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Abstract 

Social learning enables complex societies. However, it is largely unknown how insights obtained 

from observation compare with insights gained from trial-and-error, in particular in terms of their 

robustness. We use aversive reinforcement to train “experimenter” zebra finches to discriminate 

between auditory stimuli in the presence of an “observer” finch. We find that experimenters are 
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slow to successfully discriminate the stimuli but immediately generalize their ability to a new set 

of similar stimuli. By contrast, observers subjected to the same task instantly discriminate the 

initial stimulus set, but require more time for successful generalization. Drawing upon machine 

learning insights, we suggest that observer learning has evolved to rapidly absorb sensory 

statistics without pressure to minimize neural resources, whereas learning from experience is 

endowed with a form of regularization that enables robust inference. 

 

Introduction 

Humans and animals have the remarkable ability to generalize their acquired knowledge to new 

examples and situations (Pavlov 1927; Markman and Hutchinson 1984; Bass and Hull 1934; 

Spierings and Ten Cate 2016). For example, they can learn to discriminate threatening from 

harmless stimuli and they can generalize this knowledge to new instances of a threat. They are 

also capable of learning from few examples (Cherkin 1969; Bitterman et al. 1983), presumably 

because brains have evolved under the pressure of fatal consequences when threats are not 

immediately recognized. Two ethologically relevant learning metrics are thus the acquisition 

time and the transferability of acquired information.  Which forms of learning focus more on the 

former and which more on the latter of these metrics? 

We propose a comparative approach towards disentangling rapid learning from robust 

generalization, exploiting the fact that many animals are not only capable of learning from 

aversive or appetitive cues through trial-and-error type processes (Thorndyke 1905; Skinner 

1953), but also from observing cues produced by conspecifics and other animals involved in 

learning or doing the same task (Galef  1988; Zentall 2006; Byrne 2003). In what way does the 

retained sensory information depend on whether the learning cue is experienced or observed, 

keeping all other parameters fixed? 
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We study cue modulation in an auditory stimulus discrimination task involving pairs of zebra 

finches (Okanoya and Dooling 1990; Sturdy et al. 1999; Tokarev and Tchernichovski 2014; 

Canopoli et al. 2014). Zebra finches are useful models for sensory learning thanks to their ability 

to detect subtle differences among highly stereotyped song renditions (Woolley and Doupe 

2008). Their learning in stimulus playback experiments is dependent on cues such as 

behavioral context (Tchernichovski et al. 2001; Derégnaucourt et al. 2013).  

Using aversive air-puffs, we trained one of the two birds in a pair to discriminate short from long 

renditions of a zebra finch song syllable (Go-NoGo avoidance conditioning, Fig. 1A; 

spectrograms of stimuli in Fig. 1B, durations in Fig 1C). We refer to these birds as 

“experimenters”. Simultaneously, we allowed a paired zebra finch to observe the entire training 

phase of the experimenter, including the acoustic stimuli and the experimenter’s actions.  These 

latter birds are referred to as “observers”; they could engage in unrestricted visual and auditory 

interactions with experimenters, but did not perform the task until after experimenters completed 

their training phase.  

The acoustic stimuli in such experiments are fully predictive of whether an air-puff is imminent or 

not. Experimenters reveal their ability to discriminate the stimuli by escaping from the perch 

before they get struck by the air-puff (Canopoli et al.2014). We refer to this form of learning as 

experience learning because birds learn to discriminate based on experience of the air-puffs. By 

contrast, observers could not learn from air-puff experiences, but they could learn from 

observing the air-puffs’ direct and indirect effects on experimenters’. We refer to this form of 

learning as observation learning (which is not meant to imply that observers learn by imitating 

the actions of experimenters, which is commonly known as ‘observational learning’).   

We expected that observers would be able to demonstrate their learned discrimination ability in 

a separate testing phase in which they were exposed to air-puffs. Here, we investigate the 

performance tradeoffs between experience learning and observation learning using two 
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measures taken from the machine learning community: learning speed and generalization 

performance. 

  

Fig. 1 A Go-NoGo auditory discrimination task. (A) When the experimenter (EXP) was on the perch 

continuously for 3.5 s, an acoustic stimulus Si (i=1,..,10) was randomly chosen and played through a 

loudspeaker. The long stimuli S6 to S10 were followed by an air-puff aimed at the experimenter. 

Experimenters were expected to learn to avoid the air-puffs by escaping the perch in puffed trials, and 

staying on the perch in unpuffed trials. (B) Log-power spectrograms of all ten stimuli in the training set (S1 

to S10, left) and in the generalization set (S’1 to S’10, right). All stimuli were composed of a string of six 

renditions of a particular song syllable. (C) Syllable durations for the ten stimuli in the training set (blue) 

and generalization set (red, dots indicate individual syllable renditions). Either the long stimuli or short 

stimuli were followed by an air-puff. 

 

Results 
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Observation learning induces rapid expression of auditory discrimination   

During a pre-training phase, experimenters (EXP) were accustomed to air-puffs that followed 

one of two auditory stimuli of different duration. Then a training phase followed, during which we 

exposed EXP to the full training set of 10 auditory stimuli (Fig. 2A left panel and Supplementary 

methods). Gradually, EXP learned to escape from the perch more often in puffed trials; their 

escape probabilities (cumulated from trial onset to trial end) became larger on puffed trials than 

on unpuffed trials (Fig. 2B left and right). We quantified the birds’ ability to discriminate stimulus 

class by the average difference in (cumulative) escape probabilities (dPesc) between puffed and 

unpuffed trials (Fig. 2, B, D and F). EXP attained a stringent performance criterion (see Methods 

and Fig. S1 D) after 4.8 ± 2.9*103 trials (mean ± std, n=10 birds). This criterion defined the end 

of the training phase, at which time EXP displayed a dPesc of 0.36 ± 0.06 (mean ± std, dPesc 

averaged over the last 3 blocks of training, including the criterion block). After the training phase 

(or observation phase for observers), the experimenter was replaced by the observer (OBS) and 

a naïve bird was placed in the observer’s cage. Then we began testing the OBS using the same 

pre-training and training paradigms it was previously allowed to observe. We refer to the training 

of observers as testing, Fig. 2C right panel.  
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Fig. 2 Rapid learning in observers. (A) Experimental design: Observers (OBS) were separated from 

experimenters (EXP) by a screen that restricted visual interactions to the perch equipped with the air-puff 

delivery mechanism.  During a training phase (left panel), OBS watched EXP perform the task. 

Thereafter, the knowledge learned by OBS was tested in the same paradigm with a new (naïve) OBS 

(right panel). (B) On the first training day (left), this example EXP showed roughly equal densities of 

escapes (rasters) for unpuffed (light blue) and puffed trials (black). The air-puff sounds are visible in 

spectrograms of microphone recordings (red arrows). On the last day of training (right), the cumulative 

escape probabilities (black and blue lines, bottom) discriminate puffed from unpuffed trials (z-test of 

individual proportions, p<0.01).  (C) Difference of escape probabilities (dPesc) during training of an EXP 

(blue) and during testing of its OBS (green). Solid curves are smoothing spline fits (parameter: 0.3). (D, 

left) Scatter plot of dPesc as a function of trial block number (n=10 EXP, blue dots; n=9 OBS, green 

diamonds). dPesc at the criterion is depicted with a larger, solid symbol. (D, right) Probability distributions 

of dPesc for EXP (blue, n=10) and OBS (green, n=9) in the first 3 blocks (300 trials, up to dashed line), 
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fitted with Gaussian functions. (E) Bar plot of dPesc, showing that OBS (green diamonds, n=9) 

discriminate significantly better in the first 3 blocks of their testing than EXP (blue circles, n=10) in the first 

3 blocks of their training. (F) Upon reaching the learning criterion, the average dPesc (3-block average) in 

OBS is significantly larger than in EXP. (G) OBS reach the learning criterion in fewer trials than EXP. The 

bars indicate averages across single birds, the black line indicates the lower bound (800 trials).  

 

At the beginning of the testing phase (first 3 testing blocks), OBS displayed a significantly higher 

discrimination performance than EXP at the beginning of their training phase, Fig. 2E. 

Surprisingly, OBS’ initial performance was no worse than that of EXP who had reached the 

learning criterion (average initial dPesc=0.40 in n=9 OBS vs average final dPesc=0.36 in n=10 

EXP). OBS reached the performance criterion very rapidly, in only 1.82 ± 1.7*103 trials (mean ± 

std, n=9 birds), less than a third of the trials required by EXP (single-sided Wilcoxon rank sum 

test with alternative hypothesis: EXP > OBS, p = 0.0075 (not exact), test statistic = 75; Effect 

size: Cohen’s d = 1.224, 95% CI not computed because of ties), Fig. 2G. After reaching the 

criterion, OBS showed a significantly higher discrimination performance than EXP (average 

dPesc in OBS: 0.47 ± 0.11; average dPesc in EXP: 0.36 ± 0.06 Wilcoxon rank sum test, p = 

0.0056, test statistic = 12; Effect size: Cohen’s d = 1.38, 95% CI = [-0.2 -0.031]), Fig. 2F.  

 

Observers generalize poorly compared to experimenters 

Experimenters could rapidly generalize their learned knowledge to novel instances of the stimuli 

(generalization set, spectrograms in Fig. 1B) but observers were not able to do so. To compare 

generalization in experimenters and observers, first, we allowed generalization observers 

(GENOBS) to watch generalization experimenters (GENEXP) learn to discriminate the stimuli in 

the training set, Fig 3A top. After training completion, GENEXP and GENOBS were separated 
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and placed in different experimental chambers, each paired with a naïve observer. GENEXP 

were then exposed to the generalization set of stimuli, Fig. 3A bottom left. GENOBS were 

exposed to a pre-training phase with two stimuli from the training set, followed by a testing 

phase comprising the ten stimuli from the generalization set, Fig. 3A bottom right. Contrary to 

our findings on the training set, GENOBS initially showed significantly poorer discrimination on 

the generalization set (average dPesc over the first 3 blocks in GENEXP: 0.42 ± 0.08 and in 

GENOBS: 0.2 ± 0.18, p = 0.024, test statistic = 66, two tailed Wilcoxon rank sum test, Effect 

size: Cohen’s d= 1.11, 95% CI = [0.016, 0.36]), Fig 3 B, C. GENOBS also took more time than 

GENEXP to reach criterion (4.9 ± 4.0*103 trials in n=9 GENOBS versus 1.1 ± 0.5* 103 trials in 

n=9 GENEXP, p = 0.0064 (not exact), test statistic = 10, two tailed Wilcoxon rank sum test; 

Effect size: Cohen’s d = 1.3, 95% CI not computed because of ties), Fig 3D.  

GENOBS needed significantly more trials to reach the learning criterion than did OBS (p = 

0.044, test statistic = 17.5, Wilcoxon rank sum test), demonstrating that observers reacted to 

small differences between stimuli from the training and generalization sets. However, after 

reaching the criterion, OBS and GENOBS discriminated the stimuli equally well (similar dPesc 

at criterion, p = 0.077, test statistic = 20, Wilcoxon rank sum test). Thus, overall, observers 

seemed to associate the perch-escape behaviors by experimenters much more exclusively with 

the presented auditory stimuli than did the experimenters themselves, who associated the air 

puffs more inclusively with the stimuli (to include similar stimuli from the generalization set). 
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Fig. 3 Observers are poor generalizers. (A) Generalization experimenters (GENEXP) undergo the 

same training phase as EXP (training set of stimuli, S, top), after which they are exposed to the 

generalization set of stimuli S’ during the testing phase (bottom left). Generalization observers (GENOBS) 

first observe the training set of stimuli (S, top) and then are tested on the generalization phase (S’, bottom 

right). (B) Scatter plot of dPesc on the generalization set as a function of block number (100 trials per 

block) in all birds (n=9 GENEXP, blue dots; n=9 GENOBS, green diamonds), the criterion block is 

represented by larger solid symbol. (C) GENEXP discriminated stimuli in the generalization set better 

than GENOBS. Symbols indicate dPesc averaged across the first 3 blocks of the testing phase, bars 

represent averages across animals. (D) GENEXP reached the criterion faster than GENOBS. Symbols 

indicate trials to criterion, bars represent averages. 
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We inspected the escape behaviors of observers and experimenters. We found that after 

reaching the learning criterion, EXP and OBS displayed similar perch escape strategies. That is, 

they tended to abruptly increase their perch escape rates just before air-puff onsets, Fig. S3A, 

B. This similarity of behavior suggests that observers might learn from experimenters’ actions.  

 

Observers do not learn through passive perceptual processes 

We set out to characterize the requirements for observation learning. We hypothesized that 

OBS learned from experimenters' actions in response to the air-puffs. To test whether observers 

indeed learned from experimenters’ actions, we allowed experimenter and observer pairs to 

experience several thousand (7.5 ± 3.6*103) stimulus playbacks including the sound of air-puffs, 

but not the tactile sensation of the puffs. We realized this perceptual paradigm by directing the 

air outlet away from the experimenters, Fig. 4 A. Consequently, experimenters never 

experienced the air-puff as a force against their body. We refer to observers in such pairs as 

perceptual learners (PLs), because they could potentially learn from the pairing of stimuli with 

air-puff sounds.  

Experimenters in this perceptual paradigm never produced dPesc values different from 0 

(average dPesc after 5000 training trials in 3 experimenters: [-0.065, -0.002, 0.007], p=0.81, 

p=0.25, p=0.64, respectively; z-test of individual proportions), hence they did not show the 

discriminative behavior that we suspected would drive learning in observers. When we tested 

PLs (n=7 birds) with air-puffs directed at them, they needed significantly more trials to reach 

criterion than OBS (6.32 ± 6.3*103 trials in PLs versus 1.82 ± 1.7*103 in OBS; single-sided 

Wilcoxon rank sum test of alternative hypothesis PL > OBS, p = 0.008 (not exact), test statistic 

= 8.5; Effect size: Cohen’s d = 1.036, 95% CI not computed because of ties), Fig. 4E. PLs were 
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slower than OBS even after removing an outlier bird (trials to criterion = 20300) in the PL group 

(p = 0.016, Cohen’s d: 1.29). PL performance at criterion was comparable to OBS performance 

(0.32 ± 0.2 in PL versus 0.47 ± 0.11 in OBS, p = 0.142, test statistic = 46, Wilcoxon rank sum 

test, Cohen’s d = 0.93, 95% CI = [-0.077 0.338]).  The absence of rapid learning in PLs 

suggests that learning in OBS required an experimenter engaged in the task and responding to 

air puffs. 
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Fig. 4 Observers learn from behaving, expert experimenters, even in the absence of vocal 

interactions. (A) Perceptual Learners (PLs, n=7 birds) first observed a naïve experimenter trigger 

several thousand trials in which the air-puff was directed away from the experimenter’s body (left). 

Thereafter, they were tested using air puffs (right). (B) Valence Learners (VLs, n=5 birds) observed 

experimenters that never reached the criterion (left). Additionally, three VLs were exposed to stimulus-

contingent air puffs prior to observation. Thereafter, VLs were tested just like OBS (right). (C) 
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Spectrograms of microphone recordings of puffed (top) and unpuffed (bottom) trials. Vocal exchanges 

(calls, red rectangles) frequently occurred during the task. Wing flaps are also audible (yellow rectangle). 

(D) Difference in the probability of observing a call in the delay period and stimulus period (Delay – 

Stimulus) for the ten stimuli (n = 6 observers). Here, S1 – S5 are unpuffed. (G) Both PL (circles) and VL 

(squares) required significantly more trials than observers (light green diamonds) to reach criterion during 

the testing phase (OBS < PL, p = 0.008; OBS < VL, p = 0.001). Observers deprived of acoustic 

communication with experimenters during trial times are as quick as OBS (-TCOM = OBS, p = 0.776, 

Wilcoxon rank sum test). 

 

Experimenters needed to be expert models to induce learning in observers 

We expected observation learning to be most effective when information is provided by an 

expert. To probe for sensitivity on experimenter performance, we tested a group of Valence 

Learners (VLs, n=5) that observed naïve experimenters who did not reach the performance 

criterion within (on average) 6.9 ± 3.0*103 trials. These naïve experimenters were hit by air puffs 

on average 539 times out of 1000 puffed trials, and escaped in unpuffed trials on average on 

400/1000 trials. In addition, to give VLs direct experience of the reinforcer (its valence), 3/5 VLs 

were initially exposed to air puffs (approximately 500 strong 1-s air puffs, see Methods). When 

tested, VLs were much slower than OBS to reach the learning criterion (average number of 

trials to criterion in VL [n = 5]:  8.0 ± 2.5 *103 versus OBS [n = 9]: 1.82 ± 1.7*103, single sided 

Wilcoxon rank sum test of alternative hypothesis VL > OBS, p = 0.001 (not exact), test statistic 

= 0, Cohen’s d = 3.11, 95% CI not computed), Fig. 4E. The performance of VLs at criterion was 

lower than the performance of OBS (average dPesc for VL [n = 5]: 0.25 ± 0.11 versus for OBS 

[n = 9]: 0.47 ± 0.11, p= 0.007, test statistic = 42, Wilcoxon rank sum test, Cohen’s d = 1.87, 95% 

CI = [0.034 0.355]). The poor testing results in VLs suggest that OBS did not learn by predicting 

the reward value and by converting this prediction into an optimal action during testing. Instead, 
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VL behavior suggests that OBS focus on experimenters’ discriminative actions, which must 

necessarily contain the information required for observation learning. 

Overall, PL and VL behavior was closer to EXP than to OBS.  That is, upon reaching the 

learning criterion, there was no statistically significant difference in performance (dPesc) 

between EXP and PLs (p = 0.41, test statistic = 26, 95% C.I = [-0.2 0.2], Wilcoxon rank sum 

test; Cohen’s d: 0.21) and a trend of higher performance in VL compared to EXP (p = 0.07, test 

statistic = 10, 95% C.I = [-0.21 0.05], Wilcoxon rank sum test; Cohen’s d: 1.14). In combination, 

PLs and VLs emphasize the importance of experimenters’ discriminative actions for observation 

learning. 

 

Vocal exchanges are not required for observation learning 

Given the importance of experimenter actions, we speculated that rapid learning in OBS was 

based on vocal exchanges between EXP and OBS through calls occurring during experimental 

trials, Fig 4 C. Indeed, on the last day of the training phase, when EXP had reached the learning 

criterion, we found a difference in calling behavior between puffed and unpuffed trials. In six 

OBS (on one day each), we inspected calling rates (defined as the probability of observing at 

least one call) in the stimulus period (from stimulus onset to stimulus offset) and in the delay 

period (defined from stimulus offset to air-puff onset), Fig. 4 D. In puffed trials, the calling rate 

was significantly lower in the delay period than in the stimulus period, whereas no such 

difference was seen in unpuffed trials (puffed trials: stim call probability 0.46 ± 0.26 vs delay call 

probability 0.27 ± 0.15, difference -0.19; unpuffed trials: stim call probability 0.39 ± 0.22 vs delay 

call probability 0.42 ± 0.26, difference 0.03; n=6 birds and 10 stimuli divided into two groups, p = 

10-6, two t-sample t-test, t statistic = 6.29, df = 58). Hence, call reduction could signal the 

imminent arrival of an air puff. 
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To test whether observers used calls as a learning cue, we housed experimenters and 

observers (n=5 pairs) in separate soundproof boxes and gave them visual access to each other 

by virtue of two adjacent windows. Moreover, to trigger social interest, we allowed birds to 

vocally interact with each other using a custom digital communication system composed of two 

microphones and loudspeakers and an echo cancellation filter (Supplementary methods). We 

suppressed vocal exchanges during stimulus presentation by interrupting the communication 

system from stimulus onset to air-puff offset. We termed the observers in this paradigm no-trial-

communication learners (-TCOM). Despite elimination of vocal interactions during the 

discrimination task, we found that -TCOM acquired stimulus-discriminative information in 

amounts comparable to OBS (trials to criterion: -TCOM (n = 5): 1.74 ± 1.78*103; OBS (n = 9): 

1.82 ± 1.7*103, p = 0.776, test statistic = 25, Wilcoxon rank sum test, 95% CI = [-1200 2300], 

Cohen’s d: 0.05), Fig. 4G. Hence, it follows that OBS did not require immediate vocal 

interactions. They could learn from visual displays only or from vocal exchanges following trials.  

 

Observation learning was not a simple form of stimulus enhancement  

We did not find evidence that simple stimulus enhancement (Zentall 2006; Byrne 2003) could 

account for observers’ rapid discrimination learning. Here, stimulus enhancement is defined as 

learning in an observing animal through the increased interaction with a particular stimulus after 

a demonstrating animal has directed its attention to the stimulus. Hoppitt and Laland (Hoppitt 

and Laland 2013) provide a necessary condition for stimulus enhancement: observers must 

exhibit higher response rates to enhanced stimuli, which implies that enhancement could reveal 

itself as an increase in stimulus-contingent escape behavior even when there is no 

reinforcement.  
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To probe for stimulus enhancement, we quantified escape behavior during the first 100 pre-

testing trials during which two auditory stimuli were paired with air-puffs that were too weak to 

displace a bird from the perch. During these trials, OBS exhibited a dPesc of 0.09 ± 0.3 that was 

not significantly different from zero (p = 0.44, test statistic = 24, 95% CI = [-0.17 0.44]; Wilcoxon 

signed rank test), Fig.  S4B. Hence, OBS were not initially drawn to either puffed or unpuffed 

stimuli. Rather, they expressed discriminative behavior only during later trials of the pre-testing 

phase, after we increased the strength of air-puffs. Thus, it seems that in addition to the stimuli 

and the actions of experimenters, observers needed also the aversive experience of air puffs to 

express their learned knowledge. 

 

Logistic regression with L1 norm regularization differentiates observers and 

experimenters 

We sought to identify possible explanations for the difference in generalization abilities between 

observers and experimenters. In the following, we draw upon insights from machine learning 

and statistical learning theory to suggest a simple mechanism that can account for the learning 

characteristics in experimenters and observers. In machine learning, the typical goal is to 

maximize generalization performance but not learning speed, which is why many state-of-art 

methods tend to learn slowly (LeCun et al.2015). Typically, undesired overfitting arises when 

few training examples are classified using too many parameters. Alternatively, performance can 

be poor on both training and testing data when many examples are classified using too few 

parameters. These two performance shortcomings imply that there is a tradeoff between 

learning and generalization known as the ‘Bias-Variance dilemma’ (Geman et al. 1992). This 

tradeoff has led researchers to develop regularization methods such as lasso and ridge 

regression (Tibshirani 1996), maximal margin (Cortes and Vapnik 1995), and dropout 

(Srivastava et al. 2014). Essentially, regularization methods improve generalization performance 
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by dynamically regulating the use of parameters and of training data (Srivastava et al. 2014; 

Tibshirani 1996).  

In the context of our findings, these theoretical insights from statistical learning theory suggest 

that experience is associated with regularization whereas observation is not. We tested the 

hypothesis that regularization could set the divide between experimenter and observer 

performances, by training a simple artificial neuron with a logistic activation function to 

discriminate between the two stimulus sets, Fig. 5A. The neuron received input from a group of 

at least 22 input neurons tuned to diverse sound features such as amplitude, pitch, duration, 

and Wiener Entropy, collectively defining the feature set used in Sound Analysis Pro (SAP), a 

popular birdsong analysis software (Tchernichovski et al. 2000). To model observers, we trained 

the neuron to fire during puffed stimuli and to remain silent during unpuffed stimuli. We used a 

gradient descent learning rule that maximizes the likelihood of correct discrimination (Methods). 

We found that the discriminative performance of the ‘observer’ neuron increased rapidly to the 

theoretical limit on the training set, but when we interrupted the training at any time and 

evaluated the neuron’s performance on the testing set, we found poor generalization, Fig. 5B. 

The reason for poor generalization was that the neuron based its classification on exceedingly 

many sound features that by chance were slightly informative about the reinforcing air-puff, Fig 

5D.  
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Fig. 5 Regularization can explain the performance differences between experimenters and 

observers. (A) The model neuron triggers escapes from the perch based on the logistic response to a 

set (here 6) of auditory features. (B) When an ‘observer’ neuron is modeled without L1 regularization 

(λ=0), the percent correct classification (PCC) on the training set (black line) increases rapidly but the 

PCC on the generalization set (blue line) increases much more slowly. Adding an extra 100 auditory 

features of frozen white noise (dashed lines) accentuates the contrast between fast learning and slow 

generalization. (C) When the ‘experimenter’ neuron is trained with L1 regularization (with dynamic 

estimation of λ, the final value of λ (on average) = 0.0127), the curves reporting PCC on training and 

generalization sets increase slowly but at roughly matched rates. Increasing the number of frozen noise 

inputs has almost no effect on PCC curves (dashed lines).  (D) In observer neurons, the log absolute 

synaptic weights are roughly uniformly distributed. In experimenter neurons, the synaptic weights (black) 

are all near zero except the weight corresponding to syllable duration (auditory feature 21, black arrow). 

Thus, the experimenter neuron turns into a duration detector.  Curves show averages across 50 

simulation runs. (E) The dynamics of the regularization penalty λ under the reward prediction error rule 

(each color is one simulation run, n = 20 simulated birds).  (F) Learning curves in observers are plausible 
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both when they learn from the auditory cues of air puffs (full lines) or from experimenter actions (cues 

affected by 30% random ‘label noise’, dashed lines). However, training and generalization performances 

get too close to be realistic when observers learn with L1-regularized learning including 30% label noise 

(dash-dotted line). 

 

We then modeled experimenters by endowing the learning rule with L1 regularization. L1 

regularization implements a conjunctive  minimization of summed absolute synaptic weights 

(Tibshirani 1996). To explain why experimenters would have a non-zero positive value of the 

regularization penalty, we constructed a simple learning rule that dynamically regulates the 

regularization parameter λ in proportional to reward prediction error (Methods), which is known 

to be signaled by a class of dopaminergic neurons in the vertebrate brain (Schultz et al.1997; 

Hollerman et al. 1998; Gadagkar et al. 2016). In this way, regularization increases when the bird 

makes mistakes, whereas if the bird reaches a high rate of success, the reward prediction error 

reaches zero in expectation, which settles the value of λ. The observers’ brain would not 

modulate λ because observers do not directly experience rewards and punishments during the 

experimenter training phase.  

We found that interrupting the training process of the regularized neuron at any time resulted in 

roughly equal performances on both training and testing stimulus sets, Fig. 5C, similar to 

experimenters’ behavior. However, the excellent generalization performance came at a cost: 

Because we implemented the L1 regularization as a small reduction of synaptic weights (Ng 

2004), the synaptic weights of the experimenter neuron and with it the performance on the 

training set grew only slowly. The main effect of regularization was to concentrate the final 

synaptic weights on the duration feature, corresponding with our design of stimulus class, Fig. 

5D.  
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To achieve robust generalization, the value of λ had to grow at a rate slower than the synaptic 

learning rate of the logistic neuron (𝛼 ≪ 𝜂).  In numerical simulations, we found that the value of 

λ converged to a positive value, Fig 5 E. Training and generalization performance for the 

experimenter and observer were similar when λ was pre-fixed (to 0.013) or when it was 

dynamically altered. 

We were unable to assert from our simulations whether the apparent learning cue in observers 

was the air puff’s auditory cue (e.g., the experimenter’s actions drew attention to the puff first, 

followed by a complex form of stimulus enhancement) or the experimenters’ escape behaviors 

(as in action imitation). That is, the simulation results matched well with experimental data both 

when the learning cues for the observer neuron were the air puff sounds (Fig 5F, solid lines) 

and when the cues were the modelled escape events (we modeled the escapes as binary 

random variables with a 30% chance of not representing the true class label, corresponding with 

the average false positive and false negative rates of EXP of about 30%, Fig. 5F dashed lines). 

Most importantly, regularization was necessary to achieve a good match with experimental 

findings. Namely, when we endowed the observer neuron with the same regularization constant 

λ as the experimenter neuron, but let the neuron learn not from presence/absence of air puff 

sounds but from the experimenter’s noisy actions (see Methods), then training and 

generalization curves in the observer neuron were very similar and thus not representative of 

the data, (Fig. 5F, dot-dashed lines).  

 

Discussion 

We found that zebra finches can learn to discriminate auditory stimuli by observing expert 

discriminators. Experimenter and observers’ learning performance was subject to a tradeoff that 

depended on whether the learning cue was experienced or observed. We inferred this cue 
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dependence thanks to our experiment design in which the stream of auditory stimuli was 

identical for experimenters and observers. Therefore, any differences in their abilities to learn 

and to generalize must have been entirely due to the learning cue, which was an aversive air-

puff for experimenters and an observable action for observers. Our findings suggest that an 

experienced cue favors robust generalization, whereas an observed cue favors rapid learning.  

Part of our findings are in line with social learning theories which suggest that to learn from 

others is a successful strategy with high payoff under a wide range of conditions (Axelrod and 

Hamilton 1981; Rendell et al. 2010). However, our findings also suggest a limitation to the 

ubiquitous success of social learning strategies. Namely, we find that social learning can lack 

robustness when environmental conditions even slightly change. In a sense, our findings 

evidence a sensory analogue to the common view that the best means to learn a (motor) skill is 

rigorous practice. As in the case of children who perform poorly in exams after neglecting their 

homework, insights gained through observation seem not to transfer well to new task instances.   

Currently, there is no reason to think that all forms of observation learning will be subject to lack 

of robustness. But our work raises the question as to whether there exist some forms of 

observation learning that promote robust transfer to new task instances. 

Our work raises many interesting questions on the behavioral and neurobiological mechanisms 

used by observers to acquire stimulus-discriminative information. Behaviorally, observers could 

learn through social mechanisms of action imitation, of observational conditioning, and of 

stimulus enhancement, or a combination of these. Note that the definitions of these 

mechanisms are not strict enough to allow a discrete categorization of social learning in any one 

study (Hoppitt and Laland 2013). Our findings de-emphasize some known social learning 

mechanisms such as perceptual learning (evidenced by PL learners) and simple stimulus 

enhancement (evidenced by lack of discriminative behavior during pre-testing). Our experiments 

also de-emphasize vocal communication as a mechanism but reveal the importance of vision (-
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TCOM learners). Overall, the importance of a demonstrating expert suggests that experimenters 

signal statistical differences between puffed and unpuffed stimuli via their perching behavior 

such as their rates of leaving the perch. Possibly, observers focused their attention more on the 

actions of experimenters rather than the stimuli that elicited the actions, which is why they 

apparently failed to identify the simplest environmental signal that can explain experimenters’ 

behavior, which in our case was syllable duration. 

Similar speed-robustness learning tradeoffs as we find exist in rapidly evolving artificial systems, 

in which high discrimination performance tends to be associated with slow learning as an 

unwanted side effect (Dauphin et al. 2014). The tradeoff we find between robustness in one 

learning paradigm and speed in another is most closely paralleled by regularization methods 

that control inference in artificial classifiers. Excellent generalization of experimenters agrees 

with strongly regularized classifiers whereas fast learning in observers agrees with weakly 

regularized classifiers. Our work suggests that the benefits of regularization may be inherent to 

experimenting but not to observing. Furthermore, subtractive weight depression through 

heterosynaptic competition has been observed in the amygdala (Royer and Paré 2003), which 

provides biological plausibility to our notion of L1 regularization. We hypothesize that such a 

form of weight subtraction is also seen in zebra finches when they are experimenting, but not 

when they are observing. 

A common problem in machine learning is to set the degree of L1 penalty defined by the 

regularization parameter λ. This parameter is most often selected using grid search or random 

search methods, to localize the value that minimizes a cross-validation or held-out validation set 

error (Bergstra and Yoshua Bengio 2012). More sophisticated techniques, such as estimating a 

Gaussian process regression model between the hyperparameter (such as λ) and the validation 

error have recently been developed  (Snoek et al. 2012). However, all these techniques require 

an evaluation of the validation error for optimization, for which there is currently no support in 
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animals and their brains. Therefore, it is far from clear how a brain could implement dynamic 

regularization. Our speculative proposal is that the balance between learning and regularizing is 

controlled by a neuromodulatory signal. Such signals are ubiquitous in the animal kingdom and 

are well suited to convey the amount of regularization, given that they respond sensitively to 

external reinforcements and their prediction errors (Pawlak and Kerr 2008; Hangya et al. 2015; 

Yu and Dayan 2005; Iglesias et al. 2013; Wolfram Schultz 1998). One possibility is that air-puff 

reinforcers drive changes in regularization via experimenters’ escape actions, which is 

supported by the representation of action-specific reward values in brain areas innervated by 

neuromdulatory neurons (Samejima et al. 2005). This proposal delineates a possible neural 

system for comparative studies of learning from experience and from observation. It has been 

shown that reward prediction error and reinforcement learning algorithms in general, may be 

utilized by humans in order to understand the social value of others’ behavior (Behrens et al. 

2008; Joiner et al. 2017), to feel vicarious rewards from their success or failure (Mobbs et al. 

2009) or from their approval (Izuma et al. 2008). We believe that the computational role of 

reward prediction error can be extended to that of regularization of learning, mediated by 

neuromodulator systems such as acetylcholine.  

The speculative implications of our simulations are that a prerequisite for the evolution of 

observation learning was a sufficiently large brain capacity that provided rich sensory 

representations and put few constraints on usable neural resources for sensory processing. 

Evolution might have chosen traits in observers that are complementary to those associated 

with experimenting, explaining the apparent differences in what these learning strategies extract 

from the sensory environment.  
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Materials and Methods 

Experimental animals  

We used adult (older than 90 days post hatch, dph) female zebra finches (Taeniopygia guttata, 

N = 46 females) raised in our colony. Reasons for choosing females are outlined in 

Supplemental Information. All experiments were licensed by the Veterinary Office of the Kanton 

of Zurich.  

 

Experimental setup 

We adapted an operant conditioning paradigm using social reinforcement (Tokarev and 

Tchernichovski 2014; Canopoli, Herbst, and Hahnloser 2014). An experimenter and observer 

pair were placed adjacent to each other in separate cages. The birds could interact from a 

restricted window in one corner of the cage, forcing them to sit on their respective perches, Fig 

1A. The experimenter perch had a sensor to detect presence or absence and trigger stimulus 

playback through a speaker. We used strong air-puffs directed toward the experimenter as an 

aversive reinforcement agent. The puffs motivated the experimenter to escape from its perch 

during ‘puffed’ class trials. Details of housing, perch and nutritional requirements are detailed in 

the Supplemental Information. 

 

Stimuli  

We created a set of 10 stimuli from the songs of an adult male zebra finch (o7r14) from our 

colony, Fig 1C. We computed syllable durations via thresholding of sound amplitude traces. 

Each stimulus Si in this set (i=1,2, …,10) was made of a string of six syllable renditions, wherein 

each rendition was longer than the six renditions in stimulus Si-1, Fig. 1E. Based on the ten 
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stimuli we defined two stimulus classes:  the class ‘short’ was formed by stimuli S1 to S5, and the 

class ‘long’ was formed by stimuli S6 to S10.  We use the terms ’puffed’ and ‘unpuffed’ as class 

labels, irrespective of whether short or long stimuli were reinforced. We refer to the stimulus set 

{S1,…, S10} as the training set. To create a generalization set we formed another set of 10 

stimuli {S’1,…,S’10} from renditions of the same syllable recorded on the very next day, Fig. 1E.  

 

Bird groups and experiment hypothesis: 

We used six different groups of experimenters and observers, as follows: 

1. Experimenters (EXP, n=10 birds): These birds were trained to escape from the perch prior 

to arrival of air-puffs. The birds first underwent a pre-training phase in which they were 

accustomed to the setup, followed by a training phase (see Procedure in the Supplementary 

Information). Three out of nine experimenters were also tested on a generalization set of 

stimuli (Generalization phase) once the training phase was completed, Fig. 2A. Each phase 

ended when the bird’s performance reached a set criterion (see Performance measures and 

Statistical Criterion).  

 

2. Observers (OBS, n = 9 birds): Observers were subjected to three phases: an observation 

phase in which they observed the entire pre-training and training phases of an 

experimenter, a pre-testing phase (identical to the experimenter’s pre-training phase), and a 

testing phase (identical to the experimenter’s training phase), Fig. 2C.   

 

3. Generalizing experimenters (GENEXP, n = 9 birds): these birds were tested on the 

generalization set of stimuli after they had finished the pre-training and training phases on 

the training set, Fig. 3A. Note: During the training phase, the experimental group GENEXP 
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is a biological replicate of the EXP group. As expected, there was no difference between 

EXP and GENEXP in learning time or discrimination accuracy on the training set (Trials to 

criterion: EXP = 4.8 ± 2.9*103, GENEXP = 6.5 ± 4.7*103, p = 0.45, test statistic = 90.5, 

Wilcoxon rank sum test; dPesc at criterion: EXP = 0.36 ± 0.06, GENEXP = 0.37 ± 0.09, p = 

0.37, test statistic = 88.5, Wilcoxon rank sum test). 

 

4. Generalizing observers (GENOBS, n = 9 birds): These birds underwent the same 

observation phase and pre-testing phase as OBS. Thereafter, during the testing phase, 

GENOBS were tested on the full generalization set, Fig. 3B.  

 

5. Perceptual learners (PL, n = 7 birds): First, PL could watch an experimenter trigger several 

thousand stimuli and air-puffs. However, in their case the air-puffs were directed away from 

the experimenter (oriented downwards outside the cage, Fig 4 A) so PL never experienced 

or saw the effect of an air-puff against a bird prior to entering the pre-testing phase. 

Following this, PL then underwent the same pre-test and test phases as OBS.  

 

6. Valence learners (VL, n = 5 birds): To test for sensitivity on demonstrator performance, we 

allowed n=5 VL birds to observe naive experimenters prior to their pre-testing phase. In 

addition, 3 of those VL were given several hundred stimulus-puff pairings (same protocol as 

training phase in EXP) prior to observing a naive experimenter. After completion of the pre-

testing phase, VL were subjected to the testing phase, Fig. 4B.  

7. No Trial Communication learners (-TCOM, n = 5 birds): To test against learning in observers 

from vocal cues (or the lack thereof, Fig 4 B, C) we separated five observers from their 

experimenters (pre-training and training phases) into an adjacent, acoustically isolated box. 

These observers (-TCOM) could view the EXP bird through a window and communicate 
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vocally through a custom (software controlled) communication channel (see Supplementary 

Methods) except during trial periods defined from stimulus onset to air-puff offset. During 

trials periods, the observers could only hear the stimuli and the sounds of air-puffs, but no 

sounds triggered by the experimenter. After completion of the EXP training phase, -TCOM 

observers were subjected to the pre-testing and testing phases as for OBS.   

 

Performance measures and Statistical Criterion 

For each bird, we partitioned the trials into non-overlapping bins of 100 trials. In each bin we 

computed the True Positive Rate ( )TP  as the probability of escaping on puffed trials and the 

False Positive Rate ( )FP  as the probability of escape during unpuffed trials. Our single measure 

of performance in each bin is the difference in escape probabilities T FdPesc P P  . Within a 

bin, to decide whether a bird escaped significantly more on puffed trials than on unpuffed trials, 

we performed a z-test of independent proportions of the following null hypothesis H0 and 

alternative hypothesis Ha:  

0 : ,   : .T F a T FH P P H P P   

For the z-test of independent proportions, we computed in each bin the z-test statistics as 

follows (applying Yates’ continuity correction): 
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where n is the number of puffed trials in that bin. The p-value  Pr statz z  was computed with 

the normcdf function in MATLAB (Mathworks Inc); a bin was “statistically significant” if the p-

value in that bin was smaller than 0.01 (two-sided test). 

 

Criterion and Trials to Criterion 

We used two statistical measures to analyze performance: the first measure was used during 

the experiment to switch the experimental phase of the birds, the second was used to estimate, 

on a much finer scale, when a bird achieved high and stable discrimination accuracy.  

Our criterion for determining when the pre-training/training phases of an EXP bird ends (pre-

testing/testing for OBS) was the following: we performed the z-test based significance test (with 

significance at p < 0.01) on dPesc over an entire day. If daily dPesc was significantly greater 

than zero for two consecutive days, we switched the phase. This “coarse” criterion allowed us to 

check performance in a logistically tractable manner and provided high power to the test 

because the sample size was large (average daily number of trials for n=10 EXP: 722.14 ± 

317.5).  

For analyzing the data post-hoc, we used the criterion mentioned in the article: z-tests in 8 

(x100 trial) bin windows and checking for 7/8 bins significant. This latter criterion was used 

because we wanted to analyze the data on a finer temporal scale and still make sure that the 

performance was stable.  Accordingly, we computed the fraction of 100 trial bins with significant 

dPesc in a sliding window of 8 bins, Fig. S1D. When this fraction crossed 90% (=0.875), we took 

the last bin in the window as the bin at which the performance criterion was reached (“criterion 

bin”). ‘Trials to criterion’ is then simply the number of all trials performed by the bird up to and 

including the criterion bin.  Our conclusions of fast learning and poor generalization in observers 

were robust to changes in the definition of the learning criterion: For example, results were 
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unchanged when we changed the criterion from 7/8 significant bins to 3/4 bins, or when we 

computed the criterion in 200-trial bins instead of 100-trial bins (supplementary methods, 

robustness of statistics). 

 

Group level statistical Tests 

No explicit power analysis was used for this study. Our main experimental groups (EXP vs OBS 

in the article) have a sample size of n = 9 (one extra EXP bird was included because its 

observer partner was not tested).  We believed this to be an appropriate sample size 

considering the statistical test we planned on using (non-parametric Wilcoxon test, which is 

conservative but has higher power for low sample sizes than a parametric test) and the time it 

took for preliminary experiments to finish. 

To compare birds between two groups, we used Wilcoxon rank sum tests (wilcox.test() in R), 

either one tailed (when there was a concrete alternative hypothesis, e.g trials to criterion in OBS 

vs EXP, alternative: EXP > OBS) or two tailed (when there was no concrete alternative 

hypothesis, e.g. trials to criterion in GENOBS vs GENEXP). We first checked (for all bird 

groups) whether the trials to criterion were significantly non-Gaussian using the Shapiro Wilk 

test of normality (shapiro.test in R). Because only the EXP and VL trials to criterion were 

sufficiently Gaussian, we chose to perform non-parametric Wilcoxon tests instead of t-tests. All 

group level statistical tests and effect size calculations were performed using the R package (R 

Studio, https://www.R-project.org/).   

 

Logistic regression with L1 regularization 

We modeled experimenter and observer behaviors using logistic regression, which is a simple 

machine learning classifier that learns linear decision boundaries. In this model, the bird’s 
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behavior (leave or stay on the perch) is computed from the input to the logistic neuron, formed 

by 21 syllable features provided by Sound Analysis Pro (SAP) (Tchernichovski et al. 2000), a 

popular software tool for characterizing birdsong and its development (SAP features include 

mean Wiener Entropy, mean pitch goodness, mean frequency modulation, pitch variance, etc., 

where mean and variance are computed across syllable duration). Syllable duration formed the 

21st feature. Feature 22 was formed by a vector of 1’s, endowing the logistic neuron with a bias 

term. Features 23 and beyond were formed by frozen noise that was randomly drawn from a 

Gaussian distribution and held fixed for a given syllable. In combination, the total dimensionality 

of sound-feature vectors x  was n=22+nr, where nr is the dimensionality of frozen noise. The 

auditory input iz  to the logistic neuron associated with syllable rendition i  presented during trial 

t  was the z-transformed feature vector  1

1

,i t
i

t








x m
z

v
  where 

1 1...6
(1 )t t i i

  
  m m x is 

the running mean feature vector and 2

1 1...6
(1 ) ( )t t i t i

  
   v v x m is the running variance 

vector. Both the running vectors were updated after each trial (here   is a small integration rate 

constant and .  denotes averaging over the six syllables in a given trial). 

The partial output of the logistic neuron in response to syllable i  signals the probability ( )if z of 

an imminent air-puff, given by
1

( )
1 exp( )i

if 
 

z
wz

, where w is the synaptic weight vector that 

forms a scalar product with the auditory input. The bird decides to leave the perch (or to not 

return to it) if 
6

1

( ) 3i

i

f


 
 

 
 z  (majority vote). 

The probability that all six syllables correctly (and independently) predict arrival ( 1)u   or 

absence ( 0)u  of an air puff (under a Binomial model) is given by
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1

correct ( ) (1 ( ))u u

i i

i

P f f   z z . We train the synaptic weights by maximizing correctlog P  using 

gradient ascent (maximum likelihood),  correctlog ,P  ww where   is a small learning 

rate. Replacing the definition of ( )if z  into this expression, we find for observers the simple 

perceptron-like learning rule that enforces after each trial the weight update 

OBS ( ( )) .i i

i

u f  w z z In simulations, we randomly picked a stimulus at each trial followed 

by the synaptic weight change. The only two parameters in this model are the integration rate 

  and the learning rate  . 

To model experimenters, we applied an additional constant weight subtraction 

EXP OBS    w w  on successful trials (leave if puffed and stay if non-puffed), provided the 

individual synaptic weight was of sufficient magnitude, w   (to prevent small synaptic 

weights from changing sign).  

We dynamically regulated   in the following manner: 

𝜆𝑡 = max[0, 𝜆𝑡−1 + 𝛼(𝑟𝑡 − �̅�𝑡−1)], 

where the reward signal 𝑟𝑡was given by 𝑟𝑡 = {
+1ifthebird′sdecisionwascorrectintrialt
−1otherwise

      

and where �̅�𝑡 = 𝛾𝑟𝑡 + (1 − 𝛾)�̅�𝑡−1 is a running average estimate of past rewards obtained by the 

bird. Decisions are correct when birds leave the perch on puffed trials and stay on the perch on 

unpuffed trials. We set the learning rate 𝛼 = 0.00025, 𝛾 = 0.99and the initial value 𝜆𝑡=0 =

0.0005.  

For the experimenter, the learning cue u is the occurrence (u = 1) or absence of an air-puff (u = 

0). For the observer, we hypothesized that u could be either a) the air-puff cue (u = 1 during air-

puffs and u=0 otherwise) to which the observer’s attention is drawn through the experimenter’s 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207829doi: bioRxiv preprint 

https://doi.org/10.1101/207829
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

behavior (Fig 5 B and Fig 5F solid lines), or b) the action of the experimenter (u = 1 during 

escapes and u = 0 otherwise). In this latter scenario, the observer is provided a noisy 

supervisory signal due to false positive and false negative decisions of the experimenter 

(average EXP false positive rate ~ 30%, average false negative rate ~ 35%, n= 10 EXP birds).  

To test hypothesis b, we simulated an observer neuron that on randomly chosen 30% of 

learning (Training set) trials was driven by erroneous learning cues (i.e. escapes on unpuffed 

trials and no-escapes on puffed trials), with and without regularization (Fig 5F dashed and dot-

dashed curves, respectively). 
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