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Abstract 12 

Background 13 

Genomic prediction models were, in principle, developed to include all the available marker 14 

information; with this approach, these models have shown in various crops moderate to high 15 

predictive accuracies. Previous studies in cassava have demonstrated that, even with relatively 16 

small training populations and low-density GBS markers, prediction models are feasible for 17 

genomic selection. In the present study, we prioritized SNPs in close proximity to genome regions 18 

with biological importance for a given trait. We used a number of strategies to select variants 19 

that were then included in single and multiple kernel GBLUP models. Specifically, our sources of 20 

information were transcriptomics, GWAS, and immunity-related genes, with the ultimate goal to 21 

increase predictive accuracies for Cassava Brown Streak Disease (CBSD) severity.  22 

Results 23 

We used single and multi-kernel GBLUP models with markers imputed to whole genome 24 

sequence level to accommodate various sources of biological information; fitting more than one 25 

kinship matrix allowed for differential weighting of the individual marker relationships. We 26 

applied these GBLUP approaches to CBSD phenotypes (i.e., root infection and leaf severity three 27 

and six months after planting) in a Ugandan Breeding Population (n = 955). Three means of 28 

exploiting an established RNAseq experiment of CBSD-infected cassava plants were used. 29 

Compared to the biology-agnostic GBLUP model, the accuracy of the informed multi-kernel 30 

models increased the prediction accuracy only marginally (1.78% to 2.52%).  31 

Conclusions 32 

Our results show that markers imputed to whole genome sequence level do not provide enhanced 33 

prediction accuracies compared to using standard GBS marker data in cassava. The use of 34 

transcriptomics data and other sources of biological information resulted in prediction accuracies 35 

that were nominally superior to those obtained from traditional prediction models. 36 

 37 
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Background 38 

Genomic Selection (GS) [1] is a breeding method that exploits high-throughput genotyping 39 

technologies, novel statistical methods and the availability of genomic information. It has been 40 

used extensively in animal breeding and promises to impact plant breeding, particularly within 41 

clonally propagated and perennial plant systems [2].  42 

GS approaches tend to avoid marker selection, and instead, all the marker information is utilized 43 

within the prediction models. Given such scenario where the number of predictors (p), is greater 44 

than the number of available observations (n) traditional regression models achieve poor 45 

predictive ability as a result of multicollinearity and overfitting among the predictors [2,3]. 46 

Several statistical methods have been explored to overcome these problems; shrinkage 47 

methods, where the regression coefficients are shrunk towards zero, are widely used for 48 

genomic predictions [4]. These methods include Genomic Best Linear Unbiased Predictions 49 

(GBLUP) [5], Bayesian regression [1,6], Least Absolute Shrinkage and Selection Operator (LASSO) 50 

[4] and ridge regression BLUP (rr-BLUP) [7]. Recently, machine learning methods have been 51 

proposed for genome-enabled predictions as they are capable of dealing with the dimensionality 52 

problem in a flexible manner [8,9]. Performance comparisons among these models have been 53 

conducted in several plant species [10–13] showing that the best statistical approach depends 54 

highly on the trait and the species that is being analyzed. 55 

GS predictions rely on linkage disequilibrium (LD) between the markers and the Quantitative 56 

Trait Loci (QTL). Given the dramatic drop in sequencing costs, full-genome sequence data was 57 

proposed to be used in genomic predictions [14]. Simulation studies suggest that the use of 58 

whole genome sequence data would result in increased accuracy of genomic predictions [14–59 

16] because the accuracy that can be achieved by the prediction model is no longer tied to the 60 

LD-QTL relationship as the causal mutations are present in the dataset [15].  61 

Whole-genome sequencing is still prohibitively expensive for most crop breeding programs as 62 

the number of individuals evaluated can reach the tens of thousands. An efficient and cost-63 

effective approach is to impute the whole-genome sequence variants of the individuals using a 64 

low-density genotyping platform and a previously sequenced reference population (reference 65 

panel) [17]. This system is widely used in human genetics, where large-scale sequencing efforts, 66 

like the 1000 Genome Project [18], provides standard reference panels for imputation.  67 

In livestock and some crops, breeding populations are typically derived from a small group of 68 

common ancestors within a few generations in the past. Thus, these populations tend to have a 69 

small effective population size (Ne); this is a perfect scenario for performing whole genome 70 
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imputation (WGI) as low-density markers will be able to adequately trace the haplotypes 71 

inherited from the ancestors [15] easing the imputation process.  72 

Genomic prediction models tend to use unannotated anonymous markers, even when this is 73 

currently slowly changing, most models do not take into consideration whether SNPs are close 74 

to genic or regulatory regions. When imputing markers to whole sequence level, the number of 75 

predictors utilized increases significantly and so does the p >> n problem; this might prevent the 76 

model to put sufficient weight on the causal variants [19] thus affecting prediction accuracies. 77 

The use of biological priors has been proposed to both alleviate this problem and reduce the 78 

computational burden associated with models using millions of markers [20].  79 

Over the last few years, several methods have been developed to incorporate biological or 80 

functional information into Association Studies and Genomic Prediction.  In cattle, for example, 81 

Fortes et al. used an Associated Weighted Matrix (AWM) [21] to infer a set of genes related to 82 

beef tenderness. They later demonstrated that making genomic predictions with only  SNPs near 83 

the inferred genes for beef tenderness resulted in prediction accuracies that were higher than 84 

when the entire marker set was used [22]. Other methods have sought to exploit biological 85 

information while avoiding marker selection. Su et al. [23] for example, tested a genomic BLUP 86 

(GBLUP) model where the relationship matrix was weighted using prior Bayesian models or 87 

GWAS summary statistics [23,24]. 88 

In contrast to the traditional GBLUP that assumes that all SNPs have the same effect-size 89 

distribution, methods like GFBLUP [25] or MultiBLUP [26] add one or multiple genomic random 90 

effects that quantify the importance of different marker sets respectively. These marker sets are 91 

typically defined by some source of biological evidence (i.e., metabolic pathway, sequence 92 

annotation, transcriptomics, evolutionary constraints).  93 

A Bayesian method that has also been implemented to leverage biological information in 94 

prediction efforts is BayesRC [27] which uses a mixture of normal distributions to model SNP 95 

effects and include prior biological knowledge. BayesRC [28] allows the user to a priori allocate 96 

the SNPs into classes where each class is believed to have a different probability of containing 97 

causal variants for the trait. The aforementioned genomic feature modeling approaches 98 

(GFBLUP, MultiBLUP, and BayesRC) were designed to improve prediction accuracies of complex 99 

traits if the groups of markers selected are enriched for causal variants [28,29].  100 

Transcriptomics studies have allowed researchers to investigate gene expression dynamics of 101 

different organisms in different tissues, conditions or developmental stages [30]. It can be of aid 102 

to discover genes and pathways that are involved in the regulation of complex traits, potentially 103 
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revealing genomic regions that would be enriched in variants affecting specific traits [25,31]. 104 

Transcriptomics studies have already been used effectively as a source of biological priors to 105 

predict complex traits in cattle [20,25]. These studies showed that using informed models could 106 

slightly improve prediction accuracies when making same breed predictions and that the 107 

observed improvement was more evident with a greater genetic distance between the training 108 

and validation population (across-breed predictions).  109 

Cassava (Manihot esculenta) is a major staple crop in parts of sub-Saharan Africa and is the 122 

primary source of calories for millions of people across the world [32]. Cassava Brown Streak 123 

Disease (CBSD) is a viral disease that hampers the production of cassava and is considered a 124 

serious threat to food security in Africa [33,34]. CBSD is caused by two distinct single-stranded 125 

RNA viruses, Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus 126 

(UCBSV) [34–36]. Recently, transcriptomics data in cassava has been used to unravel the 127 

transcriptional dynamics of cassava plants under infection by both UCBSV [37] and CBSVs [38].  128 

In the present study, CBSD phenotypes (root infection and leaf severity three and six months 129 

after planting) from a Ugandan Breeding Population (n=955) were analyzed using whole genome 130 

imputation (WGI) data (~5 million SNPs) and biological information coming from transcriptomics 131 

experiments [37,38], Genome-Wide Association Studies (GWAS) [39] and in-silico identification 132 

of immunity-related genes [40,41]. Our main objective was first to assess the feasibility of 133 

performing whole genome imputation in cassava and second to test if prediction accuracies can 134 

be enhanced by using WGI together with biological priors using GBLUP-derived models.  135 

 136 

 137 

 138 
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Methods 144 

Plant material 145 

Two diverse cassava populations were combined and used as a composite set for this study; 146 

individuals in this composite data set represented the genetic diversity of the Ugandan cassava 147 

gene pool. The first population (“Training”) was comprised of a panel of 414 cassava accessions 148 

from the breeding program of the National Crops Resources Research Institute (NaCRRI) in 149 

Namulonge, Uganda. This population was the first used to train genomic prediction models for 150 

applied breeding at NaCRRI. The second population, (“GWAS”) was developed by Kayondo et al. 151 

[39]  and was comprised of 540 accessions. This population is derived from 49 parents from the 152 

International Institute of Tropical Agriculture (IITA), The International Center for Tropical 153 

Agriculture (CIAT) in Colombia and some landraces of East Africa. Briefly, the “Training” panel 154 

was evaluated in two years (2012-2013), and three locations in an alpha-lattice design, and the 155 

“GWAS” panel was evaluated in a single year (2015) at three locations using an augmented 156 

randomized complete block design. For more information on both populations, please refer to 157 

[39]. For a list of the accessions used, see Table S1.   158 

Phenotyping Platform 159 

The composite plant population was phenotyped for three separate traits: foliar CBSD severity 160 

measured three (CBSD3) and six (CBSD6) months after planting and CBSD severity in the storage 161 

roots (CBSDR) after a year. Briefly, CBSD severity was scored based on a 5-point scale with a 162 

score of 1 implying an asymptomatic plant while a score of 5 would mean over 50% of leaf vein 163 

clearing for foliar symptoms (CBSD3 and CBSD6) and 50% of root-core being covered by necrosis 164 

for CBSDR. Please refer to Kayondo et al. [39] for further details

Genotyping by sequencing and imputation 166 

Genotyping-by-sequencing (GBS) libraries [42] were constructed as previously described [43]. 167 

Marker genotypes were called using the TASSEL 5.0 GBS discovery pipeline [44] after aligning 168 

the reads to the Manihot esculenta Version 6 assembly. Genotype calls were stored in 18 Variant 169 

Calling Format (VCF) files (one per cassava chromosome). The VCF files were filtered using 170 

VCFtools [45]; individual marker calls were masked if the read depth was lower than 3x, cassava 171 

genotypes with > 80% missing calls and SNP markers missing more than 60% were removed. 172 

Insertions, deletions, and multi-allelic markers were also withdrawn from the dataset. Beagle 173 

4.1 software [46] with default parameter settings was used for imputation. In total 173k SNPs 174 

were called among 986 individuals. This dataset was further filtered by an Estimated Allelic r-175 

squared statistic (AR2) > 0.3 and a minimum Minor Allele Frequency (MAF) of 1%. The final set 176 
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herein referred to as the “GBS” dataset, included 41,530 SNP markers called among the 954 177 

individuals. 178 

Imputation to whole-genome sequence data 179 

Beagle 4.1 [46] and Impute2 [47,48] were tested and compared for imputation accuracy, marker 180 

density, and marker distribution. For both software’s, a Cassava Haplotype Map (HapMap) of 181 

241 accessions was used as a reference panel. This reference panel represented cultivated, 182 

hybrid and wild cassava relatives and contained 28 million SNP markers [49].  183 

Beagle Imputation 184 

Imputation using Beagle 4.1 was performed in two steps (Figure S1). During the “BEAGLE Stage 185 

I” phase, a subset of the HapMap markers was used, including bi-allelic SNPs with MAF greater 186 

than 1%. Additionally, a 10bp thinning filter was set up, meaning that only one marker per 10bp 187 

was allowed. The resulting set included 716k markers with MAF > 1% and AR2 > 0.3. The BEAGLE 188 

Stage I marker set was then used in the second round of full HapMap imputation. The second 189 

marker dataset, “BEAGLE Stage II” had 2 million markers exposed to the same MAF and AR2 190 

filters. The genetic positions of the HapMap markers were inferred using a smooth spline fit to 191 

the 22,403-marker composite map published by the International Cassava Genetic Map 192 

Consortium (ICGMC) [50]. The genetic positions were forced to be monotonically increasing, 193 

which is a requirement for BEAGLE to run properly. Beagle 4.1 ran with default parameters. For 194 

this manuscript, only the ‘BEAGLE Stage II” markers were considered, and herein it will be 195 

referred to as the “BEAGLE” dataset.  196 

Impute2 Imputation 197 

Imputation using IMPUTE2 was performed in a single step (Figure S2). The number of haplotypes 198 

used as “custom” reference panel (-k_hap) was set to 400, the effective population size (Ne) to 199 

1000, and the imputation window to 5Mb. The genetic positions of the HapMap were inferred 200 

as described in the “Beagle Imputation” section of this manuscript. The IMPUTE2 software, 201 

however, requires knowing the recombination rate between the current position and next 202 

position on the map.  This recombination rate was calculated using the following formula:  203 

𝑹𝑹 =
𝒄𝑴𝒊+𝟏 −  𝒄𝑴𝒊

𝑴𝒃𝒊+𝟏 −  𝑴𝒃𝒊
 204 

Where cM represents the genetic position of each marker “i” and Mb notes the physical position 205 

in megabases. The accuracy of the imputation was assessed using internally-calculated 206 

concordance tables.  Briefly, IMPUTE2 masks the genotypes of one variant at a time from the 207 

study data (GBS markers) and then imputes the masked genotypes with information from the 208 

reference panel and the nearby variants. The percentage of concordance between the masked 209 
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and the imputed genotypes for each 5Mb imputed window were subsequently calculated 210 

(Figure S3). Additionally, allele frequencies and imputation quality distributions were calculated 211 

and depicted by the IMPUTE2 information measure statistic “info” [48] (Figure S4) and 212 

imputation quality by allele frequencies (Figure S5).  213 

 214 

Biological Information 215 

Three different sources of biological information related to CBSD resistance were used in this 216 

study.    217 

Transcriptomics profiling 218 

RNAseq data were obtained from two experiments. The first experiment [37] focused on 219 

profiling the transcriptome response across seven time-points after infection with UCBSV. Two 220 

contrasting cassava genotypes were used: ‘Namikonga’ (CBSD resistant) and ‘Albert’ (CBSD 221 

susceptible) (Figure S6). The 84 libraries (Table S2) were checked for read quality using FastQC 222 

[51]. The Tuxedo Suite of programs [52,53] was then used to process the sequenced data. Reads 223 

in FASTQ formats were aligned to the M. esculenta reference genome v6 [54] using TopHat 224 

v2.1.1/Bowtie v2.2.8 [55]/[56]. A reference annotation of the cassava gene models (v6.1) from 225 

the Phytozome database was provided (https://phytozome.jgi.doe.gov). This version of the gene 226 

annotation contained a total of 33,033 transcripts. The minimum and maximum intron length 227 

were set to 10 and 15,000bp respectively; the remaining parameters were set to default values. 228 

Subsequently, the Cuffdiff program within Cufflinks version 2.2.1 [57] was used to identify 229 

differentially expressed (DE) genes at each time-point among infected plants and controls. A 230 

false discovery rate of 0.01 after the Benjamini-Hochberg correction for multiple testing was 231 

used. 232 

The second transcriptomics data was taken from Anjanappa et al. [38]. In this experiment, two 233 

cassava genotypes, the resistant ‘KBH 2006/18’ and the susceptible ‘60444’, were challenged 234 

against a mix of CBSV strains (CBSV – TAZ-DES-01 and UCBSV – TAZ-DES-02). RNAseq was 235 

performed 28 days after infection; this time point was selected because it showed homogenous 236 

virus titer levels across the biological replicates in the susceptible genotype. Raw reads were not 237 

re-analyzed; a list of DE genes was extracted from the Anjanappa et al. manuscript (Table S3). 238 

Quantitative Trait Loci 239 

Kayondo et al. recently reported two major QTLs for CBSD foliage symptoms [39], one near the 240 

end of chromosome 11 and another on chromosome 4 that collocates with a previously 241 

reported, large introgression from wild cassava (Figure S7). Bi-parental QTL mapping has also 242 
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identified hits on chromosomes 4 and 11 for foliar symptoms [58] and chromosome 11 for root 243 

necrosis [59]. Small effect QTLs related to CBSD symptoms on roots were also detected, but they 244 

were not considered in this study.  245 

Immunity-related genes 246 

The most common disease resistance genes in plants are those belonging to the NBS-LRR family 247 

[60]. This highly conserved gene family has already been identified and positioned in a previous 248 

version of the cassava genome (Cassava Genome v5.0) [61]. In that study 228 NBS-LRR and 99 249 

partial NBS-LRR genes were reported. Positions for each NBS-LRR genes were updated to fit in 250 

the latest cassava genome assembly (http://phytozome.gov, Cassava Genome v6) using Blast+ 251 

[62] (Table S4). Additionally, immune-related genes listed by Soto et al. [41] were added to this 252 

list (Table S4).  253 

Associating markers with genes 254 

Markers that appeared within the coding region of a gene (defined as 5’UTR to 3’UTR, including 255 

introns) were considered to be “tagging” that gene. Bedtools [63,64] and in-house scripts 256 

(available from the GitHub page of this manuscript) were used to associate SNP markers to genes 257 

of interest.   258 

Co-expression Networks using WGCNA 259 

Weighted Co-expression Network Analysis (WGCNA) [65,66] was used to identify highly 260 

correlated genes across different time-points based on their expression. Briefly, Fragments Per 261 

Kilobase of exon per Million reads (FPKMs) were log2 transformed. Genes without variation 262 

across the seven timepoints were filtered out using a Coefficient of variance (𝐶𝑉 =  𝜎/𝜇) cutoff 263 

of 0.9. Analyses were performed using the ‘WGCNA’ package in R programming software [67]. 264 

As previously described [66], ‘WGCNA’ calculates an expression Pearson’s correlation matrix for 265 

the genes, this matrix is later raised to a power β (0.8 in this study) before continuing with the 266 

clustering procedure. The ‘WGCNA’ treecut parameter was set to 0.85; the three parameters CV, 267 

β and treecut values were selected based on the number and quality of the co-expression 268 

modules identified. All other parameters were set to the package’s default values. To visualize 269 

the general trend of each module, eigengenes were calculated as the first principal component 270 

of the normalized expression values of all genes within a module and plotted as a heatmap 271 

[68,69]. 272 

Genomic Selection Models 273 

A two-step approach was used to evaluate genomic predictions in this study. This method was 274 

used to increase computational efficiency and control for differences in experimental design 275 
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between different datasets. The first step involved accounting for trial-design variables using 276 

linear mixed models to calculate de-regressed Best Linear Unbiased Predictions (BLUPs), and the 277 

second step used the de-regressed BLUPs as phenotypes in the prediction model. 278 

Genotypic value estimation 279 

De-regressed BLUPs were calculated according to Garrick et al. [70]. The procedure has been 280 

described previously [12,71] and for this composite population specifically in Kayondo et al. [39]. 281 

Briefly, a mixed model was fit with the population mean and location as fixed effects and clone 282 

and breeding design variables (i.e., block, range) as random effects. BLUPs for clones represents 283 

an estimate of the total genetic value (estimated genetic value, EGV). Clone effect BLUPs (EGVs) 284 

were then extracted as the de-regressed BLUPs following: 285 

𝒅𝑩𝑳𝑼𝑷𝒔 =  
𝑩𝑳𝑼𝑷𝒔

𝟏 −
𝑷𝑬𝑽
𝝈𝝁

𝟐

 286 

Where 𝝈𝝁
𝟐 is the genetic variance and PEV is the prediction error variance of the BLUPs. Solutions 287 

for both  𝝈𝝁
𝟐 and PEV were retrieved from the mixed models solved using the lmer function of 288 

‘lme4’ package [72] in R software.  289 

Prediction models 290 

We used three variations of the classic GBLUP to predict estimated breeding values (GEBV) for 291 

CBSD related traits: 292 

GBLUP was fit using a linear mixed model of the form: 293 

𝒅𝑩𝑳𝑼𝑷𝒔 = 1𝑛𝛽0 + 𝑍𝑔 + 𝑒,        𝒈 ~ 𝑁(0, 𝐾𝜎𝑔
2)    ,    𝒆 ~ 𝑁(0, 𝐼𝜎𝑒

2) 294 

Where the solution for g represents the GEBVs. Briefly, 𝜷𝟎 is the mean, vector g is the random 295 

effect for the genetic markers, Z is a design matrix pointing observations to genotype identities, 296 

and e are the residuals. We assume that g has a known covariance structure defined by the 297 

genomic realized relationship matrix K. The genomic relationship matrix K was constructed using 298 

SNP dosages and an Rcpp [73] implementation of the function A.mat in the R package ‘rrBLUP’ 299 

[74]. GBLUP predictions ran using the function emmreml in the ‘EMMREML’ R package [75].   300 

GFBLUP [29,76] is a modification of the traditional GBLUP that includes an additional genetic 301 

random effect; the linear mixed model followed the form: 302 

𝒅𝑩𝑳𝑼𝑷𝒔 =  1𝑛𝛽0 + 𝑍𝑓 + 𝑍𝑟 + 𝑒,    𝒇 ~ 𝑁(0, 𝐾𝑓𝜎𝑓
2) ,   𝒓 ~ 𝑁(0, 𝐾𝑟𝜎𝑟

2) , 𝒆 ~ 𝑁(0, 𝐼𝜎𝑒
2) 303 
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where  𝑲𝒇 and 𝑲𝒓 were genomic relationship matrices built using the SNPs within and outside 304 

the genomic feature. Specifically, 𝑲𝒇 was calculated with markers thought to be enriched for 305 

causal variants and 𝑲𝒓 was calculated with the rest of the markers in the genome. The 306 

relationships matrices were calculated as described before and the GFBLUP predictions were 307 

conducted using the emmremlMultiKernel function in the ‘EMMREML’ R package [75]. 308 

MULTIBLUP [26] was also used. This method is similar to GFBLUP but allows for multiple genetic 309 

random effects. As with GFBLUP method, predictions were conducted using the 310 

emmremlMultikernel function implemented in the ‘EMMREML’ R package. 311 

Cross-validation 312 

The accuracy of genomic prediction was measured as the correlation between the total genetic 313 

value (EGV, the random genetic effect from the first step regression model, not de-regressed) 314 

and the GEBVs.  We used 25 replications of a five-fold cross-validation scheme to obtain 315 

unbiased estimates of the prediction accuracies. The process of cross-validation used in this 316 

study was previously detailed by Wolfe et al. [13]. 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 
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 329 

 330 
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Results 332 

Describing the population 333 

We used the GBS marker dataset (~40K SNPs) to describe the LD patterns, population structure, 334 

and MAF distribution within a composite set of cassava varieties (Figure 1). After plotting the 335 

mean LD score (As in GCTA-LDS, [77]) of each variant, we noted a high level of LD heterogeneity 336 

across the entire cassava genome. Major LD peaks were not observed in centromeric regions, 337 

as would be expected with the common fall in recombination rate.  Some high LD clusters were 338 

observed, however, near to the telomeres (Figure 1a). High LD across chromosome 4 and at the 339 

end of chromosome 1 were consistent with two relatively recent introgressions from a wild 340 

cassava relative [54]. The unique LD pattern in these two chromosomes was evident after 341 

plotting a regular LD decay plot (Figure 1b). Principal component analysis (PCA) on the dosage 342 

marker matrix (Figure 1c) indicated that there is little genetic differentiation between the two 343 

populations merged for composite analysis in this study. Moreover, the percentage of variance 344 

explained by the first two PCs was only 8.95%. The allele frequency distribution was also similar 345 

between the two populations (Figure 1d). 346 

Imputation to whole genome sequence 347 

We compared two different methods to impute the GBS dataset to a whole-genome sequence. 348 

BEAGLE and IMPUTE2 methods have been challenged before regarding imputation accuracy and 349 

computational time, the results of which suggest that both approaches are sufficiently robust 350 

[78]. To select genetic markers that would “tag” candidate genes, we focused on the number 351 

and distribution of higher quality imputed SNPs (AR2/info > 0.3, MAF > 0.01) across the cassava 352 

genome. Using IMPUTE2 resulted in high-quality markers, more tagged genes (Figure 2a), and 353 

better marker distribution (Figure 2b, Figure S8) than BEAGLE. The total number of predicted 354 

genes in the current cassava assembly was 33,033. We tagged 32% of them using GBS markers, 355 

70% using the BEAGLE imputed dataset, and 91% when using IMPUTE2. Other quality control 356 

tests were performed on the IMPUTE2 dataset, including imputation accuracies per 357 

chromosomal segments, distribution of allele frequencies, and “info” quality scores (Figure S3-358 

S5). 359 

Impact of Imputation level on Genomic Prediction accuracies 360 

Prediction accuracies of a regular GBLUP model for three CBSD-related traits are shown in Figure 361 

3. Specific conclusions regarding the impact of different imputation levels on prediction 362 

accuracies are not possible, as there is not a common trend among the three traits.  We did 363 

note, however, that there was not a significant increase in prediction accuracy using different 364 
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imputation levels. Moreover, when evaluating Cassava Brown Streak Disease severity six months 365 

after planting (CBSD6), the accuracy using only GBS data was consistently higher than any of the 366 

imputation methods tested. We also compared the prediction accuracies using one subset of 367 

markers from IMPUTE2 that matched the position of the GBS markers (Impute2GBS) and 368 

another subset using only SNPs imputed with the highest reliability (AR2/info > 0.9, Impute290, 369 

n = 371,524). Again, the prediction accuracies resulting from these subsets were nearly identical 370 

to those obtained using the full GBS and IMPUTE2 dataset (Figure 3). 371 

Accounting for known QTLs 372 

Kayondo et al. [39] previously conducted a Genome Wide Association Study (GWAS) and 373 

identified two big effect QTLs for foliar CBSD severity using the same cassava population 374 

presented in this manuscript. The first identified QTL was very wide and located in the middle 375 

of chromosome 4. This QTL appeared to co-locate with a recent introgression from a wild 376 

cassava relative. The second QTL was located at the end of chromosome 11 (Fig. S7). 377 

This study sought to evaluate the relative importance of these QTLs for genomic prediction 378 

accuracy.  We first ran a genomic prediction GBLUP model which included two genomic random 379 

effects: the first built with markers from chromosome 4 and the second built with markers from 380 

chromosome 11. We compared the partial and total accuracies of this model with another two-381 

kernel GBLUP model built with two random chromosomes, excluding chromosomes 4 or 11 382 

(Figure 4). A clear difference in prediction accuracy was observed when chromosomes 383 

containing QTLs (blue) and random chromosomes (white) were compared. Since these QTLs 384 

were detected on foliar symptoms, we observed that the influence of chromosome 4 and 11 is 385 

higher in predictions of foliar phenotypes (CBSD6) than in necrosis on roots (CBSDR). 386 

Additionally, when we compared the total accuracy of the model including only the 387 

chromosomes with identified QTLs, we observed the prediction accuracy for CBSD6 was very 388 

close to the model calculated using all 18 cassava chromosomes. We then fit a model with three 389 

kernels (i.e. chromosome 4, 11 and the rest of the genome) to investigate if there was any 390 

additional variance beyond the chromosomes containing the important QTL (Figure S9). The 391 

total prediction accuracy increased slightly for each measured trait, but it did not reach the 392 

accuracy level obtained when all markers were used in a single kernel model. This result suggests 393 

that marker partitioning is performed at the cost of prediction accuracy. 394 

 395 
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Using Transcriptomics data  396 

Amuge et al. [37] profiled the response of two contrasting cassava genotypes to infection with 397 

UCBSV. RNA samples were collected across seven time points after inoculation by grafting with 398 

UCBSV and deep sequenced using the Illumina platform (Figure S6). Relative virus titer was 399 

quantified from the RNAseq libraries as the number of reads mapping to either CBSV or UCBSV 400 

genomes (Figure S10). Additionally, reads mapped to either of these genomes were de-novo 401 

assembled using Trinity [79] as a means of confirming the virus infecting the plant was only 402 

UCBSV and not CBSV (Figure S11). As previously demonstrated by Amuge et al., the 403 

transcriptional response of the two genotypes evaluated was radically different after UCBSV 404 

infection. While the tolerant cassava variety (‘Namikonga’) showed a strong response across 405 

most of the seven timepoints, the susceptible variety (‘Albert’) showed no transcriptional 406 

response between 24 hours and 8 days after infection (Figure 5, Table S5). Under the assumption 407 

that tagging and prioritizing SNPs close to genes contributing to the plant-virus interaction would 408 

increase prediction accuracies, we proceeded to explore different means of exploiting this 409 

dataset to locate these genes of interest.   410 

Differentially expressed genes 411 

The most direct way to use the transcriptome dataset was to apply a GFBLUP procedure using 412 

the SNPs inside each Differentially Expressed (DE) gene as genomic features. We ran this analysis 413 

for two traits (CBSD6, CBSDR) and compared prediction accuracies between each GFBLUP model 414 

and the regular GBLUP model using the whole genome sequence imputed dataset (WGI) (Figure 415 

6). In total, we ran eleven different GFBLUP models, including one comprised of DE genes across 416 

all time points (DE-all). While there were differences in the mean prediction accuracies between 417 

the models, none of them were significant.  418 

Genes having a significant interaction between genotype and inoculation status 419 

An alternative means of selecting genes of importance across all DE genes was to consider only 420 

those genes with a significant interaction with Genotype-by-Inoculation status (herein referred 421 

to as GxI genes). To accomplish this, a mixed model was fit for each gene: 422 

𝐸 ~ 𝑟𝑒𝑝𝑠 + 𝐺 ∗ 𝐼 ∗ 𝑇 + 𝑒 423 

Where E is expression in FPKM, reps encompasses the three replicates as a random effect and 424 

G * I * T describes the three-way, fixed effect interaction among inoculation status (I, infected 425 

or control), Genotype (G, susceptible or resistant) and the different time points (T). The p-values 426 

for each G * I interaction were extracted and corrected for multiple testing using a 5% FDR. Out 427 

of the total set of 33,033 genes in the cassava genome, 1,392 showed a significant GxI 428 
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interaction at 5% FDR and 292 at 1% FDR (Table S6). The genomic distribution of these genes 429 

appeared to be uniform (Figure 7a). When using GFBLUP, we noted that partitioning SNPs into 430 

two kernels based on whether they tagged GxI genes (at both 0.05 and 0.01 FDR thresholds) was 431 

not advantageous for prediction accuracies (Figure S12).   432 

Based on previous results demonstrating the importance of large-effect QTLs on chromosomes 433 

4 and 11, we partitioned the GxI SNPs into three kernels:  chromosome 4, chromosome 11 and 434 

the rest of the genome. In this model, only SNPs inside the significant GxI genes (5% FDR) were 435 

considered. This was in contrast to the GFBLUP approach, where a kernel with information from 436 

the rest of the genome was fit.  Thus, the number of SNPs used was much lower than the GFBLUP 437 

approach. The prediction accuracies using this three-kernel model were similar to those using 438 

the WGI dataset, despite using less than 2% of the SNPs (Figure 7b). To test that the GxI 439 

associated SNPs were relevant for prediction, we also ran a model using a different random set 440 

of SNPs during each of each of the 25 rounds of cross-validation.  These random SNPs were in 441 

approximately linkage equilibrium with the GxI-associated SNPs. The GxI-associated SNPs 442 

showed significantly better prediction accuracies than when random SNPs were used (Figure 443 

7b). Given the apparently good results using the three-kernel method, we fit the same model 444 

with an extra kernel to account for the rest of the genome and while we expected an additional 445 

boost in prediction accuracies, we did not observe an increase (Figure S13). Whether the rest of 446 

the genome SNPs has spurious associations that decrease prediction accuracies or if there is an 447 

implicit “cost” for partitioning the genome in a multiBLUP model, are hypotheses that were not 448 

tested in this manuscript. 449 

Co-expression modules 450 

We used Weighted Gene Correlation Network Analysis (WGCNA) [65,66] to identify correlated 451 

genes based on their expression patterns across the different timepoints. WGCNA allows the 452 

identification of modules of genes that are more correlated within each other than they are to 453 

genes outside the module [65]. This unsupervised method was used to identify modules of co-454 

expressed genes and test if any of these modules were more important or enriched in causal 455 

variants, the result of which would increase prediction accuracies for any of the CBSD related 456 

traits under a GFBLUP framework. 457 

Of the 33,033 total genes in the reference cassava genome, 5,574 passed an ad-hoc Coefficient 458 

of Variance filter (CV = 0.9) and were used in downstream analysis. From the remaining 5,574 459 

genes, 2,789 were assigned to 16 modules containing between 43 and 991 genes (Table S7). A 460 

total of 2,785 genes could not be assigned to any module (Grey module). Eigengenes for each 461 
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module were calculated and plotted in a heatmap depicting modules as rows and the 462 

timepoints, genotypes, and inoculation status as columns (Figure 7a). While some modules are 463 

noisy with a broad co-expression pattern across different timepoints and conditions, some of 464 

them are correlated at only one or two conditions (yellow, etan, and green). Other modules are 465 

dependent on time after infection, regardless of genotype or inoculation status (turquoise). 466 

Interestingly, two modules (black and cyan) grouped genes with ‘Namikonga’ and ‘Albert’ 467 

specific expression across all timepoints (Figure 7a). 468 

We then used the identified modules to fit a GFBLUP model for each module. The accuracies 469 

obtained are shown in Figure 7b. For CBSD severity six months after planting (CBSD6) and 470 

severity on roots (CBSDR), none of the GFBLUP models provided a significant advantage in 471 

prediction accuracy over the traditional GBLUP (WGI). For CBSD severity three months after 472 

planting (CBSD3), however, one of GFBLUP module model (red, 154 genes, 3,558 SNPs) obtained 473 

a prediction accuracy higher than WGI. Using WGCNA as a proxy to identify genomic features 474 

helped to marginally improve the genomic prediction accuracy for only one of the traits tested.  475 

Other biological data 476 

As a final step in this analysis, we incorporated all the available biological information, including 477 

large-effect QTL peaks, GxI genes, and previously identified immunity-related genes. The 478 

immunity-related genes included NBS-LRR genes[40], immunity-related genes as annotated by 479 

Soto et al. [41], and DE genes proposed to have a major role in the resistance response against 480 

joint UCBSV and CBSV infection in a single-point transcriptomics study (Table S3) [38].   481 

Multi-kernel GBLUP models were fit with SNPs tagging each biological information category; 482 

chromosome 11 large-effect QTL, chromosome 4 large-effect QTL, GxI significant genes, and 483 

immunity related genes (Fig 8). A small increase in prediction accuracy for each of the traits was 484 

obtained through various combinations of the information above. For CBSD3, a three-kernel 485 

model with the chromosome 11 large-effect QTL, tagged GxI genes, and genes present in the 486 

red WGCNA module increased accuracy by 1.7% (Fig 8a). For CBSD6, a four-kernel model using 487 

QTLs from both chromosome 11 and chromosome 4, tagged GxI genes, and the immunity-488 

related genes resulted in a 2.52% increase in prediction accuracy (Fig 8b). Finally, a three-kernel 489 

model considering only the chromosome 11 large-effect QTL, the immunity related genes, and 490 

the tagged GxI genes resulted in a prediction accuracy increase of 2.52% for roots phenotyped 491 

one year after planting (Fig 8c).   492 
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Discussion 493 

In this study, we explored the improvement of genomic prediction in cassava through the 494 

integration of transcriptomics data, the genetic architecture of CBSD, biological priors, and 495 

whole sequence variants. Our results provide insight on how incorporating biological 496 

information into prediction models can impact genomic prediction within this important staple 497 

crop. Also, we explored models which can be extended to its use on other sources of biological 498 

data such as regulatory elements, evolutionary conserved regions, chromatin accessibility 499 

assays, and eQTLs. 500 

SNP imputation to Whole-genome sequence 501 

Compared to the prediction accuracies obtained using GBS markers, imputed sequence data 502 

produced no advantage when applied to CBSD related traits. This behavior has been noted in 503 

other animal empirical studies, where marginal [80] or absent increases in prediction accuracy 504 

and reliability were observed [19,81–83]. Simulation studies, however, have reported significant 505 

gains in prediction accuracy under some circumstances (i.e., low MAF of the causal variants) 506 

[14–16]. As reviewed before [19], several reasons may account for this lack of increase in 507 

prediction accuracy when using imputed sequence data. Problems with the imputation method 508 

itself, small reference panels, and causal variants with low MAF may result in difficulties 509 

imputing sequence data. Additionally, many markers could result in models failing to put 510 

sufficient weight on the causal variants (i.e. a severe “p >> n” problem).  511 

In our study, an imputation reference panel of only 240 individuals was used to impute a dataset 512 

of 955 highly related individuals from NACRRI (Namulonge, Uganda). Additionally, the cassava 513 

genome has at least two major and recent introgressions from wild relatives [54] on 514 

chromosomes 1 and 4. Since wild cassava individuals are underrepresented in the reference 515 

panel [49] introgressed regions showed a significant drop in imputation accuracies (Fig S3). 516 

Moreover, the overall imputation accuracy in this dataset was significantly lower than when a 517 

larger and more diverse target panel was used. While these factors have affected the prediction 518 

accuracies, the purpose of using imputed sequence data in this study was to tag the maximum 519 

number of genes rather than just increase predictive accuracies by imputing to sequence level.  520 

That is, imputation was performed as a means of ensuring relevant genes could be tagged and 521 

used as additional information in the model. 522 

 523 
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Genetic Architecture of CBSD 524 

Genetic architecture of a trait is an important consideration when implementing different 525 

genomic prediction models. Genetic architecture can vary drastically from trait to trait but also 526 

from species to species. For example, in maize, most agronomic traits are controlled by many 527 

small effect loci.  This is in contrast to rice, where many agronomic traits, including grain yield, 528 

have large effect QTLs [84].  529 

Resistance to CBSD in cassava was historically considered to be a quantitative trait under the 530 

control of several contributing loci. However, large-effect QTLs were recently detected using 531 

association studies in a diverse population [39] and by traditional bi-parental QTL mapping 532 

[58,59]. In the present study, we showed that when genomic predictions were performed using 533 

only markers belonging to chromosomes containing the large-effect QTLs (i.e. chromosomes 4 534 

and 11), nearly the same prediction accuracies were obtained as when markers across the 535 

genome were used (Fig 4a). Since these QTLs were originally detected in leaves, it was no 536 

surprise that the prediction accuracies were not as high when the same models were used to 537 

predict CBSD severity on roots (Fig 4b). These data suggest an absence of correlation between 538 

root and shoot symptoms in cassava plants affected by CBSD. This phenomenon has been 539 

previously described; infected plants may show severe shoot symptoms and mild root necrosis 540 

or vice versa [85]. Moreover, the severity of symptoms has been demonstrated not to be 541 

correlated with virus titer, especially for resistant or tolerant varieties [85].  542 

Previous research has tackled the problem of incorporating genotype-phenotype associations 543 

to boost genomic prediction by either adding significant markers as fixed effects [86,87] or by 544 

weighting the Genomic Relationship Matrix (GRM) with marker association information [88,89]. 545 

While we did not focus on any of these methods, tracking known QTLs allowed us to utilize 546 

better the information obtained from the transcriptomics experiment.  547 

On using Transcriptomics to Aid Genomic Prediction 548 

Transcriptomics data has been used before as a source of biological priors for genomic 549 

prediction in cattle [25,28]. Like in the present study, Fang et al. [25] used transcriptomic regions 550 

responsive to Intra Mammary Infection (IMI) to fit a GFBLUP model that included a separate 551 

genomic effect of SNPs within DE genes. Similarly, MacLeod et al. used a novel Bayesian method 552 

(BayesRC), that allowed the incorporation of biological information by defining classes of 553 

variants likely to be enriched for causal mutations [28]. Both studies showed a minimal increase 554 

in prediction accuracies for within-breed predictions and a true benefit was observed only with 555 

across-breed predictions. 556 
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In this study, we analyzed existing transcriptomic data using three different approaches to 557 

explore multiple hypotheses related to the introgression of transcriptomics into genomic 558 

prediction models. The first approach exploited DE genes specific to each measured disease 559 

timepoint and cassava genotype (i.e DE genes six hours after infection in Namikonga) to fit a 560 

series of GFBLUP models. This approach explored whether any timepoint-genotype combination 561 

would be more enriched for causal variants and, thus, more useful for improving prediction 562 

accuracies. No increase in prediction accuracy was observed.  This result was expected as we did 563 

not expect the response of individual genotypes to be representative of the entire population. 564 

Further, there were a total of 9,379 DE genes found in at least at one time point; this is close to 565 

one-third of the entire predicted gene set in the cassava reference genome.  566 

To narrow the number of DE genes, we then hypothesized that genes exhibiting a significant 567 

statistical interaction between inoculation status (Control vs. Infected) and genotype 568 

(‘Namikonga’ vs. ‘Albert’) might be more relevant for CBSD related traits. Only 1,391 genes were 569 

significant to GxI (q < 0.05), and, while the multi-kernel GBLUP models performed better than 570 

when selecting the same number of random genes, the prediction accuracy remained the same 571 

as the full GBLUP model.  572 

Finally, we used WGCNA to infer modules of co-expressed genes within the RNAseq dataset. 573 

This method has been used in several organisms to identify biologically meaningful gene 574 

modules, and it has helped to generate useful insights into how genes interact under certain 575 

conditions [66,69,90–92]. We assumed that modules consisting of highly interconnected genes 576 

would be enriched in causal variants and promote an increase in prediction accuracy under a 577 

GFBLUP framework. Only one module for one trait (red, CBSD3), however, showed a marginal 578 

increase in prediction accuracy 579 

There are many reasons why we think the approaches using transcriptomics did not result in 580 

larger increases in prediction accuracy. First, the RNAseq data came from only two cassava 581 

varieties, and its transcriptome response may not be representative of the composite set used 582 

in this study. Secondly, samples were collected during the early (i.e., <54 days) response of the 583 

plant to the infection.  In contrast, the phenotypes were collected in the field three, six, and 584 

twelve months after planting. Thirdly, the plants were infected with only UCBSV (as confirmed 585 

by de-novo assembly of the viral reads, Fig S11), while under field conditions it is common to 586 

observe co-infection of CBSV and UCBSV [93]. Anjanappa et al. [38] previously showed that the 587 

response of cassava to a combined CBSV and UCBSV infection was significantly stronger in the 588 

susceptible variety than in the resistant variety. These results are in contrast to the current 589 
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study, where ‘Namikonga’ showed a stronger response when only infected by UCBSV. As such, 590 

we can infer that the transcription response of cassava plants infected only with UCBSV may not 591 

be representative of infected plants in the field. Fourth, Increasing the accuracy of predictions 592 

using closely related individuals with long-range LD might not be an easy task in future breeding 593 

efforts. Rather, genomic prediction methods that incorporate biological priors may be more 594 

beneficial in across-breed prediction, where the LD structure is disrupted [28,76,82]. Specifically, 595 

Fang et al. found only a small increase (3.2% to 3.9%) in prediction accuracies by using GFBLUP 596 

and transcriptomics data when predicting milk traits within Holstein cows; the same study 597 

observed a 164% gain in prediction accuracy when the prediction was performed across-breeds.   598 

Cassava Brown Streak Disease is currently present only in East and Southern Africa. Thus the 599 

Western African material cannot be evaluated for resistance to this disease because of the 600 

dangers of propagating the disease. In this scenario, a genomic selection model might be trained 601 

in the eastern African population(s) to predict resistance to CBSD in western germplasm. While 602 

these populations are not as divergent as cattle breeds, we expect that the LD structure between 603 

these two populations would be weaker and thus favor a model that uses prior biological 604 

information.  605 

Conclusions 606 

The Genomic Prediction approach using prior biological information and markers imputed to 607 

whole-genome sequence achieved only a marginal increase in the accuracy of prediction for 608 

CBSD related traits. We believe that additional functional genomics research together with 609 

bigger reference panels that would improve imputation accuracies and a more precise 610 

phenotyping platform are necessary to unlock the potential of biology-assisted prediction 611 

models. Moreover, we think that this kind of novel approaches would provide insights into the 612 

genetic mechanisms underlying quantitative traits. 613 

 614 

 615 

 616 

 617 

 618 
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B C D

A

Fig 1.- Describing the Breeding Population. a Local LD patterns across the 18 cassava chromosomes as
depicted by the mean LDscore of each marker. b LD decay plot, A random subset of all the r2 values of
SNPs closer than 15Mb were plotted. Chromosomes 1 and 4 were plotted separately to highlight the
distortion in their LD patterns due to the introgressions. c Principal component analysis using the SNP
marker matrix, the two breeding populations that were merged in this study are shown in different
colors. d Distribution of the reference allele frequencies between the two breeding populations.

A B

Fig 2.- Imputation to whole-genome sequence. a Percentage of genes “tagged” using different SNP
marker sets, the numbers inside the plots represents the number of markers. All markers considered
had a MAF higher than 1% and an imputation quality value AR2/info higher than 0.3 b Marker
distribution across chromosome 12, each bar represents a bin of 0.5Mb. The red colored bars
represents the “true” distribution of variability as reported in the cassava HAPMAP, in orange, the
distribution of the IMPUTE2 dataset (~5M markers) and in blue the Beagle dataset (~2M markers).
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Fig 3.- Impact of Imputation level on Genomic
Prediction Accuracies. Comparing prediction
accuracies for three traits; CBSD severity on
leaves 3 months after planting (CBSD3MAP), 6
months after panting (CBSD6MAP) and CBSD
severity on roots one year after planting
(CBSDR) when using GBS (42k SNPs), the
whole-genome sequence imputed datasets
using IMPUTE2 (~5M) and also prediction
accuracies for a subset of the IMPUTE2
markers matching the position of the GBS set
(Impute2GBS) and only marker with an “info”
imputation quality score higher than 0.9
(Impute290)

Fig 4.- Accounting for the effect of
previously reported QTLs. Comparing the
maximum accuracy using whole-genome
imputation (yellow) with two kernel GBLUP
model using chromosome 4 and 11 only
(blue) and random chromosomes excluding
11 and 4 (white) in each cross-validation
iteration. Partial accuracies are shown
under Chr4 , Chr11, K1 and K2. Full model
prediction accuracies are shown in “Total”.
*CBSD6MAP: Foliar symptoms, CBSDR:
Root symptoms.

Fig 5.- Transcriptional response to Infection
with UCBSV. The test for differentially
expressed genes was conducted at each
timepoint between the infected an control
plants using Cuffdiff. Genes considered to
be differentially expressed had a q-value <
0.01 (Benjamini-Hochberg correction for
multiple testing).
*h = hours after infection, d = days after
infection
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Fig 6.- Using DE genes for Genomic Prediction.
GFBLUP models (Two-kernel GBLUP) were
fitted. For each model the Genomic feature
kernel comprised SNPs inside the genes that
were DE at each time point for each genotype.
Three models for the susceptible DE genes
(A6h, A45d and A54d), seven for the tolerant
(N6h – N54d) and one for the combined DE
genes (DE.all) were performed. Boxplot were
the result of 25 replications of 5-fold cross-
validation.
*A = Albert, N = Namikonga, h = hours after
infection, d = days after infection
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Fig 7.- Filtering DE genes. a A linear mix model was used to calculate the genes that showed a significant
interaction between inoculation status and genotype. In the manhattan plot –log10 “q-values” (FDR
corrected p-values) for the G x I interaction term was plotted for the 18 cassava chromosomes. The blue
line is the threshold for 5% FDR and the red one for 1% FDR b Genomic predictions using three kernel
GBLUP models. In red, the partial prediction accuracies (Chr11, Chr4 and RG) and total accuracy using
only markers associated with significant GxI genes are compared with a three kernel model of random
SNPs in blue and the regular single kernel GBLUP prediction using all the markers in yellow.

Fig 8.- Co-expression network analysis. a Heatmap of eigengenes representing each co-expression
module as obtained by WGCNA. All timepoints for both genotypes including controls were included and
presented as columns. The 16 identified co-expression modules are presented in each row. The
eigengene values are a relative measure of expression levels of the genes in the module. b GFBLUP
predictions using the modules information. As in figure 6 the genes in each module were used to build a
GFBLUP model, one kernel using SNPs within each module genes and the other covering the rest of the
genome. Total prediction accuracies were plotted.
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Fig 9.- Combining sources of evidence. Four and three kernel GBLUP model
including markers surrounding previously reported QTLs (chr4 and chr11),
GxI genes found in this study, immunity related genes and the red WGCNA
module (blue). Partial and Total accuracies are compared with the regular
GBLUP model (yellow). A nominal increase in prediction accuracy of 1.7%,
2.52% and 2.5% was found for CBSD3, CBSD6 and CBSDR respectively.

RedGxI GxI GxI
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