suspect that if we endogenized 𝜏, either cultural or genetic 1073 

evolution would favour higher values under these conditions.   1074 

Mating Structure Matters 1075 

As discussed, lower reproductive skew consistent with “monogamish” or human 1076 

cooperative/communal mating structures (Hill & Hurtado, 2009) are more likely to lead to social 1077 
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learning and therefore to cumulative cultural evolution. Too strong a selection pressure leads to 1078 

bigger brains via asocial learning—bigger mutant brains can’t be filled via social learning, since 1079 

cultural information is capped by brain size—but these populations often go extinct, even when 1080 

we start with fully developed social learning. We graph the probability of entering into the realm 1081 

of cumulative cultural evolution for different values of 𝜑 in Figure 16a. We see a Goldilocks’ zone 1082 

around 𝜑 = 0.01,  regardless of the starting conditions (though as previously discussed, the 1083 

parameter range leading to cumulative culture increases if social learning is common). As 1084 

reproductive skew (e.g., polygyny) increases, asocial learning is favored. Thus, entering the realm 1085 

of cumulative cultural evolution is less likely.  1086 

Smart Ancestors and Rich Ecologies 1087 

As discussed in (1), we find that an interaction between transmission fidelity 𝜏  and 1088 

individual learning 𝜁 fuels the autocatalytic take-off. If 𝜁 is too high, individual learning is too 1089 

efficient and social learning struggles to take flight, except at very high rates of transmission 1090 

fidelity or if social learning is already present. But if 𝜁 is too low, even if social learning out-1091 

competes individual learning, populations have smaller brains and less adaptive knowledge 1092 

compared to when social learning out-competes more effective individual learning. These results 1093 

suggest that social learners stand on the shoulders of effective asocial learners. That is, when social 1094 

learning can initially exploit the adaptive knowledge developed by more effective individual 1095 

learning, social learning results in larger brains. The Cumulative Cultural Brain Hypothesis 1096 

predicts innovative ancestors—perhaps like the kind of individual innovativeness we see in 1097 

chimpanzees (Reader et al., 2011). 1098 
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Finally, environments have to be sufficiently rich (𝜆) to open the door to the regime of 1099 

cumulative cultural evolution. Brains are costly, but this cost can be offset by more adaptive 1100 

knowledge. The degree of mitigation is determined by 𝜆. We find that higher 𝜆 values allow for 1101 

the evolution of larger brains. Basically, you need to be in an environment where adaptive 1102 

knowledge pays off well enough to pay for those costly brains.  1103 

One interesting, but speculative possibility that links these two parameters is that as the 1104 

East African cradle of human evolution cooled and forests became savannah, our ancestors may 1105 

have faced an increased selection for smaller brains helping to trigger the transition from asocial 1106 

to social learning. That is, the forests were a richer ecology with higher 𝜆, allowing for large-1107 

brained ancestors who could pay for their large brains through asocial smarts. As the forest thinned 1108 

into savannah, the ecology became tougher and 𝜆 decreased, social learning may have provided a 1109 

cheaper alternative to acquiring this knowledge and gaining more in order to maintain large brains 1110 

in a calorie-poorer and less forgiving environment. Though we might infer such a scenario from 1111 

our model, we would need to adjust these parameters within the model in order to test this 1112 

hypothesis. 1113 

Why some social learning is common but cumulative cultural evolution is rare  1114 

In addition to our main simulations that began with asocial learners, we also ran a set of 1115 

simulations that began with social learners. Although social learning is widespread in the animal 1116 

kingdom (Hoppitt & Laland, 2013) and the most realistic starting conditions are somewhere in-1117 

between these two extremes (no social learning and complete social learning), these realistic 1118 

conditions are likely closer to no social learning than complete social learning. Nonetheless, 1119 

running our simulations beginning with social learning provides an upper bound on our predicted 1120 

patterns and also offers additional insights.  1121 
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There are two key insights. The first is that social learning is maladaptive in a world with 1122 

little knowledge (Figure 15). With little knowledge for social learners to exploit, asocial learners 1123 

quickly invade. However, since some social learning is present, once sufficient knowledge has 1124 

been generated, social learning is again at an advantage, with additional innovations generated in 1125 

the process of social learning (Muthukrishna & Henrich, 2016). The second key insight is closely 1126 

related: consistent with previous models (Boyd & Richerson, 1996), the presence of social learning 1127 

expands the range of parameters in which cumulative culture is adaptive. Figure 9b shows a greater 1128 

number of species with social learning (compared to Figure 9a). Figure 16a reveals that more 1129 

monogamish societies are more likely to enter the realm of cumulative cultural evolution. Figure 1130 

16b reveals that cumulative cultural evolution is more likely to evolve when transmission fidelity 1131 

is higher. Both Figures 16a and 16b reveal that the range of parameters that lead to the realm of 1132 

cumulative cultural evolution expands if more social learning is present in the ancestral state. 1133 
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 1134 

Figure 15.  Social learning over generations starting with 𝒔 = 𝟏. 𝟎. Social learning is 1135 

maladaptive in the absence of adaptive knowledge. Asocial learners quickly invade. It is 1136 

only when asocial learners have generated sufficient adaptive knowledge that social 1137 

learners again have an advantage. Since we know that at least two regimes reliably emerge, 1138 

mean social learning in these plots represents the relative number of conditions in which 1139 

social and asocial learners emerge rather than a value of social learning characteristic of 1140 

the world. 1141 
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 1142 

(a) 1143 
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 1144 

(b) 1145 

Figure 16. Percent of simulations in which cumulative cultural evolution evolves. Blue 1146 

simulations are those that began with 𝒔 = 𝟏. 𝟎 and red simulations are those that began 1147 

with 𝒔 = 𝟎. 𝟎. (a) across different values of reproductive skew (𝝓) and (b) across different 1148 

values of transmission fidelity (𝝉). 1149 

Discussion 1150 

In this discussion section we (1) summarize our key findings, (2) review these findings in 1151 

the context of the cultural/general intelligence hypotheses and related work, and (3) discuss 1152 

limitations of this work and ongoing inquiries.  1153 

Summary of Key Findings 1154 
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Our model provides a potential evolutionary mechanism that can explain a variety of 1155 

empirical patterns involving relationships between brain size, group size, innovation, social 1156 

learning, mating structures, and developmental trajectory, as well as brain evolution differences 1157 

among species. It can also illuminate the different rates of evolution and overall brain size that 1158 

have been found in different taxa and help explain why brain size correlates with group size in 1159 

some taxa, but not others. In contrast to competing explanations, the key message of the Cultural 1160 

Brain Hypothesis (CBH) is that brains are primarily for the acquisition, storage and management 1161 

of adaptive knowledge and that this adaptive knowledge can be acquired via asocial or social 1162 

learning. Social learners flourish in an environment filled with knowledge (such as those found in 1163 

larger groups and those that descend from smarter ancestors), whereas asocial learners flourish in 1164 

environments where knowledge is socially scarce, or expensive but obtainable through individual 1165 

efforts. The correlations that have been found in the empirical literature between brain size, group 1166 

size, social learning, the juvenile period, and adaptive knowledge arise as an indirect result of these 1167 

processes.  1168 

The Cumulative Cultural Brain Hypothesis posits that these very same processes can, under 1169 

very specific circumstances, lead to the realm of cumulative cultural evolution. These 1170 

circumstances include when transmission fidelity is sufficiently high, reproductive skew is in a 1171 

Goldilocks’ zone close to monogamy, effective asocial learning has already evolved, and the 1172 

ecology offers sufficient rewards for adaptive knowledge. In making these predictions, the Cultural 1173 

Brain Hypothesis and Cumulative Cultural Brain Hypothesis tie together several lines of empirical 1174 

and theoretical research. 1175 
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Related Work 1176 

Under the broad rubric of the Social Brain or Social Intelligence Hypothesis, different 1177 

researchers have highlighted different underlying evolutionary mechanisms (Dávid-Barrett & 1178 

Dunbar, 2013; Gavrilets & Vose, 2006; McNally et al., 2012; McNally & Jackson, 2013). These 1179 

models have had differing levels of success in accounting for empirical phenomena, but they 1180 

highlight the need to be specific in identifying the driving processes that underlie brain evolution 1181 

in general, and the human brain specifically. From the perspective of the CBH, these models have 1182 

been limited in their success, because they only tell part of the story. Our results suggest that the 1183 

CBH can account for all the empirical relationships emphasized by the Social Brain Hypotheses, 1184 

plus other empirical patterns not tackled by the SBH. Moreover, our approach specifies a clear 1185 

‘take-off’ mechanism for human evolution that can account for our oversized crania, heavy 1186 

reliance on social learning with sophisticated forms of oblique transmission (and possibly the 1187 

emergence of adolescent as a human life history stage), and the empirically-established 1188 

relationship between group size and toolkit size/complexity (Kline & Boyd, 2010)—as well as, of 1189 

course, our species’ extreme reliance on cumulative culture for survival (Henrich, 2016). 1190 

Our simulation’s predictions are consistent with other theoretical work on cultural 1191 

evolution and culture-gene coevolution. For example, several researchers have argued for the 1192 

causal effect of sociality on both the complexity and quantity of adaptive knowledge (Kobayashi 1193 

& Aoki, 2012; Powell, Shennan, & Thomas, 2009). Similarly, several researchers have argued for 1194 

the importance of high fidelity transmission for the rise of cumulative cultural evolution (Enquist, 1195 

Strimling, Eriksson, Laland, & Sjostrand, 2010; Henrich, 2004; Lewis & Laland, 2012). 1196 

Cultural variation is common among many animals (e.g., rats, pigeons, chimpanzees, and 1197 

octopuses), but cumulative cultural evolution is rare (Boyd & Richerson, 1996; Henrich & Tennie, 1198 
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forthcoming). Boyd and Richerson (1996) have argued that although learning mechanisms, such 1199 

as local enhancement (often classified as a type of social learning), can maintain cultural variation, 1200 

observational learning is required for cumulative cultural evolution. Moreover, the fitness valley 1201 

between culture and cumulative culture grows larger as social learning becomes rarer. Our model 1202 

supports both arguments by showing that only high fidelity social learning gives rise to cumulative 1203 

cultural evolution and that the parameter range to enter this realm expands if social learning is 1204 

more common (see Figure 16). In our model, cumulative cultural evolution exerts a selection 1205 

pressure for larger brains that, in turn, allows more culture to accumulate. Prior research has 1206 

identified many mechanisms, such as teaching, imitation, and theory of mind, underlying high 1207 

fidelity transmission and cumulative cultural evolution (Dean et al., 2012; Heyes, 2012; Morgan 1208 

et al., 2015). Our model reveals that in general, social learning leads to more adaptive knowledge 1209 

and larger brain sizes, but shows that asocial learning can also lead to increased brain size. Further, 1210 

our model indicates that asocial learning may provide a foundation for the evolution of larger-1211 

brained social learners. These findings are consistent with Reader et al. (2011), who argue for a 1212 

primate general intelligence that may be a precursor to cultural intelligence and also correlates 1213 

with absolute brain volume. 1214 

The CHB is consistent with much existing work on comparative cognition across diverse 1215 

taxa. For example, in a study of 36 species across many taxa, MacLean et al. (2014) show that 1216 

brain size correlates with the ability to monitor food locations when the food was moved by 1217 

experimenters and to avoid a transparent barrier to acquire snacks, using previously acquired 1218 

knowledge. The authors also show that brain size predicts dietary breadth, which was also an 1219 

independent predictor of performance on these tasks. Brain size did not predict group size across 1220 

all these species (some of whom relied heavily on asocial learning). This alternative pathway of 1221 
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asocial learning is consistent with emerging evidence from other taxa. For example, in mammalian 1222 

carnivores brain size predicts greater problem solving ability, but not necessarily social cognition 1223 

(Benson-Amram, Dantzer, Stricker, Swanson, & Holekamp, 2016; Holekamp & Benson-Amram, 1224 

2017). These results are precisely what one would expect based on the Cultural Brain Hypothesis; 1225 

brains have primarily evolved to acquire, store and manage adaptive knowledge that can be 1226 

acquired socially or asocially (or via both). The Cultural Brain Hypothesis predicts a strong 1227 

relationship between brain size and group size among social learning species, but a weaker or non-1228 

existent relationship among species that rely heavily on asocial learning.  1229 

Our simulation results are also consistent with empirical data for relationships between 1230 

brain size, sociality, culture, and life history among extant primates (e.g. Street, Navarrete, Reader, 1231 

& Laland, 2017) and even cetaceans (Fox et al., 2017), but suggest a different pathway for humans. 1232 

In our species, the need to socially acquire, store, and organize an ever expanding body of cultural 1233 

know-how resulted in a runaway coevolution of brains, learning, sociality and life history. Of 1234 

course, this hypothesis should be kept separate from the CBH: at the point of the human take-off, 1235 

brain size may have already been pushed up by the coordination demands of large groups, 1236 

Machiavellian competition, or asocial learning opportunities (Henrich, 2016). For example, 1237 

Machiavellian competition may have elevated mentalizing abilities in our primate ancestors that 1238 

were later high-jacked, or re-purposed, by selective pressure associated with the CCBH to improve 1239 

social learning by raising transmission fidelity, thereby creating cumulative cultural evolution. 1240 

Thus, the CBH and CCBH should be evaluated independently. 1241 

Synthesis and Naming 1242 

These ideas, which have been developed concurrently by researchers in different fields, are 1243 

sufficiently new such that naming and labeling conventions have not yet converged. We use 1244 
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Cultural Brain Hypothesis and the Cumulative Cultural Brain Hypothesis for the ideas embodied 1245 

in our formal model. We nevertheless emphasize that we are building directly on a wide variety of 1246 

prior work that has used various naming conventions, including The Cultural Intelligence 1247 

Hypothesis (Whiten & Van Schaik, 2007) and the Vygotskian Intelligence Hypothesis (Moll & 1248 

Tomasello, 2007). And, of course, Humphrey (1976) originally described the importance of social 1249 

learning in his paper on the social functions of intellect, though subsequent work has shifted the 1250 

emphasis away from social learning and toward both Machiavellian strategizing and the 1251 

management of social relationships. Whiten and Van Schaik (2007) first used the term “Cultural 1252 

Intelligence Hypothesis” to argue that culture may have driven the evolution of brain size in non-1253 

human great apes. Later, Herrmann et al. (2007) used the same term to argue that humans have a 1254 

suite of cognitive abilities that have allowed for the acquisition of culture. Supporting data for both 1255 

uses of the term are consistent with the CBH and the CCBH (for a rich set of data and analyses, 1256 

see Reader et al., 2011). We used two new terms not to neologize, but because though our approach 1257 

is clearly related to these other efforts, our approach contains novel elements and distinctions not 1258 

clarified or formalized in earlier formulations.  1259 

Simplifications, Extensions and Future work 1260 

Note that our model seeks to (1) show why brain size, adaptive knowledge, social learning, 1261 

group size, and lifespan are intercorrelated across the animal kingdom (CBH) and (2) how the very 1262 

same processes that lead to these interconnections, can, under some specific circumstances, lead 1263 

to the realm of cumulative cultural evolution—the uniquely human pathway. Within the realm of 1264 

cumulative culture, the dynamics change in ways that are not captured by this model. For example, 1265 

in order to sustain ever-growing levels of cultural complexity, cultures can generate ways to 1266 

increase sociality and transmission fidelity. With sufficiently complex culture, mechanisms may 1267 
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evolve to more efficiently share the fruits of rare innovations, allowing for increases in cultural 1268 

variance that may be individually costly. Moreover, cumulative culture, once acquired, can 1269 

increase an individual efficacy in subsequent asocial learning (for a discussion of these ideas, see 1270 

Muthukrishna & Henrich, 2016). 1271 

In developing the simulation, we formalized the minimal set of assumptions and parameters 1272 

that capture the logic of the CBH and CCBH. There are a number of extensions, variations, and 1273 

additional parameters that would improve our understanding of the evolution of brain size.  1274 

There were several assumptions that simplified our model, making it more computationally 1275 

tractable. Future models may address some of these shortcomings and explore additional 1276 

parameters. One such improvement is to explicitly track different cultural traits with different 1277 

cognitive costs and fitness payoffs. By doing this, we could better explore the benefits to migration 1278 

and cultural recombination. We would also like to more fully explore the impact of the relationship 1279 

between adaptive knowledge and carrying capacity. Currently, the richness of the ecology only 1280 

affects individual survival based on paying the calorie cost of costly brains, but the richness of the 1281 

ecology also affects the carrying capacity of the population with consequent effects for the 1282 

dynamics between brain size, adaptive knowledge and population size.  1283 

Another previously mentioned future improvement is the endogenization of transmission 1284 

fidelity (𝜏) and reproductive skew (𝜑). These parameters are themselves subject to genetic and 1285 

cultural evolutionary processes and thus ought to be modeled as endogenous variables. In our 1286 

model, we can discuss the effect of different evolutionary outcomes or values of transmission 1287 

fidelity and reproductive skew, but not their evolution.  1288 
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Two or three regimes emerged in our models based on different ecological and 1289 

phylogenetic constraints. In a future model, we plan to explore the adaptive dynamics of these 1290 

different regimes, exploring the invasion fitness of the different equilibrium states discovered in 1291 

our model. These models will help us better understand the evolutionary dynamics that may have 1292 

occurred when different previously geographically separated hominin species encountered each 1293 

other (e.g., the European encounter between modern humans and their larger-brained Neanderthal 1294 

cousins).  1295 

The key improvements that we are eager to explore could be summarized as: (1) 1296 

endogenizing the evolution of transmission fidelity and reproductive skew, (2) explicitly tracking 1297 

different cultural traits with different cognitive costs and fitness payoffs, and (3) more thoroughly 1298 

exploring the brain shrinkage that occurs during the transition from reliance on asocial learning to 1299 

reliance on social learning. These results hint that the process underlying the Cultural Brain 1300 

Hypothesis and Cumulative Cultural Brain Hypothesis may also help explain evidence suggesting 1301 

that human brains have been shrinking in the last 10,000 to 20,000 years (Ruff, Trinkaus, & 1302 

Holliday, 1997). Although this shrinkage in brain size corresponds to shrinking in body size, it 1303 

may be evidence that our species is not at equilibrium. 1304 
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