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Abstract

Histone modifications play important roles in gene regulation, heredity, imprinting, and many human diseases.
The histone code is complex, consisting of about 100 marks. Biologists need computational tools for
characterizing general signatures representing the distributions of tens of chromatin marks around thousands of
regions. To this end, we developed a software tool called HebbPlot, which utilizes a Hebbian neural network to
learn such signatures. HebbPlot presents a signature as a digitized image, which can be easily interpreted. We
validated HebbPlot in six case studies. HebbPlot is applicable to a wide array of studies, facilitating the
deciphering of the histone code.
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Background
Understanding the effects of histone modifications will
provide answers to important questions in biology and
will help with finding cures to several diseases includ-
ing cancer. Carey highlights several functions of epige-
netic factors including Cytosine methylation and his-
tone modifications [1]. It was reported that methyla-
tion of CpG islands inhibit transcription [2], whereas
the complex histone code has a wide range of regu-
latory functions [3, 4]. Additionally, epigenetic marks
may affect body weight and metabolism [5]. Inter-
estingly, chromatin marks may explain how some ac-
quired traits, such as obesity and due to exposure to
some toxins, are passed from one generation to the
next (Lamarckian inheritance) [6–9]. Further, epige-
netics may explain how two identical twins have differ-
ent disease susceptibilities [10]. Epigenetic factors play
a role in imprinting, in which a chromosome, or a part
of it, carries a maternal or a paternal mark(s) [11,12].
Defects in the imprinting process may lead to sev-
eral disorders [13–18], and may increase the “birth
defects” rate of assisted reproduction [19]. Further-
more, chromatin marks play a role in cell differenti-
ation by selectively activating and deactivating cer-
tain genes [20, 21]. Some chromatin marks take part
in deactivating one of the X chromosomes [22]. It has
been observed in multiple types of cancer that some
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tumor suppressor genes were deactivated by hyperme-
thylating their promoters [23–25], the removal of acti-
vating chromatin marks [26, 27], or adding repressive
chromatin marks [28]. Utilizing such knowledge, anti-
cancer drugs that target the epigenome [1] have been
designed. Two compounds are used in these drugs. One
compound inhibits DNA methylation [29,30], whereas
the other compound inhibits histone deacetylation [31]
(histone acetylation is an activating mark).

Pioneering computational and statistical methods
for deciphering the histone code have been developed.
Some tools are designed for profiling and visualizing
the distribution of a chromatin mark(s) around multi-
ple regions [32, 33]. Additionally, a tool for clustering
and visualizing genomic regions based on their chro-
matin marks has been developed [34]. Several systems
are available for characterizing histone codes/states
in an epigenome [35–43]. Further, an alphabet sys-
tem for histone codes was proposed [44]. Other tools
can recognize and classify the chromatin signature as-
sociated with a specific genetic element [45–55]. Fur-
thermore, methods that compare the chromatin sig-
nature of healthy and sick individuals are currently
available [56].

Scientists have identified about 100 histone marks [37].
Additionally, there will be a near infinite number of fu-
ture studies, in which scientists need to characterize
the pattern of chromatin marks around a set of regions
in the genome. Therefore, there is a definite need for
an automated framework that enables scientists to (i)
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automatically characterize the chromatin signature of
a set of sequences that have a common function, e.g.
coding regions, promoters, or enhancers; and (ii) vi-
sualize the identified signature in a simple intuitive
form. To meet this need, we designed and developed a
software tool called HebbPlot. This tool allows aver-
age users, without extensive computational knowledge,
to characterize and visualize the chromatin signature
associated with a genetic element automatically.

HebbPlot includes the following four innovative ap-
proaches in an area that has become the frontier of
medicine and biology:
• HebbPlot can learn the chromatin signature of a set

of regions automatically. Sequences that have the
same function in a specific cell type are expected
to have similar marks. The learned signature repre-
sents these marks around all of the regions. HebbPlot
differs from the other tools in its ability to learn one
signature representing the distributions of all avail-
able chromatin marks around thousands of regions.

• This is the first application of Hebbian neural net-
works in the epigenetics field. These networks are
capable of learning associations; therefore, they are
well suited for learning the associations among tens
of marks and genetic elements.

• The framework enables average users to train ar-
tificial neural networks automatically. Users are not
burdened with the training process. Self-trained sys-
tems for analyzing protein structures and sequence
data have been proposed [57–59]. HebbPlot is the
analogous system for analyzing chromatin marks.

• HebbPlot is the first system that integrates the tasks
of learning and visualizing a chromatin signature.
Once the signature is learned, the marks are clus-
tered and displayed as a digitized image. This image
shows one pattern representing thousands of regions.
To illustrate, the distributions of the marks appear
around one region; however, they are learned from
all input regions.
We have applied our tool to learning and visualizing

the chromatin signatures of several active and inactive
genetic elements in 57 tissues/cell types. These case
studies demonstrate the applicability of HebbPlot to
many interesting problems in molecular biology, facil-
itating the deciphering of the histone code.

Materials and methods
In this section, we describe the computational princi-
ples of our software tool, HebbPlot. The core of the
tool is an unsupervised neural network, which relies
on Hebbian learning rules.

Region representation
To represent a group of histone marks overlapping a
region, these marks are arranged according to their ge-
nomic locations on top of each other and the region.

Then equally-spaced vertical lines are superimposed
on the stack of the marks and the region. The numer-
ical representation of this group of marks is a matrix.
A row of the matrix represents a mark. A column of
the matrix represents a vertical line. If the ith mark
intersects the jth vertical line, the entry i and j in
the matrix is 1, otherwise it is -1. The first vertical
line is at the beginning of the region; the last vertical
line is at the end of the region; the rest of the lines
are spread out evenly. Fig 1 shows the graphical and
the numerical representations of a region and the over-
lapping marks. Finally, the two-dimensional matrix is
converted to a one dimensional vector called the epige-
netic vector. The number of vertical lines is determined
experimentally. We used 41 and 91 lines in our exper-
iments. This number should be adjusted according to
the average size of a region.

(a) Visual representation
−1 −1 1 1 1 −1 −1 −1 −1
−1 −1 1 1 1 1 −1 −1 −1
−1 −1 1 1 1 1 1 −1 −1
−1 −1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1


(b) Numerical representation

Figure 1 Representations of a group of chromatin marks
overlapping a region. (a) Horizontal double lines
represent a region of interest. Horizontal single lines
represent the marks. Vertical lines are spaced equally and
bounded by the region. (b) The intersections between the
marks and the vertical lines are encoded as a matrix
where rows represent the marks and columns represent
the vertical lines. If a vertical line intersects a mark, the
corresponding entry in the matrix is 1, otherwise it is -1.

Data preprocessing
Preprocessing input data is a standard procedure in
machine learning. During this procedure, the noise in
the input data is reduced. First, vectors that consist
mainly of -1’s are removed. These regions are very
likely false positives. Then, each epigenetics vector is
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compared to two other vectors selected randomly from
the same set. The value of an entry in the vector is
kept if it is the same in the three vectors, otherwise
it is set to zero. For example, consider the vector [1
1 -1]. Suppose that the vectors [1 -1 -1] and [1 -1 -1]
were selected randomly. The result would be [1 0 -1]
because the first and the third elements are the same
in the three vectors, but the second element is not.

Hebb’s network

Associative learning, also known as Hebbian learning,
is inspired by biology. “When an axon of cell A is near
enough to excite a cell B and repeatedly or persis-
tently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is in-
creased” [60]. In behavioral psychology, Ivan Pavlov
conducted a famous experiment, which demonstrated
learning by association. In this experiment, a dog was
trained to associate the sound of a bell with food; this
dog salivated when it heard the bell whether or not
food was present. The presence of food is referred to
as the unconditioned stimulus, p0, and the sound of the
bell is referred to as the conditioned stimulus, p. As-
sociating these two stimuli together is the goal. After
training, the response to either the conditioned stim-
ulus or the unconditioned one is the same as the re-
sponse to both stimuli combined [61].

In the context of epigenetics, a Hebbian network can
be viewed as the dog in Pavlov’s experiment. The un-
conditioned stimulus, p0, is a one-dimensional vector
representing the distributions of histone marks over a
sequence e.g. one tissue-specific enhancer. This vector
is referred to as the epigenetic vector; it is obtained as
outlined earlier in this section. The conditioned stim-
ulus is always the one vector, which include ones in all
entries. We would like to train the network to give a re-
sponse, analogous to the salivation of the dog, when it
is given the ones vector, whether or not the epigenetic
vector is provided. The response of the network is a
prototype/signature representing the distributions of
histone marks over the entire set of genomic locations,
e.g. all enhancers of a specific tissue.

Eq 1 and Eq 2 define how the response of a Hebbian
network is calculated. The training of the network is
given by Eq 3 [61].

satlins(x) =

 +1 if x ≥ 1
x if − 1 < x < 1
−1 if x ≤ −1

(1)

Eq 1 defines a transformation function. This function
ensures that the response of the network is similar to

the unconditioned stimulus, i.e. each element of the re-
sponse is between 1 and -1. If x is a vector, the function
is applied component wise.

a(p0, w, p) = satlins(p0 + w � p) (2)

Eq 2 describes how a Hebbian network responds to
the two stimuli. The response of the network is trans-
formed using Eq 1. In Eq 2, p0 is the unconditioned
stimulus, e.g. presence of food or an epigenetic vec-
tor; w is the weights vector, which is the proto-
type/signature learned so far; and p is the conditioned
stimulus, e.g. sound of a bell or the one vector. The
operator � represents the component-wise multiplica-
tion of two vectors. In the current adaptation, if the
network is presented with an epigenetic vector and the
one vector, the response is the sum of the prototype
learned so far and the epigenetic vector. In the absence
of the epigenetic vector, i.e. all-zeros p0, the response of
the network is the prototype, demonstrating the abil-
ity of the network to learn associations.

wi = wi−1 + α(a(p0i , wi−1, pi)− wi−1)� pi (3)

Eq 3 defines Hebb’s unsupervised learning rule. Here,
wi and wi−1 are the prototype vectors learned in iter-
ations i and i − 1. The ith pair of unconditioned and
conditioned stimuli is p0i and pi. Learning occurs, i.e.
the prototype changes, only when the ith conditioned
stimulus, pi, has non-zero components. This is the case
here because pi is always the one vector. Due to a small
α, which represents the learning and the decay rates,
the prototype vector changes a little bit in each it-
eration when learning occurs; it moves closer to the
response of the network to the ith pair of stimuli.

Comparing two signatures
One of the main advantages of the proposed method
is that two signatures can be compared quantitatively.
The dot product of two vectors indicates how close
they are to each other in space. When these vectors are
normalized, i.e. each element is divided by the vector
norm, the dot product is between 1 and -1. The dotsim
function (Eq 4) normalizes the vectors and calculates
their dot product.

dotsim(x, y) =
x

‖x‖
· y

‖y‖
(4)

Here, x and y are vectors; ‖x‖ and ‖y‖ are the norms
of these vectors; the · symbol is the dot product op-
erator. It is easy to interpret the meaning of the dot
product of two normalized vectors. If the two vectors
are very similar to each other, the value of the dot-
sim function approaches 1. If the values at the same
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index of the two vectors are opposite of each other,
i.e. 1 and -1, the value of dotsim approaches -1. The
dotsim function can be applied to the whole epigenetic
vector or to the part representing a specific chromatin
mark. When comparing the chromatin signatures of
two sets of regions, a mark with a dotsim value ap-
proaching 1 is common in the two signatures. A mark
with a dotsim value approaching -1 has opposite dis-
tributions, distinguishing the signatures. Marks with
dotsim values approaching zero do not have consistent
distribution(s) in one or both sets; these marks should
not be considered while comparing the two signatures.

Visualizing a chromatin signature
Row vectors representing different marks are clustered
according to their similarity to each other. We used
hierarchical clustering in grouping marks with sim-
ilar distributions. Hierarchical clustering is an iter-
ative bottom-up approach, in which the closest two
items/groups are merged at each iteration. The al-
gorithm requires a pair-wise distance function and a
cluster-wise distance function. For the pair-wise dis-
tance function, we utilized the city block function to
determine the distance between two vectors represent-
ing marks. For the group-wise distance function, we
applied the weighted pair group method with arith-
metic mean [62]. A digitized image represents the chro-
matin signature of a genetic element. A one-unit-by-
one-unit square in the image represents an entry in
the matrix representing the signature. A row of these
squares represents one mark. The color of a square
is a shade of gray if the entry value is less than 1 and
greater than -1; the closer the value to 1 (-1), the closer
its color to white (black).

Up to this point, we discussed the computational
principles of our software tool, HebbPlot. Next, we il-
lustrate the data used in validating the tool.

Data
We used HebbPlot in visualizing chromatin signatures
characterizing multiple genetic elements. Specifically,
we applied HebbPlot to:
1 Active promoters;
2 Active promoters on the positive strand;
3 Active promoters on the negative strand;
4 High-CpG active promoters;
5 Low-CpG active promoters;
6 Active enhancers;
7 Coding regions of active genes;
8 Coding regions of inactive genes; and
9 Random genomic locations.
The Roadmap Epigenomics Project provides tens of

marks for more than 100 tissues/cell types [63]. Active
genes were determined according to gene expression

levels, which were obtained from the Expression At-
las [64] and the Roadmap Epigenomics Project [65].
A gene of expression level greater than 1 is consid-
ered active, whereas inactive genes are those having ex-
pression levels of 0. The coding regions were obtained
from the University of California Santa Cruz Genome
Browser [66]. The Ensemble genes for the hg19 hu-
man genome assembly were used in this study. Active
promoters are those associated with active genes. A
promoter region is defined as the 400-nucleotides-long
region centered on the transcription start site. To di-
vide the promoters into high- and low-CpG groups, we
calculated the CpG content according to the method
described by Saxonov, et al. [67]. Enhancers active in
H1 and IMR90 were obtained from a study by Ra-
jagopal, et al. [54]; this study provides the P300 peaks.
We considered the enhancers to be the 400-nucleotides-
long regions centered on the P300 peaks. Regions of
enhancers active in liver, foetal brain, foetal small in-
testine, left ventricle, lung, and pancreas were obtained
from the Fantom Project [68].

Once the locations of a genetic element were deter-
mined, they are processed further. If the number of
the regions, e.g. tissue-specific enhancers, was more
than 10,000 regions, we sampled uniformly 500 regions
from each chromosome. Each region was expanded by
10% on each end to study how chromatin marks dif-
fer from/resemble the surrounding regions; except pro-
moters on the positive and the negative strands. They
were expanded by 500% on each end. Overlapping re-
gions, if any, were merged.

Availability
The software and the data sets are available as Addi-
tional files 1–8. Additionally, HebbPlot can be down-
loaded from GitHub (https://github.com/TulsaBioin
formaticsToolsmith/HebbPlot).

In this section, we discussed the computational
method and the data. Next, we apply HebbPlot in
six case studies.

Results
Case study: Signature of H1-specific enhancers

We studied multiple enhancers active in the H1 cell
line (human embryonic stem cells) obtained from a
study conducted by Rajagopal, et al. [54]. These en-
hancers were detected using P300 ChIP-Seq. An en-
hancer is represented as a 400-nucleotides-long region
centered on the P300 peak. This data set contains 5899
enhancers and 27 histone marks. Each enhancer re-
gion was expanded by 10% on each end to study how
chromatin marks differ from/resemble the surround-
ing regions. To begin, 41 uniform samples/points were
obtained from each region. Then for each point, it was
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(a) An H1-specific enhancer (b) An H1-specific enhancer

(c) An H1-specific enhancer (d) An H1-specific enhancer

(e) HebbPlot

H2A.Z
H2AK5ac
H2BK120ac
H2BK12ac
H2BK15ac
H2BK20ac
H2BK5ac
H3K14ac
H3K18ac
H3K23ac
H3K23me2
H3K27ac
H3K27me3
H3K36me3
H3K4ac
H3K4me1
H3K4me2
H3K4me3
H3K56ac
H3K79me1
H3K79me2
H3K9ac
H3K9me3
H4K20me1
H4K5ac
H4K8ac
H4K91ac

(f) The conventional plot

Figure 2 Retrieving the chromatin signature of the H1-specific enhancers. Four examples of enhancers are shown in Parts a–d. A
row in one of these plots represents the distribution of one mark around a region; white (black) color indicates the presence
(absence) of a mark. It is hard to see a common pattern in these four examples. The signature learned by the Hebbian network is
captured by the HebbPlot shown in Part e. A row in the HebbPlot represents the distribution of a mark around all enhancers in the
data set. The brighter the color, the higher the certainty of the presence of a mark around the corresponding sub-region. The
HebbPlot is characterized by four zones. The top most zone represents chromatin marks that are absent from the enhancer regions,
whereas the next three zones represent the present marks with increasing certainty. A conventional plot of the intensities of all marks
around every region in the data set in shown in Part f. Many marks show depressions near the center of the plot; however, some
peaks are mixed with these depressions in the conventional plot. In contrast, these depressions correspond to the dark ellipse in the
middle of the third zone of the HebbPlot. This ellipse is very clear. Further, marks of similar intensities obstruct one another in the
conventional plot. This is not the case with HebbPlot because every mark is represented by a separate row.
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determined whether or not it falls in a mark region
overlapping the enhancer. Next, we plotted tens of
these enhancers; four of these plots are shown in Fig-
ures 2a–2d. No clear signature appears in these plots.
After that, a HebbPlot representing the signature of
H1-specific enhancers was generated (Figure 2e) us-
ing an unsupervised hebbian network. For comparison
purposes, we generated a conventional plot (Figure 2f).

The HebbPlot shows four zones representing the ab-
sent marks, and the present ones with different con-
fidence levels. For example, the top zone shows four
marks (H2A.Z, H4K8ac, H3K36me3, and H4K20me1)
that are absent from the H1 enhancers. The second
zone from the top shows marks with very weak in-
tensities including H3K9me3, H3K27me3, H3K79me2,
and H3K79me1. The third zone has an ellipse, which is
darker than the surrounding area, indicating that the
signals of the marks within the ellipse are weaker than
the surroundings. The bottom zone shows two marks
(H3K4me1 and H3K4me2) that are present around
these enhancers with the highest confidence level.

In the upper part of the conventional plot, a large
number of marks show depressions near the middle of
the plot. However, these depressions are mixed with
few peaks, making viewing them hard. These depres-
sions correspond to the fragments near the centers of
the individual plots and the dark ellipse in the middle
of the third zone of the HebbPlot. Clearly, the dark
ellipse captures this pattern much better than the con-
ventional plot. Further, marks with similar intensities
overlap each other in the conventional plot, obstruct-
ing on another. The more the marks, the worse the ob-
struction. To illustrate, this figure was generated using
27 marks; there are about 100 known histone marks;
therefore, using these conventional figures may not be
the best way to visualize the intensities of a large num-
ber of marks. In contrast, HebbPlot can handle a large
number of marks efficiently because each mark has its
own row. Furthermore, no noise-removal process was
applied while constructing the conventional figure. In
contrast, only regions, or sub-regions, that are recog-
nized by the network contribute to the HebbPlot.

Case study: Histone signatures of different active
elements in liver

Seven histone marks of the human liver epigenome
are available. We obtained 5005 enhancers, 13688 pro-
moters, and 12484 coding regions of active genes in
liver. In addition, we selected 10,000 locations sam-
pled uniformly from all chromosomes of the human
genome as controls. Then we trained four Hebbian
networks to learn the chromatin signature of each ge-
netic element. As expected, the HebbPlot represent-
ing the random genomic locations displays a black

(a) Enhancers

(b) Promoters

(c) Coding regions

Figure 3 Liver chromatin signatures representing (a) active
enhancers, (b) active promoters, and (c) coding regions of
active genes. The three signatures have similarities and
differences. They are similar in that H3K9me3 and H3K27me3
are absent from all of them. H3K36me3 is the strongest mark
of coding regions, whereas H3K27ac is the strongest mark of
promoters and enhancers. H3K4me1 is stronger than
H3K4me3 in enhancers; this relation is reversed in promoters,
where H3K4me1 is weak around transcription start sites.

box (not shown), indicating that no chromatin mark

is distributed consistently around these regions. Fig-

ure 3 shows three HebbPlots of the enhancers, the

promoters, and the coding regions. The three signa-
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tures have similarities and differences. Two marks,
H3K9me3 and H3K27me3, are absent from the three
signatures. However, the three signatures are distin-
guishable. H3K36me3 is the strongest mark of the cod-
ing regions, whereas it is absent from the promoters
and the enhancers. On the other hand, H3K27ac is the
strongest mark on the promoters and the enhancers,
but almost absent from the coding regions. H3K4me1
is stronger than H3K4me3 around the enhancers, but
H3K4me3 is stronger than H3K4me1 around the pro-
moters. Both of these marks are absent from the cod-
ing regions. These plots demonstrate that HebbPlot is
able to learn the chromatin signature from a group of
regions with the same function. In addition, the chro-
matin signatures of the promoters, the enhancers, and
the coding regions have similarities and differences.

Case study: The directional signature of active
promoters

Because promoters are upstream from their genes,
some marks may indicate the direction of the tran-
scription. To determine whether or not marks have di-
rection, active promoters were separated according to
the positive and the negative strands into two groups.
Then the promoter region was expanded five times
on each end. The expanded region has these three
parts: (i) the 2000-nucleotides-long region upstream
from a promoter, (ii) the 400-nucleotides-long pro-
moter region itself, and (iii) the 2000-nucleotides-long
region downstream from the promoter. We trained two
Hebbian networks to learn the chromatin signatures
of active promoters on the positive and the negative
strands. Figure 4 shows the HebbPlots of the positive
and the negative promoters active in HeLa-S3 cervical
carcinoma cell line. These two plots are mirror im-
ages of each other, showing H3K36me3, H3K79me2,
H3K4(me1,me2,me3), H3K27ac, and H3K9ac stretch-
ing more downstream than upstream and H2A.Z in the
opposite direction.

Then we generated HebbPlots for the positive (Addi-
tional file 2) and the negative (Additional file 3) pro-
moters of 57 tissues, for which we know their gene
expression levels. The directional signature of promot-
ers is very consistent in these tissues. After that, we
determined quantitatively which marks having direc-
tional preferences in the 57 tissues/cell types. Recall
that two vectors pointing in opposite directions have
a dotsim value of -1. The closer the value to -1 is, the
closer the angle between the two vectors to 180◦ is.
To determine directional marks, the learned prototype
of a mark over the upstream third of the expanded
promoter region was compared to the prototype of
the same mark over the downstream third. If the dot-
sim value between the two prototypes is negative, this

Table 1 For each tissue or cell type, promoters were separated
according to the strand to positive and negative groups. A
promoter is represented by the 400-nucleotides-long region
centered on the transcription start site. Then the region of a
promoter was expanded by 2000 nucleotides on each end. Mark
vectors over the upstream and the downstream thirds of the
expanded regions on the positive strand were compared. A mark is
considered directional if these two vectors are tending to be
opposite to one another (a negative dotsim value). Not all marks
were determined for all tissues. The number of tissues/cell types,
for which a mark was determined, is listed under the column titled
“Known.” The number of tissues/cell types, in which a mark has
directional preference around the promoter regions, is listed under
the column titled “Directional.” The percentage of times a mark
showed directional preference is listed under the column labeled
with “Percentage.” Only marks that were determined for at least
five tissues were considered. Very similar results (not shown) were
observed on the promoters on the negative strand.

Mark Known Directional Percentage (%)
H3K4me3 57 41 72

H3K79me2 14 10 71
H3K4me2 16 11 69
H2AK5ac 6 4 67
H3K18ac 6 4 67

H2A.Z 14 9 64
H3K4me1 57 35 61
H2BK12ac 5 3 60
H3K14ac 5 3 60
H3K9ac 24 13 54

H2BK5ac 6 3 50
H3K23ac 6 3 50
H3K4ac 6 3 50

H3K79me1 6 3 50
H3K27ac 49 22 45
H4K91ac 5 2 40
H4K8ac 6 2 33

H2BK120ac 6 1 17
H4K20me1 12 2 17
H3K36me3 57 6 11

mark is considered directional. We list the number of
times a chromatin mark was determined for a tissue
and the number of times it showed directional prefer-
ence in Table 1. H3K4me3 and H3K79me2 show di-
rectional preferences in 72% and 71% of the tissues.
Additional 12 marks show directional preferences in
50%-70% of the tissues. These results indicate that ac-
tive promoters have a directional chromatin signature.

Case study: The signatures of high- and low-CpG
promoters

It has been reported in the literature that the chro-
matin signature of high-CpG promoters is different
from the signature of low-CpG promoters [47]. In this
case study, we use HebbPlot to demonstrate this phe-
nomenon. To this end, we divided promoters active in
skeletal muscle myoblasts cells into high-CpG and low-
CpG groups using the method proposed by Saxonov, et
al. [67]. The high-CpG group consists of 12825 promot-
ers and the low-CpG group consists of 2712 promoters.
After that, we generated two HebbPlots from these two
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(a) Promoters on the positive strand (b) Promoters on the negative strand

Figure 4 HebbPlots of active promoters in HeLa-S3 cervical carcinoma cell line. These promoters were separated into two groups
according to their strands. Each promoter region was expanded five times on each end to investigate the directions of histone marks
around these regions. The size of the expanded region is 4400 nucloetides. The two HebbPlots of the promoters on the positive and
the negative strands are mirror images of each other. Multiple marks including H3K36me3, H3K79me2, H3K4me1, H2A.Z,
H3K27ac, H3K9ac, H3K4me3, and H3K4me2 are distributed in a direction specific way. H2A.Z tends to stretch upstream, whereas
the rest of these directional marks tend to stretch downstream from the promoters toward their coding regions.

(a) High-CpG promoters (b) Low-CpG promoters

Figure 5 Promoters active in skeletal muscle myoblasts cells were separated into high- and low-CpG groups. A HebbPlot was
generated from each group. Clearly, the two signatures are different. Specifically, H3K4me3, H3K9ac, and H3K27ac are present
around the high-CpG promoters, whereas they are very weak or absent from the low-CpG promoters. In contrast, H3K36me3 is
absent from the high group, but present around the low-CpG promoters. In general, marks present around the high-CpG promoters
are stronger than those present around the negative ones.

groups (Figure 5). These two signatures are very dif-
ferent. Generally, the HebbPlot of the high-CpG group
is brighter than that of the low-CpG group, indicating
that these histone marks are consistently distributed
around the high-CpG promoters. Few marks distin-
guish the two signatures. The high-CpG group is char-
acterized by the presence of H3K4me3, H3K9ac, and
H3K27ac, which are very weak or absent from the low-
CpG promoters. The low-CpG group is characterized
by the presence of H3K36me3, which is absent from the
high-CpG promoters. These two signatures are differ-

ent from those reported by Karlic, et al. [47]. Two fac-
tors may cause these differences. First, the size of the
promoter region differs between the two studies. In our
study, the size of the promoter is 400 base pairs, while
it is defined as 3500 base pairs long (-500 to +3000) in
the other study. This longer region is likely to overlap
with untranslated and coding regions, whereas it is less
likely that the 400-base-pair-long promoter to overlap
with these regions. The second factor is that the other
study focuses on the correlation between histone marks
and expression level, whereas the main purpose of our
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case study is to visualize the signature of the promot-
ers. Therefore, we believe that our definition is more
relevant to the visualization task.

Next, we performed quantitative comparisons to see
if these marks are distributed differently around high-
and low-CpG promoters in a consistent way in the 57
tissues. A main advantage of HebbPlots is that they
can be compared quantitatively. Comparing two Hebb-
Plots using the dotsim function is simple and easy to
interpret; the closer the dotsim value to 1 (-1) the more
similar (dissimilar) the two signatures. HebbPlots were
generated from the high-CpG promoters (Additional
file 4) and the low-CpG promoters (Additional file 5)
in the 57 cell types/tissues. We calculated the average
dotsim of the two vectors representing a mark around
high- and low-CpG promoters in the 57 tissues. Ta-
ble 2 shows the results. These results confirm that
H3K4me3, H3K9ac, and H3K27ac are consistently dif-
ferent around high- and low-CpG promoters (average
dotsim value < -0.5). However, H3K36me3 is not dif-
ferent overall (average dotsim value of 0.65). Further,
this analysis reveals that H2BK120ac and H4K91ac are
also distributed differently around the two groups (av-
erage dotsim < -0.5); their signals are stronger around
the high-CpG group than the low group.

These results show that the chromatin signatures of
high- and low-CpG promoters are different. Specif-
ically, five marks (H3K4me3, H3K9ac, H3K27ac,

Table 2 High-CpG promoters have a different signature from
that of low-CpG promoters. Active promoters in 57 tissues/cell
types were divided into two groups according to their CpG
contents. Then two networks were trained on the two groups,
producing two signatures for each tissue/cell type. The two
signatures of a mark in the same tissue were compared using the
dotsim function. The average dotsim values are listed under
“Average dotsim.” Not all marks were determined for all tissues.
The number of tissues/cell types, for which a mark was
determined, is listed under the column titled “Known.”

Mark Known Average dotsim
H3K4me3 57 -0.98452
H3K9ac 24 -0.82137

H3K27ac 49 -0.72655
H2BK120ac 6 -0.53278

H4K91ac 5 -0.48083
H3K4me2 16 -0.33263
H3K23ac 6 -0.32737

H2A.Z 14 -0.27855
H2BK12ac 5 -0.20927
H2BK5ac 6 -0.15632
H3K4ac 6 -0.15405
H4K8ac 6 -0.12716

H2AK5ac 6 -0.11522
H3K14ac 5 -0.03981
H3K18ac 6 0.14699
H3K4me1 57 0.24636

H3K79me1 6 0.35168
H3K79me2 14 0.62139
H3K36me3 57 0.65545
H4K20me1 12 0.82929
H3K27me3 57 0.92651
H3K9me3 57 0.97729

H2BK120ac, and H4K91ac) are present around high-
CpG promoters, whereas they are absent from or very
weak around low-CpG promoters.

Case study: Signature of active enhancers
Here, we demonstrate HebbPlot’s applicability to vi-

sualizing the chromatin signatures of enhancers in mul-
tiple tissues. To this end, we collected active enhancers
from two sources. Enhancers active in H1 (5899 re-
gions) and IMR90 (14073 regions) were obtained from
a study by Rajagopal, et al. [54]. Enhancers active
in other six tissues were obtained from the Fantom
Project. We selected these tissues because they were
common to the Fantom and the Roadmap Epigenomics
Projects. These enhancers include 5005 regions for
liver, 1476 regions for foetal brain, 5991 regions for
foetal small intestine, 1619 regions for left ventricle,
11003 regions for lung, and 2225 regions for pancreas.

Next, we generated a HebbPlot from the enhancers
of each tissue/cell type. Additional file 6 and Fig-
ure 6 show the eight HebbPlots. The HebbPlots of the
enhancers active in H1 and IMR90, for which more
than 20 marks have been determined, show that mul-
tiple marks are abundant around enhancer regions.
Similar to what has been reported in the literature,
we observed that H3K4me1 is usually stronger than
H3K4me3 around enhancers [69]; however there are
some exceptions, e.g. foetal brain and lung. H3K27ac
and H3K9ac are also present around enhancers, but
H3K9me3, H3K27me3, and H3K36me3 are very weak
or absent from enhancers. Further, these HebbPlots
suggest that the chromatin signatures of enhancers
active in different tissues are similar; however, they
are not identical. For example, H3K27ac is the pre-
dominant mark around lung enhancers; H3K4me1 and
H3K4me3 are also present, but their signals are weak.
In contrast, H3K27ac and H3K4me1 have compara-
ble signals, which are stronger than H3K4me3, around
enhancers of foetal small intestine.

Case study: signatures of coding regions of active and
inactive genes

Multiple studies indicate that histone marks are as-
sociated with gene expression levels [52,70,71]. In this
case study, we demonstrate the usefulness of HebbPlot
in identifying histone marks associated with high and
low expression levels. To start, we divided all genes
into nine groups based on their expression levels in
IMR90. Then, we generated a HebbPlot from the cod-
ing regions of each of these groups (Figure 7). We
found that H3K36me3 and H3K79me1 clearly mark the
top two groups. On the lowest six groups, which repre-
sent coding regions of inactive genes, these two marks
are absent, whereas H3K27me3 is present. H2A.Z is
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(a) H1 (b) IMR90

(c) Liver (d) Foetal brain (e) Foetal small intestine

(f) Left ventricle (g) Lung (h) pancreas

Figure 6 Signatures of active enhancers. Enhancers were collected from a study by Rajagopal et al. [54] and from the
Fantom Project. A HebbPlot was generated from the enhancers of each tissue. The HebbPlots of H1 and IMR90, for
which more than 20 marks are known, show that several marks are present around active enhancers. Usually, H3K4me1
has a stronger signal around enhancers than H3K4me3; however there are some exceptions, e.g. foetal brain. H3K9ac and
H3K27ac are present around enhancers, but H3K9me3, H3K27me3, and H3K36me3 are very weak or absent from
enhancers. These plots show that chromatin signatures of enhancers active in different tissues are similar, but not identical.

present in all groups. Generally, the brightness of a

HebbPlot decreases as the gene expression levels de-

crease. In sum, these nine HebbPlots can clearly help

with identifying histone marks that are associated with

coding regions of active and inactive genes.

After that, we asked whether these marks consis-

tently mark active and inactive coding regions in other

tissues/cell types. To answer this question, we gener-

ated HebbPlots of coding regions of active (Additional

file 7) and inactive (Additional file 8) genes in the 57

tissues/cell types. Then we compared the signatures of

each mark around active and inactive coding regions of

57 cell and tissue types using the dotsim function. Re-

call that dotsim values range between -1 (most dissim-
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(a) First group (b) Second group (c) Third group

(d) Fourth group (e) Fifth group (f) Sixth group

(g) Seventh group (h) Eighth group (i) Ninth group

Figure 7 Histone marks are highly associated with gene expression levels in IMR90. Genes were divided into nine groups
according to their expression levels. A HebbPlot was generated from the coding regions of each group. In general, the
brightness of a HebbPlot decreases as the expression level decreases. The brighter a row, the more consistent its mark is
distributed around the set of regions. Further, H3K36me3 and H3K79me1 mark the coding regions of active genes in
IMR90 clearly, whereas the repressive modification, H3K27me3, marks the inactive coding regions. H2A.Z is ubiquitous.

ilar) and 1 (most similar). We calculated the average

dotsim values of each mark in the 57 tissues/cell types,

for which this mark has been determined. Table 3

shows that H3K36me3 and H3K79me1 are very differ-

ent around active and inactive coding regions (dotsim:

-0.86 and -0.64). H3K27me3 is also different (dotsim:

0.44), but the difference is not as strong as H3K36me3

and H3K79me1. After that we asked what other marks

are distributed differently around coding regions of ac-

tive and inactive genes. We found that H3K79me2 con-

sistently marks active coding regions (dotsim: -0.38).

Additionally, we found H4K8ac weakly marks active
coding regions. Regarding the marks of inactive cod-
ing regions, H4K12ac was found to mark these regions
(this mark has been determined for one tissue only),
whereas H4K14ac and H2AK5ac were found to weakly
mark inactive coding regions.

In sum, H3K36me3, H3K79(me1,me2), and H4K8ac
mark active coding regions, whereas H4K12ac, H3K14ac,
H3K27me3, and H2AK5ac mark inactive coding re-
gions. Generally, the active marks are stronger than
the inactive marks.
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Table 3 Histone marks distributions around coding regions of
active and inactive genes in 57 tissues. The active and the
inactive signatures of a mark in the same cell type are compared
using dotsim. The closer the value to -1 (1) is, the more dissimilar
(similar) the two signatures are. Because we are interested in
dissimilar marks, we only considered marks that have average
dotsim of less than 0.5.

Mark Average dotsim score Cell types Activity
H3K36me3 -0.85927 57 Active
H4K12ac -0.67311 1 Inactive

H3K79me1 -0.64466 6 Active
H3K79me2 -0.38126 14 Active
H3K14ac 0.33704 5 Inactive

H3K27me3 0.43669 57 Inactive
H4K8ac 0.44978 6 Active

H2AK5ac 0.46235 6 Inactive

Toward a functional catalog of histone marks

Here, we summarize the findings of our study.

H2A.Z
• Directional around promoters stretching upstream.

H2AK5ac
• Directional around promoters stretching down-

stream.
• Weakly associated with coding regions of inactive

genes.

H2BK5ac
• Directional around promoters stretching down-

stream.

H2BK12ac
• Directional around promoters stretching down-

stream.

H2BK120ac
• Associated with high-CpG promoters.

H3K4ac
• Directional around promoters stretching down-

stream.

H3K4me1
• Directional around promoters stretching down-

stream.
• Absent around transcription start sites.
• Associated with enhancers.

H3K4me2
• Directional around promoters stretching down-

stream.
• Associated with enhancers.

H3K4me3
• Directional around promoters stretching down-

stream.
• Associated with high-CpG promoters.
• Associated with enhancers; however, usually weaker

than H3K4me1.

H3K8ac
• Weakly associated with coding regions of active

genes.

H3K9ac
• Directional around promoters stretching down-

stream.
• Associated with high-CpG promoters.
• Associated with enhancers.

H3K9me3
• Weakly associated with coding regions of inactive

genes.
• Very weak/absent from enhancers.
• Very weak/absent from promoters.

H3K14ac
• Directional around promoters stretching down-

stream.
• Weakly associated with coding regions of inactive

genes.

H3K18ac
• Directional around promoters stretching down-

stream.

H3K23ac
• Directional around promoters stretching down-

stream.

H3K27ac
• Associated with high-CpG promoters.
• Associated with enhancers.

H3K27me3
• Weakly associated with coding regions of inactive

genes.
• Very weak/absent from enhancers.
• Very weak/absent from promoters.

H3K36me3
• Associated with coding regions.
• Very weak/absent from enhancers.

H3K79me1
• Directional around promoters stretching down-

stream.
• Associated with coding regions of active genes.
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H3K79me2
• Directional around promoters stretching down-

stream.
• Associated with coding regions of active genes.

H4K12ac
• Associated with coding regions of inactive genes

(this mark is known in one tissue only).

H4K91ac
• Associated with high-CpG promoters.

Up to this point, we demonstrated the usefulness of
HebbPlot in six case studies. Then we summarized the
findings of our study. Next, we discuss the similarities
and the differences between HebbPlot and other visu-
alization tools.

Discussion
Visualization of chromatin marks and their associa-
tions with thousands of elements active in a specific
cell type is critical to deciphering the function(s) of
these marks. Extracting trends and patterns by mere
inspection is essentially impossible given that there are
more than 100 known chromatin marks and thousands
of sequences. As such, it is vital for biologists to have
visualization tools to aid in these evaluations. To this
end, several tools, Chromatra, ChAsE, and DGW have
been developed. In addition, we have created our own
visualization technique, HebbPlot. Unlike the other
three tools, which cluster genomic regions according
to histone modifications, HebbPlot uses an artificial
neural network to summarize the data in a form that
is convenient for biologists. The following is a brief
discussion about HebbPlot and its characteristics that
differ from the aforementioned utilities.

Chromatra is a visualization tool that displays chro-
matin mark enrichment of subregions of each of the in-
put regions. Since it is a plug-in for the well-supported
Galaxy platform, it is simple for a user to add it to
his or her list of tools. Additionally, this tool is com-
prised of two modules for chromatin mark analysis.
The first module calculates the enrichment scores of
a given chromatin mark to a given set of genomic lo-
cations of interest. The second module, while similar
to the first, adds the additional functionality of clus-
tering the results by additional parameters, e.g. gene
expression levels. All results of these modules are then
projected onto a heat map, which can be exported for
further research. While Chromatra’s ease-of-use and
versatility are common characteristics between it and
HebbPlot, HebbPlot takes a dramatically different ap-
proach to how it clusters data. Whereas Chromatra
handles enrichment levels in genomic regions of vari-
able length through binning, HebbPlot will extract the

same number of points for any region. HebbPlot will
then utilize an artificial neural network to derive a rep-
resentative pattern for the chromatin marks across all
of the points in every region. Our tool proceeds to clus-
ter the patterns for each chromatin mark according
to their similarity to each other, and then produces a
heatmap of the results. Therefore, rather than evaluate
genomic regions that have been mapped to chromatin
marks, HebbPlot summarizes the distribution of each
chromatin mark across a “representative” region. This
allows researchers to only have to view one heatmap
before acquiring a solid understanding of how the his-
tone modifications are represented across the regions.

ChAsE and HebbPlot have their basis in displaying
information clearly and easily to the user. Their design
philosophy is rooted in the fact that many visualiza-
tion tools demand a high amount of technical knowl-
edge that is unreasonable to expect from researchers.
With this said, HebbPlot and ChAsE also diverge sig-
nificantly in how they cluster the input and how they
present their results. Similar to Chromatra, ChAsE
will cluster regions together based on the abundance
of chromatin marks (or any genomic area of interest)
in each region. Afterwards, ChAsE allows the user the
flexibility to inspect the clusters further via methods
like K-Means clustering and signal queries. HebbPlot,
as explained before, samples a fixed number of points
in each given region of interest. These samples, and the
overlapping marks, are then processed by an artificial
neural network to determine a motif for each histone
modification that is illustrative of its distribution in
all given regions. The motifs for each considered mod-
ification is then clustered in a hierarchy so that all
modifications of similar enrichment levels are placed
together. A figure of this detailed clustering is then
produced, providing researchers with a way to quickly
understand how histone mark abundance is distributed
across the locations.

DGW is a tool that consists of two modules. The first
is an alignment and clustering module, whereas the
second is a visualizer for the results. DGW is designed
to “rescale and align” the histone marks of genomic
regions (such as TSSs and splicing sites). Addition-
ally, it hierarchically clusters the aligned marks into
distinct groups. Regarding the visualization module,
DGW creates heat maps and dendrograms of chro-
matin marks of a set of genomic locations. Similar
to our conclusions in the previous comparisons, there
are several notable similarities and differences between
DGW and HebbPlot. HebbPlot is similar to DGW in
that it scales the regions. However, HebbPlot imple-
ments it using a different idea. Specifically, HebbPlot
samples a fixed number of equally spaced points from
each region regardless of the region length. HebbPlot
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learns a general pattern of chromatin marks summa-
rizing all of the input regions as one representative
region. Unlike DGW, hebbPlot does not cluster the
input regions based on the distribution of a mark. Hi-
erarchical clustering is utilized in HebbPlot not to clus-
ter the regions according to the enrichment of a mark,
but to cluster all marks according to their distribu-
tions around the representative region. The amount of
details produced by DGW can be inappropriate in the
presence a large number of marks and regions. Hebb-
Plot on the other hand, is built specifically to make
large amounts of data manageable and meaningful for
biologists through its summarization technique.

Our comparisons regarding these four tools makes it
clear that the advantages provided by HebbPlot are
not well represented among related tools. There are
numerous tools for clustering regions according to the
abundance of chromatin marks, but besides conven-
tional plots, there are hardly any techniques for deter-
mining the patterns of marks across all regions. This
means it is important for HebbPlot to coexist among
other popular visualization tools. Its unique and con-
cise summarization of data is vital to evaluating a large
number of chromatin signals across thousands of re-
gions. This is not to say that the level of description
provided by other tools is not useful. Indeed, biologists
need to be able to see the specific results that other
utilities facilitate. However, what HebbPlot offers is a
look at the “big picture” of the data, giving the biol-
ogist an easy way to understand how each chromatin
mark is distributed across a large number of regions.

Conclusions
In this manuscript, we described a new software tool,
HebbPlot, for learning and visualizing the chromatin
signature of a genetic element. HebbPlot produces
a simple image that can be interpreted easily. Fur-
ther, signatures learned by HebbPlot can be compared
quantitatively. We validated HebbPlot in six case stud-
ies using 57 human tissues and cell types. The results
of these case studies are novel or confirming to pre-
viously reported results in the literature, indicating
the accuracy of HebbPlot. We found that active pro-
moters have a directional chromatin signature; specifi-
cally, H3K4me3 and H3K79me2 tend to stretch down-
stream, whereas H2A.Z tends to stretch upstream.
Further, our results confirm that high-CpG and low-
CpG promoters have different chromatin signatures.
When we compared the signatures of enhancers ac-
tive in eight tissues/cell types, we found that they are
similar, but not identical. Contrasting the signatures
of coding regions of active and inactive genes reveals
that certain modifications (H3K36me3, H3K79me1,
H3K79me2, and H4K8ac) mark active coding regions,

whereas different modifications (H4K12ac, H3K14ac,
H3K27me3 and H2AK5ac) mark coding regions of in-
active genes. Our study results in a visual catalog of
chromatin signatures of multiple genetic elements in
57 human tissues and cell types. Further, we made a
progress toward a functional catalog of more than 20
histone modifications. Finally, HebbPlot is a general
tool that can be applied to a large number of studies,
facilitating the deciphering of the histone code.

Availability and requirements
The source code (Perl and Matlab) is available as Ad-
ditional file 1.

Project name: HebbPlot.
Project home page: https://github.com/TulsaBio
informaticsToolsmith/HebbPlot
Operating system(s): UNIX/Linux/Mac.
Programming language: Perl and Matlab.
Other requirements: Matlab Statistics and Machine
Learning Toolbox and Bedtools (http://bedtools.read
thedocs.io/en/latest/).
License: Creative Commons license (attribution +
non-commercial + no derivative works).
Any restrictions to use by non-academics: Li-
cense needed.
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Additional Files
Additional file 1 — HebbPlot Software

This compressed file (.tar.gz) includes the source code (Matlab and Perl) of

HebbPlot.

Additional file 2 — HebbPlots of active promoters on the positive strand

This compressed file (.tar.gz) include HebbPlots of promoters on the

positive strand active in 57 tissues/cell types.

Additional file 3 — HebbPlots of active promoters on the negative strand

This compressed file (.tar.gz) include HebbPlots of promoters on the

negative strand active in 57 tissues/cell types.

Additional file 4 — HebbPlots of high-CpG promoters

This compressed file (.tar.gz) include HebbPlots of high-CpG promoters

active in 57 tissues/cell types.

Additional file 5 — HebbPlots of low-CpG promoters

This compressed file (.tar.gz) include HebbPlots of low-CpG promoters

active in 57 tissues/cell types.

Additional file 6 — HebbPlots of active enhancers

This compressed file (.tar.gz) include HebbPlots of enhancers active in

eight tissues/cell types.

Additional file 7 — HebbPlots of coding regions of active genes

This compressed file (.tar.gz) include HebbPlots of genes active in 57

tissues/cell types.

Additional file 8 — HebbPlots of coding regions of inactive genes

This compressed file (.tar.gz) include HebbPlots of genes inactive in 57

tissues/cell types.
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