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Abstract

Histone modifications play important roles in gene regulation, heredity,
imprinting, and many human diseases including diabetes, obesity, and cancer. The
histone code is complex and consists of more than 100 marks. Therefore, biologists
need computational tools to characterize general signatures representing the
distributions of tens of chromatin marks around thousands of regions. To this end,
we developed a software tool called HebbPlot, which utilizes a Hebb neural
network in learning a general chromatin signature from regions with a common
function. Hebb networks can learn the associations between tens of marks and
thousands of regions. This is the first application of Hebb networks in the
epigenetics field. HebbPlot presents a signature as a digitized image, in which a
bright pixel indicates the presence of a mark around a part of the genetic element,
and a black pixel indicates the absence of the mark. A row of pixels represents one
mark. Similar rows are clustered in the image. We validated HebbPlot on
synthetic data and on 111 epigenomes provided by the Roadmap Epigenomics
Project. HebbPlot was able to retrieve distinct chromatin signatures for promoters,
enhancers, and genes active in each of the 111 cell types. Our analysis reveals that
active promoters have a directional signature; marks such as H3K79(me1/me2),
H3K4(me1,me2,me3), and H3K9ac stretch toward coding regions. The plots of
inactive promoters show that H3K27me3 is consistently present around them.
Further, the signatures of enhancers that are fully included in repetitive regions
are almost identical to those located outside repeats, indicating that transposons
have an enhancer-like function in the human genome. Furthermore, the chromatin
signature of active elements consists of the presence of H3K79me1 and the absence
of H3K9me3 and H3K27me3. In sum, HebbPlot is a general tool that can be
applied to wide array of studies, facilitating the deciphering of the histone code.

Author summary

Chromatin marks have gained much attention because of their important roles in gene 1

regulation, cell differentiation, Lamarckian inheritance, and imprinting. A chromatin 2

signature of a genetic element, such as genes or enhancers, consists of multiple marks 3

and may differ from a tissue to a tissue. Currently, tens of histone modifications are 4

known. Several marks of more than 100 human cell types have been determined. Many 5

epigenomes of other normal and pathological cell types will be available soon. 6

Extracting a chromatin signature representing the distributions of tens of marks around 7

thousands of regions is a challenging task. Hebb networks are a special type of artificial 8

neural networks known for their ability to learn associations. We developed a software 9

tool called HebbPlot. The tool uses a Hebb network to learn how a mark is distributed 10

around a set of regions that have the same function, e.g. promoters active in the same 11

tissue. HebbPlot produces a pattern representing mark distributions around all of the 12
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regions. Mark patterns are clustered based on their similarity to one another. Then a 13

digitized image representing the learned pattern is generated. HebbPlot will help 14

biologist with characterizing and visualizing chromatin signatures in numerous studies. 15

Introduction 16

Understanding the effects of histone modifications will provide answers to important 17

questions in biology and will help with finding cures to several diseases including cancer. 18

Carey highlights several functions of epigenetic factors including Cytosine methylation 19

and histone modifications [1]. It was reported that methylation of CpG islands inhibit 20

transcription [2], whereas the complex histone code has a wide range of regulatory 21

functions [3, 4]. Additionally, epigenetic marks may affect body weight and 22

metabolism [5]. Interestingly, chromatin marks may explain how some acquired traits, 23

such as obesity and exposure to some toxins, are passed from one generation to the next 24

(Lamarckian inheritance) [6–9]. Further, epigenetics may explain how two identical 25

twins have different disease susceptibilities [10]. Epigenetic factors play a role in 26

imprinting, in which a chromosome, or a part of it, carries a maternal or a paternal 27

mark(s) [11, 12]. Defects in the imprinting process may lead to several disorders [13–18], 28

and may increase the “birth defects” rate of assisted reproduction [19]. Furthermore, 29

chromatin marks play a role in cell differentiation by selectively activating and 30

deactivating certain genes [20, 21]. Some chromatin marks take part in deactivating one 31

of the X chromosomes [22]. It has been observed in multiple types of cancer that some 32

tumor suppressor genes were deactivated by hypermethylating their promoters [23–25], 33

the removal of activating chromatin marks [26,27], or adding repressive chromatin 34

marks [28]. Anti-cancer drugs that target the epigenome [1] have been designed. Two 35

compounds are used in these drugs. One compound inhibits DNA methylation [29,30], 36

whereas the other compound inhibits histone deacetylation [31] (histone acetylation is 37

an activating mark). 38

Pioneering computational and statistical methods for deciphering the histone code 39

have been developed. Some tools are designed for profiling and visualizing the 40

distribution of a chromatin mark(s) around multiple regions [32,33]. Additionally, a tool 41

for clustering and visualizing genomic regions based on their chromatin marks has been 42

developed [34]. Several systems are available for characterizing histone codes/states in 43

an epigenome [35–43]. Further, an alphabet system for histone codes was proposed [44]. 44

Other tools can recognize and classify the chromatin signature associated with a specific 45

genetic element [?, 45–54]. Furthermore, methods that compare the chromatin signature 46

of healthy and sick individuals have been proposed [55]. 47

Scientists have identified about 100 histone marks [37]. Additionally, there is a near 48

infinite number of future studies, in which scientists need to characterize the pattern of 49

chromatin marks around a set of regions in the genome. Therefore, there is a definite 50

need for an automated framework that enables scientists to (i) automatically 51

characterize the chromatin signature of a set of sequences that have a common function, 52

e.g. exons, promoters, or enhancers; and (ii) visualize the identified signature in a 53

simple intuitive form. To meet this need, we designed and developed a software tool 54

called HebbPlot. This tool allows average users, without extensive computational 55

knowledge, to characterize and visualize the chromatin signature associated with a 56

genetic element automatically. 57

HebbPlot includes the following four innovative approaches in an area that has 58

become the frontier of medicine and biology: 59

• HebbPlot can learn the chromatin signature of a set of regions 60

automatically. Sequences that have the same function in a specific cell type, e.g. 61
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exons, promoters, or enhancers, are expected to have similar marks. The learned 62

signature represents these marks around all of the regions. HebbPlot differs from the 63

other tools in its ability to learn one signature representing the distributions of all 64

available chromatin marks around thousands of regions. 65

• This is the first application of Hebb neural networks in the epigenetics 66

field. These networks are capable of learning associations; therefore, they are well 67

suited for learning the associations among tens of marks and genetic elements. 68

• The framework enables average users to train artificial neural networks 69

automatically. Users are not burdened with the training process. Self-trained 70

systems for analyzing protein structures and sequence data have been 71

proposed [56–58]. HebbPlot is the analogous system for analyzing chromatin marks. 72

• HebbPlot is the first system that integrates the tasks of learning and 73

visualizing a chromatin signature. Once the signature is learned, the marks are 74

clustered and displayed as a digitized image. This image shows one pattern 75

representing thousands of regions. To illustrate, the distributions of the marks appear 76

around one region; however, they are learned from all input regions. 77

We have applied our tool to learning and visualizing the chromatin signatures of 78

several active and inactive genetic elements in the 111 consolidated epigenomes provided 79

by the Roadmap Epigenomics Project. These case studies demonstrate the applicability 80

of HebbPlot to many interesting problems in molecular biology, facilitating the 81

deciphering of the histone code. 82

Materials and methods 83

Methods 84

In this section, we describe the computational principles of our software tool, HebbPlot. 85

The core of the tool is an unsupervised neural network known as Hebb network. 86

Region representation 87

To represent a group of histone marks overlapping a region, these marks are arranged 88

according to their genomic locations on top of each other and the region. Then 89

equally-spaced vertical lines are superimposed on the stack of the marks and the region. 90

The numerical representation of this group of marks is a matrix. A row of the matrix 91

represents a mark. A column of the matrix represents a vertical line. If the ith mark 92

intersects the jth vertical line, the entry i and j in the matrix is 1, otherwise it is -1. 93

The first vertical line is at the beginning of the region; the last vertical line is at the end 94

of the region. The rest of the lines are spread out evenly. Fig 1 shows the graphical and 95

the numerical representations of a region and the overlapping marks. Finally, the 96

two-dimensional matrix is converted to a one dimensional vector called the epigenetic 97

vector. The number of vertical lines is determined experimentally. We used 41 and 101 98

lines in our experiments. This number should be adjusted according to the average size 99

of a region. 100

Data preprocessing 101

Preprocessing input data is a standard procedure in machine learning. During this 102

procedure, the noise in the input data is reduced. Each epigenetics vector is compared 103

to two other vectors selected randomly from the same set. The value of an entry in the 104
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Fig 1. Representations of a group of chromatin marks overlapping a region. (a) Horizontal
double lines represent a region of interest. Horizontal single lines represent the marks. Vertical
lines are spaced equally and bounded by the region. (b) The intersections between the marks
and the vertical lines are encoded as a matrix where rows represent the marks and columns
represent the vertical lines. If a vertical line intersects a mark, the corresponding element in
the matrix is 1, otherwise it is -1.

vector is kept if it is the same in the three vectors, otherwise it is set to zero. For 105

example, consider the vector [1 1 -1]. Suppose that the vectors [1 -1 -1] and [1 -1 -1] 106

were selected randomly. The preprocessed vector would be [1 0 -1] because the first and 107

the third elements are the same in the three vectors, but the second element is not. 108

Hebb recall network 109

Associative learning, also known as Hebbian learning, is inspired by biology. “When an 110

axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part 111

in firing it, some growth process or metabolic change takes place in one or both cells 112

such that A’s efficiency, as one of the cells firing B, is increased” [59]. In behavioral 113

psychology, Ivan Pavlov conducted a famous experiment, which demonstrated learning 114

by association. In this experiment, a dog was trained to associate the sound of a bell 115

with food; this dog salivated when it heard the bell whether or not food was present. 116

The presence of food is referred to as the unconditioned stimulus, p0, and the sound of 117

the bell is referred to as the conditioned stimulus, p. Associating these two stimuli 118

together is the goal. After training, the response to either the conditioned stimulus or 119

the unconditioned one is the same as the response to both stimuli combined [60]. 120

In the context of epigenetics, a Hebb network can be viewed as the dog in Pavlov’s 121

experiment. The unconditioned stimulus, p0, is a one-dimensional vector representing 122

the distributions of histone marks over a sequence e.g. one tissue-specific enhancer. 123

This vector is referred to as the epigenetic vector; it is obtained as outlined above. The 124

conditioned stimulus is always the one vector, which include ones in all entries. We 125

would like to train the network to give a response, analogous to the salivation of the 126

dog, when it is given the ones vector, whether or not the epigenetic vector is provided. 127

The response of the network is a prototype/signature representing the distributions of 128

histone marks over the entire set of genomic locations, e.g. all enhancers of a specific 129

tissue. 130

Eq 1 and Eq 2 define how the response of a Hebb network is calculated. The 131

training of the network is given by Eq 3 [60]. 132

satlins(x) =

 +1 if x ≥ 1
x if − 1 < x < 1
−1 if x ≤ −1

(1)

Eq 1 defines a transformation function. This function ensures that the response of the 133

network is similar to the unconditioned stimulus, i.e. each element of the response is 134

between 1 and -1. If x is a vector, the function is applied component wise. 135

a(p0, w, p) = satlins(p0 + w � p) (2)

Eq 2 describes how a Hebb network responds to the two stimuli. The response of the 136

network is transformed using Eq 1. In Eq 2, p0 is the unconditioned stimulus, e.g. 137

presence of food or an epigenetic vector; w is the weights vector, which is the 138

prototype/signature learned so far; and p is the conditioned stimulus, e.g. sound of a 139

bell or the one vector. The operator � represents the component-wise multiplication of 140

two vectors. In the current adaptation, if the network is presented with an epigenetic 141
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vector and the one vector, the response is the sum of the prototype learned so far and 142

the epigenetic vector. In the absence of the epigenetic vector, i.e. all-zeros p0, the 143

response of the network is the prototype, demonstrating the ability of the network to 144

learn associations. 145

wi = wi−1 + α(a(p0i , wi−1, pi)− wi−1)� pi (3)

Eq 3 defines Hebb’s unsupervised learning rule. Here, wi and wi−1 are the prototype 146

vectors learned in iterations i and i− 1. The ith pair of unconditioned and conditioned 147

stimuli is p0i and pi. Learning occurs, i.e. the prototype changes, only when the ith 148

conditioned stimulus, pi, has non-zero components. This is the case in our adaptation 149

because pi is always the one vector. Due to a small α, which represents the learning and 150

the decay rates, the prototype vector changes a little bit in each iteration when learning 151

occurs; it moves closer to the response of the network to the ith pair of stimuli. 152

Comparing two signatures 153

Two signatures can be compared numerically. The dot product of two victors indicates 154

how close they are to each other in space. When these vectors are normalized, i.e. each 155

element is divided by the vector norm, the dot product is between 1 and -1. The dotsim 156

function (Eq 4) normalizes the vectors and calculates their dot product. 157

dotsim(x, y) =
x

‖x‖
· y

‖y‖
(4)

Here, x and y are vector; ‖x‖ and ‖y‖ are the norms of these vectors; the · symbol is 158

the dot product operator. 159

It is easy to interpret the meaning of the dot product of two normalized vectors. If 160

the two vectors are very similar to each other, the value of the dotsim function 161

approaches 1. If the values at the same index of the two vectors are opposite of each 162

other, i.e. 1 and -1, the value of dotsim approaches -1. The dotsim function can be 163

applied to the whole epigenetic vector or to the part representing a specific chromatin 164

mark. When comparing the chromatin signatures of two sets of regions, a mark with a 165

dotsim value approaching 1 is common in the two signatures. A mark with a dotsim 166

value approaching -1 has opposite distributions, distinguishing the signatures. Marks 167

with dotsim values approaching zero do not have consistent distribution(s) in one or 168

both sets; these marks should not be considered while comparing the two signatures. 169

Visualizing a chromatin signature 170

Row vectors representing different marks are clustered according to their similarity to 171

each other. We used hierarchical clustering in grouping marks with similar distributions. 172

Hierarchical clustering is an iterative bottom-up approach, in which the closest two 173

items/groups are merged at each iteration. The algorithm requires a pair-wise distance 174

function and a cluster-wise distance function. For the pair-wise distance function, we 175

utilized the city block function to determine the distance between two vectors 176

representing marks. For the group-wise distance function, we applied the weighted pair 177

group method with arithmetic mean [61]. To determine the group-wise distance between 178

a cluster A, and another cluster consisting of two sub-clusters B and C, add the 179

distance between A and B to the distance between A and C; then divide the sum by 2. 180

We utilized the implementation of hierarchical clustering provided in the Statistics and 181

Machine Learning Toolbox of Matlab (R2017A) by MathWorks. 182

A digitized image represents the chromatin signature of a genetic element. A 183

one-unit-by-one-unit square in the image represents an entry in the matrix representing 184
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the signature. A row of these squares represents one mark. The color of a square is a 185

shade of gray if the entry value is less than 1 and greater than -1; the closer the value to 186

1 (-1), the closer its color to white (black). 187

Up to this point, we illustrated the computational principles of our software tool, 188

HebbPlot. Next, we provide the details of the data used in validating the tool. 189

Data 190

We used HebbPlot in extracting and visualizing chromatin signatures characterizing 191

multiple genetic elements of the 111 consolidated epigenomes of the Roadmap 192

Epigenomics Project [62]. Specifically, we applied HebbPlot to: 193

1. Active promoters. 194

2. Active promoters on the positive strand. 195

3. Active promoters on the negative strand. 196

4. Inactive promoters. 197

5. Active enhancers. 198

6. Active repetitive enhancers. 199

7. Active non-repetitive enhancers. 200

8. Inactive enhancers. 201

9. Coding regions of active genes. 202

10. Coding regions of inactive genes. 203

11. Random genomic locations. 204

We obtained the genomic locations of the putative promoters specific to each of the 205

111 consolidated epigenomes from the Roadmap Epigenomics Project 206

(http://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_prom/). 207

These promoters were predicted using DNase I hypersensitive sites and chromatin states 208

characterizing active promoters. To obtain the inactive promoters, we performed the 209

following two steps: (i) all tissue-specific promoters are collected and merged if 210

overlapping and (ii) all promoters are compared to the tissue-specific promoters; for 211

each tissue, promoters that do not overlap with the tissue-specific promoters are 212

considered inactive in this tissue. To compare the chromatin signatures of promoters on 213

the positive and the negative strands, we separated the promoters according to the 214

strand. If a putative promoter overlaps a transcription start site on the positive strand 215

only, it is considered positive and vice versa. Each group was sorted and overlapping 216

regions, if any, were merged. 217

The putative enhancers were obtained from the Roadmap Epigenomics Project 218

(http://egg2.wustl.edu/roadmap/data/byDataType/dnase/BED_files_enh/). The 219

inactive enhancers were obtained using the same procedure applied in obtaining the 220

inactive promoters. Later in this paper, we compare the chromatin signature of putative 221

enhancers overlapping with repeats to that of the non-overlapping ones. The hg19 222

human assembly repeats (http://www.repeatmasker.org/species/hg.html), 223

including transposons and simple tandem repeats, were used for determining repetitive 224

enhancers. In order for an enhancer to be considered repetitive, it must be entirely 225

included in a repetitive region. In another experiment, we considered an enhancer to be 226

repetitive if at least half of its sequence overlaps a repetitive region. 227
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The coding regions were obtained from the University of California Santa Cruz 228

Genome Browser (http://genome.ucsc.edu). The Ensemble genes for the hg19 229

human genome assembly were used in this study. Active genes in a tissue are defined as 230

those that their transcription start sites overlap with the tissue-specific putative 231

promoters. Otherwise, they are considered inactive. After that, coding regions of the 232

active (or the inactive) genes in a tissue are collected and merged if overlapping. 233

Regarding the random genomic locations, we sampled uniformly 500 regions from 234

each chromosome of the human genome. Each region is 1000 base pairs (bp) long. For 235

each of the 111 consolidated epigenomes, chromatin marks overlapping with the random 236

locations were obtained. 237

If the number of the regions, e.g. tissue-specific enhancers, was more than 10,000 238

regions, we sampled uniformly 500 regions from each chromosome. 239

In this section, we discussed the computational method and the data used in the 240

validation experiments. In the next section, we validate HebbPlot on synthetic and real 241

data. 242

Results and Discussion 243

HebbPlot 244

We invented a new software tool called HebbPlot. HebbPlot has the following two 245

specific aims: (i) learning automatically the chromatin signature of a group of genomic 246

locations that have a common function, and (ii) representing this signature as a 247

digitized image that is easily interpreted. The core of HebbPlot is a Hebb neural 248

network. Hebb networks are known for their ability to learn associations, making them 249

well suited for learning the chromatin signatures of genetic elements. To the best of our 250

knowledge, this is the first application of Hebb networks in the field of epigenetics. The 251

training process of the neural network is fully automated, enabling biologists without 252

extensive computational knowledge to take advantage of advanced machine learning 253

algorithms such as Hebb networks. The tool is general and can be applied to any set of 254

genomic locations. HebbPlot is freely available to the academic community. It can be 255

found at Software S1. 256

Results on synthetic data 257

Consider a step-pyramidal shape (Figure 2). One thousand noisy instances of this shape 258

were generated by randomly shifting a step of the pyramid to the right or to the left by 259

at most 200 units. A step may be deleted with a probability of 0.2. Each shape is 260

represented by a matrix, in which an entry has a value of 1 (white) or -1 (black). To 261

obtain this matrix, a group of evenly-spaced vertical lines are superimposed on the 262

shape. If a line intersects a step of the pyramid, the corresponding entry in the matrix 263

is 1. Otherwise, it is -1. More details about representing a shape are given under the 264

Materials and Methods Section. 265

As a baseline, the original shape was retrieved from the noisy instances by a simple 266

majority voting scheme. In this scheme, an entry of the prototype matrix is assigned 1 267

if the majority of the values stored in same entry of the 1000 matrices are 1; otherwise, 268

it is assigned -1. The prototype due to this method is similar to the original shape; 269

however, its boundaries are inaccurate, whereas the prototype retrieved by the Hebb 270

network looks very similar to the original shape. The boundaries of the steps are 271

accurate; however, they are fuzzy. Similar results were obtained when this experiment 272

was repeated multiple times using higher and lower mutation rates (shift amount: 0-300, 273
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step-deletion probability: 0-0.3), demonstrating the ability of Hebb networks to retrieve 274

the original shape successfully. 275

Fig 2. A controlled experiment demonstrating the ability of Hebb networks to retrieve a
prototype from noisy shapes. (a) The real shape is a two-dimensional step pyramid. (b-d)
Examples of noisy shapes produced by corrupting the real shape. The start and the end of
each horizontal white segment may be shifted to the right or the left by up to 200 unites;
additionally, a horizontal segment may be deleted with a probability of 0.2. (e) The shape
retrieved by a majority-voting scheme. (f) The shape retrieved by the network.

Results on real data 276

Next, we studied multiple enhancers potentially active in the H1 cell line (embryonic 277

stem cell) obtained from the Roadmap Epigenomics Project. These enhancers were 278

predicted using DNase I Hypersensitive sites and chromatin states associated with 279

enhancers. This data set contains 11,369 putative H1-specific enhancers and 27 280

chromatin marks. Each enhancer region was expanded by 10% on each end to study 281

how chromatin marks differ from/resemble the surrounding regions. To begin, 41 282

uniform samples/points were obtained from each region. Then for each point, it was 283

determined whether or not it falls in a mark region overlapping the putative enhancer. 284

Next, we plotted the results as shown in Fig. 3. No clear signature appears in these 285

plots. After that, we used the majority-voting scheme described earlier and HebbPlot in 286

generating the signature of the H1-specific enhancers. The figure generated by 287

HebbPlot shows more information than the majority plot. 288

The Hebb plot shows four distinct zones representing the absent marks, and the 289

present ones with different confidence levels. For example, the top zone shows marks 290

that are absent from the H1-specific enhancers. These marks include H2A.Z, H4K8ac, 291

H3K9me3, H3K4me3, and H3K36me3. The bottom zone shows the marks that present 292

around these enhancers with the highest confidence level. These marks include 293

H3K4(me1,me2), H3K79(me1,me2), and many acetylation marks. In contrast, the plot 294

due to the majority-voting scheme shows only two zones representing the absent and the 295

present marks without confidence information. 296

Further, because the enhancer regions were expanded on each end by 10%, a present 297

mark is expected to be brighter around the center of an enhancer than its peripheries. 298

The Hebb plot shows such information, whereas the brightness of the present marks is 299

uniform around almost all marks shown in the majority plot. These results show that a 300

Hebb plot is more accurate and shows more information than a plot generated by the 301

majority-voting scheme. 302

Fig 3. Retrieving the chromatin signature of the H1-specific enhancers. The data set consists
of 11,369 putative enhancers active in H1. Four examples of potential enhancers are shown in
parts a-d. It is hard to see a common pattern in these four examples. The signature retrieved
by the majority-voting scheme has two zones (part e), whereas the signature learned by the
Hebb network is characterized by four zones (part f). The top most zone represents chromatin
marks that are absent from the enhancer regions, whereas the next three zones represent the
present marks with increasing certainty. The signature retrieved by the majority-voting scheme
does not show confidence indicators of the absence or the presence of a mark. For example the
third zone from the top of the Hebb plot is not as strong as the forth zone. In contrast, such
information does not appear in the signature retrieved by the majority-voting scheme.
Enhancer regions were expanded by 10% on each end. Therefore, the intensity of the signal is
expected to be weaker at the peripheries than around the center of a signature. Again, the
Hebb plot shows such information, whereas the signature retrieved by the majority-voting
scheme does not.
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The distinct chromatin signatures of different active elements 303

Twenty eight chromatin marks of the IMR-90 (fetal lung fibroblasts cell Line) epigenome 304

are available through the Roadmap Epigenomics Project. The project provides access to 305

predicted enhancers and promoters specific to IMR-90. We sampled 11,268 enhancers, 306

13,226 promoters, and 11,390 coding regions of active genes in IMR-90. About 500 307

regions were uniformly sampled from each chromosome. In addition, we selected 10,000 308

locations sampled uniformly from all chromosomes of the human genome. Then we 309

trained four Hebb networks to learn the chromatin signature of each genetic element. 310

Fig 4 shows the four Hebb plots. The promoter signature is characterized by a bright 311

box that is clearly different from the surrounding regions. The center, where the 312

transcription start sites are located, of the upper part of the box is less bright than its 313

peripheries. With regard to the chromatin signature of the enhancers, it is characterized 314

by multiple zones. Each zone has consistent brightness. The brightest zone at the 315

bottom of the Hebb plot is the widest. Similarly, the coding regions signature is 316

multi-zonal; however, the brightest zone is the narrowest and the middle gray zone is 317

the widest. Chromatin marks should not be distributed in a consistent manner around 318

regions that do not have a common function. As expected, the Hebb plot representing 319

the random genomic locations displays a black box, indicating that no chromatin mark 320

is distributed consistently around these regions. 321

After that, we repeated the same experiment on each of the 111 epigenomes of the 322

Roadmap Epigenomics Project. The Hebb plots of the promoters, the enhancers, and 323

the coding regions of active genes are available through Data set S1, Data set S2, and 324

Data set S3. The four distinct signatures are consistent across all tissue types. 325

These plots demonstrate that HebbPlot is able to learn the chromatin signature 326

from a group of regions with the same function. In addition, the chromatin signatures of 327

the promoters, the enhancers, and the coding regions are clearly distinct. 328

Fig 4. IMR-90 chromatin signatures representing (a) active promoters, (b) active
enhancers, (c) coding regions of active genes, and (d) random genomic locations. The
boundaries of these elements were expanded by 10% on each end to show a chromatin
signature in contrast to the surrounding regions. Active promoters have a unique
signature characterized by a bright box that clearly differs from the background. In
addition, the center of the upper half of the box has a less bright area around the
transcription start sites than its peripheries. Enhancers specific to IMR-90 has a zonal
signature, where each zone has consistent brightness. The enhancer signature has a
wide bright zone. Genes active in IMR-90 has a zonal signature as well. However, the
middle gray zone is the widest, and the brightest zone at the bottom is the narrowest.
The random locations do not have a common function; therefore, chromatin marks
around them should not be distributed consistently. As expected, HebbPlot did not
retrieve any pattern as displayed by a black box.

The directional signature of active promoters 329

Because promoters are upstream from their genes, some marks may indicate the 330

direction of the transcription. To determine whether or not marks have direction, 331

tissue-specific putative promoters were separated according to the positive and the 332

negative strands into two groups. Then the promoter region was expanded to include 333

two equal-size regions upstream and downstream from the promoter region. Thus, the 334

expanded region has these three equal-size parts: (i) the region upstream from the 335

promoter, (ii) the promoter region itself, and (iii) the region downstream from the 336

promoter. We trained two Hebb networks to learn the chromatin signatures of 337
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tissue-specific promoters on the positive and the negative strands. Fig. 5 shows the 338

Hebb plots of the positive and the negative promoters active in H1 and male skeletal 339

muscle. The two plots of the promoters on the positive and the negative strands are 340

mirror images of each other, indicating that multiple marks are distributed in a 341

directional manner; some marks tend to stretch more downstream (bright) than 342

upstream (dark). 343

Fig 5. Hebb plots of active promoters on the positive and the negative strands.
Multiple chromatin marks are distributed in a direction specific way. These marks tend
to stretch downstream from the promoters toward the coding regions. Examples are
H3K4(me1,me2,me3) and H3K79(me1,me2). The two Hebb plots of the promoters on
the positive and the negative strands are mirror images of each other.

Next, we generated Hebb plots for the positive (Data set S4) and the negative (Data 344

set S5) promoters of all tissues available through the Roadmap Epigenomics Project. 345

This phenomenon was very consistent in all tissues. 346

Recall that two vectors pointing in opposite directions have a dotsim value of -1. 347

The closer the value to -1 is, the closer the angle between the two vectors to 180° is. To 348

determine directional marks, the learned prototype of a mark over the upstream part of 349

the expanded promoter region was compared to the prototype of the same mark over 350

the downstream part. If the dotsim value between the two prototypes is -0.5 or lower, 351

this mark is considered directional. 352

We list the number of times a chromatin mark was determined for a tissue and the 353

number of times it showed directional preference in Table 1. The Roadmap Epigenomics 354

Project did not determine all marks for the 111 tissues. We found that 355

H3K79(me1/me2), H3K4(me1,me2,me3), and H3K9ac are extended toward the coding 356

regions in 50% or more of the tissues, in which they are known. These results show that 357

active promoters have a directional chromatin signature. 358

Table 1. Directional chromatin marks. Six chromatin marks around the
promoters extend toward coding regions.

Positive Strand Negative Strand

Mark Known Directional Ratio Known Directional Ratio

H3K79me2 5 5 1 5 5 1
H3K79me1 7 5 0.71 7 5 0.71
H3K4me1 111 75 0.68 111 76 0.68
H3K4me2 8 5 0.63 8 5 0.63
H3K4me3 111 51 0.46 111 53 0.48
H3K9ac 47 22 0.47 47 22 0.47

Promoters were separated according to the strand to positive and negative groups.
Then the region of a promoter was expanded 100% on each end. Mark vectors over the
upstream and the downstream thirds of the expanded regions were compared. A mark
is considered directional if these two vectors are opposite to one another (a dotsim value
of -0.5 or lower). Not all marks were determined for all tissues. The number of tissues,
for which a mark was determined, is listed under the column titled “Known.” The
number of tissues, in which a mark has directional preference around the promoter
regions, is listed under the column titled “Directional.” The ratio of these two numbers
are listed under the column labeled with “Ratio.”
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The chromatin signatures of repetitive and non-repetitive 359

enhancers 360

It has been reported that transposon subfamilies have an enhancer-like function in the 361

human genome [63]. Further, transposons are known to act as enhancers in plant 362

genomes [64–68]. Given the availability of the putative enhancers of more than a 363

hundred cell types, we asked two questions. 364

First, what is the percentage of enhancers that are located within repeat sequences, 365

e.g. transposons? To answer this question, we calculated the percentage of the 366

tissue-specific enhancers that are included entirely in repetitive regions. Interestingly, 367

up to 25% of the tissue-specific enhancers are repetitive. The highest percentage of 25% 368

was observed in the primary T helper cells PMA-I stimulated, and the lowest 369

percentage of 12% was observed in the female fetal brain. If the overlap percentage 370

between enhancers and repeats is lowered to 50% instead of 100%, the percentages of 371

the repetitive tissue-specific enhancers range between 22% and 37% (see Table S1). 372

These results indicate that a large portion of enhancers are repetitive. 373

Second, how similar/different are the chromatin signatures of the repetitive 374

enhancers and the non-repetitive ones? To answer this question, we obtained two 375

chromatin signatures by training a Hebb network on the repetitive enhancers (Data set 376

S6) and another network on the non-repetitive enhancers (Data set S7) active in each 377

tissue. Then, we compared the two chromatin signatures using the dotsim function. 378

The two signatures are almost identical (mean = 0.98, standard deviation = 0.03, 379

maximum=0.99, minimum=0.83); recall that the dotsim value obtained by comparing a 380

signature to itself is 1 (see Table S2). As an example, Fig 6 shows the two Hebb plots of 381

the repetitive and the non-repetitive enhancers active in IMR-90. The two Hebb plots 382

are almost identical. These results prove that the chromatin signature of the repetitive 383

tissue-specific enhancers is identical to the signature of the non-repetitive enhancers, 384

further supporting the enhancer-like function of transposons in the human genome. 385

Fig 6. The repetitive and the non-repetitive enhancers active in the IMR-90 cell line
have identical chromatin signatures. Enhancers that are fully included within repeat
sequences, e.g. transposons, are considered repetitive. Enhancers that do not overlap
with repeats are considered non-repetitive. The Hebb plots representing the chromatin
signatures of the repetitive and the non-repetitive enhancers are almost identical.
Further, a dotsim value of 0.9976 was obtained by comparing these signatures. Recall
that a dotsim value of 1 is the result of comparing a signature to itself.

The signature of active elements 386

Next, we asked if there is a common code among active genetic elements. Specifically, 387

what is the combination of marks absent or present around active promoters, active 388

enhancers, and coding regions of active genes? To answer this question, we applied our 389

software tool, HebbPlot, to three active elements in the 111 consolidated epigenomes. A 390

mark is included in our analysis if it is known in at least 5 of the 111 epigenomes. We 391

compared the distributions of the same mark around two active genetic elements using 392

the dotsim function (see the Materials and Methods Section). Two distributions of a 393

mark are considered similar if they have a dotsim value of 0.5 or higher in at least 50% 394

of the tissues, in which this mark is known. 395

Table 2 shows the similar marks between (i) active promoters and active enhancers; 396

(ii) active promoters and coding regions of active genes; and (iii) active enhancers and 397

coding regions of active genes. These comparisons show that H3K79me1 is present with 398

similar distributions around the three elements. Further, H3K9me3 and H3K27me3 are 399
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absent from these elements. Previously, H3K79me1 is reported to be associated with 400

gene expression [47], whereas the two absent marks are known to be repressive 401

marks [69]. These results imply that the chromatin signature of active elements consists 402

of the presence of H3K79me1 and the absence of H3K9me3 and H3K27me3. These 403

three marks represent a basic signature, which may be expanded by studying other 404

active elements and additional chromatin marks when they become available. 405

Table 2. Marks with similar distributions around two genetic elements.

Mark Known Similar Ratio

Promoters and enhancers

H2BK15ac 5 5 1.00
H2BK5ac 7 7 1.00
H3K14ac 6 6 1.00
H3K18ac 7 7 1.00
H4K8ac 7 7 1.00
H3K9me3 (absent) 111 108 0.97
H3K27me3 (absent) 111 105 0.95
H3K4me2 8 7 0.88
H3K36me3 (absent) 111 97 0.87
H3K23ac 7 6 0.86
H3K4ac 7 6 0.86
H2BK12ac 6 5 0.83
H4K91ac 6 5 0.83
H3K79me2 5 4 0.80
H3K4me1 111 84 0.76
H2A.Z 7 5 0.71
H2BK120ac 7 5 0.71
H3K79me1 7 5 0.71
H3K9ac 47 30 0.64
H3K27ac 82 52 0.63
H2AK5ac 7 4 0.57

Promoters and coding regions

H3K9me3 (absent) 111 110 0.99
H3K27me3 (absent) 111 104 0.94
H3K79me1 7 6 0.86
H3K23ac 7 5 0.71
H4K8ac 7 4 0.57

Enhancers and coding regions

H3K27me3 (absent) 111 110 0.99
H3K9me3 (absent) 111 108 0.97
H3K4me3 (absent) 111 95 0.86
H3K79me1 7 6 0.86
H2A.Z 7 4 0.57

The distributions of known marks in each of the 111 tissues were compared between (i)
active promoters and active enhancers; (ii) active promoters and coding regions of
active genes; and (iii) active enhancers and coding regions of active genes. The
distributions of a mark over two genetic elements are considered similar if they have a
dotsim value of 0.5 or higher. Recall that the dotsim values range between -1 and 1.
The number of tissues, for which a mark was determined, is listed under the column
titled “Known.” The number of tissues, in which a mark has similar distributions
around two genetic elements, is listed under the column titled “Similar.” The ratio of
these two numbers are listed under the column labeled with “Ratio.”
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Differences among the signatures of active elements 406

The figures generated by HebbPlot show that the signatures of active promoters, active 407

enhancers, and coding regions of active genes are distinct. Additionally, the figures of 408

the promoters and the enhancers appear more similar to one another than to the figure 409

representing coding regions. In this analysis, we wanted to quantify the 410

similarity/difference among these three elements by determining marks that are 411

distributed differently. 412

We applied HebbPlot to the 111 epigenomes. Then we compared the distributions of 413

the same mark around two genetic elements. The distributions of a mark around two 414

genetic elements are considered opposite if they have a dotsim value of -0.5 or lower in 415

at least 50% of the tissues, in which this mark is known. 416

Table 3 shows marks with different distributions between (i) active promoters and 417

active enhancers; (ii) active promoters and coding regions of active genes; and (iii) 418

Table 3. Marks with opposite distributions around two genetic elements.

Mark Known Opposite Ratio

Promoters vs. Enhancers H3K4me3 111 93 0.84

Promoters vs. Coding regions

H3K4me3 111 111 1.00
H3K36me3 111 88 0.79
H3K9ac 47 37 0.79
H3K4me1 111 84 0.76
H3K4me2 8 6 0.75
H3K18ac 7 5 0.71
H3K27ac 82 55 0.67
H2A.Z 7 4 0.57

Enhancers vs. Coding regions

H3K14ac 6 6 1.00
H3K4me1 111 111 1.00
H4K91ac 6 5 0.83
H3K27ac 82 61 0.74
H2AK5ac 7 5 0.71
H2BK120ac 7 5 0.71
H3K18ac 7 5 0.71
H3K36me3 111 76 0.68
H2BK12ac 6 4 0.67
H3K4me2 8 5 0.63
H2BK15ac 5 3 0.60
H3K79me2 5 3 0.60
H3K9ac 47 27 0.57
H3K4ac 7 4 0.57

The distributions of known marks in each of the 111 tissues were compared between (i)
active promoters and active enhancers; (ii) active promoters and coding regions of
active genes; and (iii) active enhancers and coding regions of active genes. The
distributions of a mark around two genetic elements are considered opposite if they have
a dotsim value of -0.5 or lower. Recall that the dotsim values range between -1 and 1.
Not all marks were determined for all tissues. The number of tissues, for which a mark
was determined, is listed under the column titled “Known.” The number of tissues, in
which a mark has opposite distributions over two genetic elements, is listed under the
column titled “Opposite.” The ratio of these two numbers are listed under the column
labeled with “Ratio.”
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active enhancers and coding regions of active genes. These comparisons reveal that the 419

signatures of active enhancers and active promoters are very similar; only one mark, 420

H3K4me3, has different distributions around them. In contrast, the signature of active 421

promoters differs in 8 marks from that of coding regions of active genes; these marks are 422

H3K4(me1,me2,me3), H3K(9,18,27)ac, and H2A.Z. The signature of active enhancers 423

differs in 14 marks from that of coding regions of active genes. These marks are 424

H3K4(me1,me2), H3K36me3, H3K79me2, and 10 acetylation marks including 425

H3K(9,18,27)ac. Interestingly, H3K14ac has opposite distributions around active 426

enhancers and coding regions of active genes in all of the six tissues, in which it is 427

known. 428

Clearly, the distributions of these marks can be used for distinguishing the 429

signatures of the three active elements from each other. These results show that active 430

enhancers and active promoters have similar signatures which markedly differ from the 431

signature of coding regions of active genes. 432

Signature of inactive elements 433

We conducted the following experiment in search of a chromatin signature for inactive 434

elements. Specifically, we aimed at studying the chromatin signatures of inactive 435

promoters, inactive enhancers, and inactive genes. To determine promoters that are 436

inactive in a specific tissue, we merged all putative promoters of all tissues. A promoter 437

is considered inactive in a tissue if it does not overlap with any of the promoters active 438

in this tissue. Inactive enhancers were determined in the same way. A gene that its 439

transcription start site does not overlap with any of the putative tissue-specific 440

promoters is considered inactive in this tissue. Next, we sampled about 500 elements 441

from each chromosome of the human genome, totaling 11,000-13,000 elements. Then 442

three Hebb networks were trained on the inactive promoters, the inactive enhancers, 443

and the inactive genes of each tissue. After that, Hebb plots were generated from the 444

signatures learned by these networks (Data set S8, Data set S9, and Data set S10). 445

Upon examining the Hebb plots generated for the 111 tissues, we found the following: 446

• Promoters and enhancers that are inactive in stem cells have chromatin signatures 447

consisting of many marks. The intensities of these marks are weaker (less bright) 448

than their counterparts in the signatures of promoters and enhancers active in stem 449

cells (Fig 7 and Fig 8). 450

• Out of the 111 tissues, the inactive promoters of 84 tissues were marked by 451

H3K27me3, which is a repressive mark [69]. The H3K27me3 shows a moderate signal 452

around inactive promoters of the steam cells and the differentiated cells alike. 453

• No mark of the available ones was present consistently around inactive enhancers in 454

the differentiated cells (Fig 8). 455

• No mark of the available ones was present consistently around coding regions of genes 456

that are inactive in the stem and the differentiated cells (Fig 9). 457

There are more than 100 chromatin marks [37]. Therefore, it is possible that other 458

marks may repress promoters, enhancers, or genes. However, the currently available 459

data indicate that only H3K27me3 is consistently present around inactive promoters. 460

Fig 7. Active (top row) and inactive (bottom row) promoters of two stem cell types,
H1 and H9, and two differentiated cell types, IMR-90 and liver. The inactive promoters
of the stem cells show some pattern, whereas those of the differentiated cells do not
show any.
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Fig 8. Active (top row) and inactive (bottom row) enhancers of two stem cell types, H1
and H9, and two differentiated cell types, IMR-90 and liver. Many marks are present
around the inactive enhancers of the stem cells.

Fig 9. Coding regions of active (top row) and inactive (bottom row) genes of two stem
cell types, H1 and H9, and two differentiated cell types, IMR-90 and liver. No marks is
consistently present around the coding regions of inactive genes.

Online resource 461

We generated Hebb plots for multiple genetic elements, which are active and inactive in 462

the 111 consolidated epigenomes provided by the Roadmap Epigenomics Project. 463

Specifically, Hebb plots were generated for the following elements: 464

• Active promoters. 465

• Active promoters on the positive strand. 466

• Active promoters on the negative strand. 467

• Inactive promoters. 468

• Active enhancers. 469

• Active repetitive enhancers. 470

• Active non-repetitive enhancers. 471

• Inactive enhancers. 472

• Coding regions of active genes. 473

• Coding regions of inactive genes. 474

These Hebb plots are available in Data set S1-Data set S10. All of these regions were 475

expanded by 10% on each end, except the active promoters on the positive and the 476

negative strands were expanded by 100% on each end. The HebbPlot program is 477

provided in Software S1. 478

Conclusion 479

Identifying a complex chromatin signature consisting of tens of marks distributed 480

around thousands of regions is a challenging task. In this article, we described the first 481

application of Hebb networks to learning the chromatin signature of a genetic element, 482

e.g. promoters active in a specific tissue. These networks are known for their ability to 483

learn associations. Therefore, they are well suited for learning the association between 484

chromatin marks and thousands of sequences. We have developed a software tool called 485

HebbPlot. The core of this tool is a Hebb network. Additionally, HebbPlot generates a 486

digitized image representing the learned signature. The brightness level of a pixel 487

indicates the confidence with which a mark is present or absent. For example, a white 488

pixel indicates the presence of a mark around a part of the genetic element, and a black 489

pixel indicates the absence of the mark. A row of pixels represents one mark. Similar 490

rows are clustered and displayed together. 491

The Roadmap Epigenomics Project determined tens of chromatin marks for 111 cell 492

types. We used HebbPlot in driving the chromatin signatures of multiple genetic 493
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elements including: (1) active promoters, (2) active promoters on the positive strand, 494

(3) active promoters on the negative strand, (4) inactive promoters, (5) active enhancers, 495

(6) active enhancers within repetitive regions, (7) active enhancers outside repetitive 496

regions, (8) inactive enhancers, (9) active genes, and (10) inactive genes. By analyzing 497

these plots, we drove the following conclusions: 498

• Active promoters, active enhancers, and active genes have distinct chromatin 499

signatures. 500

• The promoter signature is directional; multiple marks around the promoters are 501

stretched toward coding regions. 502

• Enhancers within and outside repeats have almost identical chromatin signatures, 503

supporting the enhancer-like functionality of transposons in the human genome. 504

• H3K79me1 is distributed similarly around the three active elements. Additionally, 505

H3K9me3 and H3K27me3 are absent from the three genetic elements. These three 506

marks represent a basic signature of elements active in almost all of the 111 cell types. 507

• The signatures of active promoters and active enhancers are more similar to one 508

another than to the signature of coding regions of active genes. 509

• H3K27me3, which is a repressive mark, is consistently present around inactive 510

promoters. 511

The software and the signature plots of all elements of the 111 epigenomes have been 512

made available. 513

In sum, HebbPlot is a general software tool that can learn and represent visually the 514

chromatin signature of thousands of regions having the same function. HebbPlot can be 515

applied to the currently available epigenomes and the ones that will be available in the 516

near future. 517

Supporting information 518

Software S1 The source code of our software tool, HebbPlot. 519

Data set S1 Hebb plots of potential promoters of the 111 tissues. 520

Data set S2 Hebb plots of potential enhancers of the 111 tissues. 521

Data set S3 Hebb plots of coding regions of active genes of the 111 522

tissues. 523

Data set S4 Hebb plots of potential promoters, on the positive strand, of 524

the 111 tissues. 525

Data set S5 Hebb plots of potential promoters, on the negative strand, of 526

the 111 tissues. 527

Data set S6 Hebb plots of repetitive enhancers of the 111 tissues. 528

Data set S7 Hebb plots of non-repetitive enhancers of the 111 tissues. 529
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Data set S8 Hebb plots of inactive promoters of the 111 tissues. 530

Data set S9 Hebb plots of inactive enhancers of the 111 tissues. 531

Data set S10 Hebb plots of coding regions of inactive genes of the 111 532

tissues. 533

Table S1 Percentages of repetitive enhancers in the 111 tissues. The 534

percentages of the tissue-specific enhancers overlapping simple and interspersed repeats 535

are listed in this file. Enhancers that do not overlap repeats are listed under the column 536

“0%.” Under column “50%,” we list the percentages of enhancers that at least 50% of 537

their nucleotides overlap repeats. The percentages of enhancers fully included within 538

repetitive regions are listed under the column titled “100%.” (XLS) 539

Table S2 Comparisons between the signatures of repetitive and 540

non-repetitive enhancers of the 111 tissues. The two signatures were compared 541

using the dotsim function. (XLS) 542
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(a) Visual representation
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(b) Numerical representation

Fig 1. Representations of a group of chromatin marks overlapping a region. (a) Horizontal
double lines represent a region of interest. Horizontal single lines represent the marks. Vertical
lines are spaced equally and bounded by the region. (b) The intersections between the marks
and the vertical lines are encoded as a matrix where rows represent the marks and columns
represent the vertical lines. If a vertical line intersects a mark, the corresponding element in
the matrix is 1, otherwise it is -1.

(a) The real shape (b) A noisy shape example (c) A noisy shape example

(d) A noisy shape example (e) The shape retrieved by a
majority vote

(f) The shape retrieved by Hebb
network

Fig 2. A controlled experiment demonstrating the ability of Hebb networks to retrieve a
prototype from noisy shapes. (a) The real shape is a two-dimensional step pyramid. (b-d)
Examples of noisy shapes produced by corrupting the real shape. The start and the end of
each horizontal white segment may be shifted to the right or the left by up to 200 unites;
additionally, a horizontal segment may be deleted with a probability of 0.2. (e) The shape
retrieved by a majority-voting scheme. (f) The shape retrieved by the network.
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(a) An H1-specific enhancer (b) An H1-specific enhancer

(c) An H1-specific enhancer (d) An H1-specific enhancer

(e) The shape retrieved by a majority vote (f) The shape retrieved by HebbPlot

Fig 3. Retrieving the chromatin signature of the H1-specific enhancers. The data set consists
of 11,369 putative enhancers active in H1. Four examples of potential enhancers are shown in
parts a-d. It is hard to see a common pattern in these four examples. The signature retrieved
by the majority-voting scheme has two zones (part e), whereas the signature learned by the
Hebb network is characterized by four zones (part f). The top most zone represents chromatin
marks that are absent from the enhancer regions, whereas the next three zones represent the
present marks with increasing certainty. The signature retrieved by the majority-voting scheme
does not show confidence indicators of the absence or the presence of a mark. For example the
third zone from the top of the Hebb plot is not as strong as the forth zone. In contrast, such
information does not appear in the signature retrieved by the majority-voting scheme.
Enhancer regions were expanded by 10% on each end. Therefore, the intensity of the signal is
expected to be weaker at the peripheries than around the center of a signature. Again, the
Hebb plot shows such information, whereas the signature retrieved by the majority-voting
scheme does not.
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(a) Promoters (b) Enhancers

(c) Coding regions (d) Random regions

Fig 4. IMR-90 chromatin signatures representing (a) active promoters, (b) active
enhancers, (c) coding regions of active genes, and (d) random genomic locations. The
boundaries of these elements were expanded by 10% on each end to show a chromatin
signature in contrast to the surrounding regions. Active promoters have a unique
signature characterized by a bright box that clearly differs from the background. In
addition, the center of the upper half of the box has a less bright area around the
transcription start sites than its peripheries. Enhancers specific to IMR-90 has a zonal
signature, where each zone has consistent brightness. The enhancer signature has a
wide bright zone. Genes active in IMR-90 has a zonal signature as well. However, the
middle gray zone is the widest, and the brightest zone at the bottom is the narrowest.
The random locations do not have a common function; therefore, chromatin marks
around them should not be distributed consistently. As expected, HebbPlot did not
retrieve any pattern as displayed by a black box.
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(a) + H1 Promoters (b) - H1 Promoters

(c) + Skeletal Muscle Male Promoters (d) - Skeletal Muscle Male Promoters

Fig 5. Hebb plots of active promoters on the positive and the negative strands.
Multiple chromatin marks are distributed in a direction specific way. These marks tend
to stretch downstream from the promoters toward the coding regions. Examples are
H3K4(me1,me2,me3) and H3K79(me1,me2). The two Hebb plots of the promoters on
the positive and the negative strands are mirror images of each other.
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(a) Repetitive (b) Non-repetitive

Fig 6. The repetitive and the non-repetitive enhancers active in the IMR-90 cell line
have identical chromatin signatures. Enhancers that are fully included within repeat
sequences, e.g. transposons, are considered repetitive. Enhancers that do not overlap
with repeats are considered non-repetitive. The Hebb plots representing the chromatin
signatures of the repetitive and the non-repetitive enhancers are almost identical.
Further, a dotsim value of 0.9976 was obtained by comparing these signatures. Recall
that a dotsim value of 1 is the result of comparing a signature to itself.

(a) Active in H1 (b) Active in H9 (c) Active in IMR-90 (d) Active in liver

(e) Inactive in H1 (f) Inactive in H9 (g) Inactive in IMR-90 (h) Inactive in liver

Fig 7. Active (top row) and inactive (bottom row) promoters of two stem cell types, H1 and H9, and two differentiated cell
types, IMR-90 and liver. The inactive promoters of the stem cells show some pattern, whereas those of the differentiated cells
do not show any.
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(a) Active in H1 (b) Active in H9 (c) Active in IMR-90 (d) Active in liver

(e) Inactive in H1 (f) Inactive in H9 (g) Inactive in IMR-90 (h) Inactive in liver

Fig 8. Active (top row) and inactive (bottom row) enhancers of two stem cell types, H1 and H9, and two differentiated cell
types, IMR-90 and liver. Many marks are present around the inactive enhancers of the stem cells.

(a) Active in H1 (b) Active in H9 (c) Active in IMR-90 (d) Active in liver

(e) Inactive in H1 (f) Inactive in H9 (g) Inactive in IMR-90 (h) Inactive in liver

Fig 9. Coding regions of active (top row) and inactive (bottom row) genes of two stem cell types, H1 and H9, and two
differentiated cell types, IMR-90 and liver. No marks is consistently present around the coding regions of inactive genes.
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