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Abstract

The living cell operates thanks to an intricate network of protein interactions. Proteins activate, trans-
port, degrade, stabilise and participate in the production of other proteins. As a result, a reliable and
systematically generated protein wiring diagram is crucial for a deeper understanding of cellular functions.
Unfortunately, current human protein networks are noisy and incomplete. Also, they suffer from both study
and technical biases: heavily studied proteins (e.g. those of pharmaceutical interest) are known to be in-
volved in more interactions than proteins described in only a few publications. Here, we use the experimental
evidence supporting the interaction between proteins, in conjunction with the so-called disparity filter, to
construct a reliable and unbiased proteome-scale human interactome. The application of a global filter, i.e.
only considering interactions with multiple pieces of evidence, would result in an excessively pruned network.
In contrast, the disparity filter preserves interactions supported by a statistically significant number of stud-
ies and does not overlook small-scale protein associations. The resulting disparity-filtered protein network
covers 67% of the human proteome and retains most of the network’s weight and connectivity properties.

Introduction

Charting reference maps of protein interactions that take place in the human cell, coupled with the use of network
analytics on the resulting human protein network (hPIN), has found many applications. Some examples are
protein function determination1,2, identification of disease-associated proteins3–5 and drug repurposing6. These
kinds of studies have shed light on the relationship between network structure and complex biological phenotypes
and underline the key role that protein interactomics is playing on projects related to human health7–10.

Although we are still far from a complete and stable reference hPIN11–13, many efforts strive for the sys-
tematic mapping of a proteome-scale wiring diagram of the cell13–17. However, currently available protein
interaction maps have small overlaps between them13 and contain high false positive and negative rates11. To
alleviate these problems and facilitate the construction of reliable subnetworks of the hPIN, protein-protein
interaction (PPI) databases, like STRING18,19 and HIPPIE20,21, have established confidence scoring systems
for PPIs. STRING’s confidence score corresponds to the probability of finding linked proteins within the same
pathway18. On the other hand, HIPPIE’s score relies on the amount and quality of the experimental evidence
supporting each PPI20. The problem is that the construction of high-quality hPINs, only considering inter-
actions with high confidence scores (referred to as global filtering), results in excessively pruned networks and
removes potentially interesting information present only below the chosen cutoff22.

Another important issue with present-day hPINs is their study bias. Despite several studies describing that
disease or essential proteins possess a high number of interaction partners (i.e. they have a high degree)23–28, it
is becoming evident that this may be due to the number of times that they are used as baits in PPI screenings. In
2011, Brito and Andrews noticed that membrane proteins are underrepresented in PPI datasets when compared
to nuclear ones29. The reason can be technical (e.g. membrane proteins have low abundances and are thus
difficult to detect) but also owed to a bias in favour of nuclear proteins (proteins that translocate to the nucleus
are commonly used as drug targets30,31). Rolland and colleagues found a strong correlation between the number
of studies associated with human proteins and the size of their neighbourhood in the hPIN15. Schaefer et al.
observed the same trend, in addition to a statistically significant difference between the degree of cancer-related
proteins and non-cancer ones32. However, this difference was not as strong when they compared cancer proteins
with non-cancer gene products associated with the same number of studies32. More recently, Luck and colleagues
surveyed hPINs built with literature data or functional relationships between proteins and detected the same
biases13. Using all the experimentally-supported PPIs provided by most molecular interaction databases, we
were able to reproduce all these observations (see Fig. 1 and Methods).
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Figure 1: Study bias in the hPIN. The number of studies associated with proteins in the hPIN as a function of
their degree k. Pearson and Spearman correlation coefficients between the two dimensions are reported, as well as the
slope of the blue regression line (see Methods for more details).

In summary, one must carefully consider the incompleteness and biases of the hPIN when drawing conclusions
and posing hypotheses based on this data. In this paper, we explore the possibility of constructing a reliable and
unbiased human protein interactome, while keeping most of its network components. To that end, we resort to
the so-called disparity filter33, a tool from the field of network science. This method was designed to extract the
most salient connections between the components of a weighted network (i.e. the representation of a complex
system where links carry weights denoting their importance) without down-playing small-weight interactions
that represent relevant signals at the small scales33. Network scientists have used the disparity filter to identify
significant trade channels in the international trade system34 and to remove links that are weakly related to
the overall function of a variety of complex networks22.

Our present-day view of the hPIN is incomplete and noisy11–13. Pruning this structure without considering
its multi-scale nature could result in poor representations of the protein network in the human cell. Consequently,
we propose the use of a more educated interaction removal approach that exploits connectivity information at
the protein level33 and can produce a more reliable and unbiased hPIN, with better coverage.

Results

The disparity filter

Consider an undirected weighted network G = (V,E) with Ntot = |V | nodes and Ltot = |E| edges. Each edge
connects a pair of nodes i and j and has an associated weight wij ∈ (0,∞) reflecting its importance. If we define
the strength of node i as si =

∑
j wij

35, then the normalised weight of the edges linking i with its neighbours

is ωij = wij/si with
∑

j ωij = 133. Note that this normalisation happens at the level of each node. Thus,
ωij can be different from ωji. The disparity filter identifies relevant edges for a node i with k neighbours by
determining the probability that their normalised weights are the result of a random assignment from a uniform
distribution33 (see Methods). Given this null model, the probability of observing a particular normalised weight
`, touching a node with degree k is given by:

p(`) = (k − 1)(1− `)k−2

Salient edges are thus those whose normalised weight satisfies the relation:

1− (k − 1)

∫ ωij

0

(1− `)k−2d` < α

In other words, relevant edges have weights that are statistically greater than what is expected by chance,
at the significance level α33 (see Methods). Since ωij can be different from ωji, weights can be significant for
node i but not for j and vice versa. The disparity filter keeps edge ij if it turns out to be relevant to either
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node (see Fig. 2). This means that one always considers the minimum value of α related to a particular edge.
It is also worth noting that nodes of degree 1 should be treated separately since their only edge always has a
normalised weight of 1. In this paper, we keep these edges only if they are significant to the node at the other
end. Finally, nodes with degree 0 after filtering are removed from the network. The resulting filtered network
Gbb, containing the most relevant edges in the system, is hereafter referred to as the backbone of the original
one and it has Nbb ≈ Ntot nodes and Lbb � Ltot edges.

Fig. 2 depicts the application of this approach to a weighted toy network and puts it in contrast with global
filtering. Guided by cut-points like the upper quartile (400) or the median (16) of the weight distribution to
remove edges, global filtering results in node loss and lack of the weight and degree heterogeneities observed
in the original network. On the other hand, the disparity filter judges edge importance independently for each
node, producing a backbone Gbb with a better resemblance to G.

Application of the disparity filter to the hPIN

We constructed an hPIN with experimentally-supported interactions reported by interaction providers in PSIC-
QUIC36 (see Methods). The network contains Ltot = 326, 758 weighted interactions between Ntot = 16, 627
proteins. Edge weights correspond to the number of studies supporting each protein interaction (see Methods,
Supplementary Data S1 and S2). The pieces of evidence associated with an interaction are a proxy for reliability.
A recent study showed that PPIs reported in two or more publications can be validated at significantly higher
rates than PPIs with only one associated study15.

Fig. 3 readily highlights the benefits of the disparity filter when contrasted with a global filter, which
discards protein interactions with less than wc associated studies (see Fig. 2). In Fig. 3a, we can see how the
resulting fraction of nodes (Nbb/Ntot) and weight (Wbb/Wtot) in the backbone remains high, even if we consider
very stringent values of α. In contrast, these fractions decrease rapidly in the global filter, and we lose more
than 75% of the nodes, even with the less conservative values of wc. The average clustering coefficient of the
backbone oscillates around the original value in both scenarios, but we have to consider that in the global filter
these values come from small subnetwork remnants of the original hPIN. It is also worth noting that the plots
in both panels of Fig. 3a consist of the same number of points. In the global filter, however, these points
accumulate to the right side of the plot, where the fraction of remaining links in the backbone (Lbb/Ltot) is
close to zero.

Fig. 3b shows how the cumulative degree distribution of the hPIN does not considerably change when
filtered with different values of α. In the case of the global filter, the distribution changes drastically even when
we remove edges with low weights. The same occurs with the cumulative weight distribution, as depicted in
Fig. 3c: with the disparity filter, the probability of observing small weights does not change as radically (left
panel) as with the global filter (right panel).

We also studied how the number of connected components (CC) and the size of the largest one (LCC) change
as increasingly stringent filters are applied to the hPIN. We found that the disparity-filtered hPIN remains
connected as a single component up to α ≈ 0.5 (Fig. 4a), whereas a global filter that removes interactions
supported by less than 2 studies (wc = 2) results in an hPIN with only 32% of the input proteins in the
largest connected component (Fig. 4b). Fig. 4 also demonstrates that while the disparity filter breaks the
hPIN into one component per protein at the extreme case of α = 0, for the global filter this starts to happen
when interactions supported by less than 10 studies are removed (wc = 10). These results allow us to see that
the disparity filter retains interactions with both low and high weights, as long as they are important for the
proteins at either of their ends. This strategy leads to a filtered network with as many proteins as possible,
most of them in the network’s largest connected component, and with a very high fraction of the total input
weight.

Significant protein interactions are highly reliable

To explore whether significant edges, according to the disparity filter, correspond to reliable protein interactions,
we monitored the fraction of PPIs in hPINs pruned with the global filter that are also part of hPINs filtered
with increasingly stringent disparity thresholds. Fig. 5a reports that for significance levels up to α ≈ 0.38, the
disparity-filtered network includes almost all edges with weights ≥ 2 (wc = 2). For significance levels close to 0,
the resulting hPIN contains almost all interactions with weights ≥ 6. This means that the disparity filter retains
protein interactions supported by many pieces of evidence, which are more likely to be true positives15. Note
that Fig. 5a emphasises the main difference between global and disparity filtering: while the former eliminates
all interactions with weights below wc, the latter removes only those whose weights are not significant according
to α. Because of this, we can have a disparity-filtered hPIN with, for example, some PPIs of weight 2 and the
rest of at least 3 (see Fig. 5a). This is not possible in networks pruned with the global filter, which either
contain all interactions of weight 2 or none of them.
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Figure 2: Global and disparity filtering. Illustrative example of the application of the global and disparity
filters to an undirected weighted network. Using the upper quartile of the weight distribution (400) to remove edges with
small weights results in the loss of nodes B, D and F and a network connected by the heaviest edges only. In contrast,
applying the disparity filter with a significance level α = 0.05 results in a network that retains all nodes and the most
significant edges (highlighted in blue).
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Figure 3: Global and disparity filters applied to the hPIN. (a) The remaining fraction of proteins
(Nbb/Ntot), the remaining fraction of total weight (Wbb/Wtot) and the network’s clustering coefficient as a function
of the remaining fraction of protein interactions (Lbb/Ltot) resulting from the application of different stringency levels
of the disparity and global filters to the hPIN. (b) Changes in the cumulative degree distribution as different disparity
and global thresholds are applied to the hPIN. (c) Same as b but for the cumulative weight distribution.
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Figure 4: Connected components of filtered hPINs. (a) Changes in the number of connected components
(CC) and size of the largest connected component (LCC) relative to the total number of proteins (Ntot) as more stringent
disparity thresholds α are applied to the hPIN. (b) Same as a but for increasing global thresholds wc.

We also contrasted the values of α for each edge in the hPIN with its HIPPIE and STRING confidence
scores (see Methods). For this, we binned the significance values in ten equally sized groups and, as shown in
Fig. 5b, it is the lowest αs that are related to the highest confidence scores. We can then conclude that the
disparity-filtered network is of high quality and contains the most relevant and reproducible information.

Bias reduction with the disparity filter

As mentioned in the Introduction and shown in Fig. 1, there is a clear correlation between the degree of a
protein in the hPIN and how well-studied it is. This study bias has grave consequences on the different areas
where network biology is playing an increasing role. Consider, for example, the network-based identification of
disease-associated proteins3–5,37. A protein of interest is likely to interact with highly-connected entities in the
hPIN that are, say, cancer-related. Nevertheless, the association of our protein with cancer might just be an
effect of the network’s study bias. If we want to avoid incorrect conclusions stemming from this issue, it is thus
imperative to unbias the human protein network.

In Fig. 6a we show how the correlation between protein degree and number of studies, as well as the slope
of the linear fit shown in Fig. 1, decreases as we apply more stringent disparity filters α to the hPIN. The
values of correlation and slope reach a minimum at αc ≈ 0.38 and after this significance level, they increase
again, probably due to random contributions from the few remaining proteins in the network33. We used αc to
disparity-filter the hPIN and retain proteins with a more homogeneous number of associated studies irrespective
of their degree. Fig. 5 shows that this significance level retains the most reliable PPIs.

It is important to note that when we filter the hPIN using αc, isolated proteins (i.e. proteins with degrees
k = 0) are removed from the network. Fig. 6b shows that discarded nodes represent the poorly-studied proteins
from the original topology. Moreover, these proteins are involved in biological processes, like transport and
metabolism, that hint at their participation in very transient interactions that may be mediated by molecules
other than proteins (see Supplementary Data S4).

The application of a global filter results in similar trends (see Fig. 6c,d). However, the wc at which the
minimum correlation occurs produces a network with only 3% of the original number of proteins (see Fig. 6c).
The backbone extracted with αc, in contrast, is formed by 81% of the original nodes (Nbb = 13, 480, see Fig. 6a),
31% of the original links (Lbb = 102, 749) and retains 49% of the original network’s weight (see Supplementary
Data S3). As of 16th October 2017, SwissProt, the manually curated protein knowledgebase, reports 20, 237
human proteins38. This means that our backbone covers 67% of the human proteome and is two times bigger
than most of the recently published large-scale hPINs13,17.

Altogether, these results underscore how the disparity filter can correct for the study bias present in the
hPIN, retaining the most significant and reliable protein interactions and discarding poorly-studied system
components, which most likely add spurious interactions to the network structure.
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Figure 5: The disparity filter retains reliable protein interactions. (a) Fraction of protein interactions
in four different hPINs pruned with the global filter (EGF ) that are also present in hPINs filtered with increasingly
stringent disparity thresholds α (EDF ). The fraction of the original network weight (Wtot) that remains in the hPINs
pruned with the global filter is reported in parentheses. (b) Salient protein interactions according to the disparity filter
(i.e. edges whose weights yield low values of α) correspond to protein pairs with high confidence scores in the HIPPIE
and STRING databases.
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Figure 6: Bias reduction of the hPIN with the disparity filter. (a) As more stringent disparity thresholds
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reduced, as well as the slope of the linear fit shown in Fig. 1. The fraction of remaining nodes, relative to the original
network, remains high. The red dashed line indicates the value of the threshold αc that yields the lowest correlation
between degree and number of studies. (b) Number of studies associated with retained and discarded proteins after the
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supported by less than wc studies. (d) Same as b but for the global filter.
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Figure 7: Growing disease modules with the filtered hPIN. An increasing fraction of proteins associated to
19 disease modules (seed proteins) was randomly removed from each one to later apply an algorithm that uses network
connectivity patterns to identify potential disease module members. The algorithm was applied to the disparity-filtered
network and to the unfiltered one. The inset shows the average fraction of recovered seeds associated to Stomatognathic
diseases as a function of the fractions removed. The area under the curve for the disparity-filtered hPIN is highlighted.
Error bars correspond to standard deviations. The plot reports areas under the curve for the rest of the disorders.

Disease module detection with the unbiased hPIN

The emerging field of network medicine highly depends on a reliable hPIN for the study of how perturbations
of proteins and their interactions may result in a disease phenotype. Recently, a myriad of methods has been
developed to prioritise potential disease proteins based on their connectivity features in the hPIN3–5,37. These
approaches rely on the disease module hypothesis, which states that gene products involved in a particular
disease phenotype segregate in the same neighbourhood of the hPIN8,39. As a result, the application of these
algorithms to noisy and biased networks can derive in spurious protein-disease associations.

We investigated the differences between performing disease module detection on the unfiltered hPIN and on
its corresponding disparity-filtered version (see the previous section). Our analysis revolved on the application
of the DiseAse MOdule Detection (DIAMOnD) algorithm5 to 19 disease modules (DMs) compiled by Menche
and colleagues39 (see Methods and Supplementary Data S5). Given a list of known disease-related proteins
(seeds) and a protein interactome, DIAMOnD grows the disease module with gene products that are significantly
connected to it5.

We randomly removed an increasing fraction of seeds from each disease and retrieved 200 candidate module
members from the original and disparity-filtered hPIN using DIAMOnD. From these 200 candidates, we com-
puted the fraction that coincides with the set of removed seeds and repeated the experiment 10 times (see inset
in Fig. 7). Fig. 7, shows the area under the described curve and reports that in 17 out of the 19 analysed cases
(89%), it is better to grow disease modules with the disparity-filtered network. This result stresses the value of
the proposed filtering method in a field where a high-quality hPIN structure is crucial.
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Conclusions

A reliable, unbiased proteome-scale human protein network will play a pivotal role in pushing the boundaries of
what we currently know about the living cell. Projects to generate such a reference hPIN are already in place15,17

and testing for the interaction of all possible protein pairs may be completed in the next few decades13. In the
meantime, efforts like STRING19, HIPPIE21 and the proposed disparity-filtered hPIN can pave the way for the
future of systems and network biology.

The present work resorts to the disparity filter to not only identify salient protein interactions but also
produce a less-biased hPIN structure. Contrary to the excessively pruned topologies resulting from the removal
of connections with weights below a given cutoff, the disparity filter identifies interactions with weights rep-
resenting a significant fraction of each protein’s local strength. The extracted backbone contains most of the
human proteins with reported PPIs, decouples node degree from number of studies and retains high-quality
protein interactions according to reference databases. Moreover, we demonstrated how disease module detection
methods can improve their precision with the disparity-filtered hPIN and anticipate that other areas of systems
biology will benefit from this method to increase the quality of the hPIN.

Methods

The null model of the disparity filter

As stated in the Results, salient links in the disparity filter are those whose normalised weight is significantly
greater than a distribution of randomly generated weights. For a node of degree k, these random weights are the
result of distributing k − 1 points over the interval [0, 1] uniformly at random33. The length of the k segments
into which [0, 1] is divided is thus distributed according to p(`) = (k − 1)(1 − `)k−2. This expression can be
derived from a more general problem definition.

For a ∈ R>0 and k ∈ N>0 draw k − 1 points X1, ..., Xk−1 independently and uniformly at random from the

interval I = [0, a]. These Xi partition I into k segments of lenght Yj , such that
∑k

j=1 Yj = a. We are interested
in how these Yj are distributed.

Since Xi are uniformly and independetly placed over [0, a], they have the same density and cumulative
distribution functions: fXi

(xi) = 1/a and FXi
(xi) = xi/a for xi ∈ [0, a], respectively.

Let us focus on the rightmost segment Yk, whose length is a −max(Xi). The probability that Yk is larger
than ` is:

P (Yk ≥ `) = P (a−max(Xi) ≥ `) = P (max(Xi) < a− `)

Since all Xi have the same cumulative distribution function, this last expression is equivalent to:

P (Xi < a− `) = FXi
(a− `) =

a− `
a

Thus, the joint distribution for the k − 1 independent Xi is F∀i,Xi
(a − `) =

(
a−`
a

)k−1
and we can now

compute:

F (`) = P (∀j, Yj < `) = 1− P (∀j, Yj ≥ `) = 1−
(
a− `
a

)k−1

After differentiation, we obtain the probability density function:

f(`) =
k − 1

a

(
a− `
a

)k−2

For the disparity filter, we partition the interval [0, 1], i.e. a = 1, and p(`) follows.

Protein interaction network construction

The network used here consists of all experimentally-supported interactions between human proteins reported
by PSICQUIC interaction providers36 as of 18th July 2017. PSICQUIC is an effort of the Human Proteome
Organisation-Proteomics Standard Initiative (HUPO-PSI) to facilitate programmatic access (URLs and scripts)
to molecular interaction databases. Using this programming interface, we computed the number of studies
supporting each protein interaction and took it as the edge weight in the constructed human protein network.
In addition, we retrieved each interaction’s confidence score from release 2.1 of the Human Integrated Protein-
Protein Interaction rEference (HIPPIE)21 and from release 10.5 of the STRING database18.
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Studies associated with each protein

The studies associated with a protein denote the total number of PubMed identifiers associated with its Entrez
Gene ID. This information is available in the NCBI Gene database40 at ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2pubmed.gz. Our results correspond to the 4th May 2017 snapshot of gene2pubmed.

Gene Ontology and Reactome pathway enrichment analyses

We carried out Gene Ontology41 and Reactome pathway42 enrichment analyses with R package FunEnrich,
which is available at https://github.com/galanisl/FunEnrich.

Protein-disease associations

We used a reduced version of the protein-disease associations compiled by Menche and colleagues39. The original
dataset reports disease modules (groups of proteins associated with a condition) for very specific human disorders
that, in some cases, are formed by only a few proteins. In consequence, we reduced it to 19 disease categories
by merging modules that are perfect subsets of larger ones.

The DIAMOnD algorithm

DIAMOnD detects novel disease-related proteins by identifying unexpected connectivity patterns between gene
products and a disease module of interest. To this end, given a protein interactome and a set of known disease-
related proteins (seeds), DIAMOnD focuses on gene products with direct links to the disease module. Then,
via a Fisher’s exact test, it determines which of these proteins has the most significant number of connections
to the module and adds it to the set of seeds. This process can be repeated several times to expand the number
of seeds as desired. We applied DIAMOnD with 200 iterations. For more details see5.

Hardware used for experiments

We executed all the experiments presented in this paper on a Lenovo ThinkPad 64-bit with 7.7 GB of RAM
and an Intel Core i7-4600U CPU @ 2.10 GHz × 4, running Ubuntu 16.04 LTS. The only exceptions were the
disease module detection experiments, which were executed on nodes with 64 GB of RAM, within the Mogon
computer cluster of the Johannes Gutenberg Universität.

Code availability

An R implementation of the disparity filter is available at https://github.com/galanisl/DisparityFilter.
A python implementation of the DIAMOnD algorithm is available at https://github.com/barabasilab/

DIAMOnD.

Data availability

The following data accompanies this text:

• Supplementary Data S1. List of proteins in the human protein interaction network (hPIN) and their
number of associated studies.

• Supplementary Data S2. The hPIN.

• Supplementary Data S3. The hPIN after the application of the disparity filter with αc.

• Supplementary Data S4. List of proteins removed from the hPIN after the application of the disparity
filter, together with their Gene Ontology and pathway enrichment analysis.

• Supplementary Data S5. Protein-disease associations.
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