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Abstract 

An  interplay  of experimental  and  computational methods  is  required to achieve  a 

comprehensive understanding  of protein-RNA  interactions.  Crosslinking  and 

immunoprecipitation (CLIP)  identifies  endogenous  interactions  by  sequencing  RNA 

fragments  that co-purify  with  a  selected RBP  under  stringent  conditions. Here  we 

focus  on  approaches for the  analysis  of resulting  data  and  appraise the  methods  for 

peak  calling, visualisation,  analysis  and  computational modelling  of protein-RNA 

binding sites. We advocate  a  combined  assessment  of cDNA  complexity and 

specificity  for data  quality control.  Moreover,  we  demonstrate the  value  of analysing 

sequence motif enrichment  in  peaks  assigned from CLIP  data,  and  of visualising 

RNA  maps,  which examine  the  positional  distribution  of peaks  around  regulated 

landmarks in  transcripts.  We use  these  to assess  how  variations in  CLIP  data 

quality,  and  in  different  peak  calling methods,  affect the  insights  into  regulatory 

mechanisms. We conclude  by  discussing  future  opportunities  for the  computational 

analysis of protein-RNA  interaction  experiments. 
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Introduction 

RNA  binding proteins  (RBPs)  are  key  orchestrators  of post-transcriptional RNA 

regulation. They  determine  the  fate of a  transcript  throughout  its life-cycle;  directing 

regulatory stages  including  splicing,  polyadenylation,  localisation,  translation,  stability 

and  degradation. Over a  thousand  human  RBPs  have  been annotated  and  identified 

by  mass  spectroscopy  studies  (1, 2) . RBPs  specify  their  RNA  binding sites  by 

recognising a  combination  of features,  including  RNA  sequence motifs, RNA 

modifications, RNA  structural  motifs, and  interactions with  additional  RBPs  that bind 

at nearby  loci  (3) . Each  transcript  interacts  with  many  different  RBPs  to assemble 

into  a  ribonucleoprotein complex  (RNP),  which  changes  as  the  RNA  passes  through 

the  various  regulatory  stages.  RNP  formation  depends on  the  abundance  of RNAs 

and  RBPs  in  each  cell  type  and  on  the  post-translational modifications  of these 

RBPs, and  is  sensitive to the  competition  between  multiple  factors for overlapping 

binding sites  (4) . 

 

Due  to the  combinatorial and  dynamic assembly  of RNPs,  it is  crucial  to identify  the 

protein-RNA interactions  that form within  cells.  Crosslinking  between  RNAs 

and  proteins can  be  achieved by  UV-C  irradiation  at 254  nm  due  to the 

photoreactivity of RNA  bases  (5) . This  has  been exploited  by  “UV  c ross linking  and 

immuno precipitation” (CLIP)  method  that relies  on  UV  light  to crosslink covalently 

proteins to RNAs  in  intact  cells  or  tissues,  followed by  purification  and  sequencing of 

RNA  fragments  that were  crosslinked to an  RBP-of-interest  (6) . Over the  last  15 

years,  many  variant  protocols of CLIP  have  been  developed,  and  in  combination with 

4 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208124doi: bioRxiv preprint 

https://paperpile.com/c/xhgC06/SHJ1Q+9NOD1
https://paperpile.com/c/xhgC06/p7cHN
https://paperpile.com/c/xhgC06/iQCzM
https://paperpile.com/c/xhgC06/DFpQI
https://paperpile.com/c/xhgC06/NAg8J
https://doi.org/10.1101/208124


high-throughput  sequencing,  they  have  led  to a  wealth of data,  encapsulating 

transcriptome-wide binding  profiles  of hundreds  of RBPs  in  multiple  species,  tissues 

and  cell  lines (7) . The  original  CLIP  and  the  derived variants  all  rely  on  sequencing, 

therefore  we  use  the  term ‘CLIP’  to refer  generically to protocols  that purify 

covalently crosslinked  protein-RNA  complexes  and  then  sequence the  bound  RNA 

fragments.  In contrast, we  use  the  term CLIP-seq  to refer  to the  protocol  that was 

used  by  the  first publication  employing  this  term, which  relied  on  readthrough  cDNAs 

for data  analysis  (8)  (Table  1, Supplementary  Table  1). 

 

Two  orthogonal  approaches  to the  analysis  of CLIP  data  differ  by  their  focus  either 

on  a  specific  RBP, or  on  the  interacting transcripts.  The  RBP-centric  approach aims 

to identify  the  RNA  sequence, structure  and  other  features  that are  in  common 

across  the  binding sites  of an  RBP  across  the  transcriptome,  in  order  to unravel the 

mechanisms underlying  the  specificity  of these  interactions. This  approach  also  aims 

to identify  functional relationships  between  the  bound  RNAs,  and  their  common 

regulatory principles.  For example,  the  earliest  CLIP  studies  of Nova  proteins 

demonstrated that most RNA  targets  encode  proteins  with  synaptic  functions, 

identified the  features  of clustered  YCAY  motifs that are  enriched  at the  endogenous 

binding sites, and  defined  the  RNA  map  that demonstrated  position-dependent 

activity  of Nova  at regulated  exons  and  polyadenylation sites  (6, 9, 10) . The 

RNA-centric approach,  on  the  other  hand,  examines the  binding  positions  of a  broad 

spectrum  of RBPs  on  a  specific  transcript  or  sets of transcripts.  This  approach 

requires integration  of CLIP  datasets  for multiple  RBPs, which  can  be  achieved by 

comparing available  CLIP  data  that has  been  published  by  multiple  research  groups, 
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and  especially the  eCLIP  data  produced as  part  of the  ENCODE  project  (11) . The 

results  of both  approaches need  to be  integrated  with  other  methods  to fully  unravel 

the  functions  and  mechanisms of action  of RNPs  (Box  1). 

 

Here,  we  review the  computational  and  modelling methods,  and  use  visualisation of 

enriched motifs and  RNA  maps  to examine how  the  use  of different  methods  impacts 

the  biological  insights  gained  from CLIP  data.  We start with  a  short  evaluation  of the 

experimental methods  from a  bioinformatic  perspective;  it is  necessary  to understand 

how  the  technical details  of various  CLIP  protocols  impact  the  specific  requirements 

for the  computational  approaches.  We then  proceed  through  the  primary  stages  of 

CLIP  data  analysis: i)  quality  control,  ii)  peak  calling, iii)  binding  site  modelling  and  iv) 

functional evaluation.  At each  stage,  we  explore  the  pertinent  issues  and  potential 

pitfalls,  through the  lens  of wanting  to elucidate  how  RBPs  recognise and  act on 

specific  transcripts.  In the  penultimate section,  we  broach what  will  likely  become  an 

important  avenue of study  in  the  near  future: the  integration  of CLIP  data  from 

different  RBPs. This  will  lay  the  foundations  for developing  an  understanding  of the 

complex network  of RBP-RNA  interactions. In concluding,  we  propose  a  set of 

standards as  a  framework  for CLIP  data  analysis. 
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Differences between  CLIP methods from the 

perspective  of data  analysis  

Despite the  many  variations  of CLIP, its core  principles  mostly  remain  the  same  (7) 

(Figure  1). The  covalent bond  that is  formed  upon  UV  crosslinking  allows  the  RNAs 

to be  fragmented  by  a  limited  concentration  of RNase  after lysis,  which  is  followed  by 

purification of the  RBP-of-interest  under  stringent  conditions. Usually,  an  antibody  is 

used  to immunoprecipitate a  specific  RBP, which  is  separated  on  SDS-PAGE and 

visualised in  complex  with  the  crosslinked  RNA  fragments.  The  complex  is  then 

excised from the  membrane  and  treated  with  proteinase K to remove  the  bulk  of the 

RBP, leaving  behind  a  short  polypeptide  at the  crosslink  site  and  releasing the  RNA 

fragments.  The  fragments  are  then  reverse  transcribed into  cDNAs,  and  the  resulting 

cDNA  library is  sequenced.  Initially,  CLIP  relied on  traditional  Sanger  sequencing  to 

identify  340  RNA  fragments  that provided the  first glimpse  into  the  binding  sites  of 

the  neuron-specific  Nova  proteins (6) , but  now  high-throughput  sequencing  enables 

us  to gain  a  more  comprehensive  view  across  the  transcriptome.  

Resolution  and  sensitivity 

From  the  perspective  of data  analysis,  CLIP  methods  can  be  divided into  three 

principal approaches  (Table  1, Figure  1). The  division relates  to the  effect on  reverse 

transcription of the  polypeptide  that remains  at the  crosslink  site  of fragmented 

RNAs.  This  can  result  in  cDNAs  that either:  i)  readthrough the  peptide  without  any 
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mutations;  ii)  readthrough the  peptide  but  introduce  a  mutation  at the  crosslink  site; 

or  iii)  truncate  at the  crosslink  site.  

 

The  original  CLIP  method  can  only  amplify  cDNAs  that fall  into  the  first two 

categories, because  both  adapters  that are  required  for cDNA  amplification  are 

ligated to the  RNA  fragments,  and  therefore  the  whole fragment  needs  to be  reverse 

transcribed along  with  its adapters.  This  method  employs UV-C  light  (254  nm)  for 

crosslinking, which  normally  leads  to only  a  minor  proportion of cDNAs  containing 

crosslink induced  mutations  (12) . Therefore,  binding sites  for CLIP  and  its derived 

methods  such  as  HITS-CLIP are  usually assigned  on  the  basis  of the  whole 

sequenced read  (6, 10) . Nevertheless,  mutations,  and  especially deletions  in  CLIP 

cDNAs  can  help to increase  the  resolution  of the  method  (13) . 

 

In PAR-CLIP,  cells  are  pre-incubated with  photoreactive  ribonucleosides  (usually 

4-thiouridine, 4SU),  which  enables  the  use  of UV-A  light  (365  nm)  for crosslinking 

(14) . Similar  to CLIP, PAR-CLIP  only  amplifies  cDNAs  that fall  into  the  first two 

categories, but  it increases  the  proportion  of cDNAs  with  mutations.  About  50%  of 

PAR-CLIP  cDNAs  normally contain  thymidine  to cytidine  transitions  at the  crosslink 

site, which  is  the  basis  for binding  site  assignment  by  most tools  developed  for 

PAR-CLIP  analysis (14) . However,  a  large  proportion  of PAR-CLIP  cDNAs  lacks 

transitions,  and  longer cDNAs  may  contain  more  than  one  transition,  and  thus  only  a 

subset  of cDNAs  can  be  used  for nucleotide-resolution studies  (14) . 
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iCLIP  was  developed to capture  the  third  category  of cDNAs  that truncate  at the 

crosslink site, in  addition  to the  first two  categories.  This  is  achieved  by  ligating  the 

second adapter  to the  cDNAs  rather  than  the  RNA  fragments  (15) . In truncated 

cDNAs,  the  adapter  is  ligated  exactly  at the  positions  of their  truncation.  It has  been 

estimated  that approximately 90%  of cDNAs  in  iCLIP  truncate  at the  crosslink site 

(12,  16) . Therefore,  the  nucleotide in  the  genome  immediately  5’  of the  aligned  iCLIP 

cDNAs  most often  corresponds  to the  crosslink  site. The  same  data  analysis  method 

applies to iCLIP  and  its more  recent  variants  that also  amplify  truncated  cDNAs, 

including irCLIP  and  eCLIP  (17,  18) . 

 

The  sensitivity  of all  CLIP  methods  is  driven to a  large  extent  by  this  choice  between 

the  three  principal approaches.  The  relative  crosslinking  efficiency  with  UV-C  or 

UV-A  differs  between  RBPs  (19) , and  this  affects the  relative  sensitivity  of CLIP 

versus  PAR-CLIP  methods.  Both  CLIP  and  PAR-CLIP  lead to the  loss  of cDNAs 

truncating at crosslink  sites, which  in  most cases  represent  ~90%  of the  total; 

therefore  it is  expected that iCLIP  increases  the  sensitivity  by  a  factor of ten. If UV-A 

crosslinking upon  4SU  preincubation  is  beneficial,  it can  be  combined  with  iCLIP  in 

the  variant  termed  4SU-iCLIP (16,  20) . As evident  from the  distribution  of raw 

crosslink sites  determined  for PTBP1 by  the  different  methods  around  its regulated 

exons,  sensitivity  can  vary  greatly  between currently  available data,  with  ~18%  of 

repressed exons  containing an  iCLIP  crosslink site  at the  peak  position  at 3’  splice 

site, compared  to 4%  containing  an  eCLIP  crosslink (Figure  3a).  This  difference is 

not  due  to the  choice of exons,  since  the  sensitivity  does  not  increase when  using 
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different  eCLIP  data  or  exons  defined by  RNA-seq  analysis  of knockout  cells 

(Supplementary  Figure  1). 

Specificity 

The  specificity  of CLIP  depends less  on  the  choice of the  three  principal  methods, 

and  more  on  the  stringency and  validation of the  steps  required  for purification  of the 

protein-RNA complex  of interest.  Many  RBPs  participate  in  stable  RNPs  that do  not 

dissociate even  under the  relatively  stringent  immunoprecipitation conditions  of the 

standard CLIP, especially  in  the  presence  of RNA  fragments  that could  help  to 

stabilise them. Co-purified  RBPs  can  have  different  RNA  specificities and  functions 

from the  RBP-of-interest,  and  therefore  ideally no  additional  RBPs  should  be 

co-purified to ensure  high  specificity.  A denaturing  condition  is  used  by  some  CLIP 

variants  to disrupt  interactions with  co-purified  RBPs, but  this  is  not  possible  when 

using antibodies  that recognise  the  natively  folded  state of endogenous  RBPs. 

 

Separation of complexes  by  SDS-PAGE and  membrane  transfer, followed  by  their 

visualisation, along  with  the  use  of appropriate  negative  controls,  is  thus  a  crucial 

quality control  step  for methods  that omit  a  denaturation  step. Greater  care  needs  to 

be  taken  when analysing  data  from methods  that neither  denature,  nor  visualise  the 

complexes, such  as  eCLIP  (17) , since  it cannot  be  assumed that the  sequenced 

reads  represent only  RNAs  in  contact  with  the  protein-of-interest. In these  cases, 

careful  computational quality  control  analyses, for example  with  the  use  of 

orthogonal data  and  RNA  maps,  should be  used  to examine specificity  on  a 

protein-by-protein  basis.  As evident  by  the  analysis  of PTBP1 RNA  splicing  maps 
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(Figure  3b),  the  specificity  of iCLIP  is  highest,  since  the  silenced exons  are  specific 

in  the  enrichment at 3’  splice  site, while  enhanced  exons  contain enrichment 

downstream of the  exons.  The  specificity  is  also  high for eCLIP  in  spite  of the  low 

sensitivity,  with  enrichment at silenced,  but  not  enhanced  exons.  However,  specificity 

is  low  for irCLIP,  where the  enrichment  at 3’  splice  site  for silenced  exons  is  only 

slightly larger  than  the  enhanced  exons. 

 

The  potential  for non-specific  signal  is  higher  for RBPs  with  low  abundance or  poor 

crosslinking efficiency.  Crosslinking  between  RNAs  and  proteins requires  close 

contacts  between  an  amino  acid  and  the  nucleobase. Moreover,  analyses of diverse 

CLIP  datasets  indicate that crosslinking  efficiency  of uridines  and  uridine-rich motifs 

is  highest (12,  16) , and  therefore  RBPs  that contain such  motifs in  their  binding site 

are  expected to crosslink  best  -  with  such  RBPs, especially  if they  are  abundant, 

non-specific signal  is  not  expected  to be  a  major  concern.  However, low-abundant  or 

poorly crosslinking  RBPs, which  likely  includes  many  non-canonical  or 

double-stranded  RNA  binding  proteins,  such  as  STAU1, may  require denaturing 

conditions to ensure  that the  isolated  RNA  fragments  are  specific  (21) . Taken 

together,  visualisation of protein-RNA  complexes  with  SDS-PAGE analysis  can 

validate the  specificity  of purification  across  a  broad  range  of RBPs  and  conditions, 

thus  simplifying  downstream  computational  analyses. 
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A considered  CLIP analysis strategy 

At its outset, CLIP  data  analysis  follows  a  similar  pipeline  to most next-generation 

sequencing, but  it diverges  for experimental  quality  assessment  and  the  subsequent 

determination and  functional integration  of the  identified  binding  sites  (Figure  1). We 

start by  noting  the  nuances  of read  alignment  that are  particular  to CLIP. We delve 

into  the  distinct  analytical issues  faced  on  account  of the  experimental choices,  by 

detailing the  CLIP  quality  measures  that are  necessary  to appraise  any  results.  We 

then  consider the  many  challenges  encountered  in  elucidating  binding  sites  from the 

aligned reads.  We end  by  looking at ways  to distill  the  properties  of these  sites, and 

to relate  them  to biological  functions. 

Read  alignment 

After standard  quality  assessment  of the  sequencing  run,  the  pipeline  turns  to read 

alignment. Comprehensive  benchmarking  of RNA-seq  read  aligners has  recently 

been undertaken  and  is  outside the  scope  of this  review  (22) . However,  there  are 

three  factors that should  be  considered  when  tailoring  this  step  to a  CLIP 

experiment. 

 

The  first decision  is  whether  to align  to the  transcriptome  or  the  genome.  The  main 

advantage of transcriptomic  over  genomic  alignment  is  increased  sensitivity,  with  the 

proviso that only  annotated  mature  transcripts  are  considered. However,  for the 

majority  of cases,  where there  is  usually  sufficient  experimental  sensitivity,  alignment 
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to the  genome  is  preferred.  This  ensures appropriate  assessment  of the  many  RBPs 

that bind  to pre-mRNA  transcripts,  in  introns  for example. Moreover,  the  use  of a 

splice-aware aligner  would  accommodate  those  that bind  to mature  mRNA 

transcripts. 

 

Second,  the  use  of unique molecular  identifiers  (UMIs)  in  iCLIP  and  later  methods 

accounts  for the  amplification biases  introduced  by  PCR,  but  to be  able  to 

deconvolve UMIs  for cDNAs  that map  to the  same  position,  it is  best  to use  uniquely 

aligned reads  only.  To maximise the  fraction  of reads  that can  be  aligned uniquely, 

the  originating  cDNA  needs  to be  sufficiently  long.  When  cDNA  lengths are  greater 

than  35  nucleotides, high  alignment  rates  can  be  achieved even  to common 

RBP-bound  repetitive  elements,  such  as  Alus (23,  24) . However,  if the  RBP  under 

study  has  a  preference for other  repetitive  elements,  such  as  microsatellite repeats 

or  snoRNA  (small  nucleolar  RNA)  clusters,  then  a  customised solution  may  be 

necessary.  One  option for these  cases  is  to align  reads  to a  consensus  repetitive 

sequence (11) . Another  is  to use  expectation-maximisation to assign  multi-mapped 

reads  (25) , but  this  approach means  that mapping  position  cannot  be  used  as  part  of 

the  procedure  to identify  PCR  duplicates. 

 

Third,  more  technically, it is  important  to fine-tune  some  of the  alignment  parameters 

to the  CLIP  method  that has  been  used.  Care  is  required over  the  choice  of number 

of mismatches  allowed: too  lax  a  setting  will align  reads  with  multiple sequencing 

errors.  These  may  subsequently be  identified  spuriously  as  originating  from different 

cDNAs  when collapsing  duplicates.  It will  also  affect the  sensitivity  and  specificity  of 
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the  mutation-based  methods.  Specifically  for the  truncation-based  methods,  it is 

important  to disable soft-clipping  to ensure  the  crosslink  site, reflected  in  the  start of 

the  read,  is  properly aligned. 

Quality control 

Thorough quality  assessment  is  imperative to understand  the  CLIP  experiment,  both 

for the  appropriate  assignment  of binding  sites  and  for integrating  with  other  data 

sources.  We propose  that measures  that evaluate  cDNA  complexity  and  specificity 

are  explored in  combination.  We have  applied  basic  quality assessments  of these 

two  measures  to representative  publically  available  data  for the  different  variants  of 

CLIP, which  provides  an  estimate  of the  variation  in  existing  data,  and  potentially 

helps set up  standards  for future  experiments  (Table  2, in  preparation). 

cDNA complexity 

cDNA  complexity informs  on  the  sensitivity  of the  CLIP  experiment. The  total  number 

of unique  cDNAs  gives  an  appreciation of the  dynamic  range  of RBP-RNA 

interactions that can  be  detected.  Complexity  reflects  a  number  of biological  and 

technical factors: the  abundance  and  crosslinking efficiency  of the  RBP, and  the 

efficiency  of immunoprecipitation, adapter  ligation  and  cDNA  library preparation. 

PCR  duplication, although  necessary  for the  method,  can  create  difficulties for 

monitoring library  complexity.  Amplification of cDNA  fragments  is  not  uniform,  but 

affected  by  sequence  content  and  length.  In the  original CLIP  protocols,  it is 

therefore  necessary to remove  the  duplicate  reads,  and  consider only  the  unique 

reads  to reliably count  the  cDNAs.  The  CLIP  Tool  Kit achieves  this  by  collapsing  the 
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identical reads  before  alignment (26) , but  ideally  reads  are  collapsed after alignment 

based on  identical  genomic  start position,  since  this  accounts  for read  variations that 

result  from sequencing  errors  (13) . 

 

The  current  gold-standard is  a  more  sophisticated  approach  that experimentally 

labels each  cDNA  as  it is  reverse  transcribed (15,  27) . This  is  done  by  introducing  a 

UMI, which  is  a  randomised  sequence  of nucleotides  (hence  also  known as  a 

random barcode  or  randomer),  into  the  reverse  transcription primer.  After PCR 

amplification, the  UMI  remains  as  a  hallmark  of unique  cDNAs.  iCount  and  other 

tools  developed for analysis  of iCLIP  data  use  UMIs  in  combination with  the  read 

start position  to count  the  unique  cDNAs  accurately,  and  thus  obtain reliable 

information about  cDNA  complexity and  enable quantitative  analysis  of crosslinking 

at individual  nucleotide  positions.  The  use  of UMIs  is  crucial  to overcome  the 

artefacts of PCR  amplification  and  thus  preserve the  quantitative  information  present 

in  the  cDNA  counts,  which is  particularly  important  in  quantifying binding  to 

high-affinity binding  sites, and  in  abundant RNAs. 

cDNA specificity 

Establishing cDNA  specificity  is  the  most difficult  evaluation, and  yet the  most 

important.  It is  mostly  dictated  by  the  purification  of the  RNA-RBP  complex,  hence 

the  importance  of optimising  this  process.  Ground-truth  is  often  not  known,  and  the 

appropriate measurement  may  vary  between  RBPs, on  account  of differing 

sequence and  structure  specificities. In practice,  often  only  circumspect  or  post-hoc 

approaches can  be  used. 
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The  percentage  of crosslink  sites  that occur  in  peaks  is  a  basic  measure of the 

capacity  of the  cDNA  library to identify  binding  sites  and  gives  some  clue  as  to 

specificity  (Table  2). Enrichment of RBP-specific,  binding-related  k -mers  within 

peaks,  compared to a  suitable  background  region,  also  provides some  reassurance. 

Enrichment of motifs (ascertained  using  alternative  methods,  such  as  RNAcompete 

(28) )  within clusters  of peaks  gives  another independent,  complementary 

assessment  of specificity.  However, these  last  two  will  only  work  for RBPs  that bind 

particular sequences  or  motifs; for those  that do  not, there  will  be  little  enrichment 

regardless. Finally,  the  integration of CLIP  results  with  orthogonal  data  provides  the 

best  measure  of specificity,  but  requires  the  availability  of such  data.  RNA  maps 

(detailed in  Box  1)  are  an  efficient  approach for visualising  crosslinking  around 

transcriptomic landmarks  that are  relevant  for the  function  of the  RBP: exon-intron 

junctions of regulated  exons,  for example,  for RBPs  involved  in  splicing. 

 

While  overlapping cDNA  starts are  a  measure  of potentially  high  specificity  of iCLIP 

data  for crosslink  clusters,  they  can  also  reflect  the  aforementioned sequence 

preferences of the  UV  crosslinking  reaction,  which needs  to be  taken  into  account. 

Moreover,  overlapping cDNA  ends  in  iCLIP  (and  both  sides  of cDNAs  in  HITS-CLIP 

and  PAR-CLIP)  reflect  the  preferences of the  RNases  used  for fragmentation  (29) . 

The  alignment  of cDNA  ends  can  lead to a  generic  misalignment  of the  starts of 

cDNAs  of different  lengths;  while this  was  initially  interpreted  as  possibly  indicating 

presence of readthrough  cDNAs  (30) , the  RNase  fragmentation  biases  were  found  to 

be  the  more  likely cause  (16) . The  alignment of cDNA  ends  correlates with  an 
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enrichment of k -mers  at cDNA  ends,  which is  a  useful  tool  to examine the  biases 

introduced by  RNA  fragmentation.  To avoid  such  biases,  optimised RNase 

fragmentation conditions  should  be  used  to produce a  broad  range  of cDNA  lengths, 

which ensures  that the  full  binding  sites  can  be  defined, which  is  particularly 

important  for long binding  sites  (16) . This  also  guarantees that the  peaks  identified 

by  overlapping  cDNA  clusters  are  a  true  measure of data  specificity,  rather  than  an 

artefact of inappropriate  RNase  fragmentation. 

Peak calling 

The  main  challenge of CLIP  data  analysis  is  related  to the  biological  context  of 

protein-RNA complexes.  Binding  cannot  be  classified into  simple  binary  categories  of 

specific  and  non-specific; instead  RBPs  bind  RNAs  with  a  range of affinities  and 

kinetics  (31) . Some  RBPs  associate with  RNA  polymerase and  transiently interact 

with  many  low-affinity sites  on  nascent  transcripts  before  finding a  high-affinity 

binding site, and  others  can  spread over  larger  regions  of RNA  after finding  a 

high-affinity sequence.  Many  assemble  on  RNAs  combinatorially as  part  of larger 

complexes. While  the  probability that an  RBP  will  crosslink  repetitively  to a  clustered 

set of crosslink  sites  is  generally  increased  at the  sites  with  high  affinity  and 

favourable binding  kinetics,  the  exact  threshold  for defining  functionally  relevant 

types  of crosslink  clusters  depends  on  many  factors, such  as: the  type  of RBP  under 

study, the  type  of bound  RNA,  the  function  under regulation,  and  the  binding position 

relative to other  regulatory  complexes.  Thus, there  are  no  absolute thresholds  that 

can  be  set to distinguish  low-affinity,  transient  binding from high-affinity  functional 

binding. This  challenge  could  become  insurmountable  if data  contain  many 
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non-specific sites  that do  not  represent  direct  interactions  of the  specific  RBP. It is 

thus  of paramount  importance  to maximise  the  specificity  of CLIP  data 

experimentally, since  this  can  ameliorate the  computational  analyses  needed  to 

identify  the  functionally relevant  binding  sites.  

 

Peak  calling is  the  first step  towards  identifying  the  RNA  sites  that are  highly 

occupied by  the  RBP; those  that are  most likely  of functional  significance.  The  basic 

approach searches  for the  pile-up  of aligned  reads  at specific  positions on 

transcripts.  In methods  such  as  ChIP-seq  and  RIP, which tend  to purify  large 

protein-protein complexes  as  well  as  free  DNA  or  RNA,  the  purpose  of this  step  is 

largely to isolate  the  signal  from the  inherent  background  noise  of the  techniques. 

CLIP  employs  many  unique  experimental  steps  to remove  such  noise,  including 

covalent crosslinking,  RNA  fragmentation,  stringent  purification and  visualisation of 

purified protein-RNA  complexes,  and  thus  in  a  fully  optimised experiment  the 

mapped reads  should almost  exclusively  correspond  to the  sites  of direct 

protein-RNA contacts. Therefore,  noise  from non-specific  background  should  not  be 

a  major  concern for CLIP  data  analyses.  As evidence  of the  high  specificity  of CLIP 

experiments, the  raw  whole  reads  from Nova  (Figure  2c)  and  PTBP1 HITS-CLIP 

(Figure  3a),  and  the  raw  crosslink positions  from PTBP1 iCLIP  (Figure  3a),  yield 

highly position-dependent  enrichment  on  RNA  splicing maps  . 

 

Many  peak  calling tools  have  been developed  (32) , some  specific  for particular CLIP 

protocols,  others  more  generally applicable  (detailed  in  Supplementary  Table  2). The 

large number  of peak  calling  tools,  which  often  come  with  adjustable parameters, 
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may  present  a  bewildering set of possibilities.  This  is  further  complicated  by  the 

different  strategies  in  identifying the  crosslink  sites  by  the  various  experimental 

protocols (Table  1, Supplementary  Table  1). Benchmarking  of tools  is  challenging, 

owing to the  differences  in  experimental  protocols,  and  our  limited understanding  of 

the  ground-truth  regarding  RNA  binding  sites  in  vivo  (33,  34) . Nevertheless, we 

attempt to demonstrate  the  impact  of the  different  CLIP  protocols  and  computational 

tools  through use  of the  RNA  maps,  which  combine  CLIP  with  orthogonal  functional 

data  to derive  an  estimate  of ground-truth  from the  perspective  that RNA  landmarks 

regulated by  an  RBP  should  contain  its nearby  RNA  binding sites  (Box  1). A 

comparison of peak  calling  by  three  tools  demonstrate that all  have  similar specificity 

when using  iCLIP  data  as  input,  with  iCount leading  to highest  sensitivity,  since  it 

detects  significant  crosslink  clusters  at the  peak  position at 3’  splice  sites  of 25%  of 

the  repressed  exons  (Figure  4). 

Challenge  1. What to  use  to  call  a  peak? 

The  first consideration  is  how  to use  a  read  to define a  peak.  This  differs  for the 

mutation-based  and  the  truncation-based CLIP  methods.  For mutation-based 

methods,  it is  important  to distinguish a  mutation  from confounders,  such  as 

sequencing errors  or  single  nucleotide  polymorphisms  or  somatic  mutations  in  cell 

lines.  Early  tools,  such  as  PARalyzer,  addressed this  by  setting  a  minimum  number 

of mutations  at a  site, or  by  limiting  the  number  of mismatches  permitted  during 

alignment (35) . While  a  simple and  effective  way  of reducing false  positives,  it has 

the  disadvantage  of also  reducing  the  sensitivity  of the  experiment.  To improve  this, 

PIPE-CLIP models  each  event  using a  binomial  distribution,  with  a  success  rate 
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calculated from the  read  coverage  (36) . As a  further  refinement,  wavClusteR  uses  a 

non-parametric, two-component  mixture  model  to distinguish  crosslink  induced 

mutations  from noise;  it integrates this  using  a  Bayesian  network  representation (37, 

38) . 

 

For truncation-based  methods,  this  seems  more  straightforward: the  nucleotide 

upstream  of the  start of the  read  is  the  crosslink  position  (which  we  refer  to as  the 

‘cDNA  start’) and  can  be  used  to call  peaks.  However, there  is  a  caveat.  For the  vast 

majority  of the  cDNAs,  reverse  transcription stops  at the  crosslink  site, but  it does 

still  read-through at times  (this  provides  the  signal  for the  readthrough-based 

methods).  In iCLIP  experiments of most RBPs, however,  over  90%  of cDNAs 

terminate  at the  crosslink site  (12) . Therefore,  as  discussed,  provided  there  are 

limited cDNA  end  constraints,  and  cDNA  sizes  cover  a  broad range  of lengths,  the 

use  of the  read  starts assigns  crosslink  sites  with  no  positional bias  (16) . Finally, 

4SU-iCLIP uses  4SU  for crosslinking  as  is  done  in  PAR-CLIP,  but  then  employs 

iCLIP  protocol to prepare  the  cDNA  library,  which raises  the  question whether 

mutations  (as  in  PAR-CLIP)  or  truncations (as  in  iCLIP)  should be  used.  Analysis of 

PTBP1 binding  motifs in  4SU-iCLIP  cDNAs  indicates  that truncations  report  a  more 

reliable estimate  of crosslink  sites  than  transitions  (16) . This  still  needs  to be 

evaluated for additional  RBPs. 

 

It is  important  to use  the  appropriate  marker  to call  peaks.  The  eCLIP  ‘narrowPeaks’ 

publically available  from the  ENCODE  consortium  were  defined using  an  algorithm 

that used  whole reads.  However,  such  use  of whole  reads  leads to misalignment  of 
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binding sites  and  loss  of resolution, as  is  evident  from PTBP1 motif analysis  (Figure 

2a).  This  can  be  solved by  the  use  of the  truncation-based  approach  used  by  iCount 

algorithm that defines  peaks  based on  the  starts of mapped  reads  (Figure  2b),  and  a 

similar approach  has  been  implemented  also  by  the  published eCLIP  study  (11) . In 

summary,  the  use  of whole  reads  is  appropriate for the  original  variants  of CLIP, 

mutations  can  be  used  as  alternative sources  for peak  calling, such  as  T-to-C 

mutations  in  PAR-CLIP,  while the  read  starts should  be  used  for iCLIP  and  other 

methods  that are  optimised for amplification  of truncated  cDNAs. 

Challenge  2. What is a  peak? 

The  next  problem  is  defining  what  constitutes  a  peak:  how  high and  how  wide does 

the  pile-up  of reads  need  to be?  The  former  provides  a  guide  as  to the  likelihood  of a 

locus  being a  true  binding  site, while  the  latter  considers  when  one  binding site 

should actually  be  considered  as  two  adjacent  ones.  This  is  of importance  as  some 

RBPs  have  narrow,  focussed  binding sites  (e.g. PTBP1), whereas  others  bind  more 

diffusely  across  a  transcript  (e.g. MATR3). 

Peak  height 

The  focus  of most tools  is  calculating  the  probability  of a  binding  site  not  belonging  to 

a  background  CLIP  read  distribution (33,  39) . Generally,  a  probability  distribution  is 

fitted to the  count  data;  differences  in  the  tools  arise  from the  probability distribution 

function  chosen to model  the  read  counts  and  the  generation of the  background.  
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The  majority  of available tools  use  variations on  a  negative  binomial  distribution.  This 

is  often  used  for count  data  as  it has  the  advantage of being  able  to account  for 

overdispersion (i.e. if the  variance  of data  is  greater  than  the  mean).  ASPeak  uses 

this  distribution  unmodified  (40) . Piranha  (41)  and  PIPE-CLIP (36)  use  a 

zero-truncated negative  binomial  distribution.  It has  been  shown  for a  range  of RBPs 

and  CLIP  methods  that this  zero-truncated negative  binomial  distribution  fits the 

count  data  better  than  simple negative  binomial,  or  Poisson  distributions  (41) . 

Piranha calculates  the  counts  in  user-defined bins  across  the  genome; an 

appropriate size  depends  on  the  RBP. A zero-truncated  negative  binomial 

distribution is  fitted to the  data;  bins  where  there  is  a  higher  read  count  than  would 

be  expected can  then  be  selected as  peaks,  using  a  P-value  threshold. 

 

The  iCount  tool  (15,  42) , developed  along  with  the  iCLIP  method,  avoids fitting  a 

specific  distribution, but  uses  permutation  analysis.  The  counts  are  randomly 

distributed a  pre-defined  number  of times  within  a  relevant  region  of interest  (such  as 

introns)  on  a  gene-by-gene basis  to generate  a  background.  Then,  the  comparison 

of the  observed  distribution  with  the  random  one  yields a  false  discovery  rate. The 

primary  disadvantage of this  method  is  that, in  order  to generate  meaningful  random 

distributions, an  annotation  is  needed  to provide  the  regions  of interest.  A similar 

approach is  used  by  the  CLIP  Tool  Kit (26)  and  Pyicoclip (43) . 

 

CLIPper  (44) , the  tool  of choice of the  ENCODE  consortium  (11) , combines  ideas 

from both  these  approaches. A false  discovery  rate, similar  to iCount,  is  calculated  in 

a  first pass.  However,  by  default  the  reads  are  randomly distributed  within  the  entire 
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gene,  rather  than  a  more  localised region  of interest  (8, 44) . (A user-defined  window 

around a  read  can  be  used  instead as  a  semi-experimental  option.)  In a  second 

pass,  similar  to Piranha,  peaks  that have  fewer  reads  than  would be  expected  across 

the  transcriptome  are  removed.  However, a  Poisson  distribution  is  used  rather  than 

the  zero-truncated  negative  binomial. 

 

A different  approach  is  used  by  PARalyzer for PAR-CLIP.  Here,  for a  given  position, 

a  kernel-density-based  classifier  estimates  a  Gaussian  density  profile for both  T-to-C 

mutations  (signal) and  also  for the  absence of T-to-C  mutations  (background).  Loci 

where the  signal  is  greater  than  the  background are  called  as  binding  sites. 

Peak  width 

Demarcating  the  width  of a  peak  is  of important  biological relevance.  As already 

noted,  different  types  of RBPs  have  differing binding  preferences.  Some  tools,  such 

as  PIPE-CLIP, cluster  adjacent  overlapping  reads  to assign  peak  width,  but  this 

strategy  lacks  biological validity  as  read  length is  more  dependent  on  technical 

factors, such  as  RNase  activity, than  on  RBP  binding  preferences.  

 

The  strategy  to discern  peak  width  from the  crosslink positions  usually  needs  to be 

adjusted to the  RBP  under  study. As a  result,  a  number  of tools  require  the  user  to 

set this  window,  or  clustering  size,  e.g. PARalyzer,  Piranha,  iCount.  However, prior 

knowledge of the  RBP  is  needed  to do  so  effectively.  In cases  where  it may  not  be 

available, comparing  peak  and  motif distributions (Figures  2a  and  b), or  RNA  maps 

with  different  settings  of clustering size  (Figure  2d,  3b,  4)  may  be  helpful. Our current 
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default  conditions rely  on  3  nucleotide clustering  windows  for preliminary  data 

exploration (Figure  2d),  but  crosslink sites  from wider  windows  can  be  included to 

incorporate various  types  of RNA  binding  (Figure  3b).  With this  approach  it is  evident 

that PTBP1 binding  at 3’  splice  sites  of repressed  exons  is  highly clustered,  and  thus 

the  sensitivity  at this  position remains  the  same  as  for raw  data,  while  sensitivity  at 

control  exons  drops  (comparing Figure  3a  and  3b).  As further  validation, this 

approach defines  interaction  sites  with  high  sensitivity  and  specificity  when using 

exons  defined either  by  microarray (Figure  3b)  or  RNA-seq data  (Figure  4). 

 

Other methods  utilise the  read  distribution to define  the  cluster  boundaries  on  a 

statistical  basis.  wavClusteR uses  a  coverage-based  algorithm  called  ‘mini-rank 

norm’  to identify  the  boundaries by  evaluating  all  putative  clusters  using a 

rank-based approach.  The  CLIP  Tool  Kit uses  a  ‘valley-seeking’  algorithm.  This  uses 

user-defined thresholds  based  on  the  heights  of local  maxima  within a  cluster  of 

peaks  and  the  intervening ‘valley’  read  coverage to delineate  adjacent  peaks.  Finally, 

CLIPper  uses  cubic  spline fitting  to fit a  curve  to the  peak,  and  defines  the 

boundaries by  excluding  points  on  the  curve  that exceed the  false  discovery  rate 

threshold. The  precise  margins  for fitting  the  curve  can  be  adjusted.  

 

Taken  together,  the  choice of the  peak  calling  tool  and  settings  for each  tool  can 

modify  the  sensitivity  and  specificity  of data,  thereby  affecting  the  conclusions that 

are  drawn (Figure  4). Thus, two  principles  can  be  used  to determine the  optimal 

approach for peak  calling:  settings  should  be  tailored  to the  biology  of the  RBP  under 
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study  and,  when performing  comparisons  between  data  sets, the  same  tool  and 

settings  should be  used. 

Challenge  3. How  to  account for the  variable  RNA abundance? 

The  read  count  is  not  a  direct  measure of RBP  affinity, or  indeed  even  the 

importance of a  binding  site. It can  be  influenced  by  other  factors, most notably  RNA 

abundance. This  varies  from gene  to gene,  and  so  the  count  of CLIP  cDNAs  within a 

transcript,  or  within  an  intron,  is  a  composite measure  of both  RBP  binding  affinity 

and  abundance of the  transcript  or  the  intron.  This  is  confirmed  by  the  correlation 

between CLIP  read  counts  and  RNA-seq read  counts  (41) . A negative control  lacking 

the  specific  antibody (usually  replaced  by  non-specific  IgG) is  usually  performed  as 

part  of CLIP  experiments,  but  due  to the  high  stringency  of the  immunoprecipitation 

conditions in  CLIP  experiments,  this  negative  control  normally contains  at least 

100-fold less  cDNAs  than  the  specific  experiments (15) . Thus, if CLIP  conditions  are 

well optimised,  the  cDNA  coverage  from negative  controls  is  too  shallow to be  used 

for correcting  for RNA  abundance. 

 

To some  extent, the  CLIP  data  itself  can  be  used  to correct  for the  abundance  of the 

different  transcript  regions. Most available  data  indicate  that RBPs  tend  to crosslink 

quite  broadly across  their  bound transcripts,  such  that in  addition  to the  high-affinity 

binding sites  that contain  clustered  crosslinking,  many  additional  dispersed  crosslink 

sites  are  present  in  the  same  transcripts,  indicative of a  low-affinity,  ‘scanning’  mode 

of binding.  The  density  of such  broadly dispersed  crosslinking  depends  on  the 

abundance of transcript  regions  more  than  on  the  presence of specific  binding 
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motifs. Thus, the  randomisation  and  permutation approach  adopted  by  peak  callers 

such  as  iCount,  which uses  the  total  number  of CLIP  cDNAs  in  each  region to model 

the  background  distribution,  implicitly  models  the  variable  RNA  abundance between 

transcript  regions. 

 

In order  to control  for the  impact  of transcript  abundance, additional  data  can  be 

obtained in  parallel  with  the  CLIP  experiment.  RNA-seq  data  is  the  most commonly 

produced, and  it has  been used  to normalise  CLIP  coverage  within  transcripts  (41) . 

Most peak  calling algorithms  do  not  include  the  ability  to include  RNA-seq  or  other 

independent count-based  data  for normalisation,  but  Piranha  and  ASpeak  are  two 

exceptions. Piranha  uses  it as  a  covariate  in  the  zero-truncated  negative  binomial 

regression model  for the  counts,  whereas  ASpeak  uses  it to calculate  an 

expression-sensitive background. 

 

There  are  limitations of using  RNA-seq.  Most commonly,  polyadenylated or  total 

RNA-seq data  is  used.  However, many,  if not  most RBPs  strongly  bind  to pre-mRNA 

transcripts,  especially  to introns,  which  are  not  well  covered  by  RNA-seq.  In this 

case,  it has  been  shown  that normalising  the  CLIP  data  using  NET-seq,  which 

captures  nascent  elongating transcripts  including  pre-mRNA,  improves recovery  of 

binding motifs (45) . An  alternative  approach  is  the  generation  of input  libraries 

without  immunoprecipitation (46) . Here,  the  total  lysate  after treatment  with  RNase  is 

loaded on  the  gel  and  transferred  to the  membrane. The  RNAs  that crosslink  to all 

RBPs  present  in  a  selected section  of the  membrane  are  isolated  and  their  cDNA 

library prepared  in  the  same  way  as  for the  specific  immunoprecipitated RBP. A 
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similar approach  has  been  employed  for analysis  of eCLIP  data,  where  an 

enrichment score  is  calculated  by  dividing  the  cDNA  count  of a  specific  RBP  at given 

site  by  the  size-matched  input  (SMI) read  count  (17) . 

 

Furthermore,  it is  not  sufficient  just  to consider  read  counts  per  transcript  for data 

normalisation. The  distribution  of the  reads  along  a  transcript  is  also  a  factor. It has 

been observed  with  total  RNA-seq  that the  abundance  of reads  along  the  long 

introns  in  the  brain is  variable,  which  results  in  a  “saw-tooth”  pattern  (47) ; 

interestingly, the  long  introns  (especially introns  longer than  100  kb)  are  strongly 

enriched in  genes  that are  specifically  expressed  in  the  brain  (48) . Transcription  of 

introns  longer than  100  kb  is  expected to take  over  30  minutes,  which is  much  longer 

than  the  time  needed for any  nuclear  RBPs  to assemble  on  introns  -  regardless of 

whether this  binding  is  co-transcriptional  or  not. It is  this  long  delay  that leads  to 

increased RBP  binding  to 5’  regions  compared  to 3’  regions  of introns  and  the 

resulting saw-tooth  pattern.  Thus, it is  expected  that most nuclear  RBPs  should  have 

the  saw-tooth  binding pattern  on  long introns  expressed in  the  brain  -  the  possible 

exceptions being  the  RBPs  that bind  introns  only  after splicing is  completed,  such  as 

the  branch  point  binding protein  that binds  to spliced  intron  lariats.  Indeed,  a  study 

using iCLIP  reported  that most nuclear  RBPs  that bind  to long  introns  in  the  brain 

show  the  “saw-tooth”  pattern,  including FUS, TDP-43  and  U2AF2  (49) . However, a 

study  using  CLIP-seq  (i.e. the  original  CLIP  method)  reported that only  FUS, but  not 

TDP-43  has  such  pattern,  which was  the  basis  for concluding that FUS binds  via  a 

co-transcriptional deposition  (50) .  
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The  difference  between  conclusions  reached  by  iCLIP  (49)  and  CLIP-seq  (50)  might 

reflect  the  differences  in  the  quantitative  nature  of the  two  methods.  Overlapping 

cDNAs  that map  to the  same  position on  transcripts  are  much  more  common  for 

TDP-43  than  FUS, because  the  binding  pattern  of FUS is  more  broadly  dispersed 

across  introns.  Due  to its use  of UMIs, iCLIP  can  quantify  cDNAs  that map  to the 

same  genomic locations,  while  the  quantitative  analysis  of binding  patterns  across 

introns  might  be  affected  by  PCR  amplification artefacts in  CLIP-seq.  While  the 

reasons for the  observed  differences  remain  to be  further  examined,  it is  clear  that 

technical differences  can  affect the  biological  conclusions  drawn  from CLIP  data,  and 

thus  data  quality analyses  are  needed  to aid  its interpretation.  Moreover,  methods  to 

normalise the  data  not  only  by  the  variable abundance  of RNAs  as  a  whole,  but  also 

by  variable  abundance  between  exons  and  introns,  between different  introns,  and 

across  long introns,  are  necessary to allow  a  more  reliable  interpretation  of the 

binding profiles. 

 

Finally,  an  important  consideration for data  analysis  is  that most RBPs  are  enriched 

in  specific  cellular compartment,  where  the  abundance  of available  RNAs  is  likely  to 

be  different  from that seen  in  RNA-seq or  size-matched  input  libraries. As our 

appreciation of the  RBP  localisations  in  subcellular  compartments  grows,  with 

techniques that fractionate  the  cell  before  performing CLIP  (51,  52) , it will  be 

valuable to produce  SMI data  also  for these  compartments,  thus  controlling  for the 

compartmental variations  in  RNA  abundance. 
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Challenge  4: How  to  account for crosslinking  biases? 

It is  well-established  that there  are  inherent  biases  in  the  UV  crosslinking  reaction, 

with  preferential crosslinking  between  certain  peptides and  certain  nucleotides. UV-C 

induced crosslinking,  as  used  in  the  truncation-based methods,  occurs 

predominantly at uridines  (12) . Furthermore,  analysis  of the  SMI controls  from eCLIP 

experiments identified  ten  generically  enriched  tetramers  (16) . These  generic  motifs 

were  enriched at cDNA  starts of eCLIP  and  iCLIP  data  of multiple  RBPs, indicating 

that they  might  reflect  increased  efficiency  of crosslinking,  rather  than  simply  the 

presence of a  few  dominating  RBPs  in  these  different  experiments. All  the  generic 

motifs have  a  high uridine  content,  which  is  consistent  with  uridine enrichment  that is 

seen  in  iCLIP  when using  UV-C  for crosslinking  (12) , but  not  when  crosslinking  is 

induced by  a  mutant  RNA  methylase  in  m5C-miCLIP  (53) . 

 

The  SMI control  can  be  used  to account  for these  biases as  well  as  normalising  for 

RNA  abundance. However,  it is  not  yet clear  whether  the  normalisation  process  is 

sufficient,  or  whether  peaks  that overlap  with  those  found  in  the  SMI control  should 

be  subtracted.  PureCLIP  is  one  tool  currently  in  development that uses  a  statistical 

framework  to address this  particular  bias  (54) . It uses  a  hidden  Markov  model 

framework  to incorporate experimental  biases  into  the  peak  calling process.  It learns 

crosslink motifs from the  SMI control  data  for an  experiment  and  incorporates this 

into  the  emission probability  of the  ‘crosslink’  state. In this  way,  regions  that 

correspond both  to peaks  and  to generic motifs can  be  excluded  to reduce  the 

sequence artefacts that might  arise  from crosslinking  preferences.  However,  this 
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approach should  be  applied  with  care,  since  the  binding preferences  of many  RBPs 

may  include  the  generic  motifs; for example,  proteins  such  as  PTBP1 preferentially 

bind to UC-rich  motifs, and  therefore  the  generic motifs are  more  strongly  enriched at 

crosslink sites  in  PTBP1 iCLIP  data  (16) . 

Challenge  5: How  reproducible  is the  data? 

As ever,  CLIP  experiments  should  be  replicated  to ensure  the  robustness  of the  data 

and  the  resultant  biological conclusions.  The  overall  reproducibility  can  be  assessed 

to some  extent  by  the  correlation  of number  of crosslinks  per  peak.  However, few 

tools  explicitly leverage  data  across  replicates in  peak  calling. One  currently  being 

developed, omniCLIP,  aims  to do  so, in  addition to modelling  a  number  of 

confounding factors, including  RNA  abundance (55) .  

 

There  are  two  ways  to use  replicates; the  choice  depends  upon  the  quality  of the 

experiment, and  the  desired balance  between  sensitivity  and  specificity.  If the 

sensitivity  of the  experiment is  a  concern,  biological replicates  can  be  merged before 

peak  calling to boost  it. This  is  at a  cost to the  specificity  of the  results.  To offset this 

to some  extent, but  still  increase  sensitivity,  an  alternative is  to peak  call  on  each 

replicate separately,  to improve  the  signal-to-noise  ratio,  and  then  take  the  union of 

peaks  from the  replicates to maximise  sensitivity.  Corroborative  data  would  be 

needed, of course,  to validate  any  resultant  findings. 

 

However, if specificity  is  of greater  importance, then  after peak  calling on  each 

replicate separately,  the  intersect  of peaks  can  be  used.  Early  studies  took  this  route 
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to reduce  the  chance  of peaks  arising  as  an  artefact of PCR  duplication  (10) . Now 

that the  use  of UMIs  is  well-established,  replicate  analysis  is  no  longer  necessary  to 

avoid PCR  artefacts. Nevertheless,  it does  engender  greatest  confidence  in  the  set 

of putative  binding sites, provided  that the  sensitivity  of each  replicate is  sufficient  to 

allow reliable  peak  calling within  both  the  highly  and  lowly abundant  RNAs.  The 

ENCODE  consortium have  refined this  approach  by  using  the  irreproducible 

discovery rate  (56)  originally  implemented  for ChIP-seq  data  to identify  reproducible 

peaks  across  replicates using  a  statistical  threshold  (17) . Given  the  great  variation in 

RNA  abundance levels,  it remains  to be  tested  if this  approach  introduces  any  bias 

for the  highly  abundant  RNAs. 

Modelling  binding  sites and  the  “false-negative” problem 

Peak  calling identifies  putative  binding sites, minimising  the  false  positive  rate  of the 

underlying experimental  data.  There  are  many  tools  for examination of these  results 

(Supplementary  Table  3). Further  simple  analysis  can  reveal  basic  biological 

information about  the  RBP-RNA  interaction: relationships  with  transcript  regions, or 

gene sets and  ontologies.  However,  to gain  a  fuller  understanding, more  complex 

characterisation is  required.  CLIP-methods  have  an  intrinsic biological  and 

computational limitation:  they  can  only  generate data  about  binding sites  on 

expressed transcripts  and  in  regions that are  mappable.  Furthermore,  these  data  are 

restricted  by  the  sensitivity  of the  experiment, as  already  discussed.  This  is  termed 

the  “false-negative”  problem.  To generalise  the  findings  beyond  the  cell  or  tissue  or 

biological state in  which  the  experiment  was  performed,  or  indeed beyond  the 
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limitations imposed  by  the  its quality,  more  complex characterisation  is  required.  This 

starts with  basic  motif finding,  but  extends  to computational  modelling. 

Sequence  motif finding 

The  putative  binding sites  can  be  used  to learn about  the  sequence preferences  of 

the  RBP  under  study. Motif finding  tools,  such  as  DREME  (Discriminative Regular 

Expression Motif Elicitation)  (57)  and  HOMER  (Hypergeometric Optimisation  of Motif 

Enrichment) (58) , generally  work  by  comparing  a  positive  (bound)  and  negative 

(background) set of sequences  and  assessing the  enrichment  of motifs statistically 

(Fisher’s  exact  test for DREME,  a  hypergeometric  test for HOMER)  to generate 

position weight  matrices. 

 

The  motif recognition  domain  may  not  be  the  RNA  binding domain  in  the  protein, 

hence on  the  transcript,  the  motif may  not  be  at the  binding  site, but  adjacent  to it. 

So, for the  positive  sequence  a  pre-defined  window  around  the  putative  binding site 

should be  used.  Care  needs to be  taken  with  the  selection of the  background 

sequences as  this  has  a  large  influence  over  the  statistical  assessment  of the 

enrichment. To maximise  both  sensitivity  and  specificity,  an  appropriate set of 

sequences should  be  chosen  based  on  available  knowledge  of the  RBP. This  could 

be  designed in  silico  (59) , but  it is  probably  more  straightforward  to select  relevant 

genomic sequences  informed  by  the  dataset.  For instance,  if investigating  an  RBP 

involved in  splicing,  such  as  PTBP1, with  the  putative  binding  sites  highlighting  a 

preference for intronic  binding  just  upstream  of the  intron-exon  boundary,  a  suitable 

background would  be  the  unbound  deep  intronic  regions  of the  targeted  genes. 
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Easier  options such  as  shuffling  the  positive  sequences  (DREME)  or  generating a 

random sequence  of nucleotides  (HOMER),  should  be  used  only  as  a  second-option. 

Shuffling will  reduce  the  sensitivity  for the  detection  of short  motifs. A random 

sequence will  reduce  the  specificity,  as  spurious  motifs may  be  called  significant  as 

the  true  distribution  of nucleotides  in  the  genome  is  not  random.  The  majority  of 

these  tools  were  designed for transcription  factors and  ChIP-seq  data.  Often, 

however, RNA  motifs are  shorter  and  more  degenerate than  their  DNA  counterparts. 

Recently,  in  kpLogo,  a  more  customised  tool  has  been developed  to look  for shorter 

sequence motifs, and  also  consider positional  information  (60) . This  may  prove  to be 

more  useful  for CLIP  data. 

 

Sequence motifs generated  from CLIP  data  can  be  used  to predict  possible binding 

sites, in  a  genomic  sequence  of interest,  using  tools  such  as  FIMO (Find  Individual 

Motif Occurrences)  (61) . They  can  also  be  compared with  those  generated from in 

vitro  experiments,  such  as  RNAcompete  (28)  or  RNA  Bind-N-Seq (62,  63) , to 

corroborate the  specificity  of the  CLIP  experiment.  Motifs are  known  for only  ~15%  of 

RBPs  (28) , however,  and  poor  experimental specificity  should not  be  conflated  with  a 

lack  of sequence  specificity. 

 

Although less  well  understood,  it is  known  that structural  context, in  addition  to 

sequence preference,  plays  a  role  in  RBP  binding preferences  (64–67) . This  is  likely 

one  of the  reasons for a  lack  of sequence  specificity.  It should  therefore  be 

considered when  predicting  binding  sites. However,  it is  difficult  to incorporate 

adequately either  the  complexity of RNA  structure, or  the  interdependence  between 
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sequence and  structure, into  motif discovery  tools,  despite  attempts to do  so  in  tools 

such  as  Zagros  (67) , MEMERIS (66)  and  RNAcontext  (68) . Recent  programs have 

been more  successful,  at least  in  incorporating the  interdependence,  by  using  a 

hidden Markov  model  (ssHMM)  (69) , but  computational  modelling  of binding  sites  is 

ideally placed  to integrate  multiple  related  features,  as  discussed  next. 

Computational  binding  site  modelling 

GraphProt  was  the  first tool  to use  machine  learning  methods  to incorporate 

sequence and  structure  into  the  analysis of CLIP  data  (70) . The  features  are 

encoded using  a  graph  kernel  approach,  and  a  support  vector  machine is  used  to 

build the  model,  treated  essentially as  a  classification  task. Its utility  in  addressing 

the  “false-negative”  problem  has  been  demonstrated:  peaks  not  detected  from the 

raw  signal on  account  of being located  in  a  poor  mappability region  were  predicted 

using GraphProt,  and  furthermore,  90%  have  been experimentally  validated  (33) . 

More  advanced machine  learning  methods,  such  as  deep boosting  (DeBooster,  (71) ) 

have  helped to derive  more  accurate  predictions using  multiple  binding  site  features. 

 

Ideally,  in  vivo  experimental data  elucidating  RNA  structure  would  be  used  as  inputs 

to these  models.  Despite the  great  advances  that have  been  made  recently  with  the 

development of icSHAPE  (72) , DMS-seq  (73) , DMS-MaPseq (74)  and  structure-seq 

(75,  76)  identifying paired  or  unpaired  nucleotides;  and  of hiCLIP  (21) , PARIS (77) , 

LIGR-seq  (78)  and  SPLASH  (79)  identifying RNA  duplexes, these  data  are  not  yet 

comprehensive enough  to use  for modelling.  Hence,  computational predictions,  often 

using thermodynamic  free  energy  minimisation,  must be  used  instead despite  their 
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fallibility (80,  81) . Although  SHAPE  data  can  be  incorporated into  these  predictions 

(82) , their  inherent limitations  should  be  borne  in  mind  when interpreting  RBP-RNA 

interaction preferences. 

 

RNA  sequence and  structure  is  not  the  only  variable that drives  RBP-RNA 

interactions. Other factors, such  as  cooperative  binding  and  position in  the  gene 

relative to exons  and  other  features  also  play  a  role  (83) . These  parameters can  be 

included into  both  unsupervised and  supervised models.  iONMF  uses 

orthogonality-regularised  non-negative  matrix  factorisation  to identify  factors 

associated with  RBP  binding  and  estimate  the  importance of their  contribution  (83) . 

Alternative machine  learning  methods,  such  as  iDeep and  iDeepS, which  use  neural 

networks,  have  slightly improved  these  predictions  (84,  85) . 

 

Understanding  RBP-RNA interactions 

Integrative  analysis of CLIP data  across RBPs 

As increasing  numbers  of CLIP  datasets  are  produced  for an  ever-widening  range  of 

RBPs, analysis  naturally  turns  to exploring  the  RNA  interactions  of a  given  RBP  in 

the  context  of all  the  others.  Several  studies  have  already exploited  CLIP  data  to 

identify  co-regulatory interactions,  such  as  the  competition  between  hnRNP  C  and 

U2AF65  in  controlling Alu  exonsation  (23) ; and  the  interplay between  PTBP1 and 

MATR3  in  co-regulating alternative  splicing  (86) . Databases  such  as  DoRiNA  2.0 

(87)  and  POSTAR (88)  have  been set up  to help.  DoRiNA  2.0  uploads  RBP  binding 
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sites  as  published.  This  places  a  severe  limitation on  the  comparisons  that can  be 

meaningfully undertaken.  As already  demonstrated,  both  the  use  of different  CLIP 

techniques and  different  CLIP  peak  callers,  have  a  significant impact  upon  the 

number,  location and  size  of binding sites  that are  discovered.  POSTAR reanalyses 

all  the  raw  data  using a  different  peak  caller for each  kind  of CLIP  variant. 

Non-negative matrix  factorisation  can  then  be  used  to group together  RBPs  that bind 

to the  same  sites  to explore  co-operativity  (83,  89) . This  does  enable more  reliable 

comparison across  experiments,  but  it is  best  to avoid  comparing  RBPs  for which 

different  peak  calling tools  were  used,  or  different  types  of CLIP  methods,  since  this 

could result  in  differences that are  of technical  nature  (89) . Ideally,  if a  comparison is 

being undertaken  using  publically  available  data,  the  approach  taken  by  POSTAR 

should be  bolstered  by  first assessing  whether  the  quality  of the  experiment  is 

sufficient  even  to proceed with  a  comparison,  and  second by  using  the  same  peak 

calling procedure  for all  the  RBPs  that are  part  of the  same  comparison.  An 

alternative approach  has  been  to use  matrix  factorisation  directly  on  the  crosslink 

sites  as  input,  thus  combining binding  site  prediction  with  integration  of data  across 

RBPs  (83) . 

Integrative  analysis of CLIP with  orthogonal  functional  data 

RNA  binding profiles  need  to be  integrated  with  orthogonal  data  to gain  functional 

insight into  the  role  of a  given RBP-RNA  interaction. Throughout  this  review,  we 

have  used  RNA  maps  to demonstrate analytical  considerations.  However,  they  are 

also  a  powerful tool  for studying  the  functions  of these  interactions, and 

understanding  the  position-dependent  mechanisms  behind  these  functions  (Box  1) 
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(90) . Integration  with  non-sequencing  data,  such  as  analysis  of RNA  specificity  with 

RNA  Bind-N-Seq, or  RBP  subcellular  localisation,  can  also  provide new  mechanistic 

hypotheses, such  as  the  potential  role  of DHX30  in  mitochondrial  transcription 

termination (11) .  

iCLIP, [4S]U-CLIP, [w]eCLIP 

We are  in  an  era  of integrative genomics.  Fusing  insights gleaned  from CLIP  data  of 

multiple RBPs  with  orthogonal  genomic  and  non-genomic approaches  will  be  the 

cornerstone for further  studies  of the  RBP-RNA  interaction networks.  In order  to 

avoid being  misled  in  this  unifying  vision,  it is  crucial  to attend  to the  minutiae  of each 

data  set. Here,  we  have  considered the  effects of the  experimental  choices  on  the 

sensitivity  and  specificity  of CLIP  data.  Appreciating these  limitations  is  necessary  to 

adapt  the  computational analyses  appropriately.  We have  discussed  the  need  to 

examine sensitivity  and  specificity  of data  in  combination in  order  to give  credence to 

the  biological  conclusions  drawn.  A unique  feature  of CLIP  (when  compared  with 

methods  such  as  ChIP  or  RIP) is  its capacity  to experimentally assess  specificity  via 

visualisation of the  purified  RBP-RNA  complexes, which  also  serves  to check  that 

RNase fragmentation  conditions  are  appropriate.  Moreover,  computational quality 

controls  can  be  performed by  combining  CLIP  analysis  with  mechanistic  (sequence 

motif) or  functional  data  (RNA  maps)  regarding the  RBP  under  investigation. 

 

Several key  steps  can  ensure  robust  assignment  of binding  sites  from CLIP  data. 

First, peak  calling  is  performed  to distinguish  high  occupancy  sites  from the  more 
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dispersed binding  that is  less  likely  to be  of functional  significance.  Using  cDNA 

starts in  truncation-based  methods  to identify  the  crosslink position  is  crucial  to 

maintain the  single-nucleotide  resolution  in  the  peak  calling step. Second,  the  peaks 

require normalising  for RNA  abundance  and  assessing for crosslinking  bias.  Further 

studies  are  needed to better  understand  how  the  precise parameters  of both  these 

aspects  should be  defined  with  due  consideration to the  binding  characteristics  of the 

RBP  under  study. Third,  to help  generalise  the  findings  and  address the 

false-negative problem,  the  peaks  can  be  used  as  an  input  for computational 

predictive models  of the  binding  sites. To achieve  these  goals,  it is  important  that for 

each  published experiment  a  well-annotated  protocol  is  provided,  so  that 

computational biologists  can  examine  the  potential  sources  of technical  variation  in 

the  data.  Dozens  of different  CLIP  protocols  are  already  available,  and  further 

changes will  likely  continue  to be  introduced.  To enable  appropriate  quality  control 

analyses, we  suggest  that the  submission of each  CLIP  data  set to a  public  database 

is  accompanied by  a  protocol  file  that describes  how  each  of the  11  steps  of the 

protocol were  performed (7) . 

 

Due  to the  increasing amount  of data  across  species,  tissues,  cell-lines and  RBPs, 

the  computational  analysis  of protein-RNA  interactions  is  well-positioned  to ask  new 

questions. For example,  it is  still  difficult  to examine  the  different  modes  of RBP 

binding: could  one  distinguish “low-affinity,  scanning” modes  of binding  from 

“high-affinity, anchored”  binding  from CLIP  data?  Other methods  have  generated 

large data  sets on  protein-protein  interactions  (91) , protein  localisation  (92) , in  vitro 

binding preferences  (28,  62)  and  function  of RBPs  (11) . Integration of these  diverse 
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datasets  is  a  present  challenge, but  will  yield  significant  advances  in  our 

understanding  of the  role  of protein-RNA  interactions. 

 

Finally,  RBPs  have  been implicated  in  a  range  of diseases,  from cancers  to 

neurological conditions  (93,  94) . Studies  of RBPs  have  already led  to major  medical 

advances. Understanding  the  interactions  between  the  RBPs  hnRNPA1/A2  and  the 

SMN2  pre-mRNA has  led  to a  breakthrough, FDA-approved  treatment  for spinal 

muscular atrophy  using the  antisense  oligonucleotide,  nusinersen  (95,  96) . 

Developing appropriate  computational  approaches  hand-in-hand  with  further 

applications of CLIP  to primary  cells  and  tissues,  pluripotent stem cell  models,  and 

disease model  organisms  will  undoubtedly  lead  to further  insights  into  protein-RNA 

interactions that could  be  targets  for future  therapies. 
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Sidebar (Box 1) 

RNA maps: integrating  CLIP with  orthogonal  methods 

An  RNA  map  is  a  conceptually simple  yet powerful  tool  that was  initially  developed 

to explore  the  functional  impact  of Nova  binding motifs on  splicing  to predict 

Nova’s action  genome-wide (9) . It visualises  the  positional  distribution  of binding 

sites  (commonly  CLIP  peaks  or  motifs) of the  target  RBP  around  ‘regulated 

landmarks’ in  transcripts  (such  as  alternative exons  for splicing  regulators). 

Landmarks are  defined  by  an  orthogonal  method,  for example  by  RNA-seq 

analysis of RBP  knockout  cells  or  tissues  to identify  the  regulated exons.  The 

distribution around  each  regulated landmark  can  be  visualised as  a  heatmap,  or 

summarised as  a  metaprofile  (Figure  2d).  To gain  functional  insight,  the  distribution 

around ‘control  landmarks’  (such  as  unregulated  exons)  should also  be  plotted  or 

used  to determine binding  enrichment,  thus  providing  a  sense  of scale  when 

comparing across  experiments.  The  control  variability can  be  examined using 

bootstrapping  to determine  the  significance  of enriched  binding  (97) . To simplify 

implementation for general  users,  the  rMAPS and  expressRNA  web  servers  have 

been designed  to generate  RNA  maps  using motifs or  CLIP  peaks  around 

regulated exons  and  polyA  sites  (97,  98) .  

 

These  maps  are  of great  value not  only  in  assessing RBP  function,  but  also  in 

validating CLIP  experiments,  since  the  enrichment of CLIP  peaks  around  RNA 
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features  regulated by  the  same  protein  can  serve  as  evidence of data  specificity. 

The  proportion  of regulated  RNAs  with  CLIP  peaks  at expected positions  also 

provides insight  into  the  sensitivity  of data.  Here,  we  use  RNA  maps  to examine 

the  sensitivity  and  specificity  of CLIP  peaks  obtained by  different  CLIP  methods 

and  different  peak  calling tools  or  parameters  (Figures  3  and  4). 
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Summary points 

A framework for CLIP data  analysis 

1. Optimising  and  visualising purification  of the  RBP-RNA  complexes 

maximises  specificity. 

2. Most current  CLIP  protocols  can  amplify  truncated  cDNAs,  and  analysis of 

cDNA  starts is  the  starting  point  for their  analysis. 

3. Unique  molecular  identifiers  identify  PCR  duplicates, reducing  downstream 

biases  in  the  peak  calling stage. 

4. Peak  calling should  ideally  be  performed  by  evaluating  the  crosslink 

clusters.  The  window-size  parameters  for clustering  need  to be  adapted  to 

the  RBP  under  study. 

5. Size-matched  input  libraries are  valuable  to normalise  the  peaks  for variable 

RNA  abundance. 

6. Motif analysis,  in  addition  to providing  mechanistic  insight,  provides insight 

on  the  quality and  resolution of the  data. 

7. Computational  modelling  could  help  address  the  false-negative  problem, 

and  evaluate the  contribution  of RNA  sequence,  structure  and  other 

features  to endogenous  RNA  recognition. 

8. It is  best  to use  a  consistent  experimental  and  analytical approach  when 

integrating  multiple  CLIP  data  sets. 
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Terms and  definitions 

CLIP: The  key  experimental  method  for exploring  protein-RNA  interactions  using  UV 

crosslinking and  immunoprecipitation. 

 

UMI: A unique  molecular  identifier  (UMI)  of random  nucleotides  that is  introduced  to 

the  reverse  transcription adapter  to enable  reads  arising from PCR  duplication  to be 

collapsed. 

 

SDS-PAGE: A technique  to isolate  proteins  according  to their  molecular  weight  using 

sodium dodecyl  sulphate  (SDS)  to denature  the  protein  and  polyacrylamide gel 

electrophoresis (PAGE) to separate  them. 

 

Peak  calling: The  computational  process  of identifying  statistically  significant binding 

sites  from the  experimental  sequencing  data. 

 

RNA  map:  A tool  for visualising  the  function  of protein-RNA  interactions  by 

integrating orthogonal  datasets. 
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Figures 

Figure  1: A computational  biologist’s overview  of the  CLIP 

method 

An  outline  of the  key  experimental  (left) and  computational  (right)  steps  of the  CLIP 

method.  The  experimental steps, common  across  most methods,  are  numbered 

according to (7) . Highlighted  in  the  centre  are  the  three  primary  data  analysis 

approaches that rely  on  cDNA  readthrough, mutation  or  truncation,  depending on  the 

type  of CLIP  protocol  that was  used  to generate  the  data  (related  to Table  1). The 

cDNAs  that are  captured by  representative  protocols  are  marked  in  black,  while 

those  that are  lost  during reverse  transcription in  grey,  and  those  that are  discarded 

during analysis  in  dashed  lines.  

Figure  2: Visualisation  of CLIP data: motif plots and  RNA maps 

a)  The  distribution  of PTBP1 motifs from (16)  are  shown  around  eCLIP  peaks  that 

are  defined as  narrowPeaks  and  are  available from the  ENCODE  website.  This 

algorithm relies  on  the  use  of whole  reads,  which  leads  to misalignment  of motifs and 

peaks.  b)  The  iCount peak  caller (15,  42)  uses  the  starts of aligned  reads  to define 

the  crosslink  positions  and  peaks,  which leads  to good  overlap  with  PTBP1 motifs. c) 

Integrating CLIP  and  orthogonal data  allows  further  exploration  of data  quality  using 

an  RNA  splicing map,  which  examines  the  distribution  of clusters  of assigned  binding 

sites  around  repressed  (blue)  and  enhanced (red)  exons.  This  approach was  first 
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used  with  HITS-CLIP reads  for NOVA in  mouse  brain (10) . Here  we  assign a  binding 

site  to all  positions in  transcripts  that overlap  with  at least  one  raw  read,  based on 

the  168,632  reads  obtained by  the  original  HITS-CLIP publication;  even  though we 

do  not  use  peak  calling, this  results  in  high position-dependent  enrichment  that 

agrees well  with  the  computationally  predicted  RNA  map  (9) , thus  highlighting  the 

high specificity  of raw  CLIP  data.  d)   RNA  splicing map  of PTBP1 iCLIP  data  from 

HeLa cells  (16)  is  drawn in  two  ways  with  peaks  called using  iCount  with  3 

nucleotide clustering  (15,  42) . Regulated  exons  are  defined using  microarray  data 

upon knockdown  of PTBP1/PTBP2 in  HeLa  cells  (99) . Each  row  of the  heatmap is  a 

regulated exon  with  its flanking region;  the  positions  of peaks  are  shaded dark; 

PTBP1 motifs inside  or  outside  the  clusters  are  shown as  black  or  light  red.  The 

metaprofile of significant  crosslink  clusters  is  plotted  below. The  enrichment  of peaks 

around regulated  compared  to control  exons  informs  on  the  mechanisms of splicing 

regulation, and  on  the  specificity  of CLIP  data. 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 

Figure  3: Using  RNA maps to  examine  sensitivity and 

specificity of CLIP data 

PTBP1 is  an  abundant  RBP  that crosslinks  efficiently  and  follows position-dependent 

regulatory mechanism,  and  is  thus  a  suitable RBP  for data  analysis  via  RNA  map. 

The  regulated  exons  were  defined by  analysis  of splice  junction  microarray  data  with 
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ASPIRE3  software  (abs(dIrank)>1) upon  knockdown  of PTBP1/PTBP2 in  HeLa  cells 

(99) . In a)  we  compare  the  raw  data  for different  experimental methods,  with  whole 

reads  from HITS-CLIP in  HeLa cells  (100) , crosslink positions  from irCLIP  (18)  and 

iCLIP  (16)  in  HeLa cells,  and  eCLIP  in  HepG2  cells  (11) . This  demonstrates that 

CLIP  data  can  lead to strong  enrichments  even  without  peak  calling, but  this 

depends on  the  specificity  of data.  In b)  we  analyse  the  effects of peak  calling  on  the 

crosslink positions  from different  experiments,  with  data  from irCLIP  (18)  and  iCLIP 

(16)  in  HeLa cells,  and  eCLIP  in  HepG2  cells  (11)  all  analysed using  the  iCount  peak 

caller with  15  nucleotide clustering  (15,  42) . 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 

Figure  4: A comparison  of different CLIP peak calling  tools 

RNA  maps  are  used  to demonstrate the  differences  in  peak  calling tools  for the 

same  iCLIP  PTBP1 data  set (16) . To demonstrate  that the  RNA  maps  can  be 

reproduced by  exons  defined by  a  different  data  source,  the  regulated exons  are 

defined using  RNA-seq  data  following  PTBP1 CRISPR  knockout  in  K562  cells  from 

the  ENCODE  website.  We identified the  skipped  exons  detected  using rMATS (101) 

using junction  counts  only  and  a  P-value threshold  of 0.05  and  FDR  threshold of 0.1. 

Repressed and  enhanced exons  were  defined using  an  inclusion  level  difference 

threshold of 0.05;  control  exons  were  selected as  those  with  a  P-value > 0.1, FDR  > 

0.1  and  an  inclusion level  difference  of < 0.001.  We compare  the  peaks  called using 

iCount (15,  42)  (using  a  15  nucleotide  peak  calling half-window  and  30  nucleotide 
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clustering window),  Piranha  (41)  (using  a  30  nucleotide  bin  size  and  30  nucleotide 

merging window),  and  CLIPper  (11,  44)  (using default  settings).  For this  dataset, 

Piranha and  iCount have  runtimes  of ~2  minutes  and  ~7  hours  respectively using  1 

processor;  CLIPper  has  a  runtime  of ~7  days  using 20  processors. 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 

Supplementary Figure  1: Analysing  eCLIP RNA maps using 

data  from the  same  cell  lines 

RNA  maps  are  used  to explore the  sensitivity  and  specificity  of PTBP1 eCLIP  data  in 

both  K562  and  HepG2  cells  from the  ENCODE  website.  The  regulated exons  are 

defined using  RNA-seq  data  following  PTBP1 CRISPR  knockout  in  K562  cells  also 

from the  ENCODE  website  where  we  observed  greater  signal compared  to the 

shRNA  followed by  RNA-seq  data.  We identified  the  skipped  exons  detected  using 

rMATS (101)  using  junction  counts  only  and  a  P-value threshold  of 0.05  and  FDR 

threshold of 0.1. Repressed  and  enhanced exons  were  defined using  an  inclusion 

level difference  threshold  of 0.05;  control  exons  were  selected as  those  with  a 

P-value > 0.1, FDR  > 0.1  and  an  inclusion  level  difference  of < 0.001. 

 

In a)  we  show  the  raw  data.  In b)  we  use  peaks  identified using  iCount  (using  a  3 

nucleotide peak  calling half-window  and  7  nucleotide clustering  window).  In c)  We 
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use  the  eCLIP  peaks  defined using  the  narrowPeaks  algorithm  and  available from 

the  ENCODE  website. 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 
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Figure  1: A computational  biologist’s overview  of the  CLIP 

method 

An  outline  of the  key  experimental  (left) and  computational  (right)  steps  of the  CLIP 

method.  The  experimental steps, common  across  most methods,  are  numbered 

according to (7) . Highlighted  in  the  centre  are  the  three  primary  data  analysis 

approaches that rely  on  cDNA  readthrough, mutation  or  truncation,  depending on  the 

type  of CLIP  protocol  that was  used  to generate  the  data  (related  to Table  1). The 

cDNAs  that are  captured by  representative  protocols  are  marked  in  black,  while 

those  that are  lost  during reverse  transcription in  grey,  and  those  that are  discarded 

during analysis  in  dashed  lines.  
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Figure  2: Visualisation  of CLIP data: motif plots and  RNA maps 

a)  The  distribution  of PTBP1 motifs from (16)  are  shown  around  eCLIP  peaks  that 

are  defined as  narrowPeaks  and  are  available from the  ENCODE  website.  This 

algorithm relies  on  the  use  of whole  reads,  which  leads  to misalignment  of motifs and 

peaks.  b)  The  iCount peak  caller (15,  42)  uses  the  starts of aligned  reads  to define 

the  crosslink  positions  and  peaks,  which leads  to good  overlap  with  PTBP1 motifs. c) 

Integrating CLIP  and  orthogonal data  allows  further  exploration  of data  quality  using 

an  RNA  splicing map,  which  examines  the  distribution  of clusters  of assigned  binding 

sites  around  repressed  (blue)  and  enhanced (red)  exons.  This  approach was  first 

used  with  HITS-CLIP reads  for NOVA in  mouse  brain (10) . Here  we  assign a  binding 

site  to all  positions in  transcripts  that overlap  with  at least  one  raw  read,  based on 

the  168,632  reads  obtained by  the  original  HITS-CLIP publication;  even  though we 

do  not  use  peak  calling, this  results  in  high position-dependent  enrichment  that 

agrees well  with  the  computationally  predicted  RNA  map  (9) , thus  highlighting  the 

high specificity  of raw  CLIP  data.  d)   RNA  splicing map  of PTBP1 iCLIP  data  from 

HeLa cells  (16)  is  drawn in  two  ways  with  peaks  called using  iCount  with  3 

nucleotide clustering  (15,  42) . Regulated  exons  are  defined using  microarray  data 

upon knockdown  of PTBP1/PTBP2 in  HeLa  cells  (99) . Each  row  of the  heatmap is  a 

regulated exon  with  its flanking region;  the  positions  of peaks  are  shaded dark; 

PTBP1 motifs inside  or  outside  the  clusters  are  shown as  black  or  light  red.  The 

metaprofile of significant  crosslink  clusters  is  plotted  below. The  enrichment  of peaks 

around regulated  compared  to control  exons  informs  on  the  mechanisms of splicing 

regulation, and  on  the  specificity  of CLIP  data. 
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The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 
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Figure  3: Using  RNA maps to  examine  sensitivity and 

specificity of CLIP data 

PTBP1 is  an  abundant  RBP  that crosslinks  efficiently  and  follows position-dependent 

regulatory mechanism,  and  is  thus  a  suitable RBP  for data  analysis  via  RNA  map. 

The  regulated  exons  were  defined by  analysis  of splice  junction  microarray  data  with 

ASPIRE3  software  (abs(dIrank)>1) upon  knockdown  of PTBP1/PTBP2 in  HeLa  cells 

(99) . In a)  we  compare  the  raw  data  for different  experimental methods,  with  whole 

reads  from HITS-CLIP in  HeLa cells  (100) , crosslink positions  from irCLIP  (18)  and 

iCLIP  (16)  in  HeLa cells,  and  eCLIP  in  HepG2  cells  (11) . This  demonstrates that 

CLIP  data  can  lead to strong  enrichments  even  without  peak  calling, but  this 

depends on  the  specificity  of data.  In b)  we  analyse  the  effects of peak  calling  on  the 

crosslink positions  from different  experiments,  with  data  from irCLIP  (18)  and  iCLIP 

(16)  in  HeLa cells,  and  eCLIP  in  HepG2  cells  (11)  all  analysed using  the  iCount  peak 

caller with  15  nucleotide clustering  (15,  42) . 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 
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Figure  4: A comparison  of different CLIP peak calling  tools 

RNA  maps  are  used  to demonstrate the  differences  in  peak  calling tools  for the 

same  iCLIP  PTBP1 data  set (16) . To demonstrate  that the  RNA  maps  can  be 

reproduced by  exons  defined by  a  different  data  source,  the  regulated exons  are 

defined using  RNA-seq  data  following  PTBP1 CRISPR  knockout  in  K562  cells  from 

the  ENCODE  website.  We identified the  skipped  exons  detected  using rMATS (101) 

using junction  counts  only  and  a  P-value threshold  of 0.05  and  FDR  threshold of 0.1. 

Repressed and  enhanced exons  were  defined using  an  inclusion  level  difference 

threshold of 0.05;  control  exons  were  selected as  those  with  a  P-value > 0.1, FDR  > 

0.1  and  an  inclusion level  difference  of < 0.001.  We compare  the  peaks  called using 

iCount (15,  42)  (using  a  15  nucleotide  peak  calling half-window  and  30  nucleotide 

clustering window),  Piranha  (41)  (using  a  30  nucleotide  bin  size  and  30  nucleotide 

merging window),  and  CLIPper  (11,  44)  (using default  settings).  For this  dataset, 

Piranha and  iCount have  runtimes  of ~2  minutes  and  ~7  hours  respectively using  1 

processor;  CLIPper  has  a  runtime  of ~7  days  using 20  processors. 

 

The  code  to reproduce this  figure  is  available at 

https://github.com/jernejule/clip-data-science 
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Tables 

Table  1: The  central  features of CLIP methods from the  perspective  of data  analysis 

The  CLIP  methods  are  grouped according  to how  the  reads  are  used  to identify  binding sites. The  associated  technical  features 

and  limitations of the  methods  are  summarised in  terms  of resolution,  sensitivity  and  specificity.  The  colours represent  the  quality  of 

the  parameter:  red  is  poor,  orange is  adequate,  and  green is  good. 

 

Table  2: Quality assessment of representative  publically available  CLIP data  from different methods 

In preparation 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 25, 2017. ; https://doi.org/10.1101/208124doi: bioRxiv preprint 

https://doi.org/10.1101/208124


 

Table  1: The  central  features of CLIP methods from the  perspective  of data  analysis 

 

Methods Specificity Resolution Sensitivity 

HITS-CLIP, 

CLIP-seq,  

CRAC 

 

++ to +++ 

Strong  detergents and  high salt  washes, 

with  further  purification by  SDS-PAGE and 

membrane transfer  are  used,  which allows 

to optimise  RNase  conditions  and  ensure 

that co-purified  RBPs  and  non-crosslinked 

RNAs  are  removed.  Thus, only  specific 

RNAs  cross-linked to the  IPed  RBP  are 

normally isolated,  but  specificity  depends 

Oligonucleotide 

corresponding to 

the  size  of 

readthrough 

cDNAs 

++ 

Limited by  the  loss  of cDNAs  truncated  at 

cross-link sites 
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on  careful  optimisation and  visualisation of 

the  purified  complexes. 

iCLIP,  

4SU-iCLIP, 

FAST-iCLIP, 

BrdU-CLIP, 

irCLIP, 

fr-iCLIP, 

sCLIP 

++ to +++ 

As in  HITS-CLIP. 

Nucleotide 

corresponding to 

the  start of 

truncated 

cDNAs 

++ to +++ 

Increased due  to amplification  of truncated 

cDNAs,  as  well  as  other  method-specific 

optimisations. 

eCLIP, 

FLASH 

+ to +++ 

The  purity  of protein-RNA  complexes  is  not 

validated by  visualisation.  Blind  cutting 

from the  membrane  is  used  in  eCLIP,  while 

SDS-PAGE separation  is  removed  in 
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sCLIP.  Thus, co-purification  of 

non-specific RBPs  is  not  monitored,  which 

could result  in  large variations  in 

specificity. 

iCLAP,  

uvCLAP 

++ to +++ 

Expression of affinity  tagged  protein 

permits  rigourous washing  with  denaturing 

conditions, which  removes  co-purified 

RBPs. However,  expression  of tagged 

RBP  could  in  some  cases  affect RNA 

specificity  or  lead to artefacts associated 

with  overexpression. 

PAR-CLIP ++ to +++ 

As in  HITS-CLIP 

Nucleotide 

corresponding to 

+ to +++ 

Limited by  the  loss  of cDNAs  truncated  at 
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the  cross-link 

induced 

mutations 

cross-link sites, but  off-set to differing  degrees 

by  increased  cross-linking  efficiency  for some 

RBPs 

CIMS of 

HITS-CLIP 

++ to +++ 

As in  HITS-CLIP 

+ 

Limited by  the  loss  of cDNAs  truncated  at 

cross-link sites  and  the  low  proportion of 

cDNAs  with  deletions. 

RIP-seq + 

Due  to mild  washing conditions  or 

formaldehyde crosslinking,  it preserve 

protein-protein interactions,  and  thus 

interacting RBPs  are  co-purified. 

Transcript-level 

resolution is 

achieved by  the 

original version 

of RIP-seq, 

since  it doesn’t 

fragment  the 

++ 

If no  crosslinking  is  used,  then  transient  weak 

interactions that take  place  in  vivo  can  be  lost 

during immunoprecipitation,  and  abundant 

RNAs  tend  to dominate the  pulldown,  leading 

to decreased  coverage  of introns  or  other 

low-abundant RNAs.  
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bound RNAs 

RIP-iT-seq , 

DO-RIP-seq 

++ 

Use  of RNase  reduces  co-purification  of 

RBPs  that bind  to same  transcripts,  but 

such  RBPs  can  still  be  purified due  to the 

preserved protein-protein  interactions. 

Sequential IP with  two  separate  antibodies 

can  specify  RNPs  composed of multiple 

RBPs  in  RIP-iT-seq . 

Oligonucleotide 

corresponding to 

the  size  of 

cDNAs  due  to 

the  use  of 

RNase to 

fragment  the 

bound RNAs 

++ 

Due  to saturation with  reads  from abundant 

RNAs  bound by  co-purified  RBPs, the  method 

will have  limited sensitivity  for RBPs  that 

primarily bind  introns  and  other  low-abundant 

RNAs. 
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Table  2: Quality assessment of representative  publically available  CLIP data  from different 

methods 

In preparation 
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