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Abstract 

Background: Low birthweight (BW) has been associated with a higher risk of 

hypertension, type 2 diabetes (T2D) and cardiovascular disease (CVD) in 

epidemiological studies. The Barker hypothesis posits that intrauterine growth 

restriction resulting in lower BW is causal for these diseases, but causality and 

mechanisms are difficult to infer from observational studies. Mendelian 

randomization (MR) is a new tool to address this important question. 

 

Methods: We performed regression analyses to assess associations of self-reported 

BW with CVD and T2D in 237,631 individuals from the UK Biobank, a large 

population-based cohort study aged 40-69 years recruited across UK in 2006-2010. 

Further, we assessed the causal relationship of such associations using the two-

sample MR approach, estimating the causal effect by contrasting the SNP effects 

on the exposure with the SNP effects on the outcome using independent publicly 

available genome-wide association datasets. 

 

Results: In the observational analyses, BW showed strong inverse associations 

with systolic and diastolic blood pressure (β, -0.83 and -0.26; per raw unit in 

outcomes and SD change in BW; 95% CI, -0.90, -0.75 and -0.31, -0.22, 

respectively), T2D (odds ratio [OR], 0.83; 95% CI, 0.79, 0.87), lipid-lowering 

treatment (OR, 0.84; 95% CI, 0.81, 0.86) and CAD (hazard ratio [HR] 0.85; 95% 

CI, 0.78, 0.94); while the associations with adult body mass index (BMI) and body 

fat (β, 0.04 and 0.02; per SD change in outcomes and BW; 95% CI, 0.03, 0.04 

and 0.01, 0.02, respectively) were positive. The MR analyses indicated inverse 

causal associations of BW with low density lipoprotein cholesterol, 2-hour 

glucose, CAD and T2D, and positive causal association with BMI; but no 
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associations with blood pressure. Sensitivity analyses and robust MR methods 

provided consistent results and indicated no horizontal pleiotropy.  

 

Conclusion: Our study indicates that lower BW is causally and directly related 

with increased susceptibility to CAD and T2D in adulthood. This causal 

relationship is not mediated by adult obesity or hypertension. 

 

Key words: Birthweight, obesity, type 2 diabetes, cardiovascular disease, genetics, 

Mendelian randomization 
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Introduction 

The association between low birthweight (BW) and increased risk of coronary 

artery disease (CAD) in adult life was first demonstrated by the British 

epidemiologist David Barker in a landmark paper in the Lancet in 19891. This 

observation was later extended using a longitudinal cohort study of 

8,760 participants with growth trajectories during childhood2. In this study, 

individuals with a low BW increased their weight rapidly after two years of age, 

and had increased risk of insulin resistance and CAD in adult life. In 1992, Barker 

proposed that these relationships could be explained by what he called the “Thrifty 

phenotype hypothesis”3 attributing the association between poor fetal and 

infant growth and subsequent increased cardiovascular risk to arise from a 

compensatory response to nutritional deprivation in early life, resulting in 

permanent changes in glucose-insulin metabolism and somatic growth lasting into 

adulthood. Decreased insulin secretion and increased insulin resistance in 

combination with effects of obesity, ageing and physical inactivity are the most 

important factors leading to type 2 diabetes (T2D)3, but they are also independent 

risk factors for CAD, stroke, and hypertension4.  

 

Still, it is not yet clear whether BW plays a causal role in the development of these 

outcomes as posited in the “Barker Hypothesis”; or if other phenomena, such as 

confounding factors (maternal smoking, socioeconomics level, ethnicity) have 

resulted in spurious associations in previous observational studies. We wanted to 

investigate causal mechanisms using the Mendelian randomization (MR) approach. 

This method has the ability to infer a causal relationship between a risk factor and 

a disease, using genetic markers as a proxy for a modifiable exposure. Two smaller 

prior MR studies indicated a causal association between low BW and T2D5, but not 

with lipids or CAD6. However, these studies were hampered by weak instrumental 
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variables including only five and seven single nucleotide polymorphisms (SNPs), 

respectively; resulting in limited statistical power. Furthermore, these studies did 

not address the relationship of BW with other important cardiovascular diseases 

and risk factors, including atrial fibrillation (AF), ischemic stroke (IS), blood 

pressure, body mass index (BMI), waist-to-hip ratio (WHR), high density 

lipoproteins (HDL), low density lipoprotein (LDL), triglycerides (TG), 2-hour 

glucose, fasting glucose, and fasting insulin.  

 

The aims of the present study were to: 1) describe the relationships of self-reported 

BW to several cardiovascular traits in 237,631 participants of the UK Biobank 

(UKB); and 2) delineate any causal relationships between BW and CAD, AF, IS 

and T2D, and risk factors for these diseases (systolic and diastolic blood pressure 

[SBP and DBP], BMI, WHR, HDL, LDL, TG, 2-hour glucose, fasting glucose, and 

fasting insulin) by two-sample MR analysis using summary statistics from the 

largest available genome-wide association study (GWAS) meta-analyses.  
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Methods 

Study sample 

The UKB is a longitudinal cohort study of over 500,000 individuals aged 40-69 

years initiated in the United Kingdom (UK) in 2006-20107. We included 237,631 

participants that knew their BW, to focus on the linear effects of birth weight we 

limited analysis to individuals reporting birth weights to be within 2.5 kg and 4.5 

kg, and excluded individuals with CV prior enrollment (Supplemental Table I 

Online Data Supplement for details). We used UKB for our observational analyses, 

as well as to perform a GWAS of SBP and DBP (as publically available summary 

statistics were adjusted for BMI) to create an instrumental variable (IV) for the MR 

analyses. Cardiovascular outcomes for observational studies were defined using 

the International Classification of Diseases (ICD) codes (details in the Online Data 

Supplement). The exposure of interest was self-reported BW.  

 

We used publicly available GWAS summary statistic of BW8 as exposure; and of 

CAD9, AF10, IS11, SBP and DBP adjusted for BMI12, BMI13, WHR14, HDL, LDL, 

TG15, T2D16, 2-hour glucose17, fasting glucose, and fasting insulin18 as outcomes. 

Details on the GWAS consortia, number of samples, proportion of variance 

explained and statistical power for MR analysis are presented in Table 1. 

 

Statistical methods 

Observational analysis 

After confirming normal distribution of all continuous variables, we performed 

multivariable linear regression models to assess associations of BW with SBP, 

DBP, BMI, body fat, and WHR; and multivariable logistic regression models to 

study associations of BW with T2D and lipid medications. Multivariable-adjusted 

Cox proportional hazards models were performed to assess associations of BW 
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with CAD, AF, IS, hemorrhagic stroke and heart failure events, separately; during 

a median follow-up time of 6.1 years (maximum 6.7 years). We use the DAGitty 

web tool (http://dagitty.net/dags.html) to systematically construct our multivariable 

model adjusting for confounders (Supplemental Figure I). All association analyses 

were adjusted for age, sex, region of the UKB assessment center, ethnicity, 

maternal smoking and Townsend index. We assessed evidence of nonlinear effects 

of BW on different outcomes using spline regression models. All observational 

analyses were performed in the UKB. 

 

 

Mendelian randomization  

We performed two-sample Mendelian randomization analyses using publically 

available consortia data, except for blood pressure where we performed a GWAS 

in UKB.  We assessed the causal relationships of BW with CAD, AF, IS and T2D, 

and risk factors for these diseases (SBP, DBP, BMI, WHR, HDL, LDL, TG, 2-

hour glucose, fasting glucose and fasting insulin) using the two-sample MR 

approach19,20. In order to minimize the risk of pleiotropy affecting our results, we 

performed analyses using three different IVs:  

IV1) Including up to 58 independent lead variants (excluding the IGF2 locus due to 

imprinting; see Online Data Supplement) from the GWAS of BW performed by 

the EGG consortium8;  

IV2) Including up to 46 variants after exclusion of 12 variants associated with 

CAD, AF, IS and T2D at GWAS significance; any confounders at GWAS 

significance; or with any of the confounders or CAD, AF, IS and T2D at a P-

value lower than the P-value for association with BW (Supplemental Figure II). 

These associations were estimated in UKB. 
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IV3) Excluded 1-9 heterogenetic variants (different for each outcome; 

Supplemental Figure III). We performed a stepwise downward “model 

selection” in which SNPs were iteratively removed from the risk score until the 

heterogeneity test was no longer significant at the pre-specified threshold 

(P<0.05) using the R package gtx.  

 

We decided a priori that IV2 would constitute our main model (balancing high 

statistical power and low risk of pleiotropy), but included IV1 to maximize power 

and IV3 to decrease risk of pleiotropy in sensitivity analyses.  

 

We used four separate methods to estimate causal effects: the standard inverse-

variance weighted (IVW) regression, the robust penalized IVW; as well as two 

robust regression methods, the weighted median-based method, and Egger 

regression20.	We performed leave-one-out sensitivity analyses to identify if a single 

SNP was driving an association. To further address whether BW had a causal 

effect on CAD and T2D independently of BMI, we used a multivariate MR 

weighted regression-based method, in which the causal effects of multiple related 

risk factors can be estimated simultaneously21,22.  

 

We estimated statistical power for the different MR analyses (Table 1) using 

sample sizes and variance explained specific for each analysis and an alpha 

threshold of 0.05 for two different effect sizes: 1) Assuming a fixed effect across 

phenotypes of 0.15 SD (continuous outcomes) or 20% (odds ratio, 1.2; 

dichotomous outcomes); and 2) For traits that were available in UKB, the effect 

size from observational analyses.  
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MR analyses were conducted with the R packages TwoSampleMR 23, and 

MendelianRandomization 24. Power for MR analyses was estimated with an online 

tool by Burgess (https://sb452.shinyapps.io/power/). Observational analyses were 

conducted with the R package Survival (version 3.3.0). 

A flow chart of the different data sources used in this study is shown in 

Supplemental Figure IV. A detailed description of material and methods can be 

found in the Online Data Supplement. 
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Results 

In UKB, the mean age at baseline was 55.0 years (SD, 8.1 years) and 61% of 

subjects were females. During follow-up, 5,542 incident CVD cases occurred in 

participants free from the disease at baseline (2,656 CAD; and 1,580 AF; 688 IS; 

363 hemorrhagic stroke; and 255 heart failure events; Supplemental Table I and 

II).  

 

Observational analyses 

The results from observational analyses are summarized in Figure 1 (full results in 

Supplemental Table II). We observed strong inverse associations between BW and 

blood pressure, CAD, T2D and lipid-lowering treatment. In contrast, we observed 

strong and positive associations between BW and BMI and body fat percentage. 

After adjusting for multiple testing (12 traits), the associations were non-significant 

for WHR, AF, IS, hemorrhagic stroke and heart failure. We excluded non-linear 

associations between BW and any outcomes tested (P>0.05) by spline-regression 

(Supplemental Figure V). 
 
 
Mendelian randomization 

In our main analyses (IVW using the 46-SNP instrumental variable [IV2]), we 

found evidence of causal associations of BW with BMI, LDL, 2-hour glucose, 

CAD and T2D (Figure 1). The direction of the effect was negative for all the above 

outcomes (i.e. higher BW was associated with lower risk and vice versa), with the 

exception of BMI, where higher BW was associated with higher BMI. We did not 

find evidence of causal effect of BW on HDL, TG, fasting insulin, AF, and IS.  

 

The leave-one out sensitivity analysis did not highlight any heterogeneous SNPs 

with a large effect on the results. After excluding heterogeneous SNPs in the IV3, 
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our analysis showed no significant heterogeneity and no significant directional 

horizontal pleiotropy (all P>0.05; Supplemental Figure VI).  

 

The analyses using penalized robust IVW, MR Egger, and weighted median 

methods consistently yielded similar effect estimates, but as expected with wider 

confidence intervals, especially for Egger regression (Supplemental Table III and 

Supplemental Figure VII). Further, sensitivity analyses using alternative IVs with 

higher power (IV1) and lower risk of pleiotropy (IV3) also provided similar results 

(Supplemental Table III).  

 

The mediation analysis using the multivariate MR weighted regression-based 

method showed an independent association between BW and CAD, as well as 

between BW and T2D, not mediated by BMI in either case. The direction of the 

effect detected was consistent with our main MR analyses (Supplemental Table 

IV).  

 

We had good statistical power to detect causal associations for all traits when 

assuming a fixed effect across phenotypes of 0.15 SD (continuous outcomes) or 

20% (odds ratio, 1.2; dichotomous outcomes). When using the effect sizes from 

observational analyses of traits that were available in UKB, the power was 

adequate for all traits except DBP and WHR.   
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Discussion 

Principal Findings 

In this study of 237,631 individuals from the general population, we used self-

reported BW as a proxy for fetal development to analyzed downstream 

consequences of intrauterine growth restriction. We describe the association of BW 

with incidence of T2D and five cardiovascular outcomes (CAD, AF, IS, 

hemorrhagic stroke and heart failure), and cardiometabolic risk factors (blood 

pressure, BMI, body fat, and WHR), and we identify a causal role of BW in the 

development of several cardiometabolic diseases. Our principal findings are 

several. First, in our observational study, we established that self-reported BW 

displays strong inverse associations with blood pressure, CAD and T2D, and 

strong direct associations with BMI and body fat. Second, our MR analyses 

indicate that low BW is causally related to higher risk of LDL and 2-hour glucose; 

and higher CAD and T2D in adults. This highlights the influence of prenatal 

determinants of fetal growth on the development of cardiometabolic diseases in 

adulthood. Third, our study suggests high BW to be causally associated with 

increased BMI, but not causally associated with blood pressure. Taken together 

and considering the different direction of the causality for BMI and CAD/T2D 

(higher BW increases BMI; lower BW increases CAD and T2D), our results 

suggest a causal association of intrauterine growth restriction and low BW with 

risk for CAD and T2D, an association which does not appear to be mediated by 

obesity or hypertension. 

 

In their initial description of the “thrifty phenotype hypothesis”3, Barker and Hales 

proposed that BMI would be a possible mediator of the associations detected 

between low BW and adult T2D and CAD.  The hypothesized primary effect of 

BMI was supported by evidence from both population and experimental studies 
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linking low BW with predisposition to an increased risk of metabolic diseases such 

as T2D25,26,27,28,29, hypertension30,31 and CAD32. However, in our study and in prior 

observational analyses, higher BW is associated with obesity (a universally 

recognized correlate of cardiometabolic disease) in both childhood33,34 and 

adulthood35,8. Our findings suggest a causal association of low BW with CAD and 

T2D, which is uniquely independent of the relationship between high BW and 

increased BMI. Consistent with our observed effects of low BW on risk for CAD 

and T2D independent of adult obesity, a recent study of African American women 

failed to detect a causal role for BMI in mediating the increased risk for T2D in 

adult life among individuals with low BW36. New models for how risk for 

cardiometabolic disease in adulthood is directly conferred by growth restriction in 

utero without a compensatory change in BMI are needed to explain our 

observation of a direct causal relationship.  

 

Explicit in the Barker hypothesis and explored by the experimental literature37,38, is 

a model in which prenatal growth stress leads to metabolic reprogramming 

beginning in utero. In the setting of prenatal malnutrition, the fetus is hypothesized 

to shift toward insulin resistance in order to allow for maximum uptake of 

available energy and nutrients. In this hypothesis, the persistence of insulin 

resistance after parturition might then trigger rapid postnatal growth with the 

concomitant potential for increased long-term risk of T2D, obesity and CAD in 

adulthood25,39. However, our findings support a separate direct causal link between 

intrauterine growth restriction and long-term risk for cardiometabolic disease, 

which does not involve adult obesity. Consistent with our detection of a causal 

relationship, one prior report using IV analyses, but with much fewer variants also 

described a direct causal association between low BW and T2D5.  
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In contrast to our results, Yeung et al.6, reported no causal association between BW 

and CAD. However, this study was based on a weak instrumental variable 

consisting of seven SNPs, explaining only 0.45% of the variance for BW (in 

contrast with our score that explained 2.2% of the variance), resulting in limited 

statistical power of 56% suggested by post-hoc calculations. In this context, it is 

also worth mentioning the genetic correlation analyses of BW with several health-

related traits, published in the recent GWAS for BW used to create IVs for our MR 

study8. As in our study, they reported strong positive genetic correlations with 

BMI, and inverse genetic correlations with CAD and T2D. In contrast to our MR 

results, they highlight a negative genetic correlation with SBP. This discrepancy is 

probably related to the different methods used. Indeed, they used the linkage-

disequilibrium score regression model40 which use all GWAS summary statistics of 

the traits of interest to estimate the genetic correlations, while MR methods are 

based on a much smaller number of variants, aiming to decrease the risk of 

horizontal pleiotropy driving associations. 

 

Clinical Implications 

Given our observation that low BW is causally related to LDL, 2-hour glucose, 

CAD and T2D, these findings are strongly consistent with the growing recognition 

of the long-term public health importance of supporting adequate prenatal 

nutrition. Diet is a broadly modifiable risk factor, and both maternal and paternal 

nutrition have an impact on the risk of metabolic syndrome, lipid dysregulation, fat 

deposition, obesity and hypertension in offspring via a hypothesized mechanism of 

in utero epigenetic imprinting41,42,43. Both epidemiological and animal studies 

highlight that undernutrition, overnutrition, and inadequate diet composition 

negatively impact fetoplacental growth and metabolic patterns, potentially having 

adverse later life metabolic effects for the offspring44. Additionally, our data may 
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also offer a window into the role by which non-nutritional factors affecting fetal 

growth such as congenital heart disease and premature birth, may predispose 

affected individuals to long-term risk of cardiometabolic disease in 

adulthood45,46,47. 

  

Our results indicate that some proportion of common chronic diseases of adulthood 

could potentially be reduced by achieving optimal fetal nutrition. Short-term 

follow-up of children born after randomized nutritional interventions in pregnancy 

describe beneficial effects on growth, vascular function, lipid levels, glucose 

tolerance and insulin sensitivity; though longer-term studies examining nutrition 

and growth in premature infants display a more complex set of relationships48,49. 

Considered in the context of populations, our data suggest that attention to prenatal 

nutrition and intrauterine growth may have long-term consequences regarding the 

risk of CAD, obesity and diabetes in adult life.  

 

Strengths and limitations 

To our knowledge, this is the largest and most comprehensive study of associations 

of BW with outcome to date. Additionally, we used three different IVs to 

maximize power and to decrease risk of pleiotropy, and several methods for MR 

analyses all yielding consistent effects for the tested hypotheses. However, our 

study is limited by the study samples of middle-aged to elderly individuals of 

European descent from rich countries. Hence, generalizability of our findings to 

other populations where the diet, prenatal care, prevalence and predispositions of 

cardiometabolic disease are different is unknown. Further, although we excluded 

variants with higher likelihood of pleiotropy from our analysis and applied a range 

of sensitivity analyses and methods robust to pleiotropy, little is known about the 

mechanisms underlying loci included in the IV. Though our comprehensive 
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analytical framework did not indicate any presence of horizontal pleiotropy, it is 

possible that some or all of these loci may also have a direct influence on the 

processes leading to CAD or T2D independent of intrauterine growth. Finally, 

despite the large sample in this study, statistical power to detect potentially causal 

relationships was limited for some traits, at least for the effect sizes from our 

observational analyses (in particular, DBP and WHR; Table 1). 

 

Conclusion 

In conclusion, we demonstrate that intrauterine growth restriction, as evidenced by 

lower BW, is causally related with increased susceptibility to T2D and CAD, but 

that this effect is independent of adult hypertension or obesity, which has been 

previously hypothesized to be mediator of such association. Our study supports the 

notion that population level interventions improving prenatal nutrition and growth 

may improve cardiometabolic disease profiles later in life, but this needs to be 

confirmed using other study designs, such as large-scale community-based 

intervention trials. 
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Figures 
 
Figure 1. Inverse-variance weighted Mendelian Randomization (IVW) and 

association results (BETA/HR/OR) of birth weight (BW) with cardiovascular 

outcomes in UK Biobank using multivariable-adjusted linear and logistic 

regression, and multivariable-adjusted Cox proportional hazards models. a. 

Continuous outcomes: systolic and diastolic blood pressure in UK Biobank (SBP 

UKB, and DBP UKB; respectively), body mass index (BMI), waist-to-hip ratio 

(WHR), high density lipoprotein (HDL); low density lipoproteins (LDL); 

triglycerides (TG); body fat percentage (BF); 2-hour glucose; fasting glucose; and 

fasting insulin. b. Binary outcomes: coronary artery disease (CAD); atrial 

fibrillation (AF); ischemic hemorrhagic stroke (IS and HS, respectively); heart 

failure (HF); type 2 diabetes (T2D) and lipid medications (LIP).
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a.	   

  

Beta         95 % CI
SBP UKB N=33
IVW -0.33        ( -1.66, - 1.00)
BETA -0.83        (-0.90, -0.75)

DBP UKB N=33
IVW 0.21          (-0.45, 0.87)
BETA -0.26         (-0.31, -0.22)

BMI N=38
IVW 0.13           (0.08, - 0.18)
BETA 0.04           (0.04, - 0.04)

WHR N=38
IVW -0.08           (-0.15, -0.01)
BETA 0.01            (-0.01, 0.01)

HDL  N=38
IVW -0.05            (-0.12, - 0.02)

LDL  N=38
IVW -0.11            (-0.18, -0.05)

TG  N=37
IVW -0.05            (-0.11, 0.01)

BF
BETA 0.02               (0.01, 0.02) 

2hr glucose N=17
IVW -0.66            (-1.00, -0.33)

Fasting glucose N=38
IVW -0.14            (-0.28, -0.01)

Fasting insulin N=38
IVW -0.01            (-0.06, 0.04)

Beta (95% CI)
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b.

 
 
The betas from linear regression represent SD change in outcome variable per SD change in BW, 
except for SBP and DBP where they represent the outcome in raw unit (mmHg) per SD change 
in BW. Mendelian randomization analyses were based on the 46 variants included in the 
instrument variable 2 using data sources listed in Table 1. All effects for the IVW (beta or OR) 
are given in original units as provided by the consortia. 
Model adjustment: age, sex, region of the UKB assessment center, ethnicity, maternal smoking 
and Townsend index. Abbreviations: HR, hazard ratio; OR, odds ration; CI, confidence interval; 
N= number of variants included in the instrument variable.
  

OR        95%CI

CAD  N=45
IVW 0.69      (0.60 , 0.80)
HR 0.85      (0.78 , 0.94)

AF N=39
IVW 1.15       (0.95 , 1.39)
HR 1.18       (1.05 , 1.33)

IS N=45
IVW 0.82        (0.67 , 1.01)
HR 0.88        (0.74 , 1.06)

HS
HR 0.82         (0.64 , 1.05)

HF
HR 1.06         (0.79, 1.42)

T2D  N=17
IVW 0.19         (0.11, 0.34)
OR 0.83         (0.79, 0.88)

LIP
OR 0.84         (0.81, 0.87)

OR/HR (95% CI)
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Tables 

Table 1. Description of data used and statistical power for Mendelian 

randomization analyses. 

Phenotype Consortium N	samples 
Variants	
in	the	
IV2 

Variance	
explained	

(%) 

Effect	in	
UKB 

Power	for	
observed	
association	

(%) 

Power	for	
fixed	

standardized	
effect 

Units Publication 

BW EGG 143,677      SD	(kg/m^2) 
Horikoshi	et	al.,	

2016 

CAD CARDIoGRAMplusC4D 184,305 45 0.022 0.854 99 100 log	odds 
Nikpay	et	al.,	2015 

AF AFGen 133,073 39 0.020 1.179 84 90 log	odds 
Christophersen	et	

al.,	2017 

IS ISGC 435,001 45 0.022 0.881 94 99 log	odds 
Pulit	et	al.,	2016 

SBP UKB 337,229 33 0.022 -0.042 95 100 mmHg 

Sudlow	et	al.,	2015 
 

DBP	 UKB	 337,235	 33	 0.022	 -0.025	 58	 100	 mmHg	

SBP ICBP 201,529 34 0.020 -0.042 76 100 mmHg 

Ehret	et	al.,	2016 
 

DBP ICBP 201,529 34 0.020 -0.025 35 100 mmHg 

BMI GIANT 339,224 38 0.020 0.041 92 100 SD	(kg/m^2) Locke	et	al.,	2015 

WHR GIANT 210,082 38 0.020 0.003 4 100 SD 
Shungin	et	al.,	2015 

HDL GLGC 187,167 38 0.020 NA NA 100 SD	(mg/dL) 

Willer	CJ	et	al.,	
2013 

LDL GLGC 173,082 38 0.020 NA NA 100 SD	(mg/dL) 

TG GLGC 177,861 37 0.020 NA NA 100 SD	(mg/dL) 

T2D DIAGRAM 149,821 17 0.012 0.832 92 91 log	odds 
Morris	et	al.,	2012 

2hr	glucose MAGIC 42,854 17 0.010 NA NA 87 mmol/L 
Scott	et	al.,	2013 

Fasting	
glucose 

MAGIC 58,074 38 0.020 NA NA 99 mmol/L 
Manning	et	al.,	

2012 Fasting	
insulin 

MAGIC 51,750 38 0.020 NA NA 99 log	pmol/L 

 
Characteristics of the consortia used in our study: number of samples, number of SNP included 
in the IV2 for different outcomes, proportion of phenotype variance explained by the instruments 
(tested in UKB), statistical power for a fixed effect of 0.15 SD (continuous traits) or 20% (binary 
traits) per SD change in BW, beta (continuous traits), OR (T2D) or HR (cardiovascular 
outcomes) from observational analyses in UKB and statistical power calculated for this observed 
association.  
Abbreviations: BW, birthweight; CAD, coronary artery disease; AF, atrial fibrillation; IS, 
ischemic stroke; SBP, systolic blood pressure; UKB, UK Biobank; DBP, diastolic blood 
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pressure; BMI, body mass index; WHR, waist-to-hip ratio; HDL, high density lipoprotein; LDL, 
low density lipoproteins; TG, triglycerides; T2D, type 2 diabetes; EGG, Early Growth Genetics; 
CAD, CARDIoGRAMplusC4D; AFGen, Atrial Fibrillation Genetics; ISGC, International Stroke 
Genetics Consortium; ICBP, International Consortium for Blood Pressure; GIANT, Genetic 
Investigation of ANthropometric Traits; GLGC, Global Lipids Genetic Consortium; DIAGRAM, 
DIAbetes Genetics Replication and Meta-analysis; MAGIC, Meta-Analysis of Glucose and 
Insulin related traits Consortium; SD, standard deviation. 
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