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ABSTRACT 

Gut and oral microbiome perturbations have been observed in obese adults and adolescents. 

Less is known about how weight gain in early childhood is influenced by gut, and particularly 

oral, microbiomes. Here we analyze the relationships among weight gain and gut and oral 

microbiomes in 226 two-year-olds who were followed during the first two years of life, as part of 

a larger study, with weight and length measured at seven time points. We used these data to 

identify children with rapid weight gain (a strong risk factor for childhood obesity), and to derive 

growth curves with novel Functional Data Analysis (FDA) techniques. The children’s oral and 

gut microbiomes were sampled at the end of the two-year period, and surveyed with 16S 

sequencing. First, we show that growth curves are associated negatively with diversity and 

positively with Firmicutes-to-Bacteroidetes ratio of the oral microbiome − a relationship that is 

also observed in children with rapid (vs. non-rapid) weight gain. We also demonstrate an 

association between the gut microbiome and child growth, but only when considering the effect 

of diet on the microbiome. Lastly, we identify several bacterial genera that are associated with 

child growth patterns. These results suggest that by the age of two, the oral microbiome may 

have already begun to establish patterns often seen in older obese individuals. They also 

suggest that the gut microbiome, while strongly influenced by diet, at age two does not harbor 

obesity signatures many researchers identified in later life stages.   
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INTRODUCTION 

One in three children in the United States are overweight or obese (Ogden et al. 2016). Many 

studies have pointed towards a link between this phenotype and the microbiome of the host in 

both children and adults (reviewed in (Boulangé et al. 2016)), and linked gut microbiome 

perturbations and obesity in mice. For instance, germ-free mice inoculated with the microbiota 

of obese mice were shown to develop obesity, whereas their littermates inoculated with the 

microbiota of lean mice did not (Turnbaugh et al. 2006; Ridaura et al. 2013). In addition, relative 

to lean mice, obese mice displayed an increase in Firmicutes and a decline in Bacteroidetes 

(Ley et al. 2005). More recently, similar patterns have been observed in humans; the gut 

microbiomes of obese adult and adolescent individuals also frequently have low diversity 

(Bervoets et al. 2013; Ferrer et al. 2013) and an elevated Firmicutes-to-Bacteroidetes (F:B) ratio 

(Ley et al. 2006; Bervoets et al. 2013; Ferrer et al. 2013). However, these gut microbiome 

alterations are not universally linked to obesity (Ley 2010; Boulangé et al. 2016; Sze and 

Schloss 2016), and study results frequently depend on the methods used (e.g. 16S variable 

region analyzed, sequencing platform, or computational pipeline) and a number of co-factors 

that can affect gut microbiome − e.g., diet (David et al. 2014; Xu and Knight 2014), exposure to 

antibiotics (Yallapragada et al. 2015), the use of non-steroid anti-inflammatory drugs (Rogers 

and Aronoff 2016), host genetics (Blekhman et al. 2015; Davenport 2016; Gomez et al. 2017), 

and age (Yatsunenko et al. 2012). On the opposite end of the spectrum from obesity, it has also 

been shown that there are distinct differences in the microbiome of Indian children with a range 

of nutritional statuses (from healthy to malnourished) (Ghosh et al. 2014; Dinh et al. 2016). 

Importantly, to our knowledge, no prior study explored the connection between the gut 

microbiome and the actual temporal trajectories of weight gain in young children, instead of just 

investigating the binary differences in outcome of growth. Such trajectories vary greatly among 

children (Smego et al. 2016), and thus may represent a more informative phenotype than a 
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binary outcome (stunted vs. normal, or obese vs. normal) and may increase statistical power in 

detecting associations between weight gain and microbiome.  

 

In contrast to the many studies concerning the gut microbiome, very few studies explored the 

oral microbiome and its relationship with weight gain. These latter studies stem from the 

observed relationship between periodontal disease prevalence and obesity in adults (Al-Zahrani 

et al. 2003; Kâ et al. 2013). There is a body of literature (Wade 2013; Said et al. 2014) 

investigating differences in the oral microbiome in relation to periodontal disease (Liu et al. 

2012) and dental caries (Serra e Silva Filho et al. 2014; Said et al. 2014; Chen et al. 2015). A 

few studies directly investigating the relationship between oral microbiome and obesity, again 

through the lens of oral health, found differences in the oral microbiome composition of obese 

vs. lean adults and adolescents (Goodson et al. 2009; Zeigler et al. 2012). One such study in 

adults pointed to the Bacteroidetes species, Tannerella forsythia, as having different prevalence 

in healthy-weight, overweight, and obese groups (Haffajee and Socransky 2009). In adult 

women it was found that the Selenomonas noxia, a Firmicutes species, can predict overweight 

status with >98% accuracy (Goodson et al. 2009). In adolescents, Zeigler and colleagues 

documented an increase of both Firmicutes and Bacteroidetes in obese compared to normal-

weight individuals, with no significant difference in the abundance between these two phyla 

(Zeigler et al. 2012). 

  

Findings on how the gut and oral microbiomes are related to weight gain can only be leveraged 

if we understand what shapes microbiomes starting from early childhood. A handful of studies 

investigating the early development of the microbiome found that early childhood is a time 

marked by dramatic microbiome changes (Palmer et al. 2007; Koenig et al. 2011; Vallès et al. 

2014; Bäckhed et al. 2015; Chu et al. 2017). A large seeding of the child’s microbiome occurs 

as a mother-to-child, vertical bacterial transmission during delivery. Infants delivered vaginally 
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have oral and gut microbiomes similar to their mothers’ vaginal microbiomes (Dominguez-Bello 

et al. 2010; Lif Holgerson et al. 2011; Chu et al. 2017), while infants delivered via Cesarean 

section have oral and gut microbiomes that resemble their mothers’ skin microbiomes (Madan 

et al. 2016). Factors that could influence the composition of this influx are the mother’s weight 

gain (Leng et al. 2015), diabetes (Hu et al. 2013), and smoking during pregnancy (Li et al. 

2016). Nonetheless, differences in microbiomes due to delivery mode might be erased by the 

mounting effects of other factors as early as six weeks after birth (Chu et al. 2017). Diet is one 

such factor; the gut microbiome differs between breast- and formula-fed infants (Chu et al. 

2017), and the first year after birth also comprises other diet transitions affecting gut and oral 

microbiomes (Holgerson et al. 2013; Vallès et al. 2014). For instance, high-fat and high-

carbohydrate diets have been associated with high and low infant gut microbiome F:B ratios, 

respectively (Ismail et al. 2011). Aside from diet, antibiotics and acid-reducing drugs (proton 

pump inhibitors and histamine antagonists) can substantially influence the microbiome in 

relation to the risk of obesity. For instance, exposure to antibiotics in the first two years was 

associated with higher weight in later childhood (Ajslev et al. 2011; Trasande et al. 2013; 

Murphy et al. 2014; Yallapragada et al. 2015), but this link has been recently questioned 

(Gerber et al. 2016; Ianiro et al. 2016). Also, the use of acid-reducing drugs was associated with 

decreased gut microbiome diversity in adults and premature infants (<34 weeks gestation) 

(Gupta et al. 2013; Imhann et al. 2015; Jackson et al. 2016). These drugs are widely prescribed, 

however we are only now beginning to understand their potential effects on the adult 

microbiome, and know even less about their interplay with a child’s developing microbiome. 

Early life transitions and their effects on the microbiome are often described as “chaotic” 

(Koenig et al. 2011) perhaps because they happen over a short period of time, or because there 

is not a specific order to their succession (Vallès et al. 2014). Nonetheless, within the first 

several years of life the children’s microbiomes converge on a more adult-like composition 

(Yatsunenko et al. 2012; Bäckhed et al. 2015; Dinh et al. 2016).  
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In this study, we investigated oral and gut microbiomes and their links to weight gain in early 

childhood, using data from 226 mother-child dyads enrolled in the Intervention Nurses Start 

Infants Growing on Healthy Trajectories (INSIGHT) study (Paul et al. 2014). Each child’s gut 

and oral microbiomes were assessed once, at two years of age, and the maternal oral 

microbiome was assessed at the time of her child’s two-year visit. In contrast, each child’s 

weight and length were measured at seven time points during the first two years, and we 

quantitated weight gain with two different approaches: we (a) derived growth curves subjected 

to Functional Data Analysis (FDA) techniques, which exploit mathematical functions formed by 

the temporal nature of the measurements (Ramsay and Silverman 2007, 2005), and (b) 

calculated conditional weight gain (CWG) scores, a traditional metric used to define rapid weight 

gain in infants (Griffiths et al. 2009; Savage et al. 2016). Both quantitations incorporate 

information about weight changes during the initial period after birth, but CWG scores only use 

differences between two time points, while growth curves use several time points longitudinally 

to fully capture weight dynamics. INSIGHT also includes a broad array of clinical, 

anthropometric, demographic, and behavioral variables on mother-child dyads (Paul et al. 2014) 

which we used in our analyses. In detail, we: (a) modeled growth curves and examined their 

associations with oral and gut microbiomes; (b) assessed whether oral and gut microbiomes 

differ between children with rapid vs. non-rapid weight gain; (c) investigated whether there is 

any relationship between the maternal oral microbiome and her child’s weight trajectory, and (d) 

analyzed whether diet and other factors have an impact on oral and gut microbiomes and/or the 

growth of the child. We used a variety of statistical tools, including FDA methods recently 

developed by our group, and developed a freely accessible pipeline for analyzing 16S rRNA 

gene sequences on Galaxy (usegalaxy.org). Our results demonstrate significant associations 

between the oral microbiome, as established at age two, and rapid weight gain during the first 
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two years of life. They also capture significant effects of diet on the gut microbiome at age two 

that may modulate specific growth trajectories in children.  

 

RESULTS 

Oral and gut microbiome profiling. From the 279 families recruited in INSIGHT that had 

complete longitudinal anthropometric and behavioral measurements over the first two years 

after birth (Paul et al. 2014), we collected samples from 226 mother-child dyads (specifically, 

oral samples for 215 mothers and 214 children, and stool samples for 189 children; see Fig. S1 

for a graphical summary) at the child’s two-year clinical research lab visit. For these samples, 

we sequenced the variable regions 3 and 4 of the 16S rRNA gene and analyzed the data in 

Galaxy (Afgan et al. 2016) to determine taxonomic classifications and compute ecological 

diversity measures (see Methods).  

 

Overall, our oral and gut microbiome samples showed fundamental differences in composition 

at the phylum level; oral microbiomes harbored abundant Fusobacteria and no Verrucomicrobia, 

whereas the gut microbiomes harbored abundant Verrucomicrobia but no Fusobacteria (Figs. 

S2A-B). These results are largely consistent with previously published studies exploring the 

composition of healthy, adult gut (Lozupone et al. 2012) and oral (Dewhirst et al. 2010) 

microbiomes. Qualitatively, it appears that a child’s oral microbiome (Fig. S2A) is more similar to 

his/her mother’s oral microbiome (Fig. S2C) than to the child’s gut microbiome (Fig, S2B). 

Additionally, within each microbiome type (child oral, child gut, and maternal oral) the 

proportions of bacteria belonging to different phyla varied greatly among individuals (Figs. S2A-

C). Using non-metric multidimensional scaling (NMDS) to compare the three microbiome types 

(Fig. S2D) we found that there was some overlap between oral and gut microbiome 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/208090doi: bioRxiv preprint 

https://doi.org/10.1101/208090
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

communities, but stool samples largely clustered together and away from oral samples (mother 

and child), and children’s oral samples formed a tighter cluster than maternal oral samples. 

These results suggest a higher interindividual variability with age, as well as the development of 

distinct microbiome communities at different body sites by the age of two years.  

 
Growth curves and their relationship with the microbiome. Children’s growth curves were 

constructed based on the ratio between weight and length (later called growth index) measured 

at seven time points during the first two years after birth (see Methods). This set of longitudinal 

observations (Fig. 1A and Fig. S3) was processed with FDA techniques (Yao et al. 2005): the 

growth indices of all children were pooled to estimate population-level curve parameters (mean 

and covariance functions), and smooth individual growth curves were constructed forming best 

linear unbiased predictors of the missing segments (see Methods). These curves were 

monotonously increasing (Fig. S3B), highlighting fast growth rate over the first two years after 

birth. Because each child may hit growth spurts at a slightly different age (Smego et al. 2016), 

we aligned the curves based on their dominant shapes (Fig. 1B). The alignment procedure had 

only minor effects on the curves (compare Fig. S2B and Fig. 1B) but allowed us to focus on 

variation in the amplitude of the curves (i.e. growth index on the vertical axis), while reducing 

variation in their temporal phasing (i.e. time on the horizontal axis).  

 

To evaluate associations between children’s weight gain and the microbiome information, we 

started by applying FDA regression techniques (see Methods). Using children’s growth curves 

(Fig. 1B) as the response we ran a total of six functional regressions, each with a single scalar 

predictor − children’s oral a-diversity, oral F:B ratio, gut a-diversity and gut F:B ratio; and 

mothers’ oral a-diversity and oral F:B ratio. In these functional regressions, one has regression 

coefficient curves − as opposed to scalar regression coefficients. Estimated coefficient curves 

above/below the zero line suggest negative and positive associations. Significance of 
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associations can be measured through p-values obtained from various tests (see Table S1) and 

also gleaned by whether the zero line is contained within a curve’s 95% confidence band. Our 

results suggest that low microbial diversity and high content of Firmicutes relative to 

Bacteroidetes in the mouth of a two-year-old are markers of elevated growth indices during the 

first two years after birth − the estimated coefficient curves are negative and positive, 

respectively, with confidence bands that do not contain the zero line (Figs. 2B and 2E), and p-

values are below 5% (Table S1). Conversely, estimated coefficient curves for the gut are closer 

to the zero line (Figs. 2A and 2D) and p-values are large (Table S1), suggesting that a-diversity 

and F:B ratio in the gut of a two-year-old are not significantly associated with his/her growth 

trajectory from birth to two years. Interestingly, a-diversity, but not the F:B ratio, in mothers’ oral 

microbiomes are significantly associated with their children’s growth curves (Figs. 2C and 2F, 

and Table S1). In fact, the a-diversities of children’s and mothers’ oral microbiomes were 

significantly correlated (R = 0.20, p = 0.003), and the corresponding estimated regression 

coefficient curves had similar shapes (Figs. 2B-C).  

 

Rapid infant weight gain and its relationship with the microbiome. To complement the 

analyses based on growth curves, we associated the binary quantification of rapid vs. non-rapid 

weight gain, as defined by Conditional Weight Gain (CWG) scores, to the microbiome 

information. Children’s CWG scores were computed from weight gain between birth and six 

months, corrected by length at these two time points (Griffiths et al. 2009; Savage et al. 2016) 

(see Methods). A CWG score ≥ 0 indicates weight gain that is faster than average and is used 

to define rapid weight gain (Savage et al. 2016) − a predictor of obesity later in life (Taveras et 

al. 2009). In our cohort, 103 children had rapid weight gain between birth and six months (CWG 

≥ 0) and 123 did not (CWG < 0). Notably, the former had a significantly greater weight at two 

years of age than the latter (p=4.627e-13, Mann-Whitney one-tailed t-test; Fig. S4). 
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To test for associations between CWG scores and microbiomes, first, we assessed whether the 

microbiome of children with rapid weight gain possessed the obesity signatures previously 

found in the gut microbiome of older obese children and adults (see Introduction) – namely, 

lower diversity and higher F:B ratio than non-rapid weight gain children. This was indeed the 

case for the oral microbiome (p = 0.049 and p = 0.019, respectively, one-tailed Mann-Whitney U 

test; Figs. 3B and 3E) but, interestingly, not for the gut microbiome (p = 0.776 and p = 0.286, 

respectively; Figs. 3A and 3D). Second, we tested whether mothers of children with rapid vs. 

non-rapid weight gain had significantly different oral microbiome -diversities and F:B ratios. 

Again we found that diversity was significantly lower in mothers of children with rapid weight 

gain (p = 0.036, Fig. 3C), but the F:B ratio was not significantly higher (p = 0.093, Fig. 3F). The 

patterns in these analyses are consistent with those in the growth curves analyses, but the latter 

provided stronger significance assessments (Table S1), demonstrating the effectiveness of FDA 

techniques − which incorporate longitudinal information in a richer and more nuanced fashion. 

 

Potential co-factors and their roles. Many factors could affect children’s microbiomes and 

their relationships with weight gain. Based on the anthropometric and behavioral data at our 

disposal (Paul et al. 2014), we considered gender, exposure to antibiotics and acid-reducing 

medication during the first two years after birth, delivery mode (vaginal vs. C-section), INSIGHT 

intervention (Paul et al. 2014), maternal gestational diabetes, gestational weight gain, smoking 

during pregnancy, family income, and diet information (see Methods). These factors were 

tested, both individually and jointly through multiple regressions, for effects on our four summary 

measures of children’s microbiomes; namely, children’s oral and gut a-diversity and F:B ratio at 

two years of age. Results of these tests were largely non-significant, possibly due to the small 

number of subjects in some of the conditions considered (Table S2). However, diet at age two 
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emerged as having marked effects on the gut microbiome at the same age. Multiple regressions 

on diet-related variables showed strong effects on both gut F:B ratio and a-diversity (Table S3). 

We also ran variable selection for multiple regressions comprising seventeen potential 

covariates (from Tables S2 and S3). Notably, only diet-related variables were selected by the 

procedure, and only in regressions for the gut microbiome (no covariates were retained in 

regressions for the oral microbiome). Fitting regressions restricted to the selected diet-related 

variables, we explained as much as 20.79% of the variability in gut F:B ratio, with vegetable and 

meat consumption as significant positive and negative predictors, respectively, and a more 

modest 5.94% of the variability in gut a-diversity, with vegetable and fruit consumption as 

significant negative and positive predictors, respectively (Table 1).  

 

Interestingly, functional regressions of our growth curves on diet-related variables did not 

indicate any significant effects (Table S4). Nevertheless, because of its strong effects on the gut 

microbiome at age two, diet may be a modulator of its relationships with weight gain. To assess 

this, we repeated the functional regressions of growth curves on gut microbiome summary 

measurements adding diet-related covariates with significant effects on the microbiome (from 

the previous variable selection procedure, see Table 1). Notably, in one of the statistical tests 

we ran, gut a-diversity became a significant positive predictor of growth curves when considered 

together with diet (Table S5 and Fig. S5A), while gut F:B remained non-significant in all our 

tests (Table S6 and Fig. S5B).  

 

Weight gain and microbiome composition: influential taxa. Next, we went beyond a-

diversity and F:B ratio summary measures, which were computed at the coarse phylum level, 

and considered microbiome composition at a finer resolution to identify bacterial genera 

associated with a child’s weight gain. We computed genus-level, normalized abundances for the 
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same 214 children’s oral microbiomes, 189 children’s gut microbiomes, and 215 mothers’ oral 

microbiomes used for the analyses in the previous sections. Because many of these 

abundances were very low or highly collinear, we implemented a procedure to aggregate them 

into taxonomic groups (below we refer to these also as bacterial groups, or simply groups), 

leveraging the phylogeny of bacterial genera (see Methods; about 25% of the groups comprised 

just one bacterial genus, but 75% aggregated two or more genera that were either very scarce 

or highly correlated). We obtained 75, 77, and 79 taxonomic groups for children’s oral, children’s 

gut, and mothers’ oral microbiomes, respectively (Table S7). Based on the resulting aggregated 

abundances, and separately for the three microbiomes, we used FLAME (a novel FDA 

methodology recently developed by our group (Choi and Reimherr 2017; Parodi and Reimherr 

2017)) to identify taxonomic groups that are the best predictors of children’s growth curves 

(Table S8).  

 

In the children’s gut microbiome FLAME detected a group from the Proteobacteria phylum with 

a negative effect (Group 61), three Firmicutes groups with positive effects (Groups 23, 26, and 

41) and one Bacteroidetes group with a positive effect (Group 12; Fig. 4A). In the children’s oral 

microbiome FLAME detected a group of Bacteroidetes (Group 13) and a group of Actinobacteria 

(Group 5) having, respectively, positive and negative effects (Fig. 4B). Two groups were 

detected in the mothers’ oral microbiome (Fig. 4C) − one Firmicutes group with a positive effect 

(Group 28) and one Fusobacteria group with a negative effect (Group 53).  

 

We also used the Linear Discriminant Analysis (LDA) effect size tool, LEfSe (Segata et al. 

2011), to identify taxonomic groups that were most informative for separating children with rapid 

vs. non-rapid weight gain (Table S8). In the children’s gut microbiomes, LEfSe detected two 

discriminant bacterial groups; an Actinobacteria group associated with non-rapid weight gain 
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and a Firmicutes group associated with rapid weight gain (Groups 4 and 46; Fig. 4D). In the 

children’s oral microbiomes, LEfSe detected several discriminant groups associated with non-

rapid weight gain, belonging to the Bacteroidetes and Firmicutes phyla (Groups 14, 21, 25, 33, 

35, and 45; Fig. 4E). LEfSe did not identify any discriminant groups in the mothers’ oral 

microbiome.  

 

DISCUSSION 

Children’s oral microbiome and weight gain. Our results demonstrate that a child’s oral 

microbiome, as analyzed at age two, bears significant associations with weight gain during the 

first two years after birth. In particular, it displays the decreased diversity and increased F:B 

ratio signatures characteristic of the gut microbiome of obese adolescents and adults (Bervoets 

et al. 2013). This conclusion was supported by sophisticated FDA techniques leveraging 

longitudinal information on weight gain in the first two years after birth, and confirmed by 

standard statistical tests based on a binary phenotype (rapid vs. non-rapid weight gain). 

Notably, links between the oral microbiome and a child’s weight gain trajectory have not been 

previously demonstrated for this age group, nor for a healthy population. Altogether, our results 

suggest that the association between the oral microbiome and the temporal pattern of weight 

gain in early childhood might be stronger and more consequential than previously thought, and 

thus requires further characterization.  

 

Why does the oral microbiome carry markers of rapid weight gain in children? Some studies 

have pointed to potential mechanisms linking periodontal disease and obesity, including 

increased oxidative stress (Bullon et al. 2009), low-grade systemic inflammation and insulin 

resistance (Li et al 2009, Kwon et al 2011), and higher gingival crevicular fluid TNF-  (Lundin et 

al. 2004, Kâ et al. 2013). Goodson and colleagues (Goodson et al. 2009) suggested that the 
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oral microbiome could (a) affect the gastrointestinal tract to increase metabolic efficiency, 

resulting in increased fat storage; (b) affect leptin or ghrelin levels, resulting in increased 

appetite and food consumption; and/or (c) affect TNF-  and adiponectin pathways, resulting in 

insulin resistance and increased fat storage. Gingival inflammation and decrease in salivary 

secretion rate were also observed in children with obesity, without distinct microbial profiles 

when compared to normal weight peers (Fadel et al. 2013). Deciphering causal mechanisms 

through which the oral microbiome might affect weight gain is outside the scope of this study, 

especially since we linked microbiomes assayed at age two with growth trajectories prior to that 

age. However, the associations we detected should be studied further using data collected 

longitudinally not just for body size, but also for the microbiome. If confirmed in such a study and 

for other populations, the relationships we gleaned between the oral microbiome and weight 

gain could lead to a non-invasive clinical screen to identify children who are at a particular risk 

of developing obesity later in life. These at-risk children could be closely monitored and be the 

primary candidates for obesity-prevention interventions (Paul et al. 2014).  

 

Notably, we also detected a significant association between mothers’ oral microbiome diversity 

and their children’s growth curves, suggesting the presence of a familial (genetic and/or 

household) microbiome signature linked to the dynamics of weight gain in early childhood. This 

too should be explored further, collecting and analyzing longitudinal data on the oral 

microbiomes of parents and children.  

 

Children’s gut microbiome and weight gain. In contrast to the oral microbiome, we find that a 

child’s gut microbiome at age two is not significantly associated with weight gain during the first 

two years after birth. At first, this appears surprising, as several studies have linked obesity to 

decreased diversity and increased F:B ratio in the gut microbiome. However, while an increased 

F:B ratio is a common marker of obese gut microbiomes described in several papers 
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(Turnbaugh et al. 2006; Ley et al. 2006) and reviews (Ley 2010; Boulangé et al. 2016), some 

studies found no change in Bacteroidetes, increased Bacteroidetes in overweight and lean 

individuals, or increased Firmicutes in lean patients after gastric bypass (reviewed in (Ley 2010; 

Boulangé et al. 2016)). Moreover, the fact that we are studying a very young and not yet 

completely established gut microbiome might at least partially explain the absence of signal in 

our data; the obesity signatures of decreased diversity and increased F:B ratio may become 

pronounced only at later stages of gut microbiome development. This may suggest that the oral 

microbiome is established with potential signatures of obesity earlier than the gut microbiome. 

We also note that, despite the lack of significant associations between gut microbiome summary 

measures and growth curves (or binary weight gain outcome), we did find specific gut 

taxonomic groups associated with early childhood weight gain (see below). These could be 

pioneers in setting up changes leading to decreased diversity and increased F:B ratio − a 

hypothesis that should be investigated in future studies.  

 

Diet, microbiomes and weight gain in children. We had data on a large number of factors 

potentially affecting a child’s gut and oral microbiomes, but with the notable exception of diet-

related variables for which we found strong effects on the gut microbiome, their effects were 

non-significant or inconclusive. This could have been due, at least partially, to the small number 

of subjects in some of the conditions considered. Another potential explanation is that the 

microbiomes were characterized at the age of two, while most factors (except for current diet 

information) were measured at earlier time points − so their effects might have diluted over time. 

Sampling the microbiomes at multiple time points during early childhood should alleviate this 

limitation in future studies and will allow us to further exploit FDA to analyze longitudinal 

information not only on growth curves, but also on microbiome development. 
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Interestingly, diet-related variables at the age of two did not show significant associations with 

weight gain between birth and two-years (no significant association was detected when 

regressing growth curves on gut microbiome α-diversity or F:B ratio; Table S4). However, 

perhaps because of the diet variables’ strong effects on the gut microbiome (Table 1), they 

appear to modulate the relationship between weight gain and the gut microbiome − when 

adding diet-related variables in a joint regression with the microbiome, α-diversity became a 

significant positive predictor of child growth trajectories (F:B ratio remained non-significant). In 

other words, if we compared the gut microbiome of children with the same diet, children who 

gain weight more rapidly would harbor greater microbial diversity. Thus, a diversity signature in 

the gut microbiome appears to emerge in our data when controlling for diet, albeit with a sign 

opposite to the one most commonly identified in the literature − and also opposite to the one we 

detected in the oral microbiome. We presently do not have an explanation for this finding.  

 

Influential taxa and the power of novel methodology. It is surprising at first sight that, while 

no significant (either positive or negative) association was found between gut microbiome F:B 

ratio and weight gain, both Firmicutes and Bacteroidetes were identified as influential groups by 

our FLAME and/or LEfSe analyses. However, diet might have influenced these patterns. For 

instance, FLAME identified a Bacteroidetes group in the gut as positively associated with 

children’s growth curves, and using linear regression we found that meat consumption has a 

negative effect on gut F:B ratio (which could be due to a positive association with Bacteroidetes 

in the denominator). Additionally, meat consumption was significant in the functional regression 

of growth curves on gut F:B ratio and diet-related variables (even though F:B ratio itself was 

not). Thus, while other researchers have found that individuals with a “Western diet” (high in 

animal protein) have increased gut Bacteroidetes abundances (Wu et al. 2011), the exact 
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nature of these relationships cannot be completely elucidated with the data currently at our 

disposal.  

 

Another somewhat surprising finding is that the taxonomic groups identified by FLAME and 

LEfSe do differ. This could potentially be due to inherent methodological differences between 

FLAME (a tool that selects groups using high-dimensional function-on-scalar regressions) and 

LEfSe (a tool using Linear Discriminant Analysis on differentially abundant groups). 

Alternatively, these incongruencies could be due to the very different ways in which the weight 

gain phenotype is encoded (binary outcome vs. temporal change); and therefore it may be a 

biological explanation of why bacteria influencing the shape of the growth curves might in fact 

differ from those discriminating between the microbiomes of children with rapid vs. non-rapid 

weight gain. This will require further examination in future studies, as our sequencing data 

currently do not allow resolution at the species or strain level, and the functional capacity of the 

microbiome is unknown. Furthermore, sampling the microbiome longitudinally, along with 

biometric measurements (instead of at the single two-year time point available to us in this 

study), may unveil additional bacterial groups relevant for the perspective (instead of 

retrospective) relationship with weight gain patterns. Similar considerations apply to the fact 

that, with the data at our disposal, FLAME identified different bacterial groups in children’s and 

mothers’ oral microbiomes (Fig. 4B-C).  

  

Nonetheless, the use of FDA techniques afforded us the opportunity to associate longitudinal 

information (growth curves derived from weight and length collected at multiple time points 

during the first two years after birth) with microbiome measures at the age of two, which, to our 

knowledge, has not been done before. We used FDA in addition to more traditional statistical 

analyses based on a binary phenotype (rapid vs. non-rapid weight gain). While results on the 

relationship between growth and microbiome diversity and F:B ratio were consistent between 
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the two approaches, growth curves captured weight gain in a richer fashion than the binary 

phenotype – leading to stronger results significance. Growth curves also led to additional 

insights. For instance, a larger number of taxonomic groups were found to be significantly 

associated with growth curves using FLAME than with rapid vs. non-rapid weight gain 

phenotypes using LEfSe. Our study demonstrates the effectiveness of FDA techniques linking 

children’s weight gain trajectories and microbiomes characterization. This suggests that even 

greater effectiveness could be achieved in similar studies with longitudinal information also on 

the microbiomes, and indicates the potential of such techniques in a variety of other ‘omics’ 

applications (e.g.,(Campos-Sánchez et al. 2016)). 

 

METHODS 

Study population. We collected microbiome information on 226 mother-child dyads recruited 

from the 279 families involved in the INSIGHT study (Paul et al. 2014). These dyads included 

full-term singletons born to primiparous mothers in Central Pennsylvania, and were 

predominantly white (Savage et al. 2016). The INSIGHT study collected clinical, anthropometric, 

demographic and behavioral variables on children and mothers (Paul et al. 2014). Parents 

completed questionnaires reporting children’s dietary intake and exposure to medications. 

Children’s weight and length were measured at birth, 3-4 weeks, 16 weeks, 28 weeks, 40 

weeks, 1 year, and 2 years. 

 

Microbiome collection and sequencing. Buccal samples were collected by research staff of 

the Penn State Hershey Pediatric Clinical Research Office at the child’s two-year clinical 

research center visit. Ten sterile cotton swabs were each rubbed for 20 seconds against the 

inside cheeks of children or mothers. The cotton swabs were placed in tubes containing 

slagboom buffer (Freeman et al. 2003). Samples were stored in the Pediatric Clinical Research 
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Office and transported from the Hershey Medical Campus to the University Park Campus where 

they were processed.  

 

Right before the two-year visit, stool samples were collected by parents in stool collection tubes, 

wrapped in freezer packs, and frozen immediately in the home freezer. They were then brought 

packed on ice to the clinical research site by the parents and stored at -20°C. Samples were 

finally transported in coolers on ice from the Hershey Medical Campus to the University Park 

Campus where they were stored at -80°C until processing. DNA was extracted using the MoBio 

PowerSoil DNA Isolation kit. The variable regions 3 and 4 of the 16S rRNA gene were amplified 

and sequenced on an Illumina MiSeq (v3 chemistry, 2x300 reads). 

 

Sample DNA extraction, library preparation, and DNA sequencing. Genomic DNA (gDNA) 

was extracted from samples using the MoBio PowerSoil DNA isolation kit (Qiagen). The 

manufacturer’s directions were followed with modifications implemented based on the protocol 

established by the Human Microbiome Project. These include two heating steps (65°C and 90°C 

for 10 minutes each) prior to bead beating. To control for contamination in the DNA from this 

stage, a blank ‘sample’ (containing only MoBio Bead Buffer) was subjected to the entire DNA 

extraction protocol and library preparation. Contamination was never detected via gel 

electrophoresis, Qubit, or Bioanalyzer. 

  

Library preparation for sequencing of the 16S rRNA gene followed the Illumina protocol ‘16S 

Metagenomic Sequencing Library Preparation’ (Illumina part# 15044223 Rev.B; 

https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html

). Each library was quantified using a fluorometer (Qubit, ThermoFisher Scientific) and analyzed 

for correct size on a BioAnalyzer (Agilent). As a positive control, a synthetic mock community 

DNA pool (BEI Resources) was amplified and sequenced alongside the experimental samples. 
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To control for contamination in the amplification or library preparation steps, a blank sample was 

added to all of the library preparation steps. Contamination was never detected via gel 

electrophoresis, Qubit, or Bioanalyzer. 

  

An equimolar pool of 48 libraries with a 25% PhiX spike-in was sequenced on an Illumina MiSeq 

(v3 chemistry, 2 x 300 reads). Demultiplexing was performed using the Illumina software. 

FASTQ files were retrieved to be used in downstream analyses. 

 

Sequence analysis and diversity measures. Sequences were first examined using FastQC 

(Andrews 2010) and a multi-sample report was generated for textual and graphical views using 

Galaxy tools (Blankenberg et al. 2010a) and MultiQC (Ewels et al. 2016), respectively. FASTQ 

manipulation filters (Blankenberg et al. 2010a) were then applied to remove low-quality 

sequences. Sequences were trimmed using a sliding window approach. To both the 5’ and 3’ 

ends of the sequences, we applied a cutoff of minimal mean PHRED score of 20 within a 

window of 5 bases, step size of 1. Quality was reassessed after trimming. 

 

We then merged/joined our forward and reverse paired-end reads into a single contig using a 

two-step process. First, we used fastq-join from the ea-utils package (Aronesty 2011; Aronesty, 

2013) to merge overlapping forward and reverse reads into a single read. This process aligns 

read pairs and merges overlapping regions based upon user-specified parameters of mismatch 

percentage and minimum alignment length; we utilized 8% and 6 bases, respectively. To 

prevent the loss of non-mergeable reads, we performed a second joining operation, using the 

FASTQ Joiner tool (Andrews 2010; Blankenberg et al. 2010) and inserted a string of 5 

ambiguous nucleotides (“NNNNN”) between the pairs. We next removed chimeric sequences. 

We used VSearch (Rognes et al. 2016) with the uchime_denovo algorithm to create a list of 

non-chimeric sequences. 
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Non-chimeric reads were classified individually into taxa. We utilized Kraken (Wood and 

Salzberg 2014) with a customized database containing only 16S rRNA gene sequences, based 

on GreenGenes (DeSantis et al. 2006). Once Kraken had assigned taxa-kmer counts to 

individual reads, we utilized a custom abundance reporting tool 

(https://github.com/blankenberg/Kraken-Taxonomy-Report) to report abundances across 

samples at specified ranks, along with a phylogenetic tree that was pruned to contain the 

terminal nodes that are present in at least one of the samples and the connected internal nodes. 

 

Rarefaction and α- and β-diversity calculations were performed using Vegan (Jari Oksanen, F. 

Fuillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. 

Simpson, Peter Solymos, M. Henry, H. Stevens, Helene Wagner 2015). Rarefaction was used 

to normalize the read count across samples - which were all rarefied to 100,000 reads. To 

compute summary measures of diversity for each microbiome, we used the Inverse Simpson α-

diversity formula on the phylum level abundance counts (Shannon Diversity Index, Simpson, 

and Inverse Simpson measures are all highly correlated; see Table S9), as computed in Vegan 

(Jari Oksanen, F. Fuillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. 

O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry, H. Stevens, Helene Wagner 2015). The 

Firmicutes-to-Bacteroidetes (F:B) ratio was calculated separately for gut and oral microbiomes 

of each child, and for oral microbiome of each mother, by taking the total count of the number of 

reads assigned to the Firmicutes phylum divided by the total count of the number of reads 

assigned to the Bacteroidetes phylum. Non-metric Multidimensional Scaling calculations were 

also performed using Vegan (Jari Oksanen, F. Fuillaume Blanchet, Roeland Kindt, Pierre 

Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry, H. 

Stevens, Helene Wagner 2015). See Fig. S6 for a detailed schematic of the computational 

workflow. 
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Growth Curve Construction. At each time point when weight and height were collected (see 

above), we computed the ratio of weight to length (later referred to as growth index). These 

ratios were then analyzed longitudinally using tools from Functional Data Analysis (FDA) 

(Ramsay and Silverman 2005) alongside the fda package in R. In particular, individual growth 

curves were constructed using PACE (Yao et al. 2005), a procedure that pools information 

across subjects to more accurately assemble the curves (Fig. S2). The PACE software is freely 

available for R, and we used it with its default settings. After the curves were assembled, we 

represented them using 102 cubic spline functions with evenly spaced knots, so that 

subsequent FDA methods could be applied. Growth curves were also temporally aligned, using 

the register.fd function in R, before further analyses were conducted (Fig. 1B). 

 

Association between growth curves and microbiome summary measures. We assessed 

the association between growth curves and the α-diversity, as well as the F:B ratio, of gut and 

oral microbiomes fitting Function-on-Scalar Linear Models (Kokoszka and Reimherr 2017). 

These were low-dimensional functional regressions (the growth curve response, i.e. the 

function, was regressed on a single scalar predictor: α-diversity or the F:B ratio), and were 

carried out in R using code we wrote based on (Kokoszka and Reimherr 2017). The outcome of 

these functional regressions are estimated regression coefficient curves, which we obtained 

using a penalized least squares approach imposing a penalty on the second derivative of the 

parameter. In each case, the smoothing parameter was set at 10,000, but results were robust 

against this choice (especially the p-values; see below). The additional smoothing enforced by 

the penalization was especially useful in terms of producing interpretable estimates. The shape 

of each estimated coefficient curve indicates how the relationship evolves along the time 

dimension, with amplitude (distance from zero) and sign (positive or negative) representing 

strength and direction. Significance was determined as described in (Choi and Reimherr 2017), 

based on three tests which employ different types of weighted quadratic forms. The first, 
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denoted as L2, employs a simple L2 norm (squared integral) of the parameter estimate. The 

second, denoted as PCA, uses principal components to reduce the dimension of the parameter 

and then applies a Wald-type test. The last, denoted as Choi, incorporates a weighting scheme 

into the PCA test so that more principal components can be included, resulting in a test that is in 

between the PCA and L2 tests. Code is available at: 

(https://github.com/mreimherr/Insight_Microbiome_Simulation.git) 

 

Conditional Weight Gain score calculation. Age- and gender-specific weight- and length-for-

age z-scores (WAZ and LAZ, respectively) were determined using the World Health 

Organization gender-specific child growth standards (The World Health Organization). 

Conditional weight gain (CWG) z-scores were then computed for each child using age- and 

gender-adjusted anthropometrics at birth and six months (Griffiths et al. 2009; Savage et al. 

2016). Briefly, CWG z-scores were computed as standardized residuals from a linear regression 

of WAZ at six months on WAZ at birth, using LAZ and precise age at six months visit as 

covariates. The CWG z-score, therefore, represents the variability of child weight gain explained 

neither by length at birth and six months nor by gender. By construction, the CWG z-scores 

have mean 0 and standard deviation of 1. Moreover, in practice these scores are approximately 

normally distributed. Positive CWG z-scores indicate weight gain that is above the average 

weight gain, i.e. rapid weight gain. 

 

Testing potential co-factors. We tested a wide variety of maternal, health, and behavioural 

factors (gathered by the INSIGHT study; Paul et al. 2014) for effects on the children’s 

microbiomes, and the relationships of the microbiomes with children’s weight gain. Maternal 

gestational weight gain, diabetes during pregnancy, mode of delivery, and gender of the child 

were obtained from electronic medical health records. Maternal smoking during pregnancy, 
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family income, child exposure to antibiotics or acid reducing medications, were obtained from 

maternal recall surveys.  

First, considering these factors one at a time, we tested whether gut and oral microbiome 

diversity and (separately) F:B ratio differed between their categories using non-parametric 

Mann-Whitney U and Kruskal-Wallis tests implemented in R (Table S2).  

We also obtained information on a child’s diet at two years as reported by parents using an 

Infant Food Frequency Questionnaire. This questionnaire included 121 food and drink items. 

Parents reported how often their child had each item in the past week (0, 1, 2-3, or 4-6 times per 

week and 1, 2, 3, 4-5, 6 or more times per day). These data were then distilled into a 10-item 

summary, each item with the corresponding number of weekly consumptions. The items 

included: sugar-sweetened beverages, milk, dairy (excluding milk), fruit, vegetables, vegetables 

excluding potatoes, snacks, sweets, meats, and fried foods. We looked at correlations between 

the consumption frequencies to see if any of the items could be removed (we used the R 

package Rstats and the graphical package corrplot (Wei 2013)). A correlation cut off of 0.7 was 

employed, eliminating the items milk and vegetables excluding potatoes. Consumption 

frequencies for the remaining eight food categories were then used as predictors in multiple 

linear regressions for the microbiome summary measures (four regressions in all, for diversity 

and F:B ratio in children’s oral and gut microbiomes; Table S3). This was performed using the 

lm function of the Rstats package.  

Next, we used the bestglm package in R (McLeod and Xu 2014) to select the best subset of 

predictors for a multiple linear regression. This was performed again for four regressions 

(diversity and F:B ratio in children’s oral and gut microbiomes), this time considering seventeen 

covariates at our disposal, as listed in Tables S2 and S3. The covariates selected by bestglm 

were then used as predictors in restricted linear regression fits (results are reported in Table 1 
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for gut microbiomes’ a-diversity and F:B ratio, for which only diet-related covariates were 

retained; no covariates were retained by bestglm for the oral microbiome summary measures).  

Given the prominent effects of diet-related covariates, especially on the gut microbiome (Tables 

S3 and Table 1), we also assessed their relationship with weight gain. Specifically, we ran a 

multiple functional regression for children growth curves (between birth and age two) against 

food consumption frequencies at age two (Table S4; we used the same eight food categories 

considered in Table S3). Like with the functional regressions for growth curves against 

microbiome summary measures (see above), statistical significance was determined with three 

different tests : L2, PCA, and Choi (Choi and Reimherr 2017).   

Finally, we assessed whether diet-related covariates could modulate the relationship between 

weight gain and the gut microbiome. Specifically, we repeated the two functional regressions of 

children growth curves on gut α-diversity (Table S5) and gut F:B ratio (Table S6), in each case 

adding the diet-related covariates retained by bestglm (Table 1). Statistical significance was 

again determined with the L2, PCA, and Choi tests (Choi and Reimherr 2017).  

Identification of influential taxonomic groups. To mitigate sparseness and collinearity in our 

bacterial abundance data, we merged low-abundance or highly correlated genus-level 

abundance counts into abundances of taxonomic groups. We implemented a two-stage 

procedure which utilizes phylogenetic relationships – merging abundances only for neighboring 

nodes along the phylogenetic tree created from the Kraken taxonomic report tool in Galaxy 

(Wood and Salzberg 2014). First, moving upwards along the tree, we merge a node with its 

neighbor if its abundance is less than five counts in more than 90% of the samples in the data 

set. When such a merger occurs the counts from the two nodes are summed. Next, considering 

the merged abundances produced by the first stage and moving upwards along the tree, we 

merge neighboring nodes if their abundances show a correlation in excess of 0.7 across the 
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samples in the data set. When such a merger occurs the counts are averaged. Notably, this 

procedure allowed us to tailor the level of resolution of our analyses to the data: branches of the 

phylogenetic tree where genera were scarcely observed or highly correlated were lumped 

together, while finer resolution was maintained for branches where genera were more abundant 

and diversified in their behavior across the samples. The procedure was applied, separately, to 

abundance data from the three microbiome types (child gut, child oral and mother oral). Table 

S7 contains a complete list of all taxonomic groups obtained in each microbiome type. 

To identify taxonomic groups with the strongest associations with weight gain, we considered 

the merged taxonomic group abundances as scalar predictors in functional regressions for 

growth curves using FLAME (Functional Linear Adaptive Mixed Estimation; Parodi and 

Reimherr 2017). Separately, we considered the merged taxonomic group abundances as 

features in Linear Discriminant Analysis for rapid vs. non-rapid weight gain (based on CWG 

scores) using LEfSe (Linear Discriminant Analysis Effect Size; Segata et al. 2011) as 

implemented in Galaxy (Blankenberg et al. 2010b). These were high-dimensional analyses 

(each comprised a number of predictors corresponding to the number of taxonomic groups 

found in a given microbiome type). The FLAME functional regressions were carried out using 

methods and R code from (Parodi and Reimherr 2017). Estimates and p-values were computed 

using standard methods from FDA (see github repository link below for code) as described in 

(Ramsay and Silverman 2005). FLAME simultaneously selects important predictors and 

captures their effects as estimated regression coefficient curves. It can be thought of as a 

generalization of the adaptive LASSO (Zou 2006) to functional/longitudinal outcomes. In 

particular, a Sobolev kernel was used in the penalty to produce smooth estimates while also 

carrying out variable selection. The tuning parameters were chosen via cross validation, as 

discussed in (Zou 2006; Parodi and Reimherr 2017). Code and examples for carrying out the 

two-stage abundance merger procedure and all of the FDA methods utilized here can be found 
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at <https://github.com/mreimherr/Insight_Microbiome_Simulation.git>. Standalone code for 

FLAME is available at: <http://personal.psu.edu/~mlr36/codes.html>.   

 

Data Sharing. Raw microbiome reads were deposited into dbGaP Study number XXX. All code 

used is either already public or available at GitHub. 16S rRNA gene analysis pipeline tools and 

pipeline are available in the Galaxy platform (usegalaxy.org). The three relevant Galaxy 

workflows are https://usegalaxy.org/u/sjcarnahancraig/w/16s-qc-3,  

https://usegalaxy.org/u/sjcarnahancraig/w/kraken-classification, 

https://usegalaxy.org/u/sjcarnahancraig/w/vegan-rarefacation--alpha-diversity. 
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Fig. 1. Growth curves construction. (A) Example growth curve. Points: observed weight-to-

length ratios (i.e. growth indices); line: estimated growth curve. (B) Final aligned growth curves 

for all children studied. 

 

Fig. 2. Oral and Gut microbiome’s relationships with growth curves. Estimated regression 

coefficient curves expressing the associations of growth curves with (A) children’s gut a-

diversity, (B) children’s oral a-diversity, (C) mothers’ oral a-diversity, (D) children’s gut 

Firmicutes-to-Bacteroidetes ratio, (E) children’s oral Firmicutes-to-Bacteroidetes ratio and (F) 

mothers’ oral Firmicutes-to-Bacteroidetes ratio. Each curve is accompanied by a point-wise 

confidence band (Ramsay and Silverman 2005). 

 

Fig. 3. Oral and Gut microbiome’s relationships with conditional weight gain. Notched 

box-plots contrasting a-diversity and Firmicutes-to-Bacteroidetes (F:B) ratio in two-year-old 

children with rapid (CWG ≥ 0) vs. non-rapid (CWG < 0) weight gain, and in their mothers. (A, D) 

for the gut microbiome in children with rapid (N = 90) vs. non-rapid (N = 99) weight gain; (B, E) 

for the oral microbiome in children with rapid (N = 97) vs. non-rapid weight gain (N = 117); (C, F) 

for the oral microbiome in mothers of children with rapid weight gain (N = 102) vs. mothers of 

children without rapid weight gain (N = 113). All p-values were obtained using one-tailed Mann-

Whitney U tests. Outliers were not plotted but were included in the tests. 

 

Fig. 4. Identification of influential taxonomic groups. Estimated regression coefficient curves 

for taxonomic groups affecting growth curves, as identified by FLAME (Parodi and Reimherr 

2017) in: (A) children’s gut microbiome, (B) children’s oral microbiome, (C) mothers’ oral 

microbiome. The zero line (dashed) corresponds to no effect. Linear Discriminant Analysis 

scores for taxonomic groups distinguishing children with rapid vs. non-rapid weight gain, as 
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identified by LEfSe (Segata et al. 2011) in: (D) children’s gut microbiome, (E) children’s oral 

microbiome. See Table S8 for a list of genera belonging to each group identified by FLAME and 

LEfSe. 
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Table 1. Associations detected in multiple linear regressions for children’s gut 

microbiomes’ Firmicutes-to-Bacteroidetes ratio and a-diversity. Each regression 

comprised 17 potential covariates, but only diet-related ones were retained by variable selection 

procedures. Coefficient estimates and significance (p-values) are shown, together with overall 

model significance and R-squared, for the regression restricted to the selected diet-related 

covariates.  

Response Covariate Coefficient 

estimate 

T-value* P-value R-squared 

F:B ratio vegetables 15.0 6.21 5.08x10-9  

meats -18.8 -3.28 1.28x10-3  

Overall 

model 

   9.45x10-9 20.79% 

a-diversity vegetables -0.0769 -3.22 1.57x10-3  

fruit 0.0543 2.63 9.52x10-3  

Overall 

model 

   3.60x10-3 5.94% 

*test statistic of a null hypothesis that a covariate’s coefficient is equal to zero 
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