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Abstract

Single-cell RNA-seq allows quantification of biological heterogeneity across both discrete cell types
and continuous cell differentiation transitions. We present approximate graph abstraction (AGA),
an algorithm that reconciles the computational analysis strategies of clustering and trajectory in-
ference by explaining cell-to-cell variation both in terms of discrete and continuous latent variables
(https://github.com/theislab/graph_abstraction). This enables to generate cellular maps of
differentiation manifolds with complex topologies — efficiently and robustly across different datasets.

Extended Abstract

Approximate graph abstraction quantifies the connectivity of partitions of a neighborhood graph of
single cells, thereby generating a much simpler abstracted graph whose nodes label the partitions.
Together with a random walk-based distance measure, this generates a topology preserving map of
single cells — a partial coordinatization of data useful for exploring and explaining its variation. We
use the abstracted graph to assess which subsets of data are better explained by discrete clusters than
by a continuous variable, to trace gene expression changes along aggregated single-cell paths through
data and to infer abstracted trees that best explain the global topology of data. We demonstrate the
power of the method by reconstructing differentiation processes with high numbers of branchings
from single-cell gene expression datasets and by identifying biological trajectories from single-cell
imaging data using a deep-learning based distance metric. Along with the method, we introduce
measures for the connectivity of graph partitions, generalize random-walk based distance measures to
disconnected graphs and introduce a path-based measure for topological similarity between graphs.
Graph abstraction is computationally efficient and provides speedups of at least 30 times when
compared to algorithms for the inference of lineage trees.

Introduction

Single-cell RNA-Seq offers unparalleled opportunities for comprehensive molecular profiling of thou-
sands of individual cells, with expected major impacts across a broad range of biomedical research.
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Figure 1 | Approximate graph abstraction generates a topology preserving map of single cells.
Sketch of high-dimensional gene expression data and a partitioned k-nearest-neighbor graph G of data points,
whose nodes represent single cells and whose partitions represent groups of similar cells. From this, we
generate a much simpler abstracted graph G∗ whose nodes correspond to partitions of G and whose edges
represent statistically estimated connectivity between partitions. Hence, the abstracted graph G∗ represents
the topology of G at the coarse resolution of the partitioning. The statistical model used to generate the
abstracted graph G∗ allows to identify high-confidence paths through groups — those along thick edges.
Using a random-walk based distance measure d for potentially disconnected graphs, we order cells within
each group according to their distance from a root cell. A path that passes through a sequence of nodes in
G∗ then aggregates all single-cell paths in G that pass through the corresponding groups of cells. This allows
to trace gene changes along complex trajectories at single-cell resolution. Hence, graph abstraction provides
a coordinate system (G∗, d) — a topology preserving map — of cells. The abstraction of many biological
processes, such as development, is thought to be tree-like. Hence, we provide an algorithm for identifying the
abstracted tree T ∗ (solid edges) that best approximates the topology of G.

The resulting datasets are often discussed using the term transcriptional landscape. However, the
algorithmic analysis of cellular heterogeneity and patterns across such landscapes still faces funda-
mental challenges, for instance, in how cell-to-cell variation is explained. Current computational
approaches attempt to achieve this in only one of two ways [1]. Clustering assumes that data is
composed of biologically distinct groups of cells such as discrete cell types and labels these with
a discrete variable — the cluster index. Inferring pseudotemporal orderings or trajectories of cells
[2, 3], by contrast, assumes that data lie on a connected manifold [4] and labels cells with a contin-
uous variable — the distance along the manifold. While the former approach is the basis for most
unsupervised analyses of single-cell data, the latter enables a better interpretation of continuous
phenotypes and processes such as development, dose response and disease progression. Here, we
unify both viewpoints in a method to which we refer as approximate graph abstraction (AGA) [5].

A central example of dissecting heterogeneity in single-cell experiments concerns data that originate
from complex cell differentiation processes. However, analyzing such data using pseudotemporal
ordering [2, 6–10] faces the problem that biological processes are usually incompletely sampled. As
a consequence, experimental data does not conform with a connected manifold and the modeling
of data as a continuous tree structure, which is the basis for existing algorithms, has little meaning
(Supplemental Note 1). Even the clustering-based algorithms for the inference of tree-like processes
[11–13] make the generally invalid assumption that clusters conform with a connected tree-like
topology. Moreover, they face the problem of relying on simple, fixed distance measures, which
quantify biological similarity of cells only at a local scale [2, 3, 8] and are fraught with problems when
used for larger-scale objects like clusters. Efforts for addressing the resulting high non-robustness
of tree-fitting to distances between clusters [11] by sampling [12, 13] have only had limited success
(Supplemental Note 1).

Approximate graph abstraction resolves these fundamental problems by generating a map of cells
that preserves both continuous and disconnected structure in data, that is, the topology of data.
The data-driven formulation of graph abstraction enables to robustly reconstruct branching gene
expression changes across different datasets and, for the first time, to reconstruct the lineage tree of
a whole adult animal [14].
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Results

Approximate graph abstraction explains both discrete and continuous cell-to-cell variation.

We represent single-cell gene expression data using the single-cell graph G = (N , E), whose nodes
N correspond to gene expression measurements of cells and whose edges E indicate neighborhood
between cells (Figure 1) [e.g. 3, 15, 16]. The complexity of G and noise-related spurious edges make
it both hard to trace a putative biological process from progenitor cells to different fates and to
decide whether groups of cells are connected or disconnected. Moreover, tracing isolated paths of
single cells to make statements about a biological process comes with too little statistical power to
achieve an acceptable confidence level. Gaining statistical power by averaging over distributions of
single-cell paths is hampered by the difficulty of fitting realistic models for the distribution of these
paths (Supplemental Note 2).

We address these problems by, first, developing a statistical model for the connectivity of groups
of cells (Supplemental Note 3), which we determine by graph-partitioning [15, 17] (Supplemental
Note 4). This allows us to generate a much simpler abstracted graph G∗ (Figure 1) whose nodes
correspond to groups and whose edge weights quantify the connectivity between groups. Hence,
while G represents the connectivity structure of data at single-cell resolution, the abstracted graph G∗
represents the connectivity structure of data at the coarse resolution of the partitioning. Following
paths along nodes in G∗ means following an ensemble of single-cell paths that pass through the
corresponding groups in G. By averaging over such an ensemble of single-cell paths it becomes
possible to trace a putative biological process from a progenitor to fates in a way that is robust to
spurious edges, provides statistical power and is consistent with basic assumptions on a biological
trajectory of cells (Supplemental Note 2).

To trace gene dynamics at single-cell resolution, we extended existing scale-free random-walk based
distance measures d (Supplemental Note 2, Reference [8]) to the realistic case that accounts for
disconnected graphs. By following high-confidence paths in the abstracted graph G∗ and ordering
cells within each group in the path according to their distance d from a progenitor cell, we trace gene
dynamics at single-cell resolution (Figure 1). Hence, graph abstraction covers both aspects of clus-
tering and pseudotemporal ordering by providing a topology preserving map of cells: a coordinate
system (G∗, d) that allows to explore and explain variation in data while being faithful to its connec-
tivity structure (Supplemental Note 5). Graph abstraction can be viewed as an easily-interpretable,
scalable and robust way of performing topological data analysis for potentially disconnected data
(Supplemental Note 1).

Graph abstraction enables the consistent reconstruction of gene expression dynamics across datasets.

In myeloid hematopoiesis, progenitor cells differentiate into erythrocytes, megakaryoctyes, mono-
cytes, neutrophils and other blood cell types. We consider a computational model of this system
(Supplemental Note 6) and two experimental datasets based on the MARS-seq [18] and Smart-seq2
protocol [19], respectively. Neighborhood relations among cells and thus the single-cell graph G are
generated using established preprocessing steps with default parameters [16, 20–22] and G is visual-
ized using the Fruchterman-Reingold [FR, 23, 24] algorithm, which conserves continuous structure
in data better than tSNE (Supplemental Figure 6, Reference [16]). While the edges of the single-cell
graph G are too many to be meaningfully shown, we can visualize the abstracted graph G∗ using a
simple tree-based graph drawing layout (Figure 2a, c).

Even though data from different experimental protocols and simulations are involved, the abstracted
graphs (Figure 2a, c and Supplemental Figures 6 and 7) between all results are consistent using
default parameters. Moreover, we find consistent continuous gene expression changes when tracing
paths of highest-confidence in G∗ to the erythrocyte, monocyte and neutrophil fate for the marker
genes Gata2, Gata1, Hba-a2, Elane, Gfi1, Irf8 and Csf1r. All agree well with the known behavior of
these genes during commitment towards the different blood fates: The expression of Gata2 slowly
decreases along all paths. Markers for the erythroid fate, Gata1 and Hba-a2, become expressed at the
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Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation for
data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence in the
connectivity of cell groups. The tree-like subgraph that best explains the topology of the data is highlighted
with solid edges. However, there are several connections of high confidence that do not confirm with a tree
topology and the tree should only be viewed as a guide to the eye but not as a faithful representation of the
topology of measured data. The cell groups within the single-cell graphs and the nodes of the abstracted graph
are labelled with the cell type of highest overlap identified by Paul et al. [18] . The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. Monocytes appear to be progenitors of Neutrophils in this layout of
the abstracted graph, using another layout, a connecting edge to cell group 14/GMP, see Supplemental Figure
7. b, Gene dynamics along the highest-confidence paths — which include dashed edges — to erythrocytes,
neutrophils and monocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell in the 0/MEP group.c, The data of Nestorowa et al. [19] displays
a much higher level of non-tree like geometry due to a higher content of heterogeneous stem cells. d, Gene
expression changes along the most confident paths to erythrocytes, neutrophils and monocytes are consistent
with those observed in panel c (Supplemental Figure 7).

to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4); presumably because the latter
contains a higher fraction of strongly heterogeneous stem cells and deviates strongly from a tree
topology, which has been observed previously for hematopoietic data [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

4

a

b

c

d

Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation for
data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence in the
connectivity of cell groups. The tree-like subgraph that best explains the topology of the data is highlighted
with solid edges. However, there are several connections of high confidence that do not confirm with a tree
topology and the tree should only be viewed as a guide to the eye but not as a faithful representation of the
topology of measured data. The cell groups within the single-cell graphs and the nodes of the abstracted graph
are labelled with the cell type of highest overlap identified by Paul et al. [18] . The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. Monocytes appear to be progenitors of Neutrophils in this layout of
the abstracted graph, using another layout, a connecting edge to cell group 14/GMP, see Supplemental Figure
7. b, Gene dynamics along the highest-confidence paths — which include dashed edges — to erythrocytes,
neutrophils and monocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell in the 0/MEP group.c, The data of Nestorowa et al. [19] displays
a much higher level of non-tree like geometry due to a higher content of heterogeneous stem cells. d, Gene
expression changes along the most confident paths to erythrocytes, neutrophils and monocytes are consistent
with those observed in panel c (Supplemental Figure 7).

to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4); presumably because the latter
contains a higher fraction of strongly heterogeneous stem cells and deviates strongly from a tree
topology, which has been observed previously for hematopoietic data [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

4

a

b

c

d

Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation for
data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence in the
connectivity of cell groups. The tree-like subgraph that best explains the topology of the data is highlighted
with solid edges. However, there are several connections of high confidence that do not confirm with a tree
topology and the tree should only be viewed as a guide to the eye but not as a faithful representation of the
topology of measured data. The cell groups within the single-cell graphs and the nodes of the abstracted graph
are labelled with the cell type of highest overlap identified by Paul et al. [18] . The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. Monocytes appear to be progenitors of Neutrophils in this layout of
the abstracted graph, using another layout, a connecting edge to cell group 14/GMP, see Supplemental Figure
7. b, Gene dynamics along the highest-confidence paths — which include dashed edges — to erythrocytes,
neutrophils and monocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell in the 0/MEP group.c, The data of Nestorowa et al. [19] displays
a much higher level of non-tree like geometry due to a higher content of heterogeneous stem cells. d, Gene
expression changes along the most confident paths to erythrocytes, neutrophils and monocytes are consistent
with those observed in panel c (Supplemental Figure 7).

to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4); presumably because the latter
contains a higher fraction of strongly heterogeneous stem cells and deviates strongly from a tree
topology, which has been observed previously for hematopoietic data [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

4

a

b

c

d

Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation for
data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence in the
connectivity of cell groups. The tree-like subgraph that best explains the topology of the data is highlighted
with solid edges. However, there are several connections of high confidence that do not confirm with a tree
topology and the tree should only be viewed as a guide to the eye but not as a faithful representation of the
topology of measured data. The cell groups within the single-cell graphs and the nodes of the abstracted graph
are labelled with the cell type of highest overlap identified by Paul et al. [18] . The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. Monocytes appear to be progenitors of Neutrophils in this layout of
the abstracted graph, using another layout, a connecting edge to cell group 14/GMP, see Supplemental Figure
7. b, Gene dynamics along the highest-confidence paths — which include dashed edges — to erythrocytes,
neutrophils and monocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell in the 0/MEP group.c, The data of Nestorowa et al. [19] displays
a much higher level of non-tree like geometry due to a higher content of heterogeneous stem cells. d, Gene
expression changes along the most confident paths to erythrocytes, neutrophils and monocytes are consistent
with those observed in panel c (Supplemental Figure 7).

to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4); presumably because the latter
contains a higher fraction of strongly heterogeneous stem cells and deviates strongly from a tree
topology, which has been observed previously for hematopoietic data [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

4

high confidence
low confidence
tree subgraph

Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation
for data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence
in the connectedness of cell groups. The tree-like subgraph that best explains the topology of the data is
highlighted with solid edges. However, there are several connections of high confidence that do not confirm
with a tree topology. The cell groups within the single-cell graph and the nodes of the abstracted graph are
labelled with the cell type of highest overlap identified by Paul et al. [18]. The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. b, Continuous gene expression changes along the highest-confidence
paths — which include dashed edges — to erythrocytes, neutrophils and monocytes in the abstracted graph.
Within each group, cells are ordered according to a random-walk based distance from the earliest progenitor
cell in the 0/MEP group. c, The data of Nestorowa et al. [19] displays a much higher level of non-tree like
geometry, more similar to a cloud, due to a higher content of heterogeneous stem cells. d, Gene expression
changes along the highest-confidnce paths to erythrocytes, neutrophils and monocytes are consistent with
those observed in panel c. However, as the data has been measured earlier in hematopoiesis, changes in
marker genes occur later during progression along paths.

late stages only along the paths to erythrocytes. Gfi1 and Elane are only activated along the paths
to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4) because the latter contains a
high fraction of heterogeneous stem cells and strongly deviates from a tree topology. Such behavior
during differentiation has been observed before and termed “cloud of cells” [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

The complicated global topology of G represents the information about the continuity of biological
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Figure 3 | Abstracted graph and lineage tree of a whole adult animal: planaria [14]. tSNE
visualization of cell groups and reconstruction of the abstracted graph G∗ and a likely candidate for a lineage
tree T ∗. In the tSNE, many cell groups appear disconnected. The abstracted graph, by contrast, recovers
all continuous differentiation paths.

processes measured in single-cell data. The abstractions of many cellular processes though, such as
differentiation in several organisms and tissues, are known to be well-described by simple tree-like
topologies [2, 6, 13, 27]. In the framework of graph abstraction, we would hence like to identify
the tree-like subgraph T ∗ in G∗ that best conforms with the global topology of G, that is, contains
most of its paths at a coarse-grained resolution. We address this by finding the tree that maximizes
overall connectivity and thus continuity between any two groups of cells. While this is solved by
the minimum spanning tree applied to G∗ when weighted by inverse connectivity, for realistic cases,
many almost degenerate solutions of maximal connectivity exist. To address this, we propose to
approximate the global topology by a set of points in G that maximize d, that is, that “stick out”
most. Extending Prim’s minimum spanning tree algorithm, we iteratively match these extremal
points to leaf nodes of a growing T ∗ while maximizing connectivity (Supplemental Note 8).

Using this algorithm, graph abstraction enables the reconstruction of the lineage tree of a whole
adult animal, planaria, using single-cell gene expression data from 12,252 cells (Figure 3). Due to
the unique regenerative capabilities of planaria, a single-cell snapshot of an adult planaria captures
all transitional cells and we can — as data is sampled densely enough — observe all lineage relations
of its cell atlas with only few weakly connected cell types. The tree inferred with graph abstraction
predicts the existence of at least 20 independent cell lineages in planaria, for example, the major
tissues such as neurons, muscle, parenchyma and gut. Among the 20 lineages, only the epidermic
lineage has been previously characterized at the transcriptomic level. The details of this and the
insight that the degree of nodes in the abstracted graph G∗ characterize potency of cell types better
than previous measures [13] are discussed in a separate publication [14]. It is important to realize
that if we had followed a traditional analysis based on tSNE and clustering, we would have concluded
to clean the data by removing the 14 seemingly disconnected clusters shown in Figure 3.

Graph abstraction is more robust than algorithms for the reconstruction of branching lineages.

To assess how robustly graph and tree-inference algorithms recover a given topology, we developed
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a measure for comparing the topologies of two graphs by comparing the sets of possible paths on
them (Supplemental Note 7, Supplemental Figure 8). Sampling widely varying parameters, which
leads to widely varying clusterings, we find that the inferred abstraction of topology of data within
AGA is much more robust than the underlying graph clustering algorithm (Supplemental Figure 9).
This is reassuring as graph clustering alone is, as any clustering method, an ill-posed problem in the
sense that many highly degenerate quasi-optimal clusterings exist and some knowledge about the
scale of clusters is required.

Several algorithms [6, 11–13] have been proposed for reconstructing lineage trees (Supplemental
Note 1). The main caveat of these algorithms is that they, unlike graph abstraction, try to explain
any variation in the data with a tree-like topology, which they model with models with tree-like
geometry. In particular, any disconnected distribution of clusters is interpreted as originating from
a tree. This produces qualitatively erroneous results (Supplementary Figure 1) already for the
minimal example of Supplementary Figure 6 and only works well for data that clearly conforms
with a tree-like manifold (Supplementary Figure 2). To establish a fair comparison on real data
with the most recent method, Monocle 2, we reinvestigated the main example of Qiu et al. [6] for
a complex differentiation tree. This example is based on the data of Paul et al. [18] (Figure 2),
but with a cluster of lymphoid cells removed. While graph abstraction yields consistent results
independent of the presence of this cluster, the prediction of Monocle 2 becomes qualitatively wrong
if the cluster is present (Supplementary Figure 3). The example illustrates the general point that
data always consists of dense and sparse — connected and disconnected — regions, some tree-like,
some with more complex topology. Simplifying the topology by manually removing clusters that
appear disconnected in tSNE but may in fact be connected (Supplemental Figure 5) would, for
instance, have precluded us from inferring the lineage tree of planaria (Figure 3).

Graph abstraction is a powerful and versatile tool for analyzing large single-cell data.

We demonstrate the scalability of graph abstraction by computing the abstracted graph for more
than 68 000 peripheral blood mononuclear cells (PBMCs) [21], which took around 2 minutes (Sup-
plemental Figure 10). Comparing runtimes with Monocle 2 and stemID 2 [13], we find speedups
of 38 and 309 times, respectively (Supplemental Note 1). Moreover, the PBMC dataset serves as a
negative control for the predictions of graph abstraction as it mostly lacks cells in the transition-
ing stages between different cell types. Hence, only crude motifs of the lineage tree of PBMCs are
reconstructed. CD34+ progenitor cells are only weakly connected to the rest of the data. CD14+
Monocytes, CD56+ NK cells, CD19 B cells and CD45RO+ Memory cells are correctly placed at
leaves of the abstracted graph and the connectivity of CD4+ and CD8+ cells is reflected in thick
edges in the abstracted graph (Supplemental Figure 10). Consistent results are observed for a further
dataset obtained using different chemistry (Supplemental Figure 10).

Discussion

With challenges such as the Human Cell Atlas [28], there is a strongly increasing need for aggregating
and consistently modeling biological questions across different experimental setups. After recent
advances in the study of simple biological processes that involve a single branching [7, 8], graph
abstraction provides a similarly robust framework for arbitrarily complex trajectories.

In closing, we note that graph abstraction can be extended to analyze single-cell imaging data
when applied on the basis of a deep-learning based distance metric. Eulenberg et al. [29] showed
that a deep learning model can generate a feature space in which distances reflect the continuous
progression of cell cycle and a disease. Using this, graph abstraction correctly identifies the biological
trajectory through the interphases of cell cycle while ignoring a cluster of damaged and dead cells
(Supplemental Note 10).
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Code availability

Approximate graph abstraction is available within Scanpy https://github.com/theislab/scanpy.
The analyses and results of the present paper are available from https://github.com/theislab/
graph_abstraction.

Data availability

Data is available from https://github.com/theislab/graph_abstraction.
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Supplemental Note 1: Comparing graph abstraction with other algorithms

Establishing fair comparisons with other algorithms is difficult mainly for two reasons. (i) Compar-
isons on real data are problematic as a quantitative undebatable ground truth is hard to obtain. (ii)
It is very easy to “make algorithms fail”, for example, by choosing an unsuitable preprocessing or
pathologic parameters. Hence, after a comparison of concepts (Supplemental Note 1.1), we restrict
ourselves to addressing fundamental problems and qualitatively wrong predictions of other algo-
rithms for simple minimal examples with known ground truth (Supplemental Note 1.2), well-known
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real data, where we were able to reproduce published testing conditions [6] (Supplemental Note 1.3
and 1.4) and a comparison of runtimes (Supplemental Note 1.5).

Supplemental Note 1.1: Comparison of concepts

Monocle 2 [6] uses “reversed graph embedding” [31], which aims to fit a geometrical model for a
graph to projections of the data to a low-dimensional latent space. Even though, in principle, any
model could be used for that, in practice, only tree-like models are computationally tractable. Hence,
Monocle 2 tries to force data into a tree-like topology without providing a statistical measure for
how reliable the resulting fit is.

Spade [11], StemID 2 [13], Eclair [12], TSCAN [32] and Mpath [33] use different clustering algorithms
such as k-means, k-medoids, hierarchical clustering or DBSCAN in a dimensionality-reduced space.
In a second step, they fit a minimum spanning tree to either the centroid or medoid distances
or to projections of cells on linear connections between centroids or medoids. In this, distances
are computed using simple, fixed distance measures such as the euclidean or the correlation-based
distance. Neither do these distances between clusters measure how well and if clusters are connected
with each other, nor do these methods try to invoke a statistical model to address this question.
The computationally expensive sampling procedures in StemID 2 and Eclair only partially alleviate
the principle problem of high non-robustness that is caused by these deficiencies. Projections on
linear connections between clusters assume a linear geometry of differentiation trajectories, which
is certainly violated in practice. Hence, Mpath, for example, has only been shown to reconstruct
processes with a single branching [33]. Moreover, it is important to note that none of the used
clustering algorithms in these methods guarantees a topology preserving coarse-graining of the data:
disconnected regions of data might cluster together and connected regions might be torn apart.

DPT [8] computes a random-walk based pseudotime for all cells. It cannot handle data with discon-
nected structure and is only able to detect single branchings which, in addition, is prone to violating
the topological structure in the data (see, e.g., Figure 2c of Reference [10]). This problem becomes
particularly pronounced in the extension of DPT to multiple branchings [22].

Rizvi et al. [10] use topological data analysis, in particular, the MAPPER algorithm [30], to construct
a pseudotemporal ordering of cells. MAPPER constructs a partial coordinatization of the data that
in the form of a simplicial complex, which has some similarity with the abstracted graph introduced
in the present work. Both MAPPER’s simplicial complex and the abstracted graph are graphs whose
nodes correspond to clusters in the high-dimensional dataset and whose edges indicate connectivity of
the clusters. However, the construction of MAPPER’s simplicial complex differs fundamentally from
the abstracted graph. In particular, the clusters do not correspond to regions of simple topology with
high intra-connectivity, which can often be meaningfully interpreted as cell types. Hence, in contrast
to graph abstraction, MAPPER does not generate an easily interpretable partitioning of the data
into connected and disconnected regions, but a highly fine-grained, overlapping clustering, where
clusters merely serve a technical purpose. Thereby, the algorithm can only be meaningfully applied
to connected data. Moreoever, MAPPER does not provide the robust, random-walk based distance
measure, which we use as a continuous coordinate for locating single cells within the abstracted
graph. Even though topological data analysis allows the definition of continuous coordinates on
the simplicial complex, their robustness and interpretability has not been shown. Additionally,
MAPPER is not based on simplifying a k-nearest-neighbor graph of data points. We interpret graph
abstraction as a pragmatic, easily-interpretable, scalable and robust way of performing topological
data analysis for potentially disconnected data.

We do not compare our method to Wishbone [7], which can only detect a single branching, nor to
the fundamentally different, fully supervised approach STEMNET [26].
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a

b

c

Supplemental Figure 1 | Comparison with Monocle 2 and stemID 2 for minimal example of
simulated myeloid differentiation and clusters. a, Prediction of graph abstraction, reproduced from
Supplemental Figure 6d. b, Prediction of Monocle 2 [6], the best result after testing several parameters for
the latent-space dimension. The clusters (groups 7, 8 and 11, 12 in panel a) dictate the shape of the inferred
tree, being responsible for three of the four observed branches. The continuous manifold is not resolved at
all. The same coloring as in panel a is used. c, Prediction of the lineage tree of stemID 2, the successor of
stemID [13]. The author of stemID, D. Grün, kindly provided parameters for the simulation. The inferred
lineage tree shows a single branching at group 2 into groups 1 and 10, instead of the four branchings seen in
Figure 2a. The coloring and numbering of groups is chosen internally by stemID 2.

Supplemental Note 1.2: Comparisons for minimal examples with known ground truth

We consider a minimal example with known ground truth to show that graph abstraction overcomes
qualitative conceptual problems in the design of algorithms for the inference of lineage trees. The
dataset consists in a connected tree-like manifold and two disconnected clusters and has a clearly
defined ground truth — a computational model for hematopoiesis — and very little noise (Supple-
mental Note 6.1, Supplemental Figure 6.1). Nonetheless, none of Monocle 2, StemID 2, Eclair and
DPT produce sensible results. Only when we removed the clusters from the data, these algorithms
made sensible predictions. To reproduce the following comparisons and to get more information
follow this link.

Graph abstraction recovers the ground truth (Supplemental Figure 1a). Monocle 2 [6] — even
after testing several values for the latent-space dimension in Monocle 2 [6] — fits a tree to the
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a
b

c d e f

Supplemental Figure 2 | Comparisons for simulated myeloid differentiation giving rise to a
simple tree-like manifold. Results using, a, graph abstraction, b, Monocle 2 [6], c, d, ECLAIR [12] and
e, f, DPT [8] in its hierarchical implementation [22].

clusters and misses to recognize the continuous manifold in the data (Supplemental Figure 1b).
D. Grün kindly provided parameters for running stemID 2 — the successor of stemID [13] — on the
minimal example. The produced lineage tree though displays only a single of the three branchings
(Supplemental Figure 1a) and erroneously connects the clusters and the manifold. For the minimal
example, we could not produce any sensible result neither with Eclair [12] — even after optimizing
parameters in correspondence with the author G. Giecold — nor DPT [8].

As a control, we aimed to obtain sensible results with the competing algorithms and considered a
simpler dataset that only contains the continuous tree-like manifold of the previous example. Graph
abstraction recovers the ground truth (Supplemental Figure 2a). Monocle 2 can be tuned — by
adjusting the latent space dimension — to yield the correct result (Supplemental Figure 2b). Eclair
[12] obtains a wrong result even for this simple tree (Supplemental Figure 2c, d). DPT [8] does,
by construction, not infer a lineage tree but merely detects two branching subgroups; similar to a
clustering algorithm. In a hierarchical implementation [22], it detects an arbitrary number of groups.
Using the latter to detect four branchings we can detect two branchings (Supplemental Figure 2e)
but fail to detect a third. Note that only when using diffusion maps for visualization, the clustering
of groups appears natural (Supplemental Figure 2f).

Supplemental Note 1.3: Comparison for data of Paul et al. [18]

In the recent Monocle 2 paper of Qiu et al. [6] the data of Paul et al. [18] served as an example for the
reconstruction of a complicated differentiation tree in Supplemental Figure 16. In the preprocessing
step for the analysis of this data, Qiu et al. removed a cluster of lymphoid cells. In many situations,
clusters of cells might not be annotated or not be clearly disconnected and it might not be clear

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208819doi: bioRxiv preprint 

https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b c

Supplemental Figure 3 | Comparison with Monocle 2 for data of Paul et al. [18]. a, Running
the exact same parameters as in Figure 2a, but after removing the lymphoid cells, as done by Qiu et al. [6].
The resulting abstracted graph is consistent with Figure 2a. b, Monocle 2’s multiple branching example
of Supplemental Figure 16 of Reference [6] using the same color coding as in the original publication. c,
Rerunning Monocle 2 with the exact same parameters as for panel b, but keeping the lymphoids as in
Figure 2a. The resulting tree changed dramatically and is no longer biologically meaningful. For example,
the lymphoid cells are placed in the myeloid differentiation and myeloid progenitors (GMP) and monocytes
(Mo) are distributed over all terminal states. As Monocle 2 does not provide confidence measures, the user
erroneously expects all results to predicted with high confidence.

whether one should remove them from the data. We therefore wondered what would happen when
rerunning Monocle 2 with the exact same settings on the same data but keeping the cluster of
lymphoids. While graph abstraction produces consistent results irrespective of the presence of this
cluster (Supplemental Figure 3a, b), Monocle 2’s inferred tree changed dramatically and displays
qualitatively wrong biology, for instance, by placing the lymphoid cluster in the center of the myeloid
differentiation. To reproduce the comparison and to get more information follow this link.

Supplemental Note 1.4: Comparison for data of Nestorowa et al. [19]

Supplemental Figure 4 shows a comparison for data of Reference [19]. To reproduce the comparison
and to get more information follow this link.

Supplemental Note 1.5: Comparison of runtimes

Computing the result of Figure 1a using graph abstraction took 0.5 s. The stemID computation,
including tSNE, ran for 17 min. Comparing this with 0.5 s for graph abstraction and 2.8 s for
tSNE, both in Scanpy [22], graph abstraction is 309 times faster. The Monocle 2 computation took
13.8 s in the fastest case. Comparing this with 0.5 s for graph abstraction, graph abstraction is 28
times faster. The authors of Monocle 2 report a runtime of 9min for 8 000 cells [34] and a linear
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a

b c

Supplemental Figure 4 | Comparison with Monocle 2 for data of Nestorowa et al. [19]. a, Result
of graph abstraction as in Figure 2c, but colored by cell type annotation. b, Running Monocle 2 for a latent
space dimension of 4 underestimates the complexity of the differentiation manifold. c, Running Monocle 2 for
a latent space dimension of 10 recovers the expected biology that late erythrocytes (3/Ery) and megakaryoctes
(6/Mk) appear in the same region of the tree. Nonetheless, there are qualitative inconsistencies: neutrophils
(4/Neu) and monocytes (1/Mo) appear in the same terminal branch. Megakaryocytes (6/Mk) appear in two
branches. Basophils (9/Baso) appear as progenitors of erythrocytes and megakaryoctes and the disconnected
B cells appear within the tree. Monocle 2’s tree-like representation of the data blurs the fact that the geometry
of the data allows in fact many different paths through the data.

scaling. Extrapolation yields 76.5min for 68 000 cells for which graph abstraction takes 2min, which
corresponds to a speedup of 38.

Supplemental Note 2: Random walks on graphs

On the single-cell level, the continuity of connections are believed to be well parametrized by a
“pseudotime” [2, 3] that measures the distance covered in a continuous progression along a manifold.
A robust kernel-based measure that can be easily extended to a graph, diffusion pseudotime, has
recently been proposed by Haghverdi et al. [8]. This measure and similar scale-free random-walk
based measures though do not account for clustering structure in the data; they are undefined for
disconnected graphs. Below, we show how to overcome this limitation by extending these measures.
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Supplemental Note 2.1: Interpreting random walks and their path distributions

It is important to note that in the whole paper, when we say “random walk on a graph”, we mean
a discrete-space Markov process on the state space given by the nodes of the graph and non-zero
transition probabilities between any two connected nodes.

Such random walks can be used to probe the global topology of the single-cell graph G but do not
provide a good model for the biological processes that one might hypothesize to have generated the
data in the first place. The primary deficiencies of the Markov random walk when seen as a model
for a biological process are the following.

• Undirectedness. When progressing along a differentiation trajectory, at some point, one ex-
pects commitment of a cell to a specific fate and a directed motion to that fate with some
fluctutations. By contrast, the diffusive motion induced by the Markov random walk is highly
non-directed, which leads to unrealistic paths that go back and forth and pass through remote
regions of the graph.

• Independence of the expression of specific genes. The random walk is independent of the
expression of specific genes; it only depends on global differences in the transcriptome. But,
specific genes are known to play a role during commitment.

These deficiencies of the random walk become apparent already when modeling a biological process
using the simple stochastic differential equation based model discussed in Supplemental Note 6.1.

The distribution of single-cell paths that correspond to a path through the abstracted graph, by
contrast, resolves the problem of undirectedness by bounding the distribution to the ribbon of the
connected sequence of groups.

Supplemental Note 2.2: Existing random-walk based distance measures

For a single-cell graph G with nnodes nodes and nedges edges, consider the normalized graph laplacian
[35, 36]

L = I − T, T = D−1A, (1)

where I is the nnodes×nnodes identity matrix and T is the transition matrix of the same shape. T is
obtained from the weighted adjacency matrix A of G by normalizing with row sums of A, that is, D
is the diagonal matrix that stores the degree of each node in G. In practice, we compute the weights
of the adjacency using a Gaussian decay with euclidian distance between two data points in gene
expression space, see e.g. Reference [8]; after that, we density-normalize obtained weights [37, 38] as
in Reference [8].

For a study of random walks generated by T , a spectral analysis of L and T is convenient and one
hence considers the matrices L̃ and T̃ , which are obtained by multiplying (1) with D−

1
2 from the

left and with D
1
2 from the right

L̃ = I − T̃ , T̃ = D
1
2TD−

1
2 . (2)

Hence, L and L̃ have the same spectrum {1− λ1, 1− λ2, . . . } and the spectrum of T and T̃ is given
as {λ1, λ2, . . . } with λ1 = 1, λ2 < λ1, . . . for a connected graph G [35, 36]. For a disconnected graph
with ncomps disconnected components, the adjacency matrix A has block-diagonal form with ncomps
blocks and there are ncomps eigenvalues λi with value 1 and corresponding eigenvectors that are the
indicator vectors of the connected components. The eigenvectors ṽ of T̃ are related to the right
eigenvectors v of T as [35–37]

vrι =
ṽrι√
Dιι

∀r, ι. (3)
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The right eigenvectors v of T are known as “diffusion map” coordinates [37], whereas the left eigen-
vectors span the space of probability distributions of configurations of the Markov process. The first
right eigenvector, corresponding to λ = 1, is the all-one vector — with only 1 as entry — and the
first left eigenvector is the stationary state of the Markov process.

Using this notation, one obtains the mean commute time — the average number of steps one needs
to arrive from node ι1 to another node ι2 — in equation (4a) [35]. One obtains “diffusion distance”
[37, 39] in equation (4b) and “diffusion pseudotime” [8] in equation (4c).

mean commute time(ι1, ι2) = 2nedges

nnodes∑
r=2

( 1

1− λi

)2
(vrι1 − vrι2)2, (4a)

diffusion distance(nsteps)(ι1, ι2) =

nnodes∑
r=2

λ
2nsteps
i (vrι1 − vrι2)2, (4b)

d̃pt(ι1, ι2) =
nnodes∑
r=2

( λi
1− λi

)2
(ṽrι1 − ṽrι2)2 + (ṽ1ι1 − ṽ1ι2)2, (4c)

dpt(ι1, ι2) =
nnodes∑
r=2

( λi
1− λi

)2
(vrι1 − vrι2)2, (4d)

algebraic distance(k)(ι1, ι2) =
rmax∑
r=1

(χ(k)
rι1 − χ

(k)
rι2)

2, χ(k)
r = Lkχ(0)

r . (4e)

With equation (4d), we give a slightly altered definition of diffusion pseudotime, which is consistent
with the other measures and was found to be equally-well performing for applications in single-cell
biology by the authors of Reference [8] — note that using the vr basis instead of ṽr, the last term in
equation (4c) becomes zero. Highly related is algebraic distance on the graph as given in (4e) [see
e.g. 38].

Supplemental Note 2.3: Interpretation of random-walk based distance measures

Random-walk based distances on graphs have first been used to cluster graphs in Reference [39] (4b)
and Reference [40] (4a), albeit without considering neighborhood graphs of data points. Reference
[37] proposed “diffusion distance” for measuring the similarity between data points, albeit not on a
graph, but for a Gaussian kernel matrix. Then, a random-walk based distance measure for single-
cell data has first been proposed to measure the similarity between cells by Reference [8]; again not
formulated for graphs. These authors introduced the measure of equation (4c), which integrates out
the number of steps nsteps in (4b) to arrive at a scale-free measure.

The dpt measure is highly similar to (4a), which is easier to interpret and scale-free, too: it measures
the average number of steps it takes to walk from ι1 to ι2. While equation (4b) arises as the summed
difference of transition probabilities to all other nodes for two random-walks of length nsteps that
start at nodes ι1 and ι2, respectively [37, 39], (4d) considers the sum over all numbers of nsteps,
hence a difference of “accumulated transition probabilities”, which are difficult to interpret; the
interpretation of equation (4c) is not easier.

Algebraic distance, which has been used for graph partitioning in recent years [38], approximates
(4a) and diffusion pseudotime and provides the computationally most efficient way of computing a
random-walk based distance measure.

Supplemental Note 2.4: Random-walk based distance measures for disconnected graphs

Evidently, both scale-free distance measures, mean commute time (4a) and diffusion pseudotime
(4c), are not defined for a disconnected graph G for which ncomps > 1 eigenvalues are 1: they yield
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an infinite distance even for two nodes ι1 and ι2 that are in the same connected component of G.
It is important to realize that each connected component of G automatically leads to a block Tb in
the transition matrix T that is itself a valid transition matrix and the spectrum of T is the union of
the spectra of the blocks Tb. The eigenvectors of T are the eigenvectors of the blocks Tb filled with
zeros at the positions of the other blocks [see e.g. 36]. Hence, we propose to extend mean commute
time and diffusion pseudotime for disconnected graphs as

mean commute time(ι1, ι2) = 2nedges

nnodes∑
r=ncomps+1

( 1

1− λi

)2
(vrι1 − vrι2)2, (5a)

d̃pt(ι1, ι2) =
nnodes∑

r=ncomps+1

( λi
1− λi

)2
(ṽrι1 − ṽrι2)2 +

ncomps∑
r=1

(ṽrι1 − ṽrι2)2. (5b)

dpt(ι1, ι2) =
nnodes∑

r=ncomps+1

( λi
1− λi

)2
(vrι1 − vrι2)2, (5c)

The distribution of zeros in the eigenvectors vr and ṽr guarantees that for two nodes ι1 and ι2 in the
same connected component b, only the spectrum of the block transition matrix Tb contributes. For
two nodes ι1 and ι2 in two disconnected components, the measures take the sum of their maximum
values in both components, which should be interpreted as infinite. Without problem, one can make
this explicit in the equations by distinguishing cases in which ι1 and ι2 belong to the same component
from cases in which they belong to different components.

We note that, in practice, instead of summing over all eigenvectors nnodes, we sum over a low number
of eigenvectors — “diffusion components” in the language of Coifman et al. [37] — as others [8, 40].

While in the present publication, we use equation (5b) throughout, we expect that equation (5a)
could be useful in the future due to its easier interpretation.

Supplemental Note 3: Measuring connectivity of partitions of a graph

The simplest measure for connectivity of two partitions of G is the number of connecting edges
between two partitions. By computing a statistic of this number, one can measure confidence in an
actual connection between two partitions of G, as opposed to a connection that is based on spurious
edges (Supplemental Note 3.1). In the visualization of abstracted graphs, edge width is proportional
to the confidence in the presence of an actual connection (see, e.g., Figure 1). This allows, for
example, to assess how strongly data clusters into disconnected regions (Supplemental Figure 5).
Another natural definition of connectivity, similar to ideas in hierarchical clustering on graphs [39],
can be based on a random-walk based distance measure (Supplemental Note 3.2).

Note that topological data analysis uses clustering algorithms that lead to overlapping clusters and
by that circumvents the definition of elaborate measures of connectivity: two clusters are connected if
they have finite overlap. We do not adopt this approach as overlapping graph partitioning algorithms
do not scale well to large datasets and their results are difficult to interpret when compared to the
well-established Louvain algorithm for modularity optimization [41] that has been established for
single-cell analysis [15].

Supplemental Note 3.1: Edge-statistics based measure for connectivity

Consider npartitions partitions {i} of G and let the matrix K = (kij)
npartitions
i,j=1 count the number of

inter- and intra-partition edges on G. Hence, the nodes of partition i are involved in ki =
∑

j kij

edges. The frequency of edges that connect to partition j is θj =
kj

nedges
. For the null model of

randomly connecting partitions, the expected frequency of connections between i and j is θiθj [42].

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208819doi: bioRxiv preprint 

https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b c

Supplemental Figure 5 | Assessing the degree to which data clusters by measuring connectivity
of partitions. Here, we show samples from three Gaussian mixture models (a, b, c), which display different
degrees of clustering structure: the number of centers is fixed to 5 but the standard deviation is increased
from 1 (a) over 6 (b) to 10 (c). Graph abstraction measures how well Louvain-clustering based partitions
[41] separate from each other. For standard deviation 10 (c), the clustering result predicts fully connected
partitions, hence a dense abstracted graph G∗. The geometry of data forms a fully continuous structure.

As in the definition of modularity [42], we compare the expected frequency θiθj to the observed
frequency kij/nedges of the number of edges.

Mij = Kij/nedges − θiθj (6)

Other than in modularity optimization, here, we consider the distribution ofMij to obtain a p-value
for rejecting the null-hypothesis of that i and j are connected by spurious edges. The number of
connections is the sum of nedges Bernoulli variables with mean θiθj . If edge numbers are high enough,
one can use the central limit theorem and assume a Gaussian with variance θiθj(1 − θiθj)/nedges
leading directly to a p-value without costly sampling.

E [Mij ] = 0

var [Mij ] = θiθj(1− θiθj)/nedges (7)

More refined tests could be developed, but our tests confirmed that this computationally cheap setup
works well in many settings.

Supplemental Figure 6 illustrates the confidence in connections of clustering data, where clusters
have different degree of connectivities.

Supplemental Note 3.2: Random-walk based measure for connectivity

Besides measuring connectivity between partitions using the number of connecting edges one can
also use the random-walk based distance measure d, discussed in Supplemental Note 2.

The distance d strongly correlates with the number of paths between two points [see, e.g., 37] and
hence allows to robustly define connectivity between partitions as measured by the number of the
connecting paths between their nodes. Measures for the connectivy of two partitions i1 and i2
can then be obtained by invoking simple summary functions for the nodes {ι1} and {ι2} in these
partitions

c1(i1, i2) = minι1∈P1,ι2∈P2d(ι1, ι2), (8a)
c2(i1, i2) = avgι1∈P1,ι2∈P2

d(ι1, ι2), (8b)

c3(i1, i2) = medianι1∈P1,ι2∈P2d(ι1, ι2), i1, i2 ∈ G∗, ι1, ι2 ∈ G. (8c)

Similar summary functions appear in different flavors of hierarchical clustering. Each of these func-
tions comes with different advantages and disadvantages. Taking the minimum is independent of
the specific shape of a partition but is prone to outliers: it is only a viable option as the distance
measure d itself is highly robust being computed as an average over all random walks on the graph.
Taking the average or median is robust but can cause perfectly attached partitions of the graph
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appear far way if they are long-stretched out, that is, if d increases strongly when walking through
them.

As even in the long-established hierarchical clustering algorithms, no definitive answer for the best
choice of summary function has been found, we also do not claim to give a definitive answer. In
practice, we use crw = c1. For the case in which, for a given partition i, we want to determine to
which partition j 6= i is most strongly connected, we adapt the following heuristic: if c1 yields no
significant answer but c3 does, we use c3 as a decision criterion, and otherwise c1.

While the random-walk based measure for connectivity has the advantage of directly measuring
the continuity of paths along the graph G, it is much harder — and might be impossible — to
establish a statistical model for measuring confidence. To nonetheless be able to compare the
connectivity of partitions in a tree-like subgraph T ∗ of G∗, which we assume to better capture the
continuous structure of the data, we use the following heuristic. We compute the median connectivity
ctree = median(i,j)∈T ∗c(i, j) and assume an exponentially decaying confidence in the presence of an
actual connection:

q(i, j) =

{
1 if ctree

c(i,j) < 1,

exp
(
− ( c

tree

c(i,j) − 1)
)

else.
(9)

We tested that a Gaussian decay yields qualitatively comparable results.

Supplemental Note 4: Partitioning the single-cell graph

At the heart of graph abstraction lies the assumption that the single-cell graph G — the k-nearest-
neighbor graph of data points — provides a powerful representation of data. This assumption is
on one hand based on the community’s success with graph-based clustering [15, 17, 41], pseudotime
inference [8], visualization [16, 23] and t-distributed stochastic neighborhood embedding [tSNE,
43, 44] — the latter can be seen as using a fully-connected graph with decaying weights. On the
other hand, it is based on the observation that neighborhood graphs robustly generalize any local
distance measure to a global scale. As any fixed distance measure can at best encode a very rough
notion of biological similarity with an exploding error for large distances, it is more robust to only
evaluate it locally, and construct the global disttances from the graph of neighborhood relations.

Here, we only consider established preprocessing recipes [16, 20, 21] for single-cell transcriptomic
data, each of which give rise to a different fixed distance measure. For single-cell imaging data. we
consider a learned distance measure as induced by the feature space of a deep learning model [29].
Any other distance measure, for example, the kernel-based measure of Reference [45], would also be
a viable option.

A partitioning of G that maximizes the ratio of intra- to inter-partition edges is natural in the
sense that it reveals regions of the graph with different connectivity and hence, different topology.
Optimizing this ratio is known as optimizing modularity [42]. An efficient algorithm for this [41] has
been suggested for single-cell biology by Reference [15]. Loosely speaking, one obtains the clearest
coarse-grained picture of the data at a fixed resolution if choosing the partitioning that maximizes
modularity. While the original implementation of the Louvain algorithm Reference [41] contained
an error that might lead to disconnected partitions — hence violates the topological structure of the
data — we use a highly efficient and correct implementation [46]. Note that the Louvain algorithm
has also been adpoted by popular single-cell analysis toolkits such as Seurat [20] and Cell Ranger
[21].

Many other possibilities for partitioning G — or clustering the data — exist. We highlight the graph-
based hierarchical clustering of Reference [39], which is based on a random-walk based distance
measure. Using points that maximize a similar distance measure, we extend this method to better
capture topological properties of the graph that are encoded in the distribution of these maxima.
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We refer to this method as “iterative matching of extremal points” (main text and Supplemental
Note 8).

Supplemental Note 5: Reconciling clustering and pseudotime algorithms

Here, we provide a more formal explanation of the discussion of Figure 1 in the main text. The
aim of any pseudotemporal ordering of given data is to reconstruct the continuous latent variable
that associates with the variation in the data; presumably the process that generated the data.
Furthermore, pseudotemporal ordering of cells enables the identification of the relative timing of
different events during the process — it tries to represent the internal “clock” of cells as encoded
in its molecular configuration. A clustering analysis, by contrast, relates neither cells nor clusters
to each other. With the abstracted graph G∗, which describes the connectivity — or “continuity”
— relations c(i, j) of clusters i and j of G, and the pseudotime measure d(ι1, ι2), which measures
the continuous progression of a cell ι1 to a cell ι2, one reconciles the result of a clustering analysis
with the aim of a pseudotime analysis: Each cluster is related to any other cluster as either being
disconnected or connected with one or several paths of high confidence in G∗. Moreover, within each
cluster, each cell is ordered according to pseudotime. One can hence trace a continuous process
from a root cell ιroot in a root cluster iroot to any terminal cell ιend in its terminal cluster iend
by following a path of high confidence (iroot, i1, i2, . . . , iend) in G∗. In each step of this path, the
pseudotemporal ordering provides an ordering with single-cell resolution and, hence, one traces the
progression of single cells along an ensemble of paths of high-confidence in G. Thereyby, graph
abstraction provides a topology preserving map of cells as (G∗, d). Without the abstracted graph G∗,
computing the ensemble of highly confident paths from from iroot to ιend in G is a computationally
much harder and an unsolved problem. The heuristics for its inference are less transparent and easy
to control than the heuristics involved in partitioning a graph G and generating an abstracted graph
G∗.

Supplemental Note 6: Hematopoiesis

Supplemental Note 6.1: Simulations — a minimal dataset that contains a continuous
manifold and disconnected clusters

We use a literature-curated qualitative – boolean – gene regulatory network of 11 genes that aims
to describe myeloid differentiation [47] and has been used for benchmarking the reconstruction of
gene regulatory network from a single-cell graph of state transitions in Reference [48]. The boolean
network evolves according to

Gata2 = Gata2 and not (Gata1 and Fog1) and not Pu.1,
Gata1 = (Gata1 or Gata2 or Fli1) and not Pu.1,
Fog1 = Gata1,
EKLF = Gata1 and not Fli1,
Fli1 = Gata1 and not EKLF,
SCL = Gata1 and not Pu.1,
Cebpa = Cebpa and not (Gata1 and Fog1 and SCL),
Pu.1 = (Cebpa or Pu.1) and not (Gata1 or Gata2),
cJun = Pu.1 and not Gfi1,
EgrNab = (Pu.1 and cJun) and not Gfi1,
Gfi1 = Cebpa and not EgrNab.

These boolean equations are translated into ordinary differential equations following Reference [49].
Within Scanpy [22], they are simulated as stochastic differential equations by adding Gaussian noise.
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a b

c

d

e

Supplemental Figure 6 | Approximate graph abstraction for minimal example of simulated
myeloid differentiation and clusters. a, Fruchterman-Reingold (FR) visualization. b, t-SNE visualiza-
tion. c, Four representative realizations of time series for simulated myeloid differentiation. d, Single-cell
graph colored by partitions and abstracted graph in which edge width is proportional to the confidence in
the presence of the edge. e, Gene dynamics along the most probable paths to erythrocytes, neutrophils,
monocytes and megakaryocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell.

Simulations result in four classes of realizations of gene expression time series, each of which corre-
sponds to the convergence to an attractor that represents a certain cell fate of myeloid progenitors:
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erythrocyte, neutrophil, monocyte and megakaryocyte (Supplemtal Figure 6). We concatenate four
typical realizations (Supplemtal Figure 6c, d) with 160 time steps, which yields 640 data points in
total.

To model clustering, we sample 640 data points from a Gaussian mixture model with two Gaussians
and random centers in an 11-dimensional space. The minimal dataset of Figure 2 and Supplemental
Figure 6 consists of the concatenated data matrices of the simulated myeloid progenitor development
data and the Gaussian mixture model, corresponding to 1280 cells.

Supplemental Note 6.2: Data of Paul et al. [18] and Nestorowa et al. [19]

Supplemental Figure 7 provides additional visualizations for Figure 2.

Supplemental Note 7: Comparing graph topologies

The established algorithm for detecting the existence of an isomorphism between two graphs reveals
an exact match of two graph topologies if nodes are unlabelled. But as the nodes of the abstracted
graph G∗ label partitions of G, that is, sets of data points, we need another algorithm to compute
the agreement of topologies: We are interested in whether the topology between two abstracted
graphs G∗1 and G∗2 agree under the constraint that the node labels of G∗1 and G∗2 are consistent with
each other. Moreover, instead of only detecting exact matches, we aim for a continuous measure of
agreement.

Supplemental Note 7.1: Associating a partitioning with a reference partitioning

To establish such a measure, we first compute the overlaps of the partitions labelled by G∗1 and by G∗2
(Supplemental Figure 8a, b). By that, we generate non-unique associations between partitions, as
visualized in an association matrix (Supplemental Figure 8c). The association matrix can ether be
normalized with respect to the reference groups N ∗1 (Supplemental Figure 8c) or with respect to the
new groups N ∗2 , respectively (Supplemental Figure 8d). In order to obtain a symmetric score that
measures how well two partitions mutually overlap — are mutually contained in each another — we
consider the minimum of both normalizations — the “minimal overlap” — for each combination of
groups (i1, i2) ∈ (N ∗1 ,N ∗2 ). Supplemental Figure 8e colors each partition in N ∗1 with the partition
in N ∗2 with which it has the largest minimal overlap.

Supplemental Note 7.2: Comparing paths in abstracted graphs

For each shortest path between two leaf nodes in G∗2 , there is a shortest path between the associated
nodes in G∗1 . This enables to compare the two paths and to count the fraction of steps that are consis-
tent among two paths. To measure the agreement of the topologies between two abstracted graphs,
we compute the fraction of agreeing steps and the fraction of agreeing paths over all combinations
of leaf nodes in two given abstracted graphs.

For instance, consider the shortest path between leafs (21, 2) in the reference graph G∗1 and the
shortest path between leafs (7, 11) in the new graph G∗2 in Supplemental Figure 8a and b, respectively:

p1 = (21, 8, 18, 7, 9, 2), p1 ∈ G∗1
p2 = (7, 2, 9, 10, 11), p2 ∈ G∗2 . (10)

By computing the overlap of reference partitions with new partitions, we can map p1 to the label
space of G∗2

pmapped
1 = ((7, 2), (6, 7, 2), (2, 7), (2, 9), (9, 10, 3), (11, 10)), (11)
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a b

c

Supplemental Figure 7 | Additional visualizations for Figure 2. a, FR, tSNE and abstracted graph
visualization of the data of Reference [18], colored by the cell type annotations of the original publication. The
fractional overlaps of these cell type definitions and the partitions within graph abstraction are visualized
as pie charts within the abstracted graph. b, The same for data of Reference [19], where we annotated
differentiated cells as follows: Cells with RNAseq and index data were analyzed using SPRING [16], a tool
for generating graph-drawing visualizations. Differentiated cells were annotated by selecting cells at the tip
of each branch and identifying them using known marker genes. Hematopoietic stem cells that were gated
as Lin- c-kit+ Sca-1+ CD34- Flk2- CD150+ CD48- EPCRhi cells. c, Comparative visualization of the gene
dynamics along paths in Figure 2b and d. Data has been interpolated and normalized.

that is, partition 21 in G1 has finite minimal overlap with partitions 7 and 2 in G2, partition 8 in G1
has overlap with partitions 6, 7 and 2 in G2, and so on.

Transitioning through path p2 and counting for each transition whether it’s present or not in pmapped
1

allows to count the number of agreeing steps. If all steps agree with each other, the paths p1 and p2
agree with each other. In the example of equation (10), p2 involves 4 steps, 4 of which agree with

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208819doi: bioRxiv preprint 

https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b

c

d

e

Supplemental Figure 8 | Comparing topologies of abstracted graphs. a, b, Partitions obtained
using Louvain clustering in two runs with different parameters, equivalent to those shown in Figure 2a: both
abstracted graphs describe the same topology. Note that in Figure 2a, we use the Reingold-Tilford layout
to draw the tree whereas here, we use the FR layout also for the abstracted graph. c, Reference partitions
colored with the associated new partition that has the largest overlap.

pmapped
1 .

Supplemental Note 7.3: A related measure from the literature

Previously, it has been suggested to correlate the distribution of path lengths of all paths through
trees as a measure for topological similarity of trees [12]. Specifically, for a tree whose nodes label
sets of data points, the lengths of all paths between all pairs of data points are computed. The
correlation of such path-length sets obtained for two trees is suggested as a measure for topological
similarity of the two trees. Besides being highly redundant and costly to compute, the resulting
measure is very rough as it does not map paths onto each other; that is, it does not account for
inconsistencies of paths with the same length.

Supplemental Note 8: Iteratively constructing a topology-conserving tree

Consider the abstracted graph G∗ in which edge weights measure how continuous partitions in the
single-cell graph G are connected to each other. We aim to identify the tree-like subgraph T ∗ in the
abstracted graph G∗ that best reflects the global topology of G. As G∗ reflects the topology of G on
a coarse resolution, it suffices to identify the tree T ∗ that best reflects the topology of G∗. By this,
we mean that walking along paths in T ∗ should best recover the paths in G∗ and, by that, in G.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208819doi: bioRxiv preprint 

https://doi.org/10.1101/208819
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

b

Supplemental Figure 9 | Robustness of the inference of abstracted graphs in Figure 2. Sampling a
wide variety of the two input parameters results in vastly varying numbers of partitions, hence vastly different
clusterings of the data; note the large spread of the number of Louvain groups. Nonetheless, the topology is
robustly inferred. We ran this robustness study for a, the minimal example and b, data of Reference [18] as
in Figure 2a and b. Graph topologies are compared as explained in Supplemental Note 7.

In particular, walking along paths on G to points that stick out most, as measured by d, has to be
reflected in the tree T ∗: its leafs need to contain extremal points. Note that if topologies are exactly
reconstructed in T ∗, one can deform T ∗ by reconnecting the points in each node in T ∗ with points
in neighboring nodes to recover the original graph G.

Supplemental Note 8.1: Minimum spanning tree

Finding the tree that maximizes connectivity and by that continuity between any two nodes is one
way to address this problem without ever considering a set of extremal points. Finding the minimum
spanning tree for inverse connectivity using an iterative, greedy algorithm like Prim’s accomplishes
this task. One grow’s the tree by iteratively adding the node to a tree that maximizes connectivity.

Supplemental Note 8.2: Iterative matching of extremal points

A different approach to generating a topology-conserving tree is based on iteratively matching ex-
tremal points of G to leaf nodes of T . We refer to this as “iterative matching”. For simple cases, the
results of MST and iterative matching agree. For more complicated cases, iterative matching tends
to generate trees that rarely connect partitions that contain extremal points (Supplemental Figure
4). The interesting aspect of iterative matching is that, by construction, it constructs a hierarchical
set of extremal points for all scales of the graph. While MST places “evident” extremal points on
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a

b

Supplemental Figure 10 | Abstracted graphs for differentiated PBMCs. a, Reconstruction of motifs
of the lineage tree of 68 000 PBMC cells [21]. This dataset serves as a negative control for the predictions
of graph abstraction as it mostly lacks cells in the transitioning stages between different cell types. Hence,
only motifs of the lineage tree of PBMCs are reconstructed in the abstracted graph. c, 3k PBMCs from 10X
Genomics. Cells have been annotated using Seurat [20].

the largest scale in leafs of the tree, it might fail in doing this for smaller scales.1 Finally, iterative
matching can be used to generate partitions of G as in divisive hierarchical clustering.

Initializing the algorithm. Randomly select one of the two extremal partitions, those that “stick
out most”: each of them contains one point of the pair of points that maximizes d on G. Now
consider an abstracted graph T ∗1 that consists of the selected extremal partition of G, node ε1, and
a second node u1 that corresponds to the union of all other partitions of G. We constructed T ∗1 by
“cutting out” one partition and “attaching” it to the “rest of the graph”.

Consistence of the algorithm. Evidently, T ∗1 is both a tree and reflects the property of G that
an extremal partition corresponds to a leaf in T ∗1 . Consider an iterative procedure that conserves
these properties of T ∗1 : in each iteration, we cut out a new extremal partition from the union of the
central remaining partitions. Doing this, the only question is whether one should connect the two
new partitions with a new edge or whether one should refrain from it. If one connects the two new

1 To generate a set of extremal points on the global scale of G, consider the set of points D that maximize d with
respect to each other, that is, they fulfill xi = argmaxxj∈G

∑
i′∈D d(xi′ , xj) ∈ D. These points span a polygon of

most distant points in G. This polygon approximates the topology of the graph only on the largest scale.
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Supplemental Figure 11 | Abstracted graph for deep learning based feature space. Analyzing
single-cell images via a deep learning based distance metric. Graph abstraction correctly recognizes the cluster
of damaged cells as not belonging to the biological path that corresponds to cell cycle evolution through the
interphases G1, S and G2. a, Abstracted graph with Louvain partitions. b, Associated cell cycle phases. c,
DNA content along a valid path in the abstracted graph. d, The DNA content along an invalid path that
involves the damaged cells shows a clear non-biological kink.

partitions, this generates a path from the central region of the graph to the extremal partition. If
one does not connect the two, one generates two new disconnected leafs, which are connected by the
already existing edges. Thereby each step in the iteration identifies a new extremal point and places
this extremal in a leaf relative to the remainder of the graph.

Iterating the algorithm. Iterate the following for i = 2, . . . , npartitions.

1. Split ui−1 by cutting out a new extremal partition εi. The new abstracted graph T ∗i then has
i + 1 nodes: the new extremal partition εi, the new union of the remaining partitions ui and
the {ε1, . . . , εi−1} partitions that already existed in T ∗i−1.

2. Attach all edges that already existed and linked ui−1 in T ∗i−1 to either εi or ui in Ti; among εi
or ui, choose the one that is more strongly attached.

3. Decide whether to generate a new edge between εi and ui in Ti. If among all partitions that
were not considered in step 2, εi and ui are mutually most strongly attached to each other,

a) assume that they form a continuous structure that links εi to ui and we add an edge
between them, provided this does not generate a cycle in Ti,

b) otherwise, assume they correspond to disconnected clusters and do not add a new edge.
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Notes. One can view the algorithm as iteratively generating partitions by grouping those points
that are closer to one extremal point than to the other, with this extremal point; and the rest of the
points with the second extremal point. If one does not have a given partitioning of G, one would
naturally use the distance measure d to decide which point is closer and hence generate partitions
similar to divisive hierarchical clustering on graphs [39]. If one has a given partitioning, one naturally
uses this partitioning to group points with extremal points.

Supplemental Note 9: Graph abstraction for datasets of PBMCs

We analyze two PBMC datasets that contain mainly differentiated cells (Supplemental Figure 10).
Hence, the abstracted graphs only recover motifs of the PBMC lineage tree and predict many low-
confidence connections. See the main text for a discussion.

Supplemental Note 10: Graph abstraction for deep learning

Without extensive preprocessing, the graph of neighborhood relations of data points in gene expres-
sion space is useless if computed with a simple fixed distance metric (euclidian, cosine, correlation-
based, etc.). If one considers the pixel space of images the problem is even worse and it is impossible
to come up with preprocessing methods that lead to a meaningful distance metric. It has recently
been shown that a deep learning model can generate a feature space in which distances reflect the
continuous progression of cell cycle and a disease [29], that is, deep learning can generate a feature
space in which data points are positioned according to biological similarity and by that generates a
distance metric that is much more valuable than a simple fixed distance metric. We demonstrate that
graph abstraction is useful for reconstructing the cell cycle from image data while and identifying a
cluster of damaged cells (Supplementary Figure 11).
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