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Abstract The mammalian nervous system is constructed of many cell types, but the principles9

underlying this diversity are poorly understood. To assess brain-wide transcriptional diversity, we10

sequenced the transcriptomes of the largest collection of genetically and anatomically identified11

neuronal classes. Using improved expression metrics that distinguish information content from12

signal-to-noise-ratio, we found that homeobox transcription factors contain the highest13

information about cell types and have the lowest noise. Genes that contribute the most to14

neuronal diversity tend to be long and enriched in factors specifically involved in neuronal function.15

Genome accessibility measurements reveal that long genes have more candidate regulatory16

elements arrayed in more distinct patterns. These elements frequently overlap interspersed17

repeats (mobile elements) and the pattern of repeats is predictive of gene expression. New18

regulatory sites resulting from elongation of neuronal genes by mobile elements may be an19

evolutionary force enhancing nervous system complexity.20

21

Introduction22

The extraordinary diversity of vertebrate neurons has been appreciated since the proposal of the23

neuron doctrine (Cajal, 1888). Typically, this diversity is characterized by neuronal morphology,24

physiology, molecular expression, and circuit connectivity. The exact number of neuronal cell types25

remains unknown, but estimates of 40-60 have been provided for the retina (Macosko et al., 2015;26

Masland, 2004) and for mouse cortex (Tasic et al., 2016; Zeisel et al., 2015). If similar numbers27

are discovered in most brain regions, the number could be in the thousands or more. Although28

neuronal diversity has long been recognized, the question of how this diversity arises is only29

beginning to be addressed (Arendt, 2008; Muotri and Gage, 2006). Describing the cell types of30

the brain and understanding the principles governing their diversity are fundamental goals for31

neuroscience.32

Currently two techniques dominate the efforts to profile the transcriptional diversity of cell33

types in the brain: one is RNA-seq from single neurons, (single-cell RNA-seq; SCRS), (e.g. Shapiro34

et al., 2013) and the other is from genetically or anatomically marked pools of neurons (e.g. Okaty35

et al., 2015; Cembrowski et al., 2016). An obvious advantage of the SCRS approach is that, by36

definition, each measurement comes from only a single cell type. However, SCRS measurements37

can be noisy and, depending on the approach, can have limited depth and sensitivity (Parekh38

et al., 2016; Svensson et al., 2017). So far, the field attempts to generate accurate and precise39

transcriptional profiles of cell types by clustering and then averaging the profiles of single cells.40

But the process of clustering itself can add noise (Ntranos et al., 2016), and the unbiased nature41

of the measurement complicates the assessment of reproducibility. Pooling reduces noise, but42
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On the Origin of Neuronal Diversity

can suffer from unknowingly lumping together more than one cell type. In the end, performing43

both methods will allow for a more confident assessment of the cell types of the brain. While large,44

unbiased single cell efforts have been completed or are underway, similar large scale efforts for45

genetically identified neurons have yet to be reported. We performed RNA-seq on the largest set46

to date of genetically identified and fluorescently labeled pooled neurons from micro-dissected47

brain regions. In total, we profiled 179 neuronal cell types and 15 non-neuronal cell types and48

quantitatively compared our cortical profiles to those obtained in SCRS studies. (A more precise49

description of our use of the term "cell type" is provided in the Methods). The comparison reveals a50

comparable level of homogeneity, but a much lower level of noise in the bulk sorted profiles. We51

have curated these reproducible and precise expression profiles to serve as a look-up table for52

linking single cell and cell type expression profiles to genetic strains in which they can be repeatedly53

accessed.54

Cell types are typically identified by performing differential expression analyses. Standard55

differential expression methods focus on signal variance but are influenced by both information56

content and robustness of differential expression. We introduced two simple metrics to separate57

out these features of the data. Signal contrast (SC) is a signal-to-noise ratio that (unlike ANOVA)58

is not sensitive to differences in information content. Differentiation index (DI) is a measure59

of information content closely related to mutual information. Using these metrics, we identify60

homeobox transcription factors (TF) as the gene family with the lowest noise and highest ability61

to distinguish cell types and use these and other TFs to construct a compact “code” for profiled62

neuronal cell types. We find that the effector genes carrying the most information about cell63

types are synaptic genes like receptors, ion channels and cell adhesion molecules. Interestingly,64

a common feature of these genes is their long genomic length, reflecting the increased number65

and length of their introns. Our ATAC-seq results indicate that long genes contain a larger number66

of candidate regulatory regions which are arrayed in more diverse patterns than found in short67

genes, suggesting the longer length of the genes may permit increased regulatory complexity.68

Moreover, these long genes are elongated during evolution by insertions of mobile elements and a69

large portion of the candidate regulatory regions identified by ATAC-seq overlap with these mobile70

elements. Thus, the increased length of neuronal genes may provide a platform for evolution to71

fine-tune gene expression and thus diversify the cell types of the nervous system.72

Results73

A dataset of cell type-specific neuronal transcriptomes74

To begin exploring the diversity in the nervous system, we collected transcriptomes from 166 types75

of neurons and 15 types of non-neuronal genetically/retrogradely labeled cell populations (Table 1;76

Figure 1 Supplement 1; Supplementary Table 1,2). Data from 9 previously published hippocampal77

cell types (Cembrowski et al., 2016), 2 hypothalamic cell types (Henry et al., 2015), and 2 neocortical78

cell types (Shima et al., 2016), harvested and processed in the same way as other samples, were79

also included in our analyses. Each neuron type collected represents a group of fluorescently80

labeled cells dissociated and sorted from a specific micro-dissected region of the mouse brain or81

other tissue. In most cases, the fluorescent label was genetically expressed in a mouse driver line,82

but retrograde labeling was used in some cases. The pipeline for cell type-specific transcriptome83

collection is depicted in Figure 1A (see Methods for additional details). Mouse lines were first84

characterized by generating a high resolution atlas of reporter expression (Figure 1B), then regions85

containing labeled cells with uniform morphology were chosen for sorting and RNA-seq. This effort86

constitutes the largest and most diverse single collection of genetically identified cell types profiled87

by RNA-seq. The processed data, including anatomical atlases, RNASeq coverage, and TPM are88

available at http://neuroseq.janelia.org (Figure 1C).89

To determine the sensitivity of our transcriptional profiling, we used ERCC spike-ins. Amplified90

RNA libraries had an average sensitivity (50% detection) of 23 copy*kbp of ERCC spike-ins across all91
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On the Origin of Neuronal Diversity

Figure 1. The NeuroSeq dataset. (A) Schema of pipeline for anatomical and genomic data collection. (B)

Example sections from atlases at low (top), medium (middle) and high (bottom) magnifications. (C)Web tools

available at http://neuroseq.janelia.org
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libraries (Figure 1D). Since manually sorted samples had 132±16 cells (mean± sem, all following as92

well), this indicates our pipeline had the sensitivity to detect a single copy of a transcript per cell 80%93

of the time. In total we sequenced 2.3 trillion bp in 565 libraries. Total reads per library was 41±0.5M94

reads (Figure 1 Supplement 2A top). Using the aligner STAR (Dobin et al., 2012), 68.9±0.37% of95

the reads mapped uniquely to the mm10 genome, 2.8±0.06% mapped to multiple loci, 5.6±0.14%96

did not map to mm10, and 22.7±0.36% contained abundant sequences such as ribosomal RNA or97

mitochondrial sequences (Figure 1 Supplement 2A bottom) and 0.06%± 0.004% contained short98

reads (less than 30bp after removing adaptor sequences). Sequenced library data were deposited99

in NCBI GEO (accession number:GSE79238). This high sensitivity allowed for deep transcriptional100

profiling in our diverse set of cell types.101

To assess the extent of contamination in the dataset, we checked expression levels of marker102

genes for several non-neuronal cell types (Figure 1 Supplement 2B). As previously shown (Okaty103

et al., 2011), manual sorting produced, in general, extremely clean data.104

To demonstrate the utility of the dataset, made possible by its broad sampling of cell types, we105

extracted pan-neuronal genes (genes expressed commonly in all neuronal cell types but expressed106

at lower levels or not at all in non-neuronal cell types; Figure 1 Supplement 3). Broad sampling107

is essential to avoid false positives (Zhang et al., 2014b; Mo et al., 2015; Stefanakis et al., 2015).108

Extracted pan-neuronal genes contain well known genes such as Eno2 (Enolase2), which is the109

neuronal form of Enolase required for the Krebs cycle, Slc2a3 (chloride transporter) required for110

inhibitory transmission, and Atp1a3 (ATPase Na+/K+ transporting subunit alpha 3) which belongs to111

the complex responsible for maintaining electrochemical gradients across the membrane, as well112

as genes not previously known to be pan-neuronal, such as 2900011O08Rik (now called Migration113

Inhibitory Protein;Zhang et al. (2014a)). Synaptic genes are often differentially expressed among114

neurons, but some included in this pan-neuronal list such as Syn1, Stx1b, Stxbp1, Sv2a, and Vamp2115

appear to be common components required in all neurons, highlighting essential parts of these116

complexes. Thus, this pan-neuronal gene list reveals components necessary for any neuron. The117

dataset should also be useful for many other applications, especially those requiring comparisons118

across a wide variety of neuronal cell types.119

Comparison to single cell datasets120

Pools of sorted neurons may be heterogeneous if multiple neuronal subtypes are labeled in the121

same brain region of the same strain. SCRS has recently emerged as a viable method for profiling122

cellular diversity that does not suffer from this limitation. However, since profiles of cell types in123

SCRS studies are obtained by clustering individual, often noisy, cellular profiles, inaccuracies can124

arise from misclustering or overclustering. In order to assess the relative cellular homogeneity of125

our sorted samples, we compared the current dataset to the cluster profiles from SCRS studies. We126

focused on neuronal and non-neuronal cell types in the neocortex, profiled in two recent studies127

(Tasic et al., 2016; Zeisel et al., 2015). Assuming each sorted population corresponds to a linear128

combination of one or more SCRS profiles, we assessed homogeneity by linear decomposition using129

non-negative least squares (NNLS). We performed multiple checks on the validity of the procedure130

(see Figure 2 Supplements 1-3 and Methods) and found that it is able to fairly accurately decompose131

mixtures of component expression profiles when those components are well separated.132

For each sorted cell type, the procedure identifies the weights (coefficients) of component133

clusters (cell types) from the SCRS datasets (Figure 2A). As expected, cell types present in the SCRS134

studies, but not profiled in NeuroSeq, (e.g. L4 neurons, VIP interneurons and oligodendrocytes),135

were not matched (purely blue columns in Figure 2A). Other cell types matched perfectly to a136

single SCRS cell type (e.g., microglia, astrocytes, ependyma) or matched to more than one, implying137

heterogeneity in the sorted profiles or poor separation of the SCRS profiles. Profiles with imperfect138

matches usually matched closely related cell types. For example, the NeuroSeq Pvalb interneuron139

group matched one or two of the SCRS Pvalb-positive interneuron clusters, and layer 2/3 (L2/3)140

pyramidal neurons matched SCRS L2/3 clusters, or an adjacent cluster in L4 (Tasic: L4 Arf5). The141
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Table 1. Summary of Profiled Samples.

region/type transmitter #groups subregions #samples

CNS neurons Olfactory (OLF) glu 10 AOBmi,MOBgl,PIR,AOB,COAp 30

GABA 4 AOBgr,MOBgr,MOBmi 11

Isocortex glu 22 VISp,AI,MOp5,MO,VISp6a,SSp,SSs,ECT,ORBm,RSPv 68

GABA 3 Isocortex,SSp (Sst+, Pvalb+) 7

glu,GABA 1 RSPv 3

Subplate (CTXsp) glu 1 CLA 4

Hippocampus (HPF) glu 24 CA1,CA1sp,CA2,CA3,CA3sp,DG,DG-sg,SUBd-sp,IG 65

GABA 4 CA3,CA,CA1 (Sst+, Pvalb+) 12

Striatum (STR) GABA 12 ACB,OT,CEAm,CEAl,islm,isl,CP 33

Pallidum (PAL) GABA 1 BST 4

Thalamus (TH) glu 11 PVT,CL,AMd,LGd,PCN,AV,VPM,AD 29

Hypothalamus (HY) glu 11 LHA,MM,PVHd,SO,DMHp,PVH,PVHp 36

GABA 4 ARH,MPN,SCH 15

glu,GABA 2 SFO 3

Midbrain (MB) DA 2 SNc,VTA 5

glu 2 SCm,IC 6

5HT 2 DR 10

GABA 1 PAG 4

glu,DA 1 VTA 3

Pons (P) glu 7 PBl,PG 22

NE 1 LC 2

5HT 2 CSm 7

Medulla (MY) GABA 7 AP,NTS,MV,NTSge,DCO 18

glu 6 NTSm,IO,ECU,LRNm 20

ACh 2 DMX,VII 6

5HT 1 RPA 3

GABA,5HT 1 RPA 4

glu,GABA 1 PRP 3

Cerebellum (CB) GABA 10 CUL4, 5mo,CUL4, 5pu,CUL4, 5gr,PYRpu 25

glu 4 CUL4, 5gr,NODgr 10

Retina glu 5 ganglion cells (MTN,LGN,SC projecting) 14

Spinal Cord glu 1 Lumbar (L1-L5) dorsal part 3

GABA 4 Lumbar (L1-L5) dorsal part, central part 12

PNS Jugular glu 2 (TrpV1+) 7

Dorsal root ganglion (DRG) glu 2 (TrpV1+, Pvalb+) 5

Olfactory sensory neurons (OE) glu 4 MOE,VNO 9

non-neuron Microglia 2 MOp5(Isocortex),UVU(CB) (Cx3cr1+) 6

Astrocytes 1 Isocortex (GFAP+) 4

Ependyma 1 Choroid Plexus 2

Ependyma 2 Lateral ventricle (Rarres2+) 6

Epithelial 1 Blood vessel (Isocortex) (Apod+,Bgn+) 3

Epithelial 1 olfactory epithelium 2

Progenitor 1 DG (POMC+) 3

Pituitary 1 (POMC+) 3

non brain Pancreas 2 Acinar cell, beta cell 7

Myofiber 2 Extensor digitorum longus muscle 7

Brown adipose cell 1 Brown adipose cell from neck. 4

total 194 565
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spread of coefficients repeatedly involved the same few SCRS cell clusters (e.g. columns L5b Tph2142

and L5b Cdh13 in Tasic; and S1PyrL5, S1PyrL6 in Zeisel), which could occur if these clusters are143

not well separated, which we confirmed by a cross-validation procedure (Figure 2 Supplement 3).144

We measured the "purity" of the decomposition as the fractional match to the highest coefficient.145

The purity scores for the decomposition of NeuroSeq cell types by the two SCRS datasets were146

higher than those obtained for SCRS cell clusters decomposed by the other SCRS data set (Figure147

2B,C). This implies that although sorted sample heterogeneity may exist in some of our sorted148

samples, it is comparable (or smaller) than the inaccuracies introduced by clustering single cell149

profiles. We also compared the separability of cell types assayed in the sorted and SCRS datasets150

(Figure 2 Supplement 4) by calculating the gene expression distances between each cell type within151

each dataset. NeuroSeq profiles were far more separable than clusters in either SCRS dataset,152

likely because of the noise reduction achieved by averaging across cells and because of the larger153

numbers of cells and reads comprising each profile. Hence sorted and single cell techniques have154

complimentary strengths and cross referencing both data modalities may provide the most accurate155

assessment of cell type specific expression.156

Improved metrics to quantify differential expression157

Analysis of expression differences between individual groups is the basis of most profiling efforts.158

Variance-based metrics, such as Analysis of Variance (ANOVA) F-Value or coefficient of variation (CV)159

are commonly used for this purpose. These metrics are jointly affected by the information content160

of the differential expression (pattern) and the robustness of the differences (effect size) and so161

cannot readily separate these two parameters. As a complement to traditional metrics and to begin162

mining our extensive and complex dataset for novel insights, we developed two easily calculated163

metrics that better separate the information content and the robustness of expression differences.164

First, in order to extract the transcriptional signals related to cell type identity, we quantified165

each gene’s ability to differentiate each pair of profiled cell types. Based on expression levels and166

variability (Figure 3A; Methods) we compiled a Differentiation Matrix (DM) with elements equal to167

one or zero depending on whether or not the gene is differentially expressed between each pair of168

profiles (see Methods). The Differentiation Index (DI) is simply the fraction of pairs distinguished,169

excluding self-comparisons; and ranges from 0 to 1. The maximum observed value of 0.65 indicates170

that the gene distinguishes 65% of the pairs, while a value of 0 indicates that the gene distinguishes171

none (i.e., expressed at similar levels in all cell types).172

The ability to detect transcriptional differences between cell types depends on both magnitude173

of difference and associated noise. To quantify this in our second metric, we defined the Signal174

Contrast (SC), which closely reflects Signal-to-Noise-Ratio (SNR). Since the signals we are interested175

in are the gene expression differences distinguishing cell types, we used a noise estimate derived176

from all undistinguished pairs from the same gene. SC, which indicates how robustly pairs are177

distinguished, is the ratio of the average effect size for distinguished and undistinguished pairs.178

High SC genes robustly distinguish cell populations and are therefore suitable as "marker genes".179

Our metrics outperform existing metrics such as ANOVA, CV, and Fano factor in distinguishing180

the information content and robustness of differential expression. To illustrate the properties181

of DI and SC relative to existing metrics, we calculated these metrics against various simulated182

expression patterns with added noise (Figure 3 Supplement 1A). The results (Figure 3 Supplement183

1A, lower part) demonstrate that DI (blue) is highly correlated with mutual information (MI; green),184

yet much easier to calculate. This makes intuitive sense, since the division of cell types into those185

that can and cannot be distinguished (DM; Figure 3A) corresponds to a unit of information about186

cell types provided by a gene expression pattern (for more details of the relationship between DI187

and MI, see Figure 3 Supplement 1C and 2). The simulations also show that DI is fairly independent188

from SNR. For example, both high and low SNR binary patterns yield similar DIs. In contrast, SC189

(orange) is independent from MI, but is highly correlated to SNR. Thus, DI provides an estimate of190

the information content of expression patterns across cell types, whereas SC provides an estimate191
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Figure 2. Decomposition by NNLS. (A) NNLS coefficients of NeuroSeq cell types by two SCRS datasets. (B)

(Left) Tasic et al. clusters decomposed by Zeisel et al. clusters. (Right) Zeisel et al. clusters decomposed by Tasic

et al. clusters. There are few perfect matches. (C)Mean purity scores for NeuroSeq and SCRS datasets. The

purity score for a sample is defined as the ratio of the highest coefficient to the sum of all coefficients.

(**:p<0.01, t-test.)
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of SNR.192

Unlike DI and SC, traditional variance-based methods like ANOVA F-values and CV are either193

affected by both MI and SNR (ANOVA) or by neither (CV). These differences between metrics194

are summarized in Figure 3 Supplement 1B. The fact that ANOVA does not distinguish between195

information content and SNR is also apparent in the data. As shown in Figure 3B, high-ANOVA196

genes include both high DI and high SC genes. Therefore, SC and DI are useful because they provide197

independent measures of the robustness and magnitude of differential expression between cell198

types.199

Genes with the highest information regarding cell types200

To determine the types of genes most differentially expressed (highest DI) and most robustly201

different (highest SC) between cell types, we used the PANTHER (Thomas, 2003) gene families202

(Figure 3D). As expected, high DI genes are enriched for neuronal effector genes including receptors,203

ion channels and cell adhesion molecules (Figure 3D top). The highest signal-to-noise expression204

differences (highest SC) were those of homeobox transcription factors (TFs) and the more inclusive205

categories (TFs, DNA binding proteins) that encompass them (Figure 3D bottom). Hence DI and206

SC respectively emphasize the information content of genes mediating the distinctive neuronal207

phenotypes that distinguish cell types, and the robust, low-noise expression of genes involved in208

shaping these cell types unique transcriptional programs.209

Genes may also contribute to cell type differences through differential splicing. We analyzed210

splicing events by computing the relative likelihood (branch probabilities) of each donor site in a211

transcript being spliced to multiple acceptor sites, and of each acceptor site being spliced to multiple212

donors (Figure 3C). Interestingly, when these branch probabilities are computed separately for each213

cell type, they are highly bimodal, reflecting virtually all-or-none splicing at each alternatively spliced214

site. This pattern has previously been observed for individual cells in some systems (Shalek et al.,215

2013). The present observations suggest that these splicing decisions are made at the level of cell216

types, rather than independently for individual cells of the same type. We applied a variant of the217

DM/DImethod to alternative splicing (Figure 3C,E,F; for details see Methods) and found that voltage-218

gated calcium and sodium channels are highly alternatively spliced, consistent with previously219

known results (e.g. Lipscombe et al., 2013). We also found that G-protein modulators, especially220

guanyl-nucleotide exchange factors (GEFs), are highly alternatively spliced. Hence, differential221

splicing of multi-exon genes also contributes to transcriptome diversity across neuronal cell types.222

SC, like SNR, is a ratio between signal and noise, and so can reflect high expression levels in ON223

cell types (high signal), low expression levels in OFF cell types (low noise), or both. Homeobox genes224

are not among the most abundantly expressed genes. Their average expression levels (∼30 FPKM)225

are significantly lower than, for example, those of neuropeptides (∼90 FPKM). This suggests that226

the high SC of homeobox TFs depend more on low noise than on their high signal. In fact, most227

homeobox TFs have uniformly low expression in OFF cell types (e.g. Figure 4A). We quantified this228

"OFF noise" for all genes and found that homeobox genes are enriched among genes that have229

both low OFF noise and at least moderate ON expression levels (red dashed region in Figure 4B).230

Since tight control of expression may reflect closed chromatin, we measured chromatin acces-231

sibility using ATAC-seq (Buenrostro et al., 2013) on 7 different neuronal cell types (see Methods).232

As expected, compared to high-noise genes (Figure 4C bottom), genes with low OFF noise were233

more likely to have fewer, smaller peaks within their transcription start site (TSS) and gene body234

(Figure 4C top, Figure 4D), consistent with the idea that their expression is controlled at the level of235

chromatin accessibility.236

Functionally, the tight control of homeobox TF expression levels may reflect their known im-237

portance as determinants of cell identity, and the fact that establishing and maintaining robust238

differences between cell types may require tight ON/OFF regulation rather than graded regulation.239

If they are, in fact, important "drivers" of cell type-specific differences, their expression pattern240

should be highly informative about cell types. However, the homeobox family was not identified241
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Figure 3. Gene expression metrics related to information content and robustness (A) Expression

differences between cell types are compiled into a signal ratio matrix (SR) and binarized into a differentiation

matrix (DM) reflecting whether each pair of cell types is distinguished (1) or not (0). The Differentiation Index (DI)

is the fraction of nonzero values. The Signal Contrast (SC) is the average expression difference between

distinguished pairs divided by the average expression difference between undistinguished pairs. (B) Highly

significant ANOVA genes (warm colored dots) include a mixture of genes with high SC and low DI and genes with

low SC and high DI. (C) Definition of generalized PSI (percent spliced in). For a splice donor, a generalized form

of PSI (donor branch probability) can be defined as the joint distribution of transition probabilities from the

donor to each acceptor. Acceptor branch probability can be defined conversely. (D) PANTHER (Thomas, 2003)
gene families enriched in the top 1000 DI and the top 1000 SC genes. Red lines indicate the p = 10−5 threshold
used to judge significance. (E) Histogram of all donor branch probabilities from alternatively spliced sites. The

distribution is highly bimodal, indicating that alternative splicing is "all or none" for each site in each cell type

(though often varying between cell types). (F) PANTHER gene families enriched in the top 500 DN genes. The

number of cell types distinguished by a gene’s splice variants (sDN; see Methods for calculation) rather than the

ratio (DI) is used since the denominator of DI (total number of cell types potentially distinguished) varies for

each gene. This is because genes not expressed in a cell type can contribute to distinctions based on expression,

but not to those based on splicing. Red lines indicate the p = 10−3 threshold used to judge significance.
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on the basis of a particularly high DI (Figure 3C and Figure 4 Supplement 1B; mean DI=0.21; rank242

16th) compared to, for example, cyclic nucleotide-gated ion channels (mean 0.31, highest) or GABA243

receptors (0.29, 2nd). We infer that this is due to the fact that graded expression differences also244

contribute to DI. Since binary ON/OFF expression patterns may be more critical for cell type specifi-245

cation than graded expression patterns, we calculated a binary version of DI (bDI; see Methods).246

With this metric, the homeobox TF family is the most enriched PANTHER family among the top 1000247

bDI genes (Figure 4 Supplement 1A) and had the 2nd highest average bDI (0.07) among PANTHER248

families after neuropeptides (0.08) (Figure 4 Supplement 1B). Among TF subfamilies, the LIMdomain249

subfamily of homeobox genes had the highest mean bDI (Figure 4 Supplement 1C), consistent with250

its known role in specifying spinal cord and brainstem cell types (Tsuchida et al., 1994; Philippidou251

and Dasen, 2013).252

The ability of gene families to provide information about cell types is determined by both how253

informative individual family members are, and the relationships between them. If the information254

across family members is independent, the overall information is increased relative to the case in255

which multiple members contain redundant information (Figure 4 Supplement 1D). This aspect of256

"family-wise" information is not captured by "gene-wise" metrics like mean bDI, or by enrichment257

analysis (Figure 3C, Figure 4 Supplement 1A-C). One way of capturing the additive, non-redundant258

information within a gene family is to measure its ability to separate cell types using a distance259

metric. This analysis (Figure 4E) reveals that homeobox TFs yield the largest distances between260

cell types. Thus, homeobox TFs provide the best separation of profiled cell types both individually261

(Figure 4 supplement 1A,B) and as a family (Figure 4E). It has long been known that a subset262

of homeobox TFs, the HOX genes, play an evolutionarily conserved role in specifying cell types263

in invertebrates (Kratsios et al., 2017; Zheng et al., 2015) and in the vertebrate spinal cord and264

brainstem (Dasen and Jessell, 2009; Philippidou and Dasen, 2013). Our current analyses suggest265

that the larger family of homeobox TFs play a broader role in transcriptional diversity of cell types266

across the mammalian nervous system.267

In summary, by defining novel metrics DI and SC, we identify homeobox TFs as the most robustly268

distinguishing family of genes as well as synaptic and signaling genes as the most differentially269

expressed genes. These two categories of genes drive neuronal diversity by orchestrating cell type-270

specific patterns of transcription and by endowing neuronal cell types with specialized signaling271

and connectivity phenotypes.272

A compact TF code for neuronal identity273

In addition to identifying the most informative transcription factors across the entire set of cell274

types studied, we also identify the most informative TFs for individual cell types. To accomplish this,275

we extracted the most compact set of “ON” or “OFF” TFs needed to specify each cell type generating276

a hierarchy of TFs constituting a decision tree that efficiently classifies cell types (Gabitto et al.,277

2016). At each level of the tree, TFs were chosen to optimally bisect (by their expression level) the278

set of cell types into two groups that differed maximally from each other in terms of their overall279

expression profile (assessed within the full transcriptome). To generate a classifier operating at280

each level of anatomical organization, we favored TFs whose bisected groups are consistent with281

anatomical divisions (see Methods for details).282

The selected TFs included many genes previously implicated as key transcriptional regulators283

(KTRs) in the development or maintenance of the distinguished cell types. For example, Foxg1, which284

split forebrain from other cell types, is known to be critically required for normal development285

of the telencephalon (Xuan et al., 1995; Danesin and Houart, 2012) and is known to function cell286

autonomously within the olfactory placode for the production of olfactory sensory neurons, as well287

as for all other cells in the olfactory lineage (Duggan et al., 2008). Similarly, at the next levels, Tbr1288

(Bedogni et al., 2010), Satb2 Leone et al. (2014), Egr3 (Chandra et al., 2015), Isl1 (Lu et al., 2013) and289

Emx2 (Zhang et al., 2016), are known as KTRs involved in the development and/or maintenance of290

the relevant cell types, providing significant validation of this method.291
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Figure 4. Mechanisms contributing to high information content and low noise of Homeobox TFs. (A)

Example expression patterns of a LIM class homeobox TF (Lhx1) and a calcium binding protein (Calb2) with
similar overall expression levels. Cell type legend is given in Figure 1 Supplement 1. (B) (upper) OFF state noise

(defined as std. dev. of samples with FPKM<1) plotted against maximum expression. (lower) PANTHER families
enriched in the region indicated by red dashed lines in the upper panel. (C) Average (replicate N=2) ATAC-seq

profiles for the genes shown in A. Some peaks are truncated. Expression levels are plotted at right (grey bars).

(D) Length-normalized ATAC profile for genes with high (> 0.3, blue dashed box in B, n=853) and low (< 0.2, red
dashed box in B, n=1643) off state expression noise. (E)Mean separability of cell types for PANTHER families.

Separability is a measure of gene expression distance (defined as the average of 1- Pearson’s corr. coef.)

calculated across a set of genes. Since dispersion of separability decreases with family size, results are

compared to separability calculated from randomly sampled groups of genes (green solid lines: mean and std.

dev.; green dashed lines: 99% confidence interval). Z-scores: homeobox TF: 17.4, GPCR: 16.1, receptor: 13.1 and

signaling molecule: 11.2.
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The TF code identified for each cell type is not unique. First, there are additional TFs that are292

consistent with the tree (see Supplementary Table 3). Second, past the first level (Foxg1), TFs may be293

expressed outside of the cell types shown and so could contribute to encoding other expression294

differences. More generally, the details of the tree may depend on the precise procedure used295

to extract it. We explored variant procedures that better preserved the known anatomical and296

developmental relationships between cell types (Figure 5 Supplement 1) as well as procedures that297

made no assumptions about these relationship whatsoever (Figure 5 Supplement 2). Interestingly,298

in each case, the majority of the same genes were identified, suggesting they encode cell type299

information that is robust to the precise methods used to extract them.300

Although the decision tree classifier identifies many known KTRs, it also suggests hypotheses301

about less studied genes. For example, Tox2 has received little prior study in the CNS, although it302

has recently been identified and replicated as a locus of heritability for Major Depressive Disorder303

(Zeng et al., 2016). Based on its position in the tree, we hypothesize that Tox2 is a KTR of midbrain,304

hypothalamic and hindbrain cell types, including dopaminergic and serotonergic cell types in these305

regions, although its expression in other cell types may also contribute. Hence the tree of identified306

TFs is a robust and rich source of novel hypotheses about transcriptional regulation in genetically307

identified cell types. Known and hypothesized KTRs identified by the decision tree classifier are308

tabulated in Supplementary Table 3.309

Long genes contribute disproportionately to neuronal diversity310

We found that neuronal effector genes such as ion channels, receptors and cell adhesion molecules311

have the greatest ability to distinguish cell types (highest DI; Figure 3C). Previously, these categories312

of genes have been found to be selectively enriched in neurons and to share the physical character-313

istic of being long (Sugino et al., 2014; Gabel et al., 2015; Zylka et al., 2015). Consistent with this,314

DI is strongly biased toward long gene length (Figure 6A). Interestingly, the expression of long genes315

is not uniform across brain regions, but is highest in the evolutionary newer forebrain and is lower316

in the older brainstem and hypothalamus (Figure 6B). Non-neuronal cell types expressed only 1/2317

to 1/5 as many long genes as neuronal cell types (blue bars in Figure 6B). This was true even for318

non-dividing cell types like myocytes and largely non-dividing tissues like the heart (separate data319

not shown). Hence long genes, which are preferentially expressed in neurons, also contribute most320

to the differential expression between neuronal cell types.321

REST is an important zinc-finger transcription factor that represses expression of neuronal322

genes in non-neurons (Chong et al., 1995; Schoenherr and Anderson, 1995). We wondered if REST323

preferentially targets long genes. To assess the magnitude of this effect and its influence on the324

length distribution of neuronal genes (Figure 6 Supplement 1A), we plotted the length-dependence325

of genes containing RE1/NRSE elements (Figure 6 Supplement 1B) and observed that they are indeed326

biased toward long genes. When these REST targets are removed from neuronally expressed genes,327

the length distribution of expressed genes looks similar to that of non-neurons (Figure 6 Supplement328

1C). However, consistent with the fact that only 8.6% of neuronally expressed genes are REST targets329

(contain an NRSE), the removal of these genes has only a modest effect on the length distribution330

of DI (Figure 6 Supplement 1D). Therefore, although REST targets are long, many other long genes331

also contribute to neuronal diversity.332

Long genes differ from more compact genes primarily in the number and length of their introns,333

which, for the longest genes, comprise all but a few percent of their length (Figure 6 Supplement 1E).334

Introns often contain cis regulatory elements that regulate transcription, splicing and other aspects335

of gene expression. Could these longer introns increase the regulatory capacity of long genes? In336

order to determine whether or not the introns of long genes have enhanced regulatory capacity,337

we identified candidate regulatory elements as sites of enhanced genome accessibility using our338

ATAC-seq data. As expected, long genes had more candidate regulatory elements (ATAC peaks;339

Figure 6 Supplement 1F) and these peaks were present in a greater number of distinct patterns per340

gene across cell types (Figure 6C,D). Consistent with the hypothesized role in differential expression,341
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Figure 5. A compact TF code. A decision tree classifier constructed from the most informative TFs for profiled

cell types. Cell types are bisected at each node by TF expression level, (color scale). Each cell type can be

specified by the "ON" (warm colors) or "OFF" (cool colors) expression of 4 to 11 TFs as indicated. For example,

Purkinje cells (yellow-light blue group near the right bottom corner, consisting of CUL4,5gr-Cdhr1,

CUL4,5pu-Pcp2, etc.) have a code which can be read from left to right within the red dotted lines, consisting of:

Foxg1(OFF)-Tox2(OFF)-Emx2(OFF)-Hoxb6(OFF)-Mkx(OFF)-Ebf2(ON)-Rreb1(ON). Blue dashed lines mark positions

of ON/Off transitions for each TF.
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the number of unique patterns correlated well with the degree of differential expression across cell342

types (Figure 6E). Hence long genes have enhanced regulatory capacity that correlates with their343

enhanced contribution to neuronal diversity.344

To compare candidate regulatory elements in long genes between neurons and non-neurons,345

we used publicly available DNase-seq data from the ENCODE project (Dunham et al., 2012). We346

found a significantly higher number of open chromatin sites in brain compared to non-brain tissue.347

This bias was particularly pronounced in forebrain, and was stronger in human than in mouse348

tissue (Figure 6 Supplement 1G-J). Together, these data support the hypothesis that neuronal genes349

may have increased in length over evolutionary time in part to support more complex and nuanced350

regulatory regimes.351

To assess the relative contribution of long (≥100kbp) and short (<100kbp) genes, we first352

calculated averages of "gene-wise" metrics (Figure 6F). Signal contrast is comparable between these353

two groups of genes, but, for all other metrics (DI, bDI, sDN; for sDN see Figure 3 D,E and Methods),354

averages for long genes are about twice that of short genes. Enhanced alternative splicing of long355

genes (high sDN) is readily understandable from the increased number of alternative splice sites in356

long genes (Figure 6 Supplement 1K). Although there is no significant difference in SC between long357

and short genes, low OFF noise genes (Figure 4B-D) are significantly shorter than high OFF noise358

genes (Figure 6 Supplement 1L).359

To assess the "group-wise" contribution (akin to the "family-wise" analysis of Figures 3C,F and360

4E), we first observed that both groups are fairly decorrelated between member genes (Figure 6361

Supplement 1M). Despite similar decorrelation, the distances between cell types based on long362

gene expression are larger than those obtained from expression of short genes (Figure 6G). Thus,363

long genes, as a group, contribute more than short genes to neuronal diversity.364

TE insertions elongate genes and carry regulatory information365

The above results indicate that gene length is an important contributor to gene expression diversity366

across cell types. Gene lengths differ widely across species (Figure 7A and Figure 7 Supplement1A),367

suggesting genes are elongated during evolution. In fact, evolutionary older genes are longer368

(Figure 7 Supplement 1B; Grishkevich and Yanai (2014)). To better understand mechanisms of369

gene elongation over mammalian evolution, we examined segments inserted into the human and370

mouse genomes by comparing them to closely related species (Figure 7B). Plotted in Figure 7B371

(left) is a histogram of the lengths of the segments inserted into human (see alsoMikkelsen et al.372

(2005). Two clear peaks are recognizable, corresponding to Alu and L1 repeats. Moreover, around373

92% of the base pairs of the inserted segments overlap with known repeats (Figure 7B inset; Bao374

et al. (2015)). Similar results are observed in the mouse genome (Figure 7B right; see also Pozzoli375

et al. (2007)). These comparisons indicate that genes are elongated by transposable element (TE)376

insertions.377

Since long genes have a greater number of candidate regulatory elements, as indicated by more378

ATAC-peaks, we asked whether these can originate from mobile elements. As shown in Figure 7C,379

56% of the ATAC peaks overlap known repeats and this number increases to 75% when only newly380

inserted segments are considered, indicating that TEs may carry regulatory functions. To explore381

the possibility that TE/repeats contribute to global regulation of neuronal gene expression, we fit382

gene expression levels with counts of individual repeats within and surrounding each gene (Figure383

7D). The R2 values for each cell type calculated using test genes (20%) not used for fitting (Figure384

7E, blue) are much larger than expected by chance (Figure 7E, green/red/orange). If counts and385

genes are shuffled (green) cross validated R2 values drop below 0. However, if the length of the386

gene is retained in the shuffling control (orange, red) the R2 values drop to about 1/3 of those in the387

original fitting. This reflects the fact that gene length is highly correlated with expression (Figure 7388

Suplement 1C; c=0.418: mean Pearson’s r between log gene length and expression rank) and some389

repeats, such as SINEs, are highly correlated with both gene length (c=0.841) and expression (Figure390

7 Supplement 1C; mean c=0.454). We also varied the size and position of the regions used to count391
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Figure 6. Long genes have a greater capacity for differential expression. (A) Black dots: DI of each gene is

plotted against sorted gene length. Red dots: binned average of DIs (1000 genes per bin, sorted by length). (B)

Fraction of the longest 500 genes expressed within each brain region profiled for neuronal (red bars) and

non-neuronal cell types (blue bars). (C) ATAC-seq peaks for Gabra5 showing different patterns of peaks for each
of 7 cell types. Scale (top right) in reads per million. Expression levels for each cell type are shown at right (gray

bars). (D) Black dots: number of distinct peak patterns observed across 7 ATAC-seq profiled cell types plotted

against the gene length for each gene; 7 corresponds to a distinct pattern for each profiled cell type. Red dots:

binned averages of black dots as in panel A. Background histograms show numbers of genes in each length bin.

(E) Violin plot showing the relationship between DI and the number of different patterns of ATAC-seq peaks.

Corr.coef. (0.31) is greater than that between DI and gene length (0.19; panel A). (F) Average metrics for long

(≥100kbp) and short (<100kbp) neuronal genes (reproducibly expressed in neuronal cell types). (G) Separability
of cell types calculated as in Figure 4E, but using long neuronal genes and short neuronal genes rather than

functionally defined gene families. Z-score is 33.2 for long and 22.1 for short neuronal genes. Both are highly

different from randomly sampled genes (green solid lines mean and Std. dev.; dashed lines = 99% confidence

interval), but long genes provide greater separation.
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repeats and found that predictions about expression (R2) were best when including the gene body392

and the adjacent 10 ∼ 50kbp. (Figure7 Supplement 1D,E). There are several prior examples relating393

TE regulation of gene expression (e.g. Han et al. (2004); Chuong et al. (2016)), however, this is the394

first to show the existence of a global network of TEs affecting gene expression in neurons.395

In summary, genes are elongated by insertions of TEs which overlap candidate regulatory396

elements, and are predictive of relative gene expression levels, suggesting they may increase the397

capacity of long genes to be differentially expressed.398

Discussion399

A Resource of Neuronal Cell type specific Transcriptomes400

The dataset presented here is the largest collection of cell type-specific neuronal transcriptomes401

obtained by RNA-seq (Table 1) and so offers the broadest view to date of the transcriptional basis402

of neuronal diversity. Prior RNA-seq data from sorted cells have been focused primarily on what403

distinguishes neurons as a class from other brain cell types (Zhang et al., 2014b), or have focused404

on a limited number of brain regions, such as the somatosensory cortex, hippocampus (Zeisel et al.,405

2015; Cembrowski et al., 2016; Tasic et al., 2016) and retina (Macosko et al., 2015). Our strategy of406

profiling labeled populations of ∼ 100 cells is intermediate between single cell profiling, which can be407

limited by the noisiness of single cell assays (Marinov et al., 2013) and tissue profiling, which cannot408

resolve the heterogeneity of component cell types (Nelson et al., 2006). This approach enabled409

us to obtain highly sensitive and reproducible transcriptomes from genetically accessible target410

populations. The wide range of cell types in the dataset is suitable for addressing general questions411

regarding neuronal identity and diversity, but at the same time, the fact that each transcriptome412

corresponds to a genetically (or retrogradely) labeled population, allows investigation of the same413

population of the cells across time and labs in order to address more specific questions about those414

cell types.415

We developed a quantitative approach for comparing cell type profiles across multiple studies416

using NNLS decomposition. The results reveal multiple cases in which pooled cell profiles mapped417

to more than one SCRS profile. It is likely that at least some of these cases represent biologically418

distinct cell types that share a genetic marker (like subtypes of Pvalb interneurons). However, in419

most of these cases, the SCRS clusters were barely separable, and the two SCRS studies available420

for comparison did not agree. Given the complimentary advantages of improved reproducibility,421

separability and deeper depth of sequencing afforded by the pooling approach, and of reduced422

heterogeneity afforded by the SCRS approach, it is likely that further integration of these approaches423

with other modalities, such as FISH (Moffitt et al., 2016) will be needed to accurately catalog the full424

census of brain cell types.425

A transcriptional code for neuronal diversity426

We developed novel, easily calculated metrics that capture essential features of the robustness427

and information content of transcriptome diversity. These measures are not cleanly captured by428

traditional variance-based metrics like ANOVA and CV (Figure 3 Supplement 1). We found that429

the homeobox family of TFs exhibited the most robust (high SC) expression differences across430

cell types (Figure 3D bottom). These ON/OFF differences were characterized by extremely low431

expression in the OFF state (Figure 4A-D). Mechanistically, the low expression was associated432

with reduced genome accessibility measured by ATAC-seq (Figure 4C,D), presumably reflecting433

epigenetic regulation, known to occur for example at the clustered Hox genes via Polycomb group434

(PcG) proteins (Montavon and Soshnikova, 2014). Although this regulation has been studied most435

extensively at Hox genes, genome-wide ChIP studies reveal that PcG proteins are bound to over436

100 homeobox TFs in ES cells (Boyer et al., 2006). Our results indicate that strong cell type-437

specific repression persists in the adult brain. Presumably this represents the continued functional438

importance of preventing even partial activation of inappropriate programs of neuronal identity.439
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Figure 7. Genes are elongated by TE insertions and TEs contain information for gene expression (A)

Distribution of gene length for various well annotated species. Red lines indicate means and whiskers indicate

inter-quartile range. Blue bars are all protein coding genes and yellow bars are the subset of genes with

homologs in all species. (human: Homo sapiens; chimp: Pan troglodytes; monkey: Macaca mulatta, mouse: Mus
musculus; dog: Canis lupus familiaris; chicken: Gallus gallus; frog: Xenopus tropicalis; zebrafish: Danio rerio; fly:
Drosophila melanogaster; worm: Caenorhabditis elegans) (B) Histograms of lengths of segments inserted into the
human genome compared to chimp (left) and mouse genome compared to rat (right). Peak near 300bp (more

visible in human) corresponds to Alu, and near 6000bp corresponds to LINE. Pie charts (insets) indicate fraction

of inserted bp overlapping transposable elements (TE) and other types of repeats. Gorilla and Guinea pig are

used as surrogates of common ancestors of human and chimp, and mouse and rat, respectively (see Methods).

(C) Percentage of ATAC peaks overlapping major categories of repeat elements. Left side: all ATAC peaks, right

side: ATAC peaks overlapping recently inserted segments calculated in (B). (D) Schema describing repeat score

and regression model. Repeat scores (upper panel) are calculated separately for each type of repeat element

and for each gene as the count of that element in the specified interval determined by the gene. Regressions

(lower panel) are calculated separately for each cell type by fitting coefficients (b) to ranked expression levels (Y)

using intercept(a) and repeat score (X). (E) Fits to 80% of the genes are cross validated using the remaining 20%.

Histograms show cross validated R2 for each cell type (blue), and for controls shuffling the relationship between

repeat scores and genes(score matrix; green) or changing the repeat score by randomly changing the location

of repeats (red) or by calculating the repeat score over a randomly selected genomic interval of the same length

as the gene (orange). The latter two shuffling methods retain some predictive value compared to shuffling the

repeat score matrix (green) since they maintain the correlation between gene length and expression (See Figure

7 Supplement 1C). (F) A model of how neuronal genes become elongated over evolutionary time scales.
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As a group, homeobox TFs distinguished 98% of neuronal cell types profiled. Historically,440

homebox TFs are well known to combinatorially regulate neuronal identity in Drosophila and C.441

elegans (Kratsios et al., 2017) and the vertebrate brainstem and spinal cord (Dasen and Jessell,442

2009; Philippidou and Dasen, 2013). The continued expression of homeobox TFs throughout the443

adult mammalian nervous system suggests that they likely also contribute to the maintenance of444

neuronal identity.445

In order to reveal the relationship between specific cell types and TFs, we constructed a TF446

decision tree for classifying profiled cell types. As expected from their high information content,447

homeobox TFs figured prominently in this list (49/127). Many of the identified factors are known448

to be key transcriptional regulators of the cell types in which they continue to be expressed449

(Supplemental Table 3). In most cases it is not known whether or not these roles occur only in450

development, or are also important for the maintenance of neuronal identity. Lists of expressed451

TFs and the genetically accessible cell types in which they are expressed provide a ready source of452

testable hypotheses about how cell type specific transcriptional identity is maintained in the adult453

nervous system.454

Long genes shape neuronal diversity455

Our study suggests that long genes contribute disproportionately to neuronal diversity (Figure456

6A,F,G). Increases in the number of alternative start and splice sites present in longer genes457

increase neuronal diversity (Figure 6F), but in addition, we hypothesize that longer genes have458

a larger number of regulatory elements that alter expression and enhance differential usage of459

these alternative sites. Long genes likely elongate during evolution, via insertions of TEs in their460

introns (Figure 7A,B; Sela et al., 2007; Grishkevich and Yanai, 2014). Long neuronal genes, such461

as ion channels and cell adhesion molecules, may be expressed primarily late in development462

(Okaty et al., 2009). Developmentally later and more spatially and cell-type restricted expression463

of neuronal genes may make mammalian genomes more tolerant to mutations caused by the464

insertion of TEs in these genes. Conversely, genes such as Hox genes, which are critical for early465

development, and are often expressed in progenitors giving rise to many cell types, are remarkably466

TE impoverished (Chinwalla et al., 2002; Simons, 2005). TE insertions occurring randomly are467

expected to happen more frequently in long genes (Figure 7F, Figure 7 Supplement 1F,G), thereby468

accelerating their elongation over time.469

Here we provide evidence supporting the hypothesis that evolution of the vertebrate nervous470

systemmay have taken advantage of TE insertions and subsequent exaptations to diversify neuronal471

cell types, increasing the complexity of brain circuits. Long genes are enriched in the signaling472

molecules, receptors and ion channels responsible for input/output transformations in neurons, and473

the cell adhesion molecules that specify neuronal connectivity. Thus, changes in their expression474

could lead to changes in circuit level function. Specifically, elongation of long genes through TE475

insertions, occurring in the early embryo or in germ cells, likely creates a reservoir of genetic476

elements providing fodder for regulatory innovation. Subsequent exaptation of a fraction of477

these elements may have enhanced cell type-, and hence, behavioral- diversity, in turn, increasing478

the ability of populations to adapt to their environment (Figure 7F). This evolutionary advantage479

of lengthening neuronal genes may help to explain the paradox of why long genes should be480

abundantly expressed in CNS neurons despite the fact that these genes are sites of genome481

instability associated with genetic lesions leading to autism and other developmental disorders482

(Wei et al., 2016). This hypothesis also shifts focus away from short, developmental time scales483

considered in other hypotheses linking TE insertion to neuronal function (Muotri et al., 2005;484

Richardson et al., 2014; Perrat et al., 2013). Instead of DNA rearrangements in neuronal progenitors485

producing neuronal diversity, we consider the time scales of evolution and thus also shift focus to486

the germ line, where natural selection has its influence.487

In summary, the elongation of neuronal effector genes may have endowed them with increased488

capacity for differential expression, permitting enhanced neuronal diversity. This diversity can also489
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be characterized in terms of expression patterns of homeobox and other TFs. The maintenance490

of diverse neuronal identities must require interactions between expressed TFs and accessible491

cis regulatory elements within target effector genes. Identifying these interactions will require492

manipulating them within genetically identified cell types.493

Methods and Materials494

Cell Types and Mouse Lines495

Cell types are defined operationally by the intersection of a transgenic mouse strain (or in some496

cases anatomical projection target) and a brain region. These "operational cell types" may or may497

not correspond to "atomic" cell types, but as shown in Figure 2 have comparable purity to clusters of498

single cells. Mouse lines profiled in this study are summarized in Supplementary Table 1. Most were499

obtained from GENSAT (Gong et al., 2007) or from the Brandeis Enhancer Trap Collection (Shima500

et al., 2016). For Cre-driver lines, the Ai3, Ai9 or Ai14 reporter (Madisen et al., 2009) was crossed501

and offspring hemizygous for Cre and the reporter gene were used for profiling. All experiments502

were conducted in accordance with the requirements of the Institutional Animal Care and Use503

Committees at Janelia Research Campus and Brandeis University.504

Atlas505

Animals were anesthetized and perfused with 4% paraformaldehyde and brains were sectioned506

at 50�m thickness. Every fourth section was mounted on slides and imaged with a slide scanner507

equipped with a 20x objective lens (3DHISTECH; Budapest, Hungary). In house programs were used508

to adjust contrast and remove shading caused by uneven lighting. Images were converted to a509

zoomify compatible format for web delivery and are available at http://neuroseq.janelia.org.510

Cell Sorting511

Manual cell sorting was performed as described (Hempel et al., 2007; Sugino et al., 2014). Briefly,512

animals were sacrificed following isoflurane anesthesia, and 300�m slices were digested with513

pronase E (1mg/ml, P5147; Sigma-Aldrich) for 1 hour at room temperature, in artificial cerebrospinal514

fluid (ACSF) containing 6,7-dinitroquinoxaline-2,3-dione (20�M ; Sigma-Aldrich), D-(–)-2-amino-5-515

phosphonovaleric acid (50�M ; Sigma-Aldrich), and tetrodotoxin (0.1�M ; Alomone Labs). Desired516

brain regions were micro-dissected and triturated with Pasteur pipettes of decreasing tip size.517

Dissociated cell suspensions were diluted 5-20 fold with filtered ACSF containing fetal bovine serum518

(1%; HyClone) and poured over Petri dishes coated with Sylgard (Dow Corning). For dim cells,519

Petri dishes with glass bottoms were used. Fluorescent cells were aspirated into a micropipette520

(tip diameter 30-50�m) under a fluorescent stereomicroscope (M165FC; Leica), and were washed521

3 times by transferring to clean dishes. After the final wash, pure samples were aspirated in a522

small volume (1∼3�l) and lysed in 47�l XB lysis buffer (Picopure Kit, KIT0204; ThermoFisher) in a523

200�l PCR tube (Axygen), incubated for 30min at 40◦C on a thermal cycler and then stored at -80◦C.524

Detailed information on profiled samples are provided in Supplementary Table 2.525

RNA-seq526

Total RNA was extracted using the Picopure kit (KIT0204; ThermoFisher). Either 1�l of 10−5 dilution527

of ERCC spike-in control (#4456740; Life Technologies) or (number of sorted cells/50) * (1�l of 10−5528

dilution of ERCC) was added to the purified RNA and speed-vacuum concentrated down to 5�l and529

immediately processed for reverse transcription using the NuGEN Ovation RNA-Seq System V2530

(#7102; NuGEN) which yielded 4∼8�g of amplified DNA. Amplified DNA was fragmented (Covaris531

E220) to an average of ∼200bp and ligated to Illumina sequencing adaptors with the Encore Rapid532

Kit (0314; NuGEN). Libraries were quantified with a KAPA Library Quant Kit (KAPA Biosystems) and533

sequenced on an Illumina HiSeq 2500 with 4 to 32-fold multiplexing (single end, usually 100bp read534

length, see Supplemental Table 2).535
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RNA-seq analysis536

Adaptor sequences (AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC for Illumina sequencing and537

CTTTGTGTTTGA for NuGEN SPIA) were removed from de-multiplexed FASTQ data using cutadapt538

v1.7.1 (http://dx.doi.org/10.14806/ej.17.1.200) with parameters “–overlap=7 –minimum-length=30”.539

Abundant sequences (ribosomal RNA, mitochondrial, Illumina phiX and low complexity sequences)540

were detected using bowtie2 (Langmead and Salzberg, 2012) v2.1.0 with default parameters. The541

remaining reads were mapped to the UCSC mm10 genome using STAR (Dobin et al., 2012) v2.4.0i542

with parameters “–chimSegmentMin 15 –outFilterMismatchNmax 3”. Mapped reads are quantified543

with HTSeq (Anders et al., 2014) using Gencode.vM13 (Harrow et al., 2012).544

Pan-neuronal genes545

Pan-neuronal genes are extracted as satisfying the following conditions: 1) mean neuronal ex-546

pression level (NE)> 20 FPKM, 2) minimum NE > 5 FPKM, 3) mean NE >maximum non-neuronal547

expression level (NNE), 4) minimum NE >mean NNE, 5) mean NE > 4x mean NNE, 6) mean NE >548

mean NNE + 2x standard deviation of NNE, 7) mean NE − 2x standard deviation of NE >mean NNE.549

DI/SC/DN calculation550

To calculate DI, the following criteria were used to assign a "1" or "0" to each element in the551

difference matrix (DM): log fold change > 2 and q-value <0.05. Q-values were calculated using the552

limma package including the voom method (Law et al., 2014). To adjust the power to be similar553

across cell types, two replicates (the most recent two) are used for all cell types with more than554

two replicates. We have tried the same calculations with 3 replicates (using a fewer number of cell555

types) and obtained similar results (data not shown).556

To calculate binary DI (bDI), the following DM criteria were used: expression levels of all the557

replicates in one of the cell types in the pair < 1FPKM and expression levels of all the replicates in558

the other cell type in the pair > 15FPKM, in addition to q-value <0.05.559

To assess the extent of differentiation by alternative splicing, we calculate differentiation at560

the level of each splice branch. See Figure 3D for the definitions of a splice branch and of branch561

probability. For each branch, at each alternative splice site, we define each pair of cell types as562

"different" when 1) branch probabilities for all replicates in a group are less than 0.3 or greater than563

0.7, and 2) both cell types in the pair have > 10 reads reads at the alternative site. Condition 1)564

is justified by the bimodal distribution of branch probabilities shown in Figure 3E. Accumulating565

over all pairs creates a DM for each branch. We then combine all the branches using a logical "OR"566

to create a gene-level DM for each gene. If any branch distinguishes a pair of cell types, that pair567

is called "different" at the gene level. The gene-level DM has a value of "1" for pairs of cell types568

distinguished by any of the branches belonging to that gene, and has a value of "0" for pairs of cell569

types not distinguished by any branch belonging to the gene. The number of pairs compared can570

differ, depending on the expression pattern of the gene, since branch probabilities can only be571

calculated for cell types that express the gene. This situation differs from that for DI or bDI (based572

on expression levels rather than splicing) since pairs of cell types can be distinguished even if one573

does not express the gene. Therefore, unlike DI and bDI which assume a fixed number of total pairs,574

we use DN (total number of pairs distinguished), rather than the fraction of pairs distinguished, to575

rank genes.576

NNLS/Random forest decomposition577

SCRS datasets deposited in NCBI GEO (GSE71585, Tasic et al. (2016); and GSE60361, Zeisel et al.578

(2015)) were used for NNLS decomposition. Specifically the deposited count data were converted to579

TPM and used for comparison. The NeuroSeq dataset was quantified using RefSeq and featurecount580

(Liao et al., 2013) and converted into TPM. Subsets of genes common to all three datasets are then581

used for all further analyses. Since distributions of TPM values differed between datasets, they were582

quantile normalized to an average profile generated from the NeuroSeq dataset. Since most genes583
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in the SCRS profiles exhibited noisy expression patterns, using the entire gene set for decomposition584

is not feasible. Therefore, we selected for decomposition the genes deemed most informative for585

distinguishing cell classes based on ANOVA across cell classes. However, simply taking the top586

ANOVA genes lead to highly biased gene selection since some cell types exhibited much larger587

transcriptional differences than others (e.g. many ANOVE selected genes were specific to microglia).588

We therefore selected genes so as to minimize the overlap between the cell types distinguished.589

Beginning with the highest ANOVA gene (highest ANOVA F-value), genes were selected only if their590

DM (Differentiation Matrix defined in Figure 3) differed from those previously selected, defined591

with a Jaccard index threshold of 0.5. We chose 300 genes from each dataset, yielding a total of592

563 genes when all three sets were combined. This gene set was then used for all decompositions.593

Decompositions were performed on average profiles created by summing NeuroSeq replicates594

or by summing single-cell profiles using cluster assignments provided by the authors. NNLS was595

implemented using the Python scipy library (http://www.scipy.org).596

For Random forest, implementation in the Python scikit-learn library (Pedregosa et al., 2011)597

was used.598

ATAC-seq599

7 cell types, Purkinje and granule cells from cerebellum, excitatory layer 5, 6 and entorhinal600

pyramidal cells from cortex, excitatory CA1, or CA1-3 pyramidal cells from hippocampus, labeled601

in mouse lines P036, P033, P078, 56L, P038, P064, and P036 respectively (all from Shima et al.,602

2016) were profiled with ATAC-seq. They were FACS sorted to obtain ∼20,000 labeled neurons. ATAC603

libraries for Illumina next-generation sequencing were prepared in accordance with a published604

protocol (Buenrostro et al., 2013). Briefly, collected cells were lysed in buffer containing 0.1% IGEPAL605

CA-630 (I8896, Sigma-Aldrich) and nuclei pelleted for resuspension in tagmentation DNA buffer606

with Tn5 (FC-121-1030, Illumina). Nuclei were incubated for 20-30 min at 37◦C. Library amplification607

was monitored by real-time PCR and stopped prior to saturation (typically 8-10 cycles). Library608

quality was assessed prior to sequencing using BioAnalyzer estimates of fragment size distributions609

looking for a ladder pattern indicative of fragmentation at nucleosome intervals as well as qPCR to610

determine relative enrichment at two housekeeping genes compared to background (specifically611

the TSS of Gapdh and Actb were assessed relative to the average of three intergenic regions). For612

sequencing, Illumina HiSeq 2500 with 2 to 4-fold multiplexing and paired end 100bp read length613

was used. In addition to ATAC-seq, RNA-seq was performed on replicate samples of ∼2,000 cells614

collected in a similar way, and library prepared using the same method described above.615

ATAC-seq analysis616

Nextera adaptors (CTGTCTCTTATACACATCT) were trimmed from both ends from de-multiplexed617

FASTQ files using cutadapt with parameters "-n 3 -q 30,30 -m 36". Reads were then mapped to UCSC618

mm10 genome using bowtie2 (Langmead and Salzberg, 2012) with parameters "-X2000 –no-mixed –619

no-discordant". PCR duplicates were removed using Picard tools (http://broadinstitute.github.io/picard,620

v2.8.1) and reads mapping to mitochondrial DNA, scaffolds, and alternate loci were discarded. Big-621

Wig genomic coverage files were generated using bedtools (Quinlan and Hall, 2010) and scaled622

by the total number of reads per million. For reproducible peaks, liberal peaks were called using623

HOMER (v4.8.3) (Heinz et al., 2010) with parameters "-style factor -region -size 90 -fragLength 90624

-minDist 50 -tbp 0 -L 2 -localSize 5000 -fdr 0.5" and filtered using the Irreproducibility Discovery625

Rate (IDR) in homer-idr (http://github.com/karmel/homer-idr.git) with parameters "–threshold 0.05626

–pooled-threshold 0.0125". Peak counts and peak patterns were then quantified using bedtools.627

TF Tree628

The set of mouse TFs was constructed by combining 4 curated TF lists: genes annotated in 1)629

PANTHER (Thomas, 2003) PC00218 (transcription factor), 2) Riken Transcription Factor Database630

(Kanamori et al., 2004), 3) HUGO (Gray et al., 2014) families with TF functions and 4) Gene Ontology631

21 of 29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2017. ; https://doi.org/10.1101/208355doi: bioRxiv preprint 

https://doi.org/10.1101/208355
http://creativecommons.org/licenses/by-nc-nd/4.0/


On the Origin of Neuronal Diversity

(Ashburner et al., 2000) GO:0006355 (regulation of transcription). Genes appearing reproducibly632

in these list (i.e. in more than 1 list) were used as TFs. Anatomical regions used as constraints are633

defined in a hierarchical manner (see Supplementary Table 5).634

The TF tree is constructed recursively using the following algorithm:635

preparation:636

0. calculate bDIs for all subsets of samples defined by anatomical regions637

function bisect(list of samples):638

1. if the list of samples consists of only one cell type, exit639

2. calculate bDI,SC within this group of samples for all TFs640

3. if there is no TF with bDI>0, exit641

4. find the appropriate level in the hierarchy of anatomical regions642

5. penalize bDIs (from 2.) with bDIs of containing anatomical regions (from 0.)643

6. sort TFs by their penalized bDI and SC in descending order644

7. set candidates as TFs with penalized bDI>0.2, if there are none, take the top 5645

8. for each candidate, calculate divisions of samples according to expression level646

- at sample level, assign ON/OFF using FPKM=3 as threshold647

- at cell type level, assign ON/OFF according to dominant ON/OFF of samples648

- divide all cell types into ON or OFF groups649

- optionally constrain division to anatomical boundary650

9. if there is no division, exit651

10. if there is more than one division then652

- calculate "division strength" for all divisions:653

- a0 = mean number of binary distinctions of all genes between ON and OFF groups654

- a1 = mean number of binary distinctions of all genes within ON or OFF groups655

- division strength = a0/a1656

- then choose the division with the highest division strength657

11. output ON/OFF groups and corresponding TF(s) for the chosen division658

12. call bisect on ON group samples659

13. call bisect on OFF group samples660

Inserted segments661

The multiz alignments downloaded from the UCSC genome browser (Kent et al., 2002) was used662

to calculate inserted segments in human or mouse. By comparing closely related species (human663

vs. chimp or mouse vs. rat), candidate segments inserted into human (or mouse) are extracted.664

By using another closely related species as a common ancestor (gorilla, guinea pig respectively for665

human/chimp and mouse/rat), segments absent in chimp and gorilla (or absent in rat/guinea pig)666

are called insertion in human (or mouse), and segments absent in chimp but present in gorilla (or667

absent in rat but present in guinea pig) are called deletion in chimp (or rat).668

TE fitting669

Repeat annotations for mouse mm10 genome as detected by RepeatMasker (Smit et al., 2013-2015)670

with Repbase (ver. 20140131 Bao et al., 2015) were used. Only repeat families with number of671

instances>200 are included. For individual repeats, only those with number of instances>50 are672

included. For repeats in the "Simple repeat" class, only those with number of instances>1000673

are included. Repeat scores are calculated as described in Figure 7D using Gencode.vM13. Only674

genes with non-zero repeat scores are used for fitting. For fitting expression level (rank) by repeat675

score, a regularized version of linear regression, Ridge regression, was implemented in the Python676

scikit-learn library (Pedregosa et al., 2011).677
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Tissue data678

In addition to cell type-specific data obtained in this study, we analyzed publicly available RNA-679

seq and DNase-seq data using tissue samples. Information on these samples are described in680

Supplementary Table 4.681

Annotations682

For reference annotations we used Gencode.vM13 (Harrow et al., 2012) downloaded from http://www.gencodegenes.org/,683

NCBI RefSeq (Pruitt et al., 2013) downloaded from the UCSC genome browser.684

Anatomical Region Abbreviations685

Region abbreviations: AOBmi, Accessory olfactory bulb, mitral layer; MOBgl, Main olfactory bulb,686

glomerular layer; PIR, Piriform area; COAp, Cortical amygdalar area, posterior part; AOBgr, Accessory687

olfactory bulb, granular layer; MOBgr, Main olfactory bulb, granular layer; MOBmi, Main olfactory688

bulb, mitral layer; VISp, Primary visual area; AI, Agranular insular area; MOp5, Primary motor area,689

layer5; VISp6a, Primary visual area, layer 6a; SSp, Primary somatosensory area; SSs, Supplemental690

somatosensory area; ECT, Ectorhinal area; ORBm, Orbital area, medial part; RSPv, Retrosplenial area,691

ventral part; ACB, Nucleus accumbens; OT, Olfactory tubercle; CEAm, Central amygdalar nucleus,692

medial part; CEAl, Central amygdalar nucleus, lateral part; islm, Major island of Calleja; isl, Islands of693

Calleja; CP, Caudoputamen; CA3, Hippocampus field CA3; DG, Hippocampus dentate gyrus; CA1,694

Hippocampus field CA1; CA1sp, Hippocampus field CA1, pyramidal layer; SUBd-sp, Subiculum, dorsal695

part, pyramidal layer; IG, Induseum griseum; CA, Hippocampus Ammon’s horn; PVT, Paraventricular696

nucleus of the thalamus; CL, Central lateral nucleus of the thalamus; AMd, Anteromedial nucleus,697

dorsal part; LGd, Dorsal part of the lateral geniculate complex; PCN, Paracentral nucleus; AV,698

Anteroventral nucleus of thalamus; VPM, Ventral posteromedial nucleus of the thalamus; AD,699

Anterodorsal nucleus; RT, Reticular nucleus of the thalamus; MM, Medial mammillary nucleus; PVH,700

Paraventricular hypothalamic nucleus; PVHp, Paraventricular hypothalamic nucleus, parvicellular701

division; SO, Supraoptic nucleus; DMHp, Dorsomedial nucleus of the hypothalamus, posterior702

part; ARH, Arcuate hypothalamic nucleus; PVHd, Paraventricular hypothalamic nucleus, descending703

division; SCH, Suprachiasmatic nucleus; LHA, Lateral hypothalamic area; SFO, Subfornical organ;704

VTA, Ventral tegmental area; SNc, Substantia nigra, compact part; SCm, Superior colliculus, motor705

related; IC, Ingerior colliculus; DR, Dorsal nucleus raphe; PAG, Periaqueductal gray; PBl, Parabrachial706

nucleus, lateral division; PG, Pontine gray; LC, Locus ceruleus; CSm, Superior central nucleus raphe,707

medial part; AP, Area postrema; NTS, Nucleus of the solitary tract; MV, Medial vestibular nucleus;708

NTSge, Nucleus of the solitary tract, gelatinous part; DCO, Dorsal cochlear nucleus; NTSm, Nucleus709

of the solitary tract, medial part; IO, Inferior olivary complex; VII, Facial motor nucleus; DMX, Dorsal710

motor nucleus of the vagus nerve; RPA, Nucleus raphe pallidus; PRP, Nucleus prepositus; CUL4,5mo,711

Cerebellum lobules IV-V, molecular layer; CUL4,5pu, Cerebellum lobules IV-V, Purkinje layer; PYRpu,712

Cerebellum Pyramus (VIII), Purkinje layer; CUL4,5gr, Cerebellum lobules IV-V, granular layer; MOE,713

main olfactory epithelium; VNO, vemoronasal organ.714
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Figure 1–Supplement 1.

Cell type-specific samples. Sample groups color coded by region (left color bar) and transmitter

phenotype (right color bar). Transmitter phenotype was determined from transmitter synthesis and

storage enzyme expression. Abbreviations: OLB: olfactory bulb; OLF: olfactory regions (excluding

bulb); CTX: Isocortex and Claustrum; HPF: hippocampal formation; STR: Striatum and related ventral

forebrain structures; PAL: pallidum; TH: thalamus; HY: hypothalamus; MB: midbrain; MY: medulla;

P: pons; CB: cerebellum; RE: retina; OE: olfactory epithelium; SP: spinal cord; X: peripheral nervous

system or non-neural tissue. For additional abbreviations see Methods.
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Figure 1–Supplement 2.

Quality Control measures. (A) (Top) Total reads for each of the libraries. Samples are color coded

by region and transmitter, as shown in Figure 1 Supplement 1. (Bottom) Categories of reads in

each library: unmapped: reads that did not map to the mm10 genome including chimeric and

back-spliced reads; short: reads less than 30bp in length after removing adaptor sequences; non-

unique: reads mapping to multiple locations; abundant: reads containing ribosomal RNA polyA,

polyC and phiX sequences, and unique: uniquely mapped reads. For further analyses, abundant,

short and unmapped reads were not used. (B) Contaminating transcripts from non-neuronal cell

types. Samples with significant expression of these transcripts (at right) include tissue samples and

non-neuronal samples. Each row is normalized by the maximum value.
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Figure 1–Supplement 3.

Pan-neuronal genes. Genes expressed in all neuronal cell types, but not (or at much lower levels)

in non-neurons within the dataset. Heat-map shows log expression levels and the color at the right

side indicates fold-change of the expression level between neurons and non-neurons. Criteria for

extracting these genes are listed in the Methods.
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Figure 2–Supplement 1.

A test of NNLS decomposition. (Left) Single cell profiles from Tasic et al. (2016) were merged
according to which of the 17 transgenic strains and sub-dissected layers they originated from (row

labels). Merged profiles were then decomposed using NNLS by the same individual cluster profiles

used in Figure 2 (column labels). (Right) The reported proportion of single cell profiles according to

the author’s classification. The close similarity between left and right matrices indicates an accurate

NNLS decomposition of the merged clusters. Note that information about which and how many

individual cell types were sorted from each line and set of layers was not explicitly provided to the

decomposition algorithm, but were accurately deduced from the merged expression profiles.
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Figure 2–Supplement 2.

Random forest decomposition. A random forest classifier (500 decision trees) was trained

from single cell profiles and their cluster assignment (column labels) and then used to decompose

NeuroSeq cell types (row labels). Coefficients are the ratio of the votes from the 500 trees (coefficient

ranges from 0 to 1 and 1 indicates all trees vote for a single class). The pattern of coefficients is

similar to that obtained by NNLS (Figure 2A) suggesting the decomposition is relatively robust and

does not reflect a peculiarity of the NNLS algorithm.
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Figure 2–Supplement 3.

Cross validation of NNLS decompositions (A) Each of Tasic et al. cluster is randomly divided

into two groups and one is used to decompose the other. Some cluster pairs share significant

coefficients, suggesting they are too similar to each other to separate well. For example, pairs of

clusters L2 Ngb and L2/3 Ptgs2, L4 Arf5 and L4 Scnn1a, L4 Ctxn3 and L4 Scnn1a, and L5 Cdh13

and L5 Tph2 are hard to distinguish. This is consistent with the observation of intermediate cells

between each of these clusters in the original study (their Figure 4).(B) Purity scores (similar to

Figure 2C) for the cross-validated NNLS decomposition of each Tasic et al. cluster. (C)Mean purity

scores obtained from the same cross-validation procedure applied to each of the three datasets.
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Figure 2–Supplement 4.

Separability of cell type clusters (A) Definition of separability. Cartoon represents two different

single cell clusters as distributions of points. The separability is the ratio of the distance between the

centroids to the sum of the "diameter" of each cluster. Here, we calculate the diameter of a cluster

using the distances from the centroid of the cluster as the mean distance + 3 times the standard
deviation of the distribution of the distances. With this definition, two clusters are "touching" when

separability =1, overlapping when <1, and separate when >1. The multi-dimensional distance is
computed as 1- Pearson’s corr.coef. (B) Separabilities between cell type clusters for three datasets

shown with two different dynamic ranges (color scale; 0-1 for upper row and 0-10 for lower row).

The order of cell type clusters are the same as in Figure 2.
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Figure 3–Supplement 1.

Simulated data reveal features of expression metrics

(A) (Upper) An example of simulated binary and graded expression patterns with added noise.

X-axis indicates sample/groups. (Lower) Various average metrics calculated from the simulated

expression patterns (100 individual simulations; error bars are standard deviations). Values are

normalized within each metric across binary expression group or graded expression group. (B)

Summary of each metric’s correlation with Mutual Information and SNR: check mark–correlated,

X–uncorrelated, triangle–partially correlated. (C) DI and MI are highly correlated. The relationship

between DI, calculated without considering replicates, and MI with expression levels discretized

into 2 levels (left) and 5 levels (right). Although increasing the number of discrete expression levels

decreases the degree of correlation, they remain monotonically and closely related.
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Figure 3–Supplement 2.984

Relationship between DI and MI Here we explore more detailed relationship between mutual

information and differentiation index. To calculate mutual information between expression levels

and cell types, we discretize expression levels into Ne levels. Let Ns be number of samples. Let nij
be counts in the contingency table where i = 1, ..., Ne and j = 1, ..., Ns. Then the joint probability

distribution and the marginal probability distribution can be written as:

p(i, j) =
nij
Ns

(1)

p(i) =
∑

j nij
Ns

=
ni
Ns

(2)

p(j) =
∑

i nij
Ns

=
nj
Ns

(3)

(4)

Where ni =
∑

j nij and nj =
∑

i nij . nj is number of replicates in cell type j. The mutual information
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between expression level (E) and samples (S) is:

I(E;S) =
∑

i,j
p(i, j) log

p(i, j)
p(i)p(j)

(5)

=
∑

i,j
p(i, j) log

p(i, j)
p(j)

−
∑

i,j
p(i, j) log p(i) (6)

=
∑

i,j
p(j)p(i|j) log p(i|j) −

∑

i,j
p(i, j) log p(i) (7)

=
∑

j
p(j)

∑

i
p(i|j) log p(i|j) −

∑

i
log p(i)

∑

j
p(i, j) (8)

= −
∑

j
p(j)H(E|S = j) −

∑

i
p(i) log p(i) (9)

= −H(E|S) +H(E) (10)

H(E|S = j) is the entropy of expression levels in cell type j, which represents the expression noise985

in cell type j, andH(E|S) is the average of these across all cell types. When there is no replicates986

H(E|S) is zero. When there are replicates, H(E|S = j) represents how noisy the expression is.987

This may depends on expression level, and H(E|S), the average of H(E|S = j)may depends on988

expression prevalence (i.e., how widely the gene is expressed), but in any case, the first term989

−H(E|S) represents reduction of the mutual information by noise.990

The second term H(E) is the entropy of marginal distribution p(i) and represents the main
information content of cell types encoded in expression levels. This can be rewritten using counts

in the contingency table as:

H(E) = −
∑

i
p(i) log p(i) (11)

= −
∑

i

ni
Ns

log
ni
Ns

(12)

= −
∑

i

ni
Ns

log ni +
∑

i

ni
Ns

logNs (13)

= − 1
Ns

∑

i
ni log ni + logNs (14)

Thus, it takes maximumwhen all ni ’s are 0 or 1, which corresponds to the case where one expression991

level corresponds to one cell type, making all cell types distinguishable by the expression levels.992

This is when the discretization levels are larger than number of samples. When the number of993

discretization levels (Ne) is smaller than the number of samples (Ns), H(E) takes the maximum994

value of logNe when all the samples are distributed equally to each bin.995

To explore the relationship betweenH(E) and DI, the log ni in the first term is replaced (approxi-
mated) by (ni − 1) (first two terms in the Taylor expansion of log ni around ni = 1.):

H(E) ∼ − 1
Ns

∑

i
ni(ni − 1) + logNs (15)

= − 2
Ns

∑

i
ni(ni − 1)∕2 + logNs (16)

= 2
Ns

{

Ns(Ns − 1)∕2 −
∑

i
ni(ni − 1)∕2

}

− (Ns − 1) + logNs (17)

= (Ns − 1)sDI − (Ns − 1) + logNs (18)

Since ni is the number of samples in one expression level, ni(ni − 1)∕2 is the number of indistinguish-996

able pairs in that expression level when there is no replicate. The term within the curly bracket is997

then the number of distinguishable pairs, leading to eq.(18).998
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More formally, since both ℎ(p) =
∑

ni log ni and d(p) =
∑

ni(ni − 1) =
∑

n2i −Ns are Schur-convex999

functions1 on partitions of Ns, p = (n1, n2, ..., nk), when partition p1 majorizes p2 then, ℎ(p1) ≥ ℎ(p2)1000

and d(p1) ≥ d(p2). When partition length is 2, that is when expression levels are discretized into1001

only 2 levels, corresponding to ON/OFF, then, all of the partitions can be ordered by majorization1002

relationship, therefore, ℎ(p) and d(p) are order-preserved transformation of each other (Figure 31003

Supplement 1C left). When partition length is greater than 2, this relationship is not true. However,1004

they are still highly correlated to each other (Figure 3 Supplement 1C right).1005

When DI is calculated from global discretization (as in the above case), the maximum number

of pairs distinguishable happens when all the samples are equally distributed to each bin and the

number of distinguishable pairs is

(

Ns
Ne

)2
Ne(Ne − 1)∕2. Therefore,

max(DI) =
(

Ns

Ne

)2 Ne(Ne − 1)∕2
Ns(Ns − 1)∕2

(19)

=
(

1 − 1
Ne

)

∕
(

1 − 1
Ns

)

(20)

∼ 1 − 1
Ne

(wℎen Ns ≫ 1) (21)

As stated above, this is also when the entropyH(E) takes the maximum value of log2Ne in the unit1006

of bits. (Figure 3 Supplement 1C)1007

1A Schur-convex function is a function f ∶ ℝk → ℝ which satisfies f (x) ≥ f (y) for all x, y where x majorizes y. For
x = (x1, x2, ..., xk) ∈ ℝkwℎere(x1 ≥ x2 ≥ ... ≥ xk) and y = (y1, y2, ..., yk) ∈ ℝkwℎere(y1 ≥ y2 ≥ ... ≥ yk). x majorizes y when
∑k
i=1 xi =

∑k
i=1 yiand

∑j
i=1 xi ≥

∑j
i=1 yiforallj = 1, ..., k. When xmajorizes y, it follows xi ≥ yi for all i, so it is easy to see ℎ(x) ≥ ℎ(y)

and d(x) ≥ d(y).
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Figure 4–Supplement 1.

(A) PANTHER families enriched in the top 1000 bDI genes. (B) Averages of metrics (DI,SC,bDI) for

PANTHER families. Only top 10 are shown. Numbers in parenthesis indicate family size. (C) Average

bDI calculated for each TF family in HUGO protein families (Gray et al., 2014). (D)Mean Pearson’s
corr. coef. between genes within PANTHER families. Homeobox TF family is indicated by the red dot.

Most of the PANTHER family genes are decorrelated within families but genes in some families, such

as ribosomal protein, histone, tubulin, and RNA binding protein have highly significant correlation

within families.
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Figure 5–Supplement 1.

TF tree constructed using stronger anatomical constraints. Similar to Figure 5, but the con-

straints on anatomical boundaries are enforced during each bisection. However, TF expression was

not constrained to be uniform within a group, leading to some subgroups that do not match the

expression of the dividing gene.
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Figure 5–Supplement 2.

TF tree constructed without anatomical constraints. Similar to Figure 5 but anatomical sub-

regions were not constrained to be grouped together.
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Figure 6–Supplement 1.

Properties of long genes in current and prior datasets.(A) Number (histogram) and ratios (dots)

of genes expressed in neurons (pink histogram, red dots) and non-neurons (brown histogram, green

dots) relative to the number of genes in the entire population (grey histogram) as a function of gene

length (ratios computed per bin of 500 genes). (B) Number (cyan histogram; left axis) and ratios

(cyan dots; right axis) of genes with nearby NRSE relative to the numbers of neuronally expressed

genes (pink histogram). (C) (Magenta dots) ratio of neuronally expressed non-REST target genes to

the population. Other components are same as in A. (D) DI dependence of length without REST

target genes compared to all genes. DI is still strongly length dependent because REST targets

are a small fraction of expressed long genes. (E) Fraction of gene length attributable to intron

length. (F) Length dependence of peak counts in the ATAC-seq data from the current study. (G)- (J)

Length dependence of peak counts in ENCODE DNase hypersensitivity data. Examples from mouse

ENCODE data in forebrain (telencephalon) (G) and liver (H) samples showing individual peaks (black

dots) and binned averages (red dots) as a function of gene length. Average mouse (I) and human

(J) peak counts from brain(blue) and non-brain(green) samples. (K) Number of alternative splice

sites for each gene (in Gencode mouse v14) plotted against gene length. (L) Distribution of gene

lengths for low OFF noise genes (Figure 4B red dashed region) and high OFF noise genes (Figure 4B

blue dashed region). Red lines are medians and whiskers indicate 1.5 IQR. (***:p<1e-100, Student’s
t-test.) (M) Similar to Figure 4 Supplement 1D, mean Pearson’s correlation coefficients between

genes within long and short gene groups relative to mean and S.D. (green solid lines) and 99%

confidence interval (green dashed lines) calculated from randomly selected groups of genes.
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Figure 7–Supplement 1.

Supplementary to Figure 7. TE insertions elongate genes and contain information about

gene expression (A) Example of gene length differences between species for Kcnma1 (a calcium-
activated potassium channel, also called slopoke, in Drosophila). (B) Estimated evolutionary age of
human genes correlates with their length. The length distribution of human genes is plotted as a

function of age, estimated from their most distant homologs. Genes common to all vertebrates (or

to all listed genomes) are longer than genes common only to mammals (mouse) or common only

to primates (monkey). (C) Correlation between gene expression rank and gene length (blue) and

SINE repeat score (orange) calculated for all cell types. Because of their abundance, SINE repeat

scores are correlated with gene length. (D) Similar to Figure 7E but using repeat scores calculated

from different sized intervals surrounding each gene (not including the gene body). Average R2 is

maximal near 10kb for both upstream and downstream intervals. Shuffling conditions are colored

as in Figure 7E. (E) Similar to Figure 7E but for repeat scores calculated from gene body only (upper

panel) or gene body+∕−100kb (lower panel). (F) Fraction of genome spanned by long genes (orange)
is greater than that spanned by short genes (green), despite being fewer in number. Some genomic

regions contain overlapping long and short genes (yellow). (G) Percentage of inserted sequences

calculated in Figure 7A (Human vs. Chimp and Mouse vs. Rat), that overlap TEs within long (≥
100kbp) or short (<100kbp) genes.
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