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Abstract

Studies of nervous system connectivity, in a wide variety of species and at different scales of resolution,
have identified several highly conserved motifs of network organization. One such motif is a heterogeneous
distribution of connectivity across neural elements, such that some elements act as highly connected
and functionally important network hubs. These brain network hubs are also densely interconnected,
forming a so-called rich-club. Recent work in mouse has identified a distinctive transcriptional signature
of neural hubs, characterized by tightly coupled expression of oxidative metabolism genes, with similar
genes characterizing macroscale inter-modular hub regions of the human cortex. Here, we sought to
determine whether hubs of the neuronal C. elegans connectome also show tightly coupled gene expression.
Using open data on the chemical and electrical connectivity of 279 C. elegans neurons, and binary gene
expression data for each neuron across 948 genes, we computed a correlated gene expression score for each
pair of neurons, providing a measure of their gene expression similarity. We demonstrate that connections
between hub neurons are the most similar in their gene expression while connections between nonhubs
are the least similar. Genes with the greatest contribution to this effect are involved in glutamatergic
and cholinergic signalling, and other communication processes. We further show that coupled expression
between hub neurons cannot be explained by their neuronal subtype (i.e., sensory, motor, or interneuron),
separation distance, chemically secreted neurotransmitter, birth time, pairwise lineage distance, or their
topological module affiliation. Instead, this coupling is intrinsically linked to the identity of most hubs
as command interneurons, a specific class of interneurons that regulates locomotion. Our results suggest
that neural hubs may possess a distinctive transcriptional signature, preserved across scales and species,
that is related to the involvement of hubs in regulating the higher-order behaviors of a given organism.

Author summary

Some elements of neural systems possess many more connections than others, marking them as network
hubs. These hubs are often densely interconnected with each other, forming a so-called rich-club that is
thought to support integrated function. Recent work in the mouse suggests that connected pairs of hubs
show higher levels of transcriptional coupling than other pairs of brain regions. Here, we show that hub
neurons of the nematode C. elegans also show tightly coupled gene expression and that this effect cannot
be explained by the spatial proximity or anatomical location of hub neurons, their chemical composition,
birth time, neuronal lineage or topological module affiliation. Instead, we find that elevated coexpression
is driven by the identity of most hubs of the C. elegans connectome as command interneurons, a specific
functional class of neurons that regulate locomotion. These findings suggest that coupled gene expression
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is a highly conserved genomic signature of neural hubs that may be related to the specific functional role
that hubs play in broader network function.

Introduction

Neuronal connectivity provides the substrate for integrated brain function. Recent years have seen
several systematic and large-scale attempts to generate comprehensive wiring diagrams, or connectomes,
of nervous systems [1] in species as diverse as the nematode Caenorhabditis elegans [2, 3], Drosophila
[4, 5], zebrafish [6, 7], mouse [8, 9], rat [10], cat [11], macaque [12, 13], and human [14, 15]. One
of the most striking findings to emerge from analyses of these diverse data, acquired using different
measurement techniques and at resolution scales ranging from nm to mm, is of a strong conservation
of certain topological properties of network organization (reviewed in [1, 16, 17, 18, 19], see also [20]).
These properties include a modular organization, such that subsets of functionally related (and usually
spatially adjacent) elements are densely interconnected with each other; a hierarchy of modules, such that
modules contain nested sub-modules and so on over multiple scales [21, 22]; economical connectivity, such
that wiring costs (typically measured in terms of wiring length) are near-minimal given the topological
complexity of the system [22, 23]; a heterogeneous distribution of connections across network nodes,
such that most nodes possess relatively few connections and a small proportion of nodes have a very
high degree of connectivity [3, 24]; and stronger interconnectivity between hub nodes than expected
by chance, leading to a so-called rich-club organization (i.e., the hubs are rich because they are highly
connected and form a club because they are densely interconnected) [5, 25, 26, 27, 28].

The rich-club organization of hub connectivity is thought to play a central role in integrating
functionally diverse and anatomically disparate neuronal systems [26, 29, 30, 31, 32]. Consistent with
this view, experimental data and computational modeling indicates that hub nodes, and the connections
between them, are topologically positioned to mediate a high volume of signal traffic [33, 34, 35, 36].
This integrative role comes at a cost, with connections between hubs extending over longer distances,
on average, than other types of connections, a finding reported in the human [33], macaque [34], rat
[37], mouse [38], and nematode [28]. Human positron emission tomography also suggests that hub nodes
consume greater metabolic resources and have higher levels of blood flow than other areas [39, 40, 41].
This high metabolic cost may underlie the involvement of hub regions in a broad array of human diseases
[17, 29, 31]. Recent work in mice and humans suggests that this high cost of hub connectivity is associated
with a distinct gene transcriptional signature. Fulcher and Fornito [38] combined viral tract tracing
data on connectivity between 213 regions of the right hemisphere of the mouse brain [8] with in situ
hybridization measures of the expression of 17 642 genes in each of those regions. They found that
transcriptional coupling, across all genes, is stronger for connected compared to unconnected brain
regions and that, in general, this coupling decays with increasing separation distance between brain
regions. Countering this general trend however, connected pairs of hubs (i.e., the “rich club” of the brain)
show the highest levels of transcriptional coupling (compared to hub-nonhub and nonhub pairs), despite
being separated by larger distances, on average, and being distributed across diverse anatomical brain
divisions. Moreover, this coupling is driven predominantly by genes regulating the oxidative synthesis
and metabolism of adenosine triphosphate (ATP), the primary energetic currency of neuronal signaling
[42, 43]. Vértes et al. [44] later combined gene expression data of 20 737 genes through 285 cortical
areas of the human brain and found evidence that inter-modular hubs in resting state fMRI connectivity
networks also have local transcriptional profiles enriched in oxidative metabolism and mitochondria.

Together, the analyses of Fulcher and Fornito [38] and Vértes et al. [44], which were performed
using measures of mesoscale (µm to mm) and macroscale (mm to cm) connectivity, respectively, suggest
that the molecular signature of hub connectivity, characterized by elevated coupling of genes regulating
oxidative metabolism, may be conserved across species and resolution scales. Here, we sought to test this
hypothesis by examining the link between gene expression and microscale connectivity in the nematode
C. elegans. C. elegans is the only species to have its connectome mapped almost completely at the level
of individual neurons and synapses using electron microscopy [2, 3]. It comprises 302 neurons and around
5600 chemical and electrical synapses [2]. We combined these data on neuronal connectivity with curated
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information on the binary expression patterns of 948 genes across neurons to examine the relationship
between gene expression and the large-scale topological organization of the nematode nervous system.
We also used detailed information on neuron spatial positions, birth times, neuronal lineage as well as
the functional and chemical composition of each neuron to understand the mechanisms through which
gene expression might influence network topology. Paralleling findings in humans and mouse, we find
that hub neurons of C. elegans are genomically distinct, with connected hub neurons showing the most
similar patterns of gene expression. Genes that contribute most to this effect are involved in regulating
glutamate and acetylcholine function, and neuronal communication. We demonstrate that this effect is
not explained by factors such as neuronal birth time, lineage, neurotransmitter system or spatial position
but is rather related to the functional specialization of hub neurons in mediating higher order behaviours
of the organism.

Materials and methods

We first describe the neural connectivity data used to construct a connectome for C. elegans and the
methods used to quantify network connectivity and other properties of individual neurons, including
their neurochemical composition, birth times, and lineage relationships. We then describe the gene
expression data, how we measure expression similarity between pairs of neurons, and our method for
scoring the contribution of individual genes to patterns of correlated gene expression. Note that all data
used for analysis in this work were obtained from publicly available sources, and can be downloaded
from an accompanying figshare repository (figshare.com/s/797199619fbabdab8c86). Code to process
this data and reproduce all figures and analyses presented here is on github (github.com/BMHLab/
CElegansConnectomeGeneExpression).

Neuronal connectivity data

The nervous system of C. elegans comprises 302 neurons, divided into the pharyngeal nervous system
(20 neurons) and the somatic nervous system (282 neurons). The spatial positions of neurons, and their
interconnections, are genetically determined and highly reproducible across organisms [45]. Neuronal
connectivity data for the adult hermaphrodite C. elegans was first mapped by White et al. [2] through
detailed electron microscopy, and then revised by Chen et al. [46] and Varshney et al. [3]. Here we analyze
the larger somatic nervous system using data from Varshney et al. [3], who mapped connectivity between
279 neurons (282 somatic neurons, i.e., excluding CANL/R, and VC6, which do not form synapses with
other neurons), which we obtained from WormAtlas [47] (www.wormatlas.org/neuronalwiring.html#
NeuronalconnectivityII).

Connectivity data are available for both electrical gap junctions and chemical synapses. The chemical
synapse network is both directed (i.e., the pre-synaptic and post-synaptic neurons are identified) and
weighted (as the number of synapses from one neuron to another), while gap junctions are conventionally
represented as weighted (as the number of electrical synapses connecting two neurons), undirected
connections. Previous investigations of C. elegans neuronal connectivity have used differently processed
versions of these data, including: (i) only chemical synapses [48]; (ii) a combination of chemical and
electrical synapses as a directed network (electrical synapses represented as reciprocal connections)
[49, 50]; (iii) a combination of chemical and electrical synapses as an undirected network (representing
unidirectional and reciprocal chemical connections equivalently) [28, 51, 52, 53]; or (iv) comparing
multiple connectome representations [54]. Our analysis here focuses on the combined directed, binary
network, treating gap junctions as bidirectional connections. The resulting connectome contains 279
neurons, with 2 990 unique connections linking 2 287 pairs of neurons. Note that the qualitative results
presented here are not highly sensitive to the connectome representation. For example, we observe similar
results when analyzing just the directed chemical connectivity network.

In addition, we assembled a range of data characterizing other properties of C. elegans neurons. To
examine the effect of physical distance between pairs of neurons, we obtained two dimensional spatial
coordinates for each neuron as celegans277.mat from www.biological-networks.org/?page_id=25
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[55]. Coordinates for three neurons (AIBL, AIYL, SMDVL) were missing in this dataset, and were
reconstructed by assigning identical coordinates to the corresponding contralateral neurons (AIBR,
AIYR, SMDVR) [56]. To examine the influence of anatomical location, each neuron was labeled
by its anatomical location, as: (i) ‘head’, (ii) ‘tail’, or (iii) ‘body’, using data from release WS256
of WormBase [57], (ftp://ftp.wormbase.org/pub/wormbase/releases/WS256/ONTOLOGY/anatomy_
association.WS256.wb). These annotations were assigned to individual neurons using the anatomical
hierarchy defined in WormBase, which we retrieved using the WormBase API (WormMine: intermine.
wormbase.org) [57], propagating each term down the hierarchy to individual neurons. We manually
corrected the assignment of twelve head neurons (ALA, AVFL, AVFR, AVG, RIFL, RIFR, RIGL,
RIGR, SABD, SABVL, SABVR, SMDVL), which were assigned as ‘head’ in WormAtlas [47] but not
on WormBase. To examine the influence of neuronal subtype, all neurons were labeled to one (or
multiple) of the following three categories: (i) ‘sensory’ (support receptive function), (ii) ‘motor’ (contain
neuromuscular junctions), or (iii) ‘interneuron’ (all other neurons) [2]. A total of 79 neurons are
annotated as sensory, 121 annotated as motor, and 97 annotated as interneurons (including eighteen
neurons assigned to two categories: five are both ‘interneuron’ and ‘sensory’, seven are ‘interneuron’ and
‘motor’, and six are both ‘sensory’ and ‘motor’ neurons). To examine the neurotransmitter systems used
by each neuron, neurons were labeled by matching to Table 2 of Pereira et al. [58]. In order to determine
the influence of neuron birth time, we obtained neuronal birth time information in minutes from the
Dynamic Connectome Lab website (https://www.dynamic-connectome.org/?page_id=25), [56]. To
assess the influence of lineage similarity, we obtained a measure of lineage distance for all pairs of neurons
from previously published embryonic and post-embryonic lineage trees [59, 60], using data downloaded
from WormAtlas (http://www.wormatlas.org/neuronalwiring.html#Lineageanalysis) [47]. In this
dataset, the closest common ancestor neuron was identified for each pair of neurons, and then the lineage
distance was calculated as the number of cell divisions from the closest common progenitor neuron.

Network analysis

In this section we describe the network analysis methods used to characterize the C. elegans connectome.

Degree. Neuronal connectivity is most simply quantified by counting the number of neurons that a
given neuron projects to, known as its out-degree, kout, or by counting the number of neurons that a
given neuron receives projections from, known as its in-degree, kin. These quantities can be summed to
give the total number of connections involving a given neuron, ktot = kin + kout, which we refer to as
simply the degree, k, throughout this work. At a given degree threshold, k, each neuron was classified as
either a ‘hub’ (degree > k) or a ‘nonhub’ (degree ≤ k). All connections were subsequently classified in
terms of their source and target neurons as either ‘rich’ (hub → hub, or hub ↔ hub), ‘feed-in’ (nonhub
→ hub), ‘feed-out’ (hub → nonhub), or ‘peripheral’ (nonhub → nonhub, or nonhub ↔ nonhub).

Rich-club organization. We used the rich-club coefficient, φ(k), to quantify the interconnectivity of
hub neurons:

φ(k) =
2E>k

N>k(N>k − 1)
, (1)

where N>k is the number of nodes with degree > k, and E>k is the number of edges between them
[61]. Thus, φ(k) measures the link density in the subgraph containing nodes with degree > k. Because
φ(k) invariably increases with k (as nodes with higher degree make more connections, yielding a higher
expected link density in the subgraph containing nodes with degree > k), we compared φ(k) measured
from the C. elegans connectome to the mean value of an ensemble of randomized null networks, φrand(k)
[61]. An ensemble of 1000 null networks was generated by shuffling the links in the empirical network
while retaining the same degree sequence [62] (rewiring each edge an average of 50 times per null network)
using the randmio dir function from the Brain Connectivity Toolbox [63]. The normalized rich-club
coefficient, Φnorm(k), was computed as the ratio of the rich-club coefficient of the empirical network to
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the mean rich-club coefficient of the ensemble of randomized networks:

Φnorm(k) =
φ(k)

〈φrand(k)〉
. (2)

Values of Φnorm > 1 indicate rich-club organization of the network, with statistically significant deviations
assessed by computing a p-value directly from the empirical null distribution, φrand(k), as a permutation
test [25].

Modularity. To investigate whether our results were influenced by the well-known modular organization
of the C. elegans connectome [22, 51, 52, 54, 64], we decomposed the network into modules using two
methods. The first method involved applying the Louvain community detection algorithm [65] using the
community louvain function in the Brain Connectivity Toolbox [63]. To identify the optimal modular
assignment, neurons were assigned to modules using consensus clustering across 1000 repeats of the
Louvain algorithm [66], weighting each partition by its modularity, Q, using the agreement weighted

and consensus und functions of the BCT[63]. The second modular decomposition was taken from a
previously-reported nine-module partition derived from an Erdös-Rényi Mixture Model (ERMM) [52].

Gene expression

Gene expression is represented as a binary indicator of which genes are expressed in a given neuron
using data from many individual experiments compiled into a unified data resource on WormBase [57].
We use release WS256 of this dataset (ftp://ftp.wormbase.org/pub/wormbase/releases/WS256/
ONTOLOGY/anatomy_association.WS256.wb) and analyze annotations made ‘directly’ to individual
neurons, excluding ‘uncertain’ annotations (see Supplementary Information for details on annotations).
We denote the expression of a gene in a neuron as a ‘1’, and other cases as a ‘0’. Note that a value of ‘0’
indicates either: (i) ‘gene is not expressed’ or (ii) ‘there is no information on whether gene is expressed’.
Expression data are sparse, in part due to incomplete annotations—an average of 30 genes are expressed
in each neuron (range: 3 to 138 genes), and each gene is expressed in an average of 9 neurons (range: 1
to 148 neurons). A total of 948 genes are expressed in at least one neuron, allowing us to represent the
full expression dataset as a binary 279 (neuron) × 948 (genes) matrix, shown in Fig. 1C.

Correlated gene expression

Our primary aim in this work is to understand how pairwise patterns of neuronal connectivity (shown in
Fig. 1A) relate to coupled expression across 948 genes between pairs of neurons (i.e., pairs of rows of
Fig. 1C). To estimate the coupling between neuronal gene expression profiles, we required a similarity
measure for pairs of neurons that captures their similarity of gene expression profiles, or correlated gene
expression (CGE). We used a binary analogue of the linear Pearson correlation coefficient, the mean
square contingency coefficient [67]:

rφ =
n11n00 − n10n01√
n1•n0•n•0n•1

, (3)

for two vectors, x and y, of length L(= 948), where nxy counts the number of observations of each of the
four outcomes (e.g., n10 =

∑
i δxi,1δyi,0 counts the number of times x = 1 and y = 0), while the symbol

• sums across a given variable (e.g., n•0 =
∑
i δyi,0 counts the number of times y = 0). The coefficient

assumes a maximum value rφ = 1 when x and y are identical (such that n11 + n00 = L), and a minimum
value rφ = −1 when x and y are always mismatched (such that n10 + n01 = L).

One concern about applying this measure to sparsely annotated data is that it may be biased by
differences in the number of expressed genes in a neuron, which ranged from 3 (0.3% of 948 genes
analyzed here) to 138 (14.6%). To explore this further, we compared rφ with several other commonly
used metrics of association between binary vectors including Yule’s Q and Jaccard. While these other
binary correlation metrics exhibited strong bias with the proportion of gene expression annotations
made to a given neuron, rφ was not biased (see Fig. S1). Note that we use rφ to denote this coefficient
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given that it is commonly referred to as the phi coefficient in the literature; this notation should not be
confused with φ(k), which is used to denote the rich club coefficient.

The 92 bilateral pairs of neurons (e.g., AVAL/AVAR, CEPVL/CEPVR, etc.) exhibit highly correlated
gene expression patterns, with all bilateral pairs of neurons exhibiting rφ > 0.8, and 96% of bilateral
pairs exhibit rφ > 0.95. Although including bilateral pairs of neurons do not change the main results of
this paper, to ensure that our results are not driven by the high CGE between bilateral pairs of neurons,
we excluded CGE values of bilateral pairs of neurons from all analyses involving CGE.

Gene scoring and enrichment

Our CGE measure, rφ, quantifies the association between the expression profiles of two neurons across
all 948 genes. To further investigate the role of individual genes in producing different CGE patterns,
we developed a method for scoring the contribution of each individual gene to the overall correlation
coefficient, following prior work using continuous gene expression data [38]. Performing similar analyses
with C. elegans data poses additional challenges due to: (i) binary expression data, making robust
quantification difficult; (ii) sparse and incomplete data, posing statistical problems for quantifying a
signal in genes with limited expression; and (iii) low genome coverage (less than 5% of the protein coding
genes in C. elegans), constraining our ability to perform a comprehensive enrichment analysis, e.g., using
the Gene Ontology (GO) [68].

Given that rφ [Eq. 3] treats mutual gene expression (i.e., cases in which a gene is jointly expressed in
both neurons) (n11) the same as mutual absence of gene expression (n00), we started by developing a new
analytic measure of the probability of mutual gene expression, given its clearer biological interpretation
(see Supporting Information). This measure was not biased by differences in the relative number of
expressed genes (Fig. S1D) and yields qualitatively similar outputs to rφ on our data. Thus, while we
use rφ throughout this work for its ease of interpretation (as an analogue of the conventional correlation
coefficient), our new probability-based CGE measure allowed us to motivate a method for quantifying
the contribution of individual genes (and functional groups of genes) to patterns of CGE that addresses
some of the above-mentioned challenges. Note that our basic findings replicated regardless of whether
we use rφ or this new measure to quantify CGE (e.g., cf. Fig. S2).

As a starting point, we quantified the contribution of individual genes to differences in CGE for different
categories of neuron pairs, specifically for (i) increased CGE in connected compared to unconnected
pairs of neurons, and (ii) increased CGE in rich and feeder compared to peripheral connections. We first
scored each gene for whether it is more likely to be expressed in a given class of neuron pair over another
as the probability of obtaining at least as many matches (defined as expression in both neurons of a pair)
as observed under a random CGE null model using the binomial distribution:

p(a) = 1−
m−1∑
i=0

(
n

i

)
piclass(1− pn−iclass), (4)

where m is the number of matches (a match indicates that a given gene was expressed in both neurons)
on the class of neuron pairs of interest, n is the total number of matches across all neuron pairs considered
in the analysis, pclass = nclass/M is the probability of the given class of inter-region pairs, as the total
number of neuron pairs of that class, nclass, divided by the maximum number of possible neuron pairs,
M , for a given gene, indexed with a. This score, p(a), can be interpreted as a p-value under the null
hypothesis that the number of expression matches of gene a is consistent with a purely random pattern
of matches/mismatches across edges, giving lower values to genes with more matches in the edge class
of interest (compared to an alternative set of edges) than expected by chance. For reasons described
earlier, bilateral pairs of neurons were excluded from all scoring procedures and, to ensure that each
gene contributes a meaningful score, we imposed a data quality threshold on the number of possible
matches, n ≥ 10.

Our first analysis compares two mutually exclusive types of neuron pairs: (i) all pairs of neurons
that are connected by at least one chemical or electrical synapse, and (ii) all pairs of neurons that are
unconnected. For this analysis, pclass = 0.059 is the proportion of neuron pairs that are connected, n is
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the total number of neuron pairs that both exhibit expression of gene a, and m is the number of neuron
pairs that are structurally connected for which both neurons express gene a. A total of 414 (/948) genes
had n ≥ 10 for this analysis. Our second analysis compares pairs of connected neurons for which at least
one is a hub (i.e., rich, feed-in, or feed-out connections), to pairs in which both neurons are nonhubs (i.e.,
peripheral connections). In this case, pclass = 0.35 is the proportion of connected pairs of neurons that
involve hubs, n is the number of connected neuron pairs for which gene a is expressed in both, and m
counts the number of connected neuron pairs involving hubs for which gene a is expressed. A total of
168 (/948) genes had sufficient data, n ≥ 10, for this analysis.

As well as interpreting the list of individual genes that were significant after correcting for multiple
hypothesis comparison, we performed an over-representation analysis (ORA) using the genes that
contribute most to a given connectivity pattern to assess whether any gene sets (GO categories)
were statistically over-represented in this list. To obtain the gene list, we used the false discovery
rate correction of Benjamini and Hochberg [69] on p-values computed using Eq. (4), which were
thresholded at a stringent level of p = 10−4 (corresponding to approximately the top 20% of genes
in each analysis). Over-representation for each biological process GO category with 5 to 100 genes
available was quantified as an FDR-corrected p-value (across around 700 GO categories) using version
3.0.2 of ErmineJ software [70]. Biological process GO annotations [68] were obtained from GEMMA
[71] (using Generic worm noParents.an.txt.gz downloaded on March 31, 2017). Gene Ontology terms
and definitions were obtained in RDF XML file format downloaded from archive.geneontology.org/

latest-termdb/go_daily-termdb.rdf-xml.gz on March 31 2017.

Results

Our main aim in this work is to relate patterns of pairwise connectivity in the C. elegans neuronal
connectome to correlated gene expression, focusing particularly on hub connectivity. A schematic overview
of our data is in Fig. 1, including the directed binary connectome (Fig. 1A), additional anatomical data
gathered for each neuron (Fig. 1B), and binary gene expression across 948 genes (Fig. 1C).

Our analysis is presented in five parts: (i) given past evidence for a major effect of physical distance
on connection probability and CGE [38], we first characterize the spatial dependency of connection
probability and CGE; (ii) we confirm the rich-club organization of the C. elegans connectome; (iii) we
show that CGE is increased in connected pairs of neurons relative to unconnected pairs, in electrical
synapses relative to chemical synapses, and in connected hub neurons relative to other types of connected
neuron pairs (mirroring previous results in the mesoscale mouse connectome [38]); (iv) we demonstrate
that high CGE between connected hub neurons is not driven by factors like stereotypical interneuron
expression, birth time, lineage similarity, neuromodulator types or expression similarity within modules,
but may be driven by the high CGE of command interneurons; (v) we characterize the contribution of
specific genes, and broader gene ontology categories, to the observed patterns.

Spatial dependency

Previous work has demonstrated the importance of spatial effects in driving patterns of gene expression,
with more proximal brain areas exhibiting more similar gene expression patterns than more distant brain
areas [38, 72, 73, 74]. Connection probability also decreases with spatial separation between: brain areas
[38, 75, 76, 77, 78, 79], individual neurons in mouse primary auditory cortex [80], and neurons of the
C. elegans nervous system (cf. Fig. S1 of [49]). Unlike network analyses of mammalian brains, where
all neurons are confined to a spatially contiguous organ, neurons of the C. elegans nervous system are
distributed throughout the entire organism, forming a dense cluster of 147 neurons in the head (all
within 130µm), 105 sparser neurons in the body (spanning 1.02 mm), which are predominantly motor
neurons (75%), and another dense cluster of 27 neurons in the tail (all within 90µm of each other), as
plotted in Fig. 2. In order to examine the relationship between connectivity and CGE, we first need to
understand the spatial dependence of both connectivity and CGE to characterize the extent to which
previously reported spatial dependencies of these measurements apply to the microscale nervous system
of C. elegans.
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Fig 1. Schematic representation of the data used in this study. All plots show neurons (rows)
ordered by anterior-posterior along the longitudinal axis, from the top of the head (upper, left) to the
bottom of the tail (lower, right). (A) Connectivity matrix summarized 2990 directed chemical and
electrical connections between 279 neurons from neuron i (row) to neuron j (column). Connections are
colored according to how they connect hubs (k > 44) and nonhubs (k ≤ 44), as ‘rich’ (hub → hub),
‘feed-in’ (nonhub → hub), ‘feed-out’ (hub → nonhub), and ‘peripheral’ (nonhub → nonhub). (B)
Neurochemistry (types as labeled), anatomical location (as labeled), birth time (from early born neurons,
black, to late-born neurons, white), hub assignment (hubs labeled red), and functional type (as labeled).
(C) Binary gene expression indicated as a green dot when a gene (column) is expressed in a neuron (row).

We first characterize the probability that two neurons will be connected given their source and target
types, labeling each neuron as being in either the ‘head’, ‘body’, or ‘tail’ of C. elegans. Connection
probability is plotted as a function of Euclidean separation distance in Fig. 3 for each combination
of source and target neuron labels, across 10 equiprobable distance bins (with exponential fits added
for visualization). Distinguishing connections by source and target neuron types uncovers clear spatial
relationships (that are obscured when all connections are grouped, as in [49]), that differ across connection
classes. From the very short distance scale of / 100µm of head→head and tail→tail connections to the
very longest-range head→tail and tail→head connections (' 1 mm), connection probability decreases
with separation distance (Fig. 3A). For connections between pairs of neurons located in the body, ranging
up to ≈ 1 mm, a near-exponential trend is exhibited, mirroring results in other species and across longer
length scales [76], including mouse [38, 81], and in rodents and primates [75]. Other connections do not
exhibit strong spatial connectivity relationships, i.e., connections between the body and head or between
the body and tail, shown in Fig. 3B.

We next investigate the dependence of CGE, rφ, on the separation distance between neuron pairs,
shown in Fig. 4. CGE decreases slightly with separation distance for the spatially close neurons within
the head (Fig. 4A) and within the tail (Fig. 4B), but not for pairs of neurons involving the body (Fig. 4C).
The decreasing trend in CGE with distance within the head and tail is primarily driven by a subset of
nearby neurons with high rφ. It may therefore represent a relationship specific to particular functionally
related neurons, rather than a general, bulk spatial relationship seen in macroscopic mammalian brains
[38]. Accordingly, attempting to correct for a bulk, non-specific trend by taking residuals from an
exponential fitted to the relationship produced artifactual reductions in the CGE of many neuron pairs
(shown in Fig. S3). Thus, we found no evidence for bulk spatial relationships of rφ in the neuronal
connectome of C. elegans.
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Fig 2. Hub neurons are contained within the head and tail of C. elegans. Neurons are
positioned along the anterior–posterior (horizontal), and dorsal–ventral (vertical) axes, and are colored
by type: (i) interneuron (85 neurons, orange), (ii) sensory (68 neurons, blue), (iii) motor (108 neurons,
green), or (iv) multiple assignments (18 neurons, yellow). Hub neurons (i.e., neurons with k > 44, see
Fig. 5) are shown as larger circles and outlined in black. ‘Rich-club’ connections between hub neurons
are shown (red), and all other connections are also shown in the upper plots (gray). Axes of each
subplot are to scale with each other, and the upper zoomed-in plots of the head and tail are shown as
dotted rectangles in the lower plot.

Hub connectivity

Next we analyze the topological properties of the C. elegans connectome, represented as a directed, binary
connectivity matrix between 279 neurons, combining directed chemical synapses and undirected electrical
gap junctions (Fig. 1). The degree distribution is shown in Fig. 5A, where neurons are distinguished by
type: 68 sensory neurons, 85 interneurons, 108 motor neurons, and 18 neurons with multiple assignments.
Consistent with the results of Towlson et al., who used an undirected version of the connectome (by
ignoring the directionality of chemical synapses), we found a positively-skewed degree distribution
containing an extended tail of high-degree hub interneurons. Hub interneurons of C. elegans are mostly
command interneurons and mediate behaviors like coordinated locomotion and foraging [82].

Using the normalized rich-club coefficient, Φnorm, to quantify the extent to which hubs are densely
interconnected, we confirmed the results of Towlson et al. [28], finding rich-club organization in the
connectome, as shown in Fig. 5B. The figure plots the variation of Φnorm across degree thresholds, k, at
which hubs are defined (as neurons with degree > k), with red circles indicating a significant increase in link
density among hubs relative to 1000 degree-preserving nulls (permutation test, p < 0.05). The plot reveals
rich-club organization (Φnorm > 1) at the upper tail of the degree distribution, particularly across the
range 44 < k < 63, shaded gray in Fig. 5B. Similar results were obtained using weighted representations
of the connectome (i.e., using information about the number of synapses in the connectivity network) for
two different definitions of the weighted rich-club coefficient [83], shown in Fig. S4. Throughout this
work, we define a set of hubs as the sixteen neurons with k > 44, which corresponds to the lowest degree
threshold at which the network displays a contiguous region of significant rich-club organization at high
k. Our list of hubs includes all of the 11 hub neurons of Towlson et al. [28] at 3σ (see Fig. S1) with five
additional hubs identified in our analysis of the directed connectome.

The rich-club connectivity of the C. elegans connectome is accompanied by an increase in mean
hub-hub connection distance [28], with a significant increase through the topological rich-club regime
(right-tailed Welch’s t-test, p < 0.05), shown in Fig. 5B. This can be attributed to a relative increase in
long-distance hub-hub connections between the head and tail, shown in Fig. 2 (cf. Fig. S5). The high
connection density and long mean anatomical distance between pairs of hub neurons counters the general
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Fig 3. Connection probability decreases with separation distance within and between the
head and tail, and within the body. The connection probability for a pair of neurons as a function
of their Euclidean distance is estimated in 10 equiprobable distance bins, shown as a circle (bin centers)
and a horizontal line (bin extent). There is a decreasing relationship for connections: within the head
(aqua), from head→tail (brown) and from tail→head (stone blue), within the tail (red), and within the
body (dark purple). Exponential fits of the form f(x) = A exp(−λx) +B, some of which appear
approximately linear across the range of the data, are shown as dotted lines. (B) Plots as in (A), but for
connection classes between the body and head/tail: from body→head (forest green), from body→tail
(dirt green), connections from head → body (purple), and from tail→body (dark brown). Apart from a
small effect at short range for tail→body connections, these connection classes show minimal distance
dependence.
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Fig 4. Dependence of correlated gene expression, rφ, on spatial separation between pairs
of neurons. Correlated gene expression, rφ (excluding bilateral homologous pairs of neurons), is shown
as a function of the pairwise separation distance between pairs of neurons (shown as the mean (solid) ±
standard deviation (dotted) in seven equiprobable distance bins, with extent shown as horizontal bars),
for (A) all pairs of neurons in the head, (B) all pairs of neurons in the tail, and (C) all other pairs
(labeled). Scatters for all neuron pairs are added in (A) and (B). An exponential relationship,
f(x) = A exp(−λx) +B, is fitted in (A) and (B). The weak decreasing trend in rφ with distance, is
primarily driven by a small subset of nearby neurons with high rφ, and may therefore represent a more
specific relationship between particular neurons, rather than a general, bulk spatial relationship observed
in macroscopic mammalian brains [38, 72].

trend in the C. elegans connectome, where the probability of connectivity between two neurons decays
with their separation distance (Fig. 3). These results are consistent with previous findings across diverse
neural systems and suggest that the rich club may provide a central yet costly backbone for neuronal
communication in C. elegans [28, 33].
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Fig 5. Rich-club organization of the C. elegans connectome. (A) Degree distribution of
neurons, labeled to four categories: (i) interneuron (85 neurons, orange), (ii) motor (108 neurons, green),
(iii) sensory (68 neurons, blue), or (iv) multiple assignments (18 neurons, yellow). The distribution
features an extended tail of high-degree interneurons. (B) Normalized rich club coefficient, Φnorm (red),
as a function of the degree, k, at which hubs are defined (as neurons with degree > k). Also shown is
the mean Euclidean separation distance, d (purple) between connected hub regions (across degree
thresholds, k). Φnorm > 1 indicates that hubs are more densely interconnected among each other than
expected by chance, with red circles indicate values of Φnorm that are significantly higher than an
ensemble of 1 000 degree-matched null networks (p < 0.05). Purple circles indicate where the Euclidean
distance between connected pairs of hubs is significantly greater than the Euclidean distance for all
other pairs of connected regions (right-tailed Welch’s t-test, p < 0.05).

Correlated gene expression and connectivity

We next investigate how the network connectivity properties of C. elegans relate to patterns of CGE, using
the mean square contingency coefficient, rφ. To test whether CGE varies as a function of connectivity,
we compared the distribution of rφ between (i) all connected pairs of neurons, and (ii) all unconnected
pairs of neurons. Connected pairs of neurons have more similar expression profiles than unconnected
pairs (Wilcoxon rank-sum test, p = 1.8 × 10−78), mirroring previous results in the mesoscale mouse
connectome [38]. Figure 6A (left) shows distributions of rφ for: (i) all pairs of neurons that are connected
via an electrical gap junctions (474 pairs, after excluding bilateral pairs), (ii) all pairs of neurons that
are connected via reciprocal (291 pairs) and, (iii) unidirectional chemical synapses (1721 pairs) as well as
(iv) all pairs of neurons that have neither connection (36 450 pairs). Note that 175 pairs of neurons are
connected both by a chemical synapse and by a gap junction, and are thus included in both chemical
and electrical categories. Amongst connected pairs of neurons, those connected via gap junctions exhibit
more similar gene expression profiles than those connected via chemical synapses (Wilcoxon rank-sum
test, p = 5.4× 10−22). We found no difference in CGE between pairs of neurons connected reciprocally
by chemical synapses (N1 ↔ N2 for two neurons N1 and N2) versus those connected unidirectionally
(N1 → N2) (Wilcoxon rank-sum test, p = 0.99), in contrast to significant differences found in the
mesoscale mouse connectome [38].

We next investigated whether CGE varies across different types of connections defined in terms of
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Fig 6. Correlated gene expression varies as a function of connectedness and connection
type. (A) Left : distribution of CGE for (i) pairs of neurons connected by gap junctions, (ii) pairs of
neurons connected by reciprocal chemical synapses, (iii) pairs of neurons connected by unidirectional
chemical synapses, (iv) pairs of neurons that are unconnected, shown as a violin plot, with the median of
each distribution represented by a horizontal line. CGE is increased in connected (electrical or chemical;
reciprocally or unidirectionally) pairs of neurons relative to unconnected pairs (p = 1.8× 10−78,
Wilcoxon rank sum test). Among connected pairs of neurons neurons connected via gap junctions have
more similar CGE than connected via chemical synapses (Wilcoxon rank-sum test, p = 5.4× 10−22).
Right : GCE for pairs of neurons labeled as peripheral, feed-in, feed-out, and rich, where hubs are
neurons with degree k > 44. The median of each distribution shown as a horizontal line. CGE is
significantly higher between hubs (rich links) compared to feeder (p = 5× 10−22, Wilcoxon rank sum
test) and peripheral (p = 3.9× 10−19, Wilcoxon rank sum test) links. Feed-out links show significantly
higher CGE than both feed-in (p = 1.9× 10−6, Wilcoxon rank sum test) and peripheral links
(p = 4.5× 10−12, Wilcoxon rank sum test). (B) Top: Degree distribution, k, of the C. elegans
connectome. Middle: proportion of connections that are: ‘rich’ (hub→hub, red), ‘feed-in’ (nonhub→hub,
yellow), ‘feed-out’ (hub→nonhub, orange), or ‘peripheral’ (nonhub→nonhub, blue) as a function of the
degree threshold, k, used to define hubs. Note that at high k most neurons are labeled as nonhubs and
hence the vast majority of connections are labeled ‘peripheral’. Bottom: Median CGE, r̃φ, for each
connection type as a function of k. The median CGE across all network links is shown as a dotted black
line; the topological rich-club regime (determined from the network topology, cf. Fig. 5) is shaded gray.
Circles indicate a statistically significant increase in CGE in a given link type relative to the rest of the
network (one-sided Wilcoxon rank-sum test, p < 0.05).
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their hub connectivity. For a given hub threshold, k, we first labeled each neuron as either a ‘hub’ (nodes
with degree > k) or a ‘nonhub’ (degree ≤ k), and then labeled each connection as either ‘rich’ (hub →
hub), ‘feed-in’ (nonhub → hub), ‘feed-out’ (hub → nonhub), or ‘peripheral’ (nonhub → nonhub). The
median CGE, r̃φ, of each of these four connection types is plotted in Fig. 6B, with circles indicating
statistically significant increases of a given connection type relative to all other connections (one-sided
Wilcoxon rank-sum test, p < 0.05). Correlated gene expression in rich connections increases with degree,
k, particularly in the topological rich-club regime where hubs are densely interconnected (shaded gray in
Fig. 6B). In this topological rich-club regime, both feed-in and feed-out connections exhibit increased
CGE relative to peripheral connections, which show the lowest levels of CGE. Full distributions of rφ for
each edge type at a hub threshold of k > 44 are in Fig. 6A (right). This plot shows that, compared to all
different types of pairs of neurons, connected pairs of hubs showed the highest CGE.

In summary, our results reveal: (i) increased CGE in connected pairs of neurons; (ii) the highest
CGE in rich connections; and (iii) lowest CGE in peripheral connections. These results, obtained using
incomplete binary annotations of gene expression across 948 genes in a microscale neuronal connectome,
are consistent with a prior analysis of the expression of over 17 000 genes across 213 regions of the
mesoscale mouse connectome [38].

Potential drivers of elevated correlated gene expression between hubs

The sixteen hub neurons in C. elegans (k > 44) are all interneurons; are all located in either the head
or tail; are mostly contained within a single topological module of the network; are mostly cholinergic
(13/16); and are all born prior to hatching. We therefore investigated whether the similarity of gene
expression profiles between hubs is specific to their high levels of connectivity, or whether it could instead
be driven by these other characteristics.

Interneurons. The sixteen hubs in C. elegans are all interneurons. To determine whether the
increase in CGE in rich connections was specific to interneurons, we plotted the median CGE for
hub-hub connections, r̃φ, as a function of the degree threshold, k, separately for connections involving
interneurons, sensory neurons, and motor neurons, as shown in Figs. 7B. For the curve labeled ‘sensory’,
for example, each point is the median r̃φ across connections involving sensory neurons (i.e., at least
one neuron of a connected pair is a sensory neuron), for which both neurons have degree > k. The
increase in median hub-hub CGE is strongest for connections involving interneurons. Motor neurons
show a smaller increase with k, although the absence of motor and sensory neurons with high k makes
it difficult to draw firm conclusions. However, we do find that CGE is higher for hub-hub pairs of
interneurons compared to connections between all pairs of nonhub interneurons (Wilcoxon rank sum
test, p = 5× 10−21), indicating that the high CGE of rich pairs cannot simply be explained by the fact
that all hub neurons are interneurons (Fig. 7C). We next investigated whether greater CGE of hub-hub
pairs of neurons could be driven by specific anatomical properties of hub interneurons. Specifically, we
selected a subset of nonhub interneurons that most closely resemble the anatomical properties of hub
interneurons in terms of their position and projection pattern; that is, the cells are in similar locations
in the head and their axons project to similar targets in the tail. These neurons were AVFL, AVFR,
AVHL, AVHR, AVKR, AVJL, and AVJR. Pairs of hub interneurons show higher median CGE than pairs
of anatomically-matched nonhub interneurons, with the difference being at the threshold of statistical
significance (Wilcoxon rank sum test, p = 0.051), suggesting that the increase in CGE amongst hub
interneurons cannot be explained by their anatomical similarity among interneurons.

Modular organization. Another important topological property of neural systems is modularity,
whereby network nodes coalesce into tightly connected subsystems that are thought to serve a common
function [84]. Prior work in humans has shown that functional networks in the brain have elevated
transcriptional coupling [85]. The C. elegans connectome has a modular organization, with prior work
decomposing it into: (i) modules of neurons with dense intra-module connectivity (and relatively sparse
connectivity between modules) [22, 51, 54], or (ii) groups of neurons with more similar connectivity
patterns within groups than between groups [52, 64]. We therefore examined the association between
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Fig 7. Correlated gene expression is highest for hub interneurons. (A) The number of
connected neuron pairs involving interneurons (orange), sensory neurons (blue), and motor neurons
(green) across degree threshold, k, represented as log10(number of links). (B) Median CGE as a function
of degree for connections involving different types of neurons. Circles indicate a statistically significant
increase in CGE in a given link type relative to the rest of the network (one-sided Wilcoxon rank-sum
test, p < 0.05). (C) CGE distributions for connected pairs of hub interneurons (red) and connected pairs
of non-hub interneurons (dark yellow) (Wilcoxon rank sum test, p = 5× 10−21). * represents
statistically significant difference.

topological modularity of the C. elegans connectome and CGE. We used the Louvain community
detection algorithm [65] to extract modules from the C. elegans connectome using consensus clustering
(see Methods). Four modules were extracted, with eleven hubs in module one (which contains 111
neurons), four hubs in module two (96 neurons), one hub in module three (40 neurons), and no hubs
in module four (32 neurons). We also compared the results of this modular partition of neurons to a
previously reported nine-module partition derived from an Erdös-Rényi Mixture Model (ERMM) [52].
For the Louvain consensus modules, CGE, rφ, was significantly increased for connected neurons in the
same module (1552 pairs) relative to connected pairs in different modules (687 pairs) (Wilcoxon rank sum
test, p = 6.6× 10−4), but there was no significant difference between intra-modular connected neurons
and inter-modular connected neurons for the nine-module ERMM partition (Wilcoxon rank sum test,
p = 0.46). The resolution and type of modular decomposition thus affects the relationship between CGE,
connectivity, and modular network structure in C. elegans. We then tested whether connected hubs
exhibit more similar CGE within and between modules (for both the consensus Louvain and ERMM
modular decompositions). For pairs of connected neurons within the same module, rφ is higher for pairs
of hubs than pairs of nonhubs (Wilcoxon rank sum test, p = 6.9× 10−17 for consensus Louvain modules,
shown in Fig. 8A; 9.3× 10−7 for ERMM partition). We found a similar result for connected neurons in
different modules: pairs of connected hubs exhibit increased CGE than other types of connected pairs
of neurons (Wilcoxon rank sum test, p = 1.6× 10−5 for consensus Louvain modules, shown in Fig. 8B;
p = 1.6× 10−16 for ERMM). Thus, for both types of modular decompositions considered, intra-modular
and inter-modular connections involving hub neurons exhibit more correlated gene expression patterns
than other intra-modular and inter-modular connections.

Lineage distance. The lineage distance between a pair of neurons is defined as the sum of total
divisions that have taken place since the most recent common ancestor cell [52, 59, 60]. In the mammalian
brain, neuronal lineage has been associated with both functional properties [86, 87] as well as connectivity
[88]. Moreover, tissue distance (resembling lineage distance on a cellular scale) correlates with gene
expression divergence, meaning that tissues from the same branch on the fate map share more similar
gene expression patterns in both human and mouse mesoderm as well as ectoderm tissues [89]. Given
that the ectoderm eventually differentiates to form the nervous system, this finding suggests a possible
relationship between lineage distance and CGE in a microscale neuronal system such as that of C. elegans.
However, we find no significant correlation between lineage distance and CGE in C. elegans (Spearman’s
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Fig 8. Increased CGE of hub neurons is not driven by modularity, neuronal birth time,
or cell lineage distance. (A) Distributions of CGE, rφ, for intra-modular rich (red) non-rich (blue)
connections, shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test,
p = 6.9× 10−17). (B) Distributions of CGE, rφ, for inter-modular rich (red) and non-rich (blue)
connections, shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test,
p = 1.6× 10−5). (C) Distributions of lineage distance between rich links (red) and non-rich links (blue),
plotted as histograms due to a discrete nature of this measure (Wilcoxon rank sum test, p = 0.079). (D)
Distributions of CGE, rφ, between early born hubs (rich links, red) and nonhubs (non-rich links, blue)
shown as violin plots with the median shown as a horizontal bar (Wilcoxon rank sum test,
p = 3.9× 10−22). (E) Distributions of CGE between hub command interneurons (red) and hub
non-command interneurons (blue) shown as violin plots with the median shown as a horizontal bar
(Wilcoxon rank sum test, p = 3.3× 10−8). * represents statistically significant differences.

ρ = −0.027, p = 0.2). As shown in Fig. 8C, there was only a weak tendency for the meadian lineage
distance lineage distance to be increased in non-rich pairs (Wilcoxon rank sum test, p = 0.079). Thus,
we can not attribute the transcriptional similarity of connected hub neurons to their neuronal lineage.

Birth time. The genesis of neurons in C. elegans is separated into two distinct time periods: before
hatching (birth time < 550 min – ‘early-born’) and after hatching (birth time > 1200 min – ‘late-born’),
with no neurons formed during intermediate times [56]. As a broad group, connected pairs of early-born
neurons do not exhibit significantly different CGE compared to connected pairs of late-born neurons
(Wilcoxon rank sum test, p = 0.64), but connected pairs of early-born neurons do exhibit significantly
higher CGE relative to pairs of connected neurons for which one neuron is born prior to hatching and
the other is born after hatching (Wilcoxon rank sum test, p = 4.2 × 10−3). Since all C. elegans hub
neurons are born prior to hatching [28] and neurons born at similar times may share similar connectivity
properties [28, 56], we investigated whether the increase in CGE between hub neurons of C. elegans may
be driven by their similar birth times. Focusing on the 201 neurons born prior to hatching (16 hub and
185 nonhub neurons), connected pairs of hub neurons exhibit significantly increased CGE, rφ, relative to
other pairs of connected early-born neurons (Wilcoxon rank sum test, p < 10−22), as shown in Fig. 8D.
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Neurochemistry. Hub neurons (k > 44) consist of thirteen cholinergic neurons, two glutamatergic
neurons, and one neuron of unknown neurotransmitter type [58]. We find that neuron pairs show different
CGE relationships as a function of their neurotransmitter type, e.g., pairs of GABAergic neurons have
high median CGE, r̃φ = 0.59, while pairs of glutamatergic neurons exhibit a relatively low median
CGE, r̃φ = 0.08. To determine whether the similarity in CGE between pairs of hub neurons could be
explained by their neurotransmitter types, we constructed 108 random sets of sixteen neurons of the same
neurotransmitter types as hubs (e.g., thirteen random cholinergic neurons, two random glutamatergic
neurons, and one random neuron of an unknown neurotransmitter type) and compared the distribution
of median CGE of each group to the median CGE of hub neurons as a permutation test. Neurochemical
identity cannot explain the elevated CGE of hub neurons, with hubs displaying a significant increase
in median CGE relative to random sets of neurons with the same neurotransmitter types as hubs
(permutation test, p = 2.57× 10−6).

Anatomical location. Of the sixteen hub neurons, thirteen are in the head and three are in the tail;
none are located in the body. CGE varies as a function of anatomical location (i.e., ‘head’, ‘body’, and
‘tail’), with pairs of neurons in the same anatomical class exhibiting the highest median CGE (e.g., pairs
of neurons within the body have a median r̃φ = 0.14, pairs of neurons within the tail have r̃φ = 0.12, and
pairs of neurons within the head have r̃φ = 0.07), followed by lower median CGE in mixed classes (e.g.,
head-body pairs of neurons have r̃φ = 0.01). Given this variation, we tested whether the increased CGE
between hub neurons could be explained by their anatomical distribution using the permutation testing
procedure described above for neurochemistry. That is, we compared the distribution of CGE between
hubs to a null distribution formed from 108 random permutations of thirteen head neurons and three
tail neurons. The median CGE, r̃φ, between hub neurons is significantly increased relative to random
sets of thirteen head neurons and three tail neurons (permutation test, p = 2.62× 10−6). Furthermore,
CGE is significantly increased amongst hub neurons relative to other pairs of head neurons (Wilcoxon
rank sum test, p = 4.1× 10−11 for 46 hub-hub pairs and 1 186 others), and also amongst head/tail pairs
of neurons (Wilcoxon rank sum test, p = 1.6× 10−14 for 23 hub-hub pairs, 174 others), but not for the
three hub neurons in the tail (Wilcoxon rank sum test, p = 0.15 for three hub-hub pairs, 53 others).
Thus, anatomical location cannot explain the high CGE of hub neurons.

Functional class. C. elegans neurons can be divided into distinct groups that each perform a specialized
behavioral function [90]. One of the best-characterised functional classes that is particularly relevant for
our analysis is the set of ‘command interneurons’ which are a functional group of ten neurons that govern
forward (AVBL, AVBR, PVCL, PVCR) and backward (AVAL, AVAR, AVDL, AVDR, AVEL, AVER)
locomotion [91]. All of these neurons are hubs. Given the overlap between hub neurons and command
interneurons, we investigated whether command interneurons exhibit more similar expression than other
hub interneurons, and may therefore drive the increase in CGE amongst hubs as a whole. We compared
CGE, rφ, between all pairs of command interneurons (ten neurons), and between all pairs of hubs that
are not command interneurons (six neurons), shown in Fig. 8E. Correlated gene expression between
command interneurons is significantly greater than between other hub neurons (Wilcoxon rank sum
test, p = 3.3× 10−8), indicating that command interneurons play a major role in driving the increased
CGE amongst hub neurons. Moreover, there is no difference in CGE between pairs of hubs that are
not command interneurons (DVA, RIBL, RIBR, AIBR, RIGL, AVKL) and a set of seven anatomically
matched nonhub head interneurons (AVFL, AVFR, AVHL, AVHR, AVJL, AVJR, AVKR) (Wilcoxon
rank sum test, p = 0.13), indicating that the status of many hub neurons as command interneurons
makes a significant contribution to the elevated CGE of hubs.

Genes driving correlated gene expression patterns

Having characterized a robust relationship between CGE and (i) connectivity, and (ii) hub connectivity,
we next investigated which specific genes contribute most to this relationship. Despite challenges with the
incomplete binary expression measurements in a small proportion of the genome, we developed a method
to score genes according to their contribution to a given CGE pattern (see Methods). We characterized
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individual high-scoring genes, with pcorr < 10−4 (approximately 20% of genes with the highest scores in
each analysis), and attempted to summarize functional groups of genes as biological process categories
of the gene ontology (GO) that were enriched in high scoring genes using overrepresentation analysis
(ORA) [68, 70].

We first investigated which genes drive increased CGE in connected pairs of neurons relative to
unconnected pairs. Previous studies in mouse have indicated that genes driving an increase in CGE
between connected pairs of brain regions are enriched in GO categories related to neuronal connectivity
and communication [38, 92, 93, 94]. First, we manually investigated individual high-scoring genes
(i.e., those with pcorr < 10−4, see Supplementary Data File, GeneList.xlsx). Given that glutamate
is a prevalent neurotransmitter in C. elegans (26% of neurons with known neurotransmitter type are
glutamatergic [58]), it is appropriate that many high scoring genes are related to glutamate receptors
(including glr-1, glr-2, glr-4, glr-5, nmr-1, and nmr-2 ). Consistent with the importance of innexins in
forming electrical synapses [95], our list contained the following innexin genes: unc-9, unc-7, inx-7, inx-19,
inx-13. Genes encoding cell adhesion molecules related to axon outgrowth and guidance, cell migration
and locomotion (sax-3, cam-1, unc-6, rig-1, unc-5 ), learning (casy-1 ) [57, 96, 97, 98, 99], as well as genes
involved in determining cell polarity (vang-1, prkl-1 ) [100, 101] were also amongst the top scoring genes
for connectivity. These genes have been implicated in neuronal connectivity in both flies and humans
[102, 103, 104], with our results predicting that they may play a similar role in C. elegans. In addition,
transcription factors regulating neuronal development, fate specification (lin-11, unc-3, unc-42, ceh-14,
ast-1, cfi-1 ) [105, 106, 107, 108, 109, 110], and locomotion (unc-3 ) [106]) were also implicated in driving
increased CGE amongst connected pairs of neurons. Both adhesion molecules and transcription factors
are candidates for facilitating signal transduction and communication.

In order to summarize the above mentioned results and determine if any particular functional groups
of genes are dominating in driving this effect, we performed an enrichment analysis. Top scoring biological
process GO categories from ORA analysis (of 85 genes relative to the 414 genes with sufficient data for
this analysis) are listed in Table S2. Although no GO categories are significant at a false discovery rate of
0.05, the top categories are consistent with a connectivity profile, including ‘glutamate receptor signaling’,
‘cell surface receptor signaling’, and ‘ion transport’, with other categories involved in regulation of growth
rate and several related to catabolic processes. Thus, despite incomplete gene expression data that do
not provide sufficient coverage to detect statistically significant effects, these results indicate that our
data-driven gene scoring method is able to yield sensible, biologically relevant insights into the genetic
basis of neuronal connectivity in C. elegans connectome.

Having characterized genes that contribute to the increase in CGE between connected pairs of
neurons, we next investigated whether particular functional groups of genes drive differences in CGE
between connections involving hub neurons (i.e., in rich, feed-in, and feed-out connections) relative to
connections between pairs of nonhub neurons (i.e., peripheral connections). In order to investigate which
specific genes contribute most to the increase in CGE for connections involving hubs, we first investigated
the highest-scoring genes, with pcorr < 10−4 (corresponding to approximately the top 20% of genes in
the analysis). In addition to glutamate receptor genes (glr-5, nmr-1, nmr-2, glr-1, glr-2, grld-1 ) and
acetylcholine related genes (ace-2, cho-1, unc-17, deg-3 ), we again find a high number of genes regulating
cell adhesion (cam-1, rig-1, rig-6, unc-6, grld-1, dbl-1, ncam-1 ) and relevant transcription factors (unc-3,
unc-42, ast-1 ). The implication of glutamate and acetylcholine may be attributable to the importance
of glutamate in the regulation of locomotion in command interneurons [111, 112], with acetylcholine
being the dominant neurotransmitter in hubs (13 out of 16 hubs are cholinergic). We also find a high
overlap between adhesion molecule and transcription factor genes found in the previous analysis and the
implication of human orthologs (rig-1, ncam-1, grld-1, corresponding to human genes ROBO4, NCAM2,
and RBM15 respectively [57]) for genes regulating cell migration, differentiation and neuron cell adhesion.

While previous work implicated genes regulating oxidative metabolism for connections involving
hubs in mouse [38], and for hub regions in human [44], the gene expression dataset used here was
not sufficiently comprehensive to investigate these processes. For example, only one of the 948 genes
annotated to the GO categories related to hub connectivity in mouse is present in our gene expression
dataset (unc-32 is annotated to the GO category: ‘ATP hydrolysis coupled proton transport’). Thus,
although a direct test of the metabolic hypothesis for neural hubs is not possible from current data, we
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investigated whether other biological process GO categories were overrepresented in pairs of connected
hubs using ORA (of 30 genes relative to the 168 genes with sufficient data for this analysis), with results
listed in Table S3. Even though no categories are statistically significant at a false discovery rate of 0.05,
the list of top categories includes both ‘glutamate receptor signaling pathway’ as well as more general
‘cell surface receptor signaling pathway’ in addition to several ion transport related gene groups (’ion
transport’, ‘ion transmembrane transport’, ‘transmembrane transport’). Other top-ranked GO categories
include regulation of locomotion, and various metabolism and biosynthesis related processes. Our gene
scoring method again yields interpretable insights into the types of genes that contribute to differences
in CGE between different classes of neuronal connections in C. elegans. While current data are limited,
more comprehensive expression annotations in the future would allow more systematic and statistically
powered inferences across GO categories.

Discussion

Highly connected hubs of neural systems play an important role in brain function, with their dense
rich-club interconnectivity integrating disparate neural networks [24, 27, 29, 30]. Here, our analysis
linking hub connectivity of the microscale connectome of C. elegans to patterns of neuron-specific gene
expression has identified a transcriptional signature that appears to be highly conserved, given recent
findings reported in a mesoscale investigation of the mouse [38] and a macroscale study of humans [44].
Specifically, we show that: (i) CGE is higher for connected pairs of neurons compared to unconnnected
pairs; (ii) the neuron connection probability decays as a function of spatial separation, and; (iii) connected
pairs of hub neurons, which are generally separated by longer anatomical distances, show the highest
levels of CGE. This association between CGE and hub connectivity followed a gradient, such that CGE
was lowest for connected nonhubs, intermediate for hub-nonhub pairs, and highest for connected hubs,
consistent with results reported in the mouse brain [38]. Amongst the genes considered here, many of
those with the greatest contribution to connectivity are biologically plausible genes related to receptors,
neurotransmitters, and cell adhesion, and those with the greatest contribution to hub connectivity are
related to glutamate receptors, acetylcholine signaling, and other neuronal communication related genes.
The methods we develop here for quantifying CGE, and for scoring the contribution of individuals
genes to overall CGE, yield biologically interpretable results from incomplete binary gene expression
data. With improvements in gene annotation quality and specificity, and increases in genome coverage,
similar methods could be used in future work to characterize the biological basis of a range of neuronal
connectivity patterns.

It is reasonable to expect that the principles of neural organization may differ from the scale of
individual neurons to the scale of macroscopic brain regions (in which each brain region contains millions
of neurons). However, many of our results in C. elegans suggest a striking conservation of many
fundamental spatial trends in neural connectivity and CGE across scales and species. For example,
connection probability decreases with spatial separation between brain areas in rodents and primates
[75, 76] (including in macaque [77], human [78], mouse [38], and rat [79]), for individual neurons in mouse
primary auditory cortex [80], and between neurons in C. elegans (cf. Fig. S1 of [49]). Unlike mammalian
brains, where all neurons are confined to a spatially contiguous organ, neurons are distributed across
nearly the entire length of C. elegans, including a dense cluster of neurons in the head and in the tail.
Despite these distinct morphologies, we report a qualitatively similar spatial dependence of connection
probability with separation distance for many classes of connections in C. elegans, including those within
the head, body, and tail, indicating that this distance-dependence may be a generic property of evolved
neuronal systems that must balance the energetic cost of long-range connections with their functional
benefit [17, 23, 33, 51]. Less frequently characterized is the spatial dependence of CGE, with available
evidence indicating that more proximal brain areas exhibit more similar gene expression patterns than
more distant brain areas in the mouse brain [38] and human cortex [72, 73, 74]. Some of the spatial
trends in CGE found in the 948 genes analyzed here mirror these trends of bulk regions of macroscopic
mammalian brains. It is therefore possible that these spatial dependences of connectivity and CGE
may not be simply due to bulk spatial trends in macroscopic brains containing millions of neurons, but
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may reflect conserved organizational principles that hold across species and spatial scales. Our results
highlight the importance of treating nervous systems as spatially embedded objects, as many seemingly
non-trivial properties of brain organization may be well approximated by simple, isotropic spatial rules
[22, 46, 75, 78, 113] (see also [17, 23]).

Our analysis indicates that CGE patterns in C. elegans show many surprising similarities to previous
work in the mesoscale mouse connectome [38], despite: (i) involving different gene expression annotation
data (comprehensive in situ hybridization expression data across ∼ 20 000 genes in mouse versus
literature-curated annotations across ∼ 1000 genes in C. elegans), (ii) being a different type of neural
system (from the spatially continuous macroscopic brain of mouse, to the spatially separated nervous
system of C. elegans); (iii) orders of magnitude differences in spatial scale. The findings were also
robust to a range of data processing choices, including different representations of the connectome (e.g.,
directed/undirected, or excluding electrical synapses), and across alternative metrics for quantifying
transcriptional similarity.

What could drive this highly conserved association between CGE and hub connectivity? Here, we
took advantage of the rich and diverse information available for each neuron of the C. elegans connectome
to begin to address this question. We show that CGE between hub neurons cannot be explained by
the neuronal subtype of hubs (i.e., the fact that all hubs are interneurons rather than sensory or motor
neurons), since CGE between hub neurons is higher than between other pairs of interneurons. The effect
also cannot be explained by the modular organization of the network, since CGE between hubs in the
same module is higher than between other pairs of neurons in the same topological module, with a
similar increase in CGE for pairs of hubs in different modules. We also show that the effect is not driven
by similarities in the birth time nor lineage distance of hub neurons, which exhibit higher CGE than
other early-born neurons (prior to hatching) and are not closer in their lineage. Moreover, the abundance
of cholinergic signaling of hub neurons cannot explain the effect. Rather, the CGE between pairs of hub
neurons in C. elegans may be related to the specific functional role of these cells. Namely, 60% of them
are command interneurons, which play a vital role in coordinating forward and backward locomotion in
C. elegans [50]. The overlap between command interneurons and hub neurons has interesting parallels
with the human cortex, where polymodal association areas tend to be the most highly connected network
elements [1]. Association areas sit at atop the cortical hierarchy and support complex behaviors by
integrating information from diverse neural systems [114]. Locomotion is arguably one of the most
complex behaviors expressed by C. elegans. Thus, the association between hub status and command
interneurons may reflect the specialization of these neurons for supporting higher-order functions in the
behavioral repertoire of C. elegans.

It is as yet unclear whether CGE between network hubs, regardless of species and scale, is simply a
byproduct of tightly coupled hub activity, or some shared morphological or development characteristic
between hubs that we have not captured in the present analysis. More comprehensive transcriptomic
data (e.g., obtained through systematic single-neuron RNA sequencing), measured through development
and coupled with measures of neuronal activity, would allow us to address these questions. Additionally,
we cannot rule out the possibility that gene annotations have been influenced by the nature of the
curated data that we have used here. Given their functional similarity, command interneurons might have
been tested as a group in a set of experiments for the expression of particular genes and consequently
assigned similar expression signatures. More precise and systematic measurement of neuron-specific gene
expression patterns would be required to address this question.

In this work we developed methods to relate correlations in binary gene expression data to pairwise
connectivity and subsequently score and evaluate the contribution of individual genes to these patterns.
Compared to continuous in situ hybridization measurements of the expression of > 17 000 genes in the
mouse brain [115], or microarray measurements of > 20 000 genes in the human brain [116, 117], which
permit more detailed analysis [38, 44, 92, 93, 94, 118], working with C. elegans gene expression data is
challenging due to its low coverage (< 5% coverage of the worm genome), binary indications of expression,
and incompleteness (an inability to distinguish missing data from lack of expression). Moreover, the
data have different qualifiers related to the certainty of gene expression annotations (see Supporting
Information), requiring choices to be made to appropriately balance sensitivity and specificity. Although
gene enrichment analyses did not have enough power to detect significant effects here, top GO categories
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point us towards biologically relevant categories related to neuronal connectivity, neurotransmitters, and
metabolism. We note, however, that the incomplete coverage of the genome in our annotated dataset
may mask many true GO associations. Our single gene analysis identified specific genes contributing to
increases in CGE for connected pairs of neurons and for connections involving hub neurons. In line with
our expectations, genes regulating both chemical and electrical signaling, namely glutamate receptor and
innexin genes, were implicated in general connectivity. In addition, we also find multiple cell adhesion
molecule genes and transcription factors that regulate neuronal development and fate specification –
both groups are important for forming neuronal connections. High overlap between adhesion molecule
genes and transcription factors implicated in regulating both general and hub connectivity highlights
that related mechanisms might be used in both cases. While we were not able to test GO categories
related to neurotransmitter signaling comprehensively, due to insufficient coverage of gene expression
annotations, single gene analysis revealed the importance of acetylcholine genes, which may be related to
the fact that acetylcholine is the dominant neurotransmitter in hub neurons.
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Supporting Information

Expression annotations from WormBase

Neuronal gene expression is measured as a binary indicator on WormBase [57], based on curated
data collated from many individual experiments. Expression annotations are made either ‘directly’ to
individual neurons (when an experiment indicates expression in an individual neuron), or ‘indirectly’
to broader classes of neurons like ‘interneuron’ or ‘head’ (meaning that some members of that class
exhibit expression of that gene). In order to maintain specificity of annotations, we only analyzed ‘direct’
annotations here.

Annotations of gene G to neuron Y are also made with varying levels of certainty:

• ‘certain’: G was observed to be expressed in Y ,

• ‘enriched’: G has been found to be enriched in a certain dataset through microarray, RNAseq or
proteomic analysis,

• ‘partial’: G was observed to be expressed in some cells of a group of neurons that include Y ,

• ‘blank’: data prior to 2005, or

• ‘uncertain’: G was sometimes observed to be expressed in Y , or G was observed to be expressed in
a cell that could be Y .

To avoid including false positives, our analysis excluded annotations labeled as ‘uncertain’.

Correlated gene expression matching index

Existing measures of binary correlation (described below) are symmetric between ‘0’ and ‘1’ and thus do
not directly distinguish between the biologically relevant case of genes being expressed together from the
case in which neither gene is expressed. We thus developed a measure of the probability, P (m), that two
binary strings will contain m ‘positive matches’ (i.e., m genes are expressed in both neurons), which can
be computed as:

P (m) =

(
n2
m

)(
N − n2
n1 −m

)
/

(
N

n1

)
, (5)

for two binary expression vectors, xi, yi, of length N , containing n1 and n2 1s, respectively (n2 ≤ n1),
with m matches (n11). Our index, pmatch, is approximately equal to the probability of obtaining as many
or fewer matches than observed (weighting the probability of the observed number of matches at 0.5 for
symmetry), computed as:

pmatch =

m−1∑
x=0

P (x) + P (m)/2, (6)

for m positive matches.
We verified that this index yields qualitatively similar results to the mean square contingency

coefficient, rφ, used throughout this work (Fig. S2), validating our related positive match method for
scoring individual genes [as an approximately single-gene contribution to the probability score computed
in Eq. (6)]. Given the qualitative similarity of this measure to rφ, we chose to focus on rφ throughout
this work due to its ease of interpretability as a correlation coefficient ranging from -1 to 1.

Sensitivity of correlated gene expression measures

Measures of correlation between binary vectors can be biased by the relative proportion of ones between
two vectors. For data analyzed here, data annotated to individual neurons comes from between 3 to
138 expressed genes (corresponding to 0.3% to 14.6% of all 948 genes considered). To ensure that our
measure of correlated gene expression (CGE) is not biased by such differences in the relative proportions
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of expression annotations, we conducted a sensitivity analysis in which we compared the rφ metric,
Eq. (3), with alternative methods for quantifying correlations between binary vectors: the Jaccard index,
n11/(n10 + n01 + n11), Yule’s Q coefficient, (n00n11 − n01n10)/(n00n11 + n01n10), and the χ2 index,
N(n00n11 − n01n10)/(n1•n0•n•0n•1) [119], where nxy counts the number of observations of each of the
four binary pairwise possibilities: n00, n01, n10, and n11 (as outlined in the main text), and the • symbol
sums across a given variable (e.g., n•0 = n00 + n10).

To evaluate bias in each CGE measure to the proportion of annotations in each expression vector, we
generated random binary vectors of length 948 containing different proportions of 1s seen in our data,
ranging from the minimum, 1, to the maximum, 150. For all pairwise combinations of proportions, we
computed the CGE measure, taking an average across 1 000 permutations, and then recorded the resulting
mean correlation value, as plotted in Fig. S1. Because all vectors are independent random binary strings,
any systematic dependence of mean CGE with annotation proportion indicates bias. The mean square
contingency coefficient, rφ (Fig. S1A) and our own novel CGE matching index, pmatch (Fig. S1D) show
no systematic dependence on the proportion of ones in each vector (varying randomly within ≈ 10−3 and
≈ 0.5 respectively). However, Yule’s Q shows a negative bias for small annotation proportions (Fig. S1B)
and the Jaccard index shows a strong positive bias across the full range (Fig. S1C). Based on these
numerical experiments, we selected mean square contingency coefficient, rφ, here, to ensure that changes
in CGE were due to matching expression patterns and not simply driven by differences in the number of
gene annotations between neurons.
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Table S1. Hub neurons of the C. elegans connectome. Hubs are defined as neurons with degree
k > 44. For each hub, we list (i) the neuron name, (ii) its degree, k, (iii) location (‘head’, ‘body’, or
‘tail’), and function based on information presented in the Wormatlas website, www.wormatlas.org/.
Neurons are sorted (descending) by degree.

Neuron Degree, k Description
AVAR 137 Head command interneuron, role in locomotor decisions
AVAL 134 Head command interneuron, role in locomotor decisions
AVBR 104 Head command interneuron, role in locomotor decisions
AVBL 102 Head command interneuron, role in locomotor decisions
PVCR 69 Tail command interneuron, role in locomotor decisions
PVCL 64 Tail command interneuron, role in locomotor decisions
AVDR 63 Head command interneuron, role in locomotor decisions
AVER 63 Head command interneuron, role in locomotor decisions
AVEL 62 Head command interneuron, role in locomotor decisions
DVA 59 Tail interneuron, mechanosensory integration
RIBL 56 Head interneuron
AVKL 53 Head interneuron
AVDL 52 Head command interneuron, role in locomotor decisions
RIBR 52 Head interneuron
AIBR 49 Head interneuron
RIGL 49 Head interneuron

Table S2. Top 15 biological process GO categories enriched in genes with the highest mean increase in
CGE for connected neurons compared to unconnected neurons. Categories are sorted by p-value
(ascending).

Category Description # genes p (uncorr) p (corr)
GO:0035235 ionotropic glutamate receptor signaling pathway 7 0.0005 0.3245
GO:0007215 glutamate receptor signaling pathway 9 0.0041 0.9367
GO:0007166 cell surface receptor signaling pathway 37 0.0048 0.9367
GO:0006811 ion transport 71 0.0058 0.9367
GO:0034220 ion transmembrane transport 57 0.0079 1
GO:0055085 transmembrane transport 67 0.0129 1
GO:1901575 organic substance catabolic process 33 0.031 1
GO:0040009 regulation of growth rate 7 0.0417 1
GO:0040010 positive regulation of growth rate 7 0.0417 1
GO:0030163 protein catabolic process 27 0.0428 1
GO:0009056 catabolic process 35 0.0493 1
GO:0009057 macromolecule catabolic process 28 0.0548 1
GO:0071495 cellular response to endogenous stimulus 14 0.0575 1
GO:0045927 positive regulation of growth 29 0.0689 1
GO:0050830 defense response to Gram-positive bakterium 5 0.0695 1
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Table S3. Top 15 biological process GO categories enriched in genes with the highest increase in CGE for
connections involving hub neurons (i.e., rich, feed-in and feed-out connections) compared to connections between
nonhub neurons (i.e., in peripheral connections). Categories are sorted by p-value (ascending).

Category Description # genes p (uncorr) p (corr)
GO:0007215 glutamate receptor signaling pathway 6 0.0009 0.1741
GO:0035235 ionotropic glutamate receptor signaling pathway 6 0.0009 0.1741
GO:0007166 cell surface receptor signaling pathway 20 0.0035 0.3473
GO:0009891 positive regulation of biosynthetic process 11 0.0063 0.3473
GO:0031328 positive regulation of cellular biosynthetic process 11 0.0063 0.3473
GO:0045935 positive regulation of nucleobase-containing compound metabolic process 11 0.0063 0.3473
GO:0051173 positive regulation of nitrogen compound metabolic process 11 0.0063 0.3473
GO:0031325 positive regulation of cellular metabolic process 12 0.0109 0.5258
GO:0040012 regulation of locomotion 24 0.0156 0.5467
GO:0010557 positive regulation of macromolecule biosynthetic process 10 0.0212 0.5467
GO:0045893 positive regulation of transcription DNA-templated 10 0.0212 0.5467
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 10 0.0212 0.5467
GO:0051254 positive regulation of RNA metabolic process 10 0.0212 0.5467
GO:1902680 positive regulation of RNA biosynthetic process 10 0.0212 0.5467
GO:1903508 positive regulation of nucleic acid-templated transcription 10 0.0212 0.5467
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Fig S1. Dependence of correlated gene expression measures on the proportion of
positive annotations. We plot the mean value of each metric across 1000 different pairs of random,
binary vectors of length 948, which vary only in their proportion of ‘1’s (between 0–0.15; corresponding
to a number of ‘1’s ranging from 1 to 150). This is repeated for: (A) mean square contingency
coefficient, rφ, (B) Jaccard index, (C) Yule’s Q, and (D) our developed positive match measure, pmatch,
Eq. (5). Any systematic trend in correlation values indicates a bias driven by the proportion of positive
annotations for a pair of vectors, as is seen for the Jaccard index and Yule’s Q. By contrast, rφ, which is
used through this work, and our probability-based measure, pmatch, used to motivate individual gene
scoring for enrichment analysis, show no evidence of systematic bias (note the color axis scales).
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Fig S2. Correlated gene expression measured using the positive matching probability
index. The matching probability index, pmatch, is introduced here as Eq. (5). Top: Degree distribution.
Middle: Proportion of connections that are ‘rich’ (hub→hub, red), ‘feed-in’ (nonhub→hub, yellow),
‘feed-out’ (hub→nonhub, orange), and ‘peripheral’ (nonhub→nonhub, blue) as a function of the degree
threshold, k, used to define hubs. Note that at high k, most neurons are labeled as nonhubs, and hence
the vast majority of connections are ‘peripheral’. Bottom: Mean CGE calculated using similarity index
from only positive matches, pmatch, for each connection type as a function of k. The mean CGE across
all network links shown as a dotted black line; the topological rich-club regime (determined from the
network topology, cf. Fig. 5) is shaded gray. Circles indicate a statistically significant increase in CGE in
a given link type relative to the rest of the network (one-sided Welch’s t test; p < 0.05).
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Fig S3. Correcting for spatial effects in CGE data using a bulk exponential trend. Here
we consider correlated gene expression in the head, where the strongest spatial relationship exists (cf.
Fig. 4. (A) CGE values, rφ, plotted as a function of Euclidean separation distance for all pairs of
neurons within the head (gray dots), with a fitted exponential trend shown in black,
f(x) = A exp(−λx) +B. (B) Taking residuals from this trend does not adequately correct the spatial
trend. Note the artifactual negative correlations indicated with an arrow. This indicates that the trend
is not a bulk, isotropic effect, but may instead be driven primarily by a small number of neuron pairs
with high rφ at short distances (/ 25µm), indicated with a circle in (A).
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Fig S4. Weighted and unweighted rich-club analyses yield similar results. (A) Degree
distribution of the C. elegans connectome. Neurons are labeled to four types as in the legend. (B)
Normalized weighted rich-club coefficient, Φweighted

norm (i.e., topology fixed and weights randomized in the
null model, shown orange), and normalized mixed rich-club coefficient, Φmixed

norm (i.e., both topology and
weights mixed in the null model, shown green) are plotted as a function of the degree, k, at which hubs
are defined (as neurons with degree > k) [120]. Circles indicate values of Φnorm that are significantly
higher than an ensemble of 1 000 degree-matched null networks (Welch’s t-test, p < 0.05). Compared to
topological rich-club analysis presented in the main text, here the weights of the connections are also
accounted for when calculating the rich club coefficient. In the case of the weighted rich-club coefficient,
the topology for the null models was kept stable and only the weights of the connections randomized.
Results presented here show that connections between higher degree nodes are stronger than expected
by chance. On the other hand, in the mixed rich club coefficient both the topology and weights are
randomized, therefore we see the combined effect of both types. Distinction between the different null
models is discussed in detail in [120]. These results show that connections between high degree nodes
are both denser and stronger than expected by chance.
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Fig S5. Rich and non-rich connections in the C. elegans connectome, categorized by the
anatomical location of the source and target neurons. Hub-hub connections (‘rich’) are shown
red, and all other connections (‘non-rich’, i.e., feeder and peripheral) are shown gray, where hubs are
defined as neurons with degree, k > 44. Anatomical locations are labeled as ‘head’, ‘body’, and ‘tail’,
and each connection is labeled according to its source and target neurons, labeled on the vertical axis in
the form ‘SourceTarget’. The plot shows that the increased separation distance between connected hubs
relative to other types of connected neurons is driven by a relative increase in long-range connections
between the head and tail.
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