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Abstract 
We compared the influences of meaning and salience on attentional guidance in 
scenes. Meaning was captured by “meaning maps” representing the spatial distribution 
of semantic information in scenes. Meaning maps were coded in a format that could be 
directly compared to maps of image salience generated from image features. We 
investigated the degree to which meaning versus image salience predicted human 
viewers’ spatial distribution of attention over scenes, with attention operationalized as 
duration-weighted fixation density. The results showed that both meaning and salience 
predicted the distribution of attention, but that when the correlation between meaning 
and salience was statistically controlled, meaning accounted for unique variance in 
attention but salience did not. This pattern was observed for early as well as late 
fixations, for fixations following short as well as long saccades, and for fixations 
including or excluding the centers of the scenes. The results strongly suggest that 
meaning guides attention in real world scenes. We discuss the results from the 
perspective of the cognitive relevance theory of attentional guidance in scenes. 
 

Introduction 
We can only attend to a fraction of the visual stimulation available to us at any given 
moment. For this reason, visual attention is guided through scenes in real time, with the 
eyes shifting position about three times each second on average to select informative 
objects and scene regions for scrutiny (Buswell, 1935; Hayhoe & Ballard, 2005; 
Henderson, 2003, 2017; Henderson & Hollingworth, 1999; Land & Hayhoe, 2001; 
Rayner, 2009; Yarbus, 1967). How does the brain determine which scene regions and 
elements should be attended at any given moment?  
Most recent research on attentional guidance in real world scenes has focused on the 
idea that attention is primarily driven by low-level image features. Image guidance 
theory has its roots in models of attention and visual search that focus on the attraction 
of attention by primitive visual features and feature differences (Treisman & Treisman, 
1980; see Wolfe & Horowitz, 2017). When applied to real world scenes, the most 
influential instantiation of this type of theory is based on visual salience, which proposes 
that visual saliency maps are generated by pooling contrasts in semantically 
uninterpreted features from image dimensions such as luminance, color, and edge 
orientation (Borji, Parks, & Itti, 2014; Borji, Sihite, & Itti, 2013; Harel, Koch, & Perona, 
2006; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). On this view, attentional 
guidance is fundamentally a reaction to image features in the scene, with attention 
captured or “pulled” to visually salient scene regions (Henderson, 2007). The apeal of 
image guidance theory based on visual saliency is due in part to the fact that visual 
salience is both neurobiologically inspired and computationally tractable (Henderson, 
2017). 
Image guidance theory can be contrasted with cognitive guidance theory. On this view, 
attention is “pushed” by the cognitive system to scene regions that are semantically 
informative and cognitively relevant in the current situation (Henderson, 2007). For 
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example, cognitive relevance model (Henderson, Brockmole, Castelhano, & Mack, 
2007; Henderson, Malcolm, & Schandl, 2009), attention is guided by semantic 
representations that code the meaning of the scene and its local regions (objects, 
surfaces, and other interpretable entities) with respect to the viewer’s current task and 
goals (Buswell, 1935; Hayhoe & Ballard, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 
2003; Henderson, 2003, 2007, 2017; Henderson & Hollingworth, 1999; Rothkopf, 
Ballard, & Hayhoe, 2007; Tatler, Hayhoe, Land, & Ballard, 2011; Võ & Wolfe, 2013; 
Yarbus, 1967). Cognitive relevance proposes that the representations used to assign 
task relevance and meaning encode knowledge about the world itself (world 
knowledge), as well as knowledge about the general scene concept (scene schema 
knowledge) and the current scene instance (episodic scene knowledge) (Henderson & 
Ferreira, 2004; Henderson & Hollingworth, 1999).  
There is considerable evidence that image salience often does a poor job of accounting 
for attention in real-world scene viewing (Einhäuser, Rutishauser, & Koch, 2008; 
Henderson et al., 2007, 2009; Tatler et al., 2011; Underwood, Foulsham, & Humphrey, 
2009). Indeed, most proponents of image guidance acknowledge that meaning must 
also play some role in attentional guidance. Nevertheless, much of the research on 
attentional guidance in real-world scenes has been motivated by and focused on image 
salience as instantiated by saliency maps. One reason for this emphasis is the relative 
tractability of image salience; it is far easier to quantifying image features than it is to 
quantify meaning (Henderson, 2017). To investigate meaning and to compare its 
influence to salience, it is necessary to represent both constructs so that comparable 
quantitative predictions can be generated from them.  
To provide a method for directly contrasting the influences of meaning and salience on 
the guidance of attention, we have recently developed the concept of meaning maps 
(Henderson & Hayes, 2017). Meaning maps draw inspiration from two classic scene 
viewing studies (Antes, 1974; Mackworth & Morandi, 1967). In these studies, images 
were divided into regions and subjects were asked to rate each region based on how 
easy that region would be to recognize (Antes, 1974) or how informative it is 
(Mackworth & Morandi, 1967). In both studies, the eye movements of a different group 
of subjects were measured while they viewed the rated images. In general, viewers 
looked more at the more highly rated regions. We modified and extended these 
methods to develop meaning maps for real world scenes. We used crowd-sourced 
responses in which we asked naïve subjects to rate the meaningfulness of a large 
number of scene patches. Specifically, photographs of scenes were divided into a 
dense array of objectively defined circular overlapping patches at two spatial scales 
(Figure 1). These patches were then presented to raters independently of the scenes 
from which they are taken and raters were asked to indicate how meaningful each patch 
was (Figure 2). Finally, we constructed smoothed maps for each scene based on 
interpolated ratings over a large number of raters (Figure 3). The basic idea of the 
meaning map is that it captures the spatial distribution of the semantic content of a 
scene in the same format as a saliency map captures the spatial distribution of image 
salience. Like image salience, meaning is spatially distributed non-uniformly across 
scenes, with some scene regions relatively rich in semantic content and others relatively 
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sparse. 
Because meaning maps are represented in the same format as saliency maps, they can 
be directly compared to saliency maps. A meaning map provides the conceptual analog 
of a saliency map by capturing the spatial distribution of semantic features (rather than 
image features) across a scene. They can be used to generate predictions concerning 
attentional guidance using the same methods that have been used to test the goodness 
of fit of predictions from saliency theory (Carmi & Itti, 2006; Itti, Koch, & Niebur, 1998; 
Parkhurst et al., 2002; Torralba, Oliva, Castelhano, & Henderson, 2006). And the 
predictions for attentional guidance generated from meaning maps can be compared to 
those generated from saliency maps. In short, meaning maps and saliency maps 
provide a foundation for directly contrasting the influences of meaning and salience on 
attentional guidance. 
In an initial study, we investigated the relative ability of meaning maps and saliency 
maps to predict attentional guidance during scene viewing (Henderson & Hayes, 2017). 
In that study and in keeping with the literature on scene perception, attention maps were 
based on the locations of eye fixations. We found that both meaning and salience could 
predict the distribution of attention over scenes, with meaning accounting for more 
variance in attention than image salience. However, we also found that meaning and 
salience were themselves highly correlated. Furthermore, when the variance due to 
salience was controlled, meaning accounted for a significant amount of the remaining 
variance in attention, but when meaning was controlled, no further variance in attention 
was accounted for by salience. These data held for both early and later fixations during 
viewing, including the very earliest fixations on the scenes. The data strongly suggested 
that attention is guided by meaning rather than saliency. 
The present study was designed to extend the original meaning map results. A potential 
concern with the original report is that the attention maps were based on fixation 
locations without taking into account fixation durations (Henderson & Hayes, 2017). The 
fixation location analysis was an important first step because the research assessing 
saliency maps to date has similarly focused on fixation location (Borji et al., 2014, 2013; 
Harel et al., 2006; Itti & Koch, 2001; Parkhurst et al., 2002). However, the durations of 
fixations vary, and this variability reflects a variety of factors including attention related 
to perceptual and cognitive processing. When more attention is needed on an object or 
other scene entity, fixation is directed to that entity for more time (Henderson, 
Nuthmann, & Luke, 2013; Henderson, Weeks, & Hollingworth, 1999; Henderson & 
Pierce, 2008; Henderson & Smith, 2009; Laubrock, Cajar, & Engbert, 2013; Nuthmann, 
Smith, Engbert, & Henderson, 2010). The distribution of attention over a scene 
therefore depends on both the location and duration of attentional selection (Henderson, 
2003). For this reason, we report here a new set of analyses designed to determine how 
well meaning and salience predict attentional guidance in scenes taking into account 
how long attention is focused at each location. 
In summary, the goal of this study was to test current theoretical approaches to 
attentional guidance in real-world scenes. We applied our recently developed method, 
meaning maps, to capture the spatial distribution of semantic content across scenes. 
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We then tested cognitive and image guidance theories by comparing the ability of 
meaning maps and saliency maps to predict attentional guidance during real world 
scene viewing, with attention operationalized as the duration-weighted fixations of 
subjects viewing the scenes. 
 

Method 
Meaning Maps 
 For this study we used the meaning maps developed in Henderson and Hayes 
(2017). 
 Subjects. Scene patch ratings were performed by 165 subjects on Amazon 
Mechanical Turk. Subjects were recruited from the United States, had a hit approval 
rate of 99% and 500 hits approved, and were only allowed to participate in the study 
once. Subjects were paid $0.50 cents per assignment and all subjects provided 
informed consent.  
 Stimuli. Stimuli were 40 digitized photographs of real world scenes depicting a 
variety of indoor and outdoor environments. The full set of scene images can be found 
in the supplementary materials of Henderson and Hayes (2017). Each scene was 
decomposed into a series of partially overlapping (tiled) circular patches at spatial 
scales of 3° and 7° (Figure 1). Simulated recovery of known scene properties (e.g., 
luminance) indicated that the underlying property could be recovered well (98% 
variance explained) using these patches (see Appendix), suggesting that this method is 
sufficiently sensitive to underlying scene structure. The full patch stimulus set consisted 
of 12000 unique 3° patches and 4320 unique 7° patches for a total of 16320 scene 
patches.  
 Procedure. Each subject rated 300 random patches extracted from 40 scenes. 
Subjects were instructed to assess the meaningfulness of each patch based on how 

informative or recognizable they thought it was. Subjects were first given examples of 
two low-meaning and two high-meaning scene patches to make sure they understood 

 

Figure 1. Real-world scene and corresponding tiled patch grids. (a) Example real-world scene. (b) 
Overlapping circular patches used for meaning rating at 3◦ and (c) at 7◦ spatial scales. The blue dots in 
(b) and (c) denote the center of each circular patch and the image circles show examples of the content 
captured by the 3◦ and 7◦ scales for the example scene 
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the rating task, and then rated the meaningfulness of scene patches on a 6-point Likert 
scale (’very low’, ’low’, ’somewhat low’, ’somewhat high’, ’high’, ’very high’). Patches 
were presented in random order and without scene context, so ratings were based on 

context-free judgments. Each unique patch was rated 3 times by 3 independent raters 
for a total of 48960 ratings. However, due to the high degree of overlap across patches, 
each patch contained rating information from 27 independent raters for each 3° patch 
and 63 independent raters for each 7° patch. Figure 2 shows the distribution of ratings 
and the highest and lowest rated non-overlapping patches across all scenes at the two 
patch sizes. The lowest rated patches tended to come from the edges of the pictures, 

 
Figure 2. Rating distributions and example high and low patches. (a) Distribution of ratings for 3 
and 7 patches across all raters and scenes. (b) Example highest and lowest rated non-overlapping 
patches for 3° and (c) 7° patches. 
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which accounts for their truncated shapes. 
Meaning maps were generated from the ratings by averaging, smoothing, and then 
combining 3° and 7° maps from the corresponding patch ratings. The ratings for each 
pixel at each scale in each scene were averaged, producing an average 3° and 7° rating 
map for each scene. The average 3° and 7° rating maps were then smoothed using 
thin-plate spline interpolation (Matlab ’fit’ using the ’thinplateinterp’ method). Finally, the 
smoothed 3° and 7° maps were combined using a simple average, i.e., (3° map + 7° 
map)/2). This procedure was used to create a meaning map for each scene. The final 
map was blurred using a Gaussian kernel followed by a multiplicative center bias 
operation which down-weighted the scores in the periphery to account for the central 
fixation bias, the commonly observed phenomenon in which subjects concentrate their 
fixations more centrally and rarely fixate the outside border of a scene (Borji et al., 2013; 
Henderson et al., 2007; Tatler, 2007). This center bias operation is also commonly 
applied to saliency maps. 
To investigate the relationship between the generated meaning maps and image-based 
saliency maps, saliency maps for each scene were computed using the Graph-based 
Visual Saliency (GBVS) toolbox with default settings (Harel et al., 2006). GBVS is a 
prominent saliency model that combines maps of neurobiologically inspired low-level 
image features. The same center bias operation described for the meaning maps was 
applied to the saliency maps to down-weight the periphery. 
 Histogram Matching. Meaning and saliency maps were normalized to a 
common scale using image histrogram matching, with the duration-weighted fixation 
map for each scene serving as the reference image for the corresponding meaning and 
saliency maps. Histogram matching of the meaning and saliency maps was 
accomplished using the Matlab function 'imhistmatch' in the Image Processing Toolbox. 
Eyetracking Experiment and Attention Maps 
 Subjects. Seventy-nine University of South Carolina undergraduate students 
with normal or corrected-to-normal vision participated in the experiment. All subjects 
were naive concerning the purposes of the experiment and provided informed consent. 
The eye movement data from each subject was inspected for excessive artifacts caused 
by blinks or loss of calibration due to incidental movement by examining the mean 
percent of signal across all trials using Matlab. Fourteen subjects with less than 75% 
signal were removed, leaving 65 subjects for analysis who tracked very well (mean 
signal = 91.74%). We have previously used this corpus to investigate individual 
differences in scan patterns in scene perception (Hayes & Henderson, 2017) as well as 
for the initial study of meaning maps (Henderson & Hayes, 2017). 
 Apparatus. Eye movements were recorded with an EyeLink 1000+ tower mount 
eyetracker (spatial resolution 0.01) sampling at 1000 Hz (SR Research, 2010b). 
Subjects sat 90 cm away from a 21” monitor, so that scenes subtended approximately 
33°x25° of visual angle. Head movements were minimized using a chin and forehead 
rest. Although viewing was binocular, eye movements were recorded from the right eye. 
The experiment was controlled with SR Research Experiment Builder software (SR 
Research, 2010a).  
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 Stimuli. Stimuli consisted of the 40 digitized photographs of real-world scenes 
that were used to create the meaning and saliency maps. 
 Procedure. Subjects were instructed to view each scene in preparation for a 
later memory test. The memory test was not administered. Each trial began with fixation 
on a cross at the center of the display for 300ms. Following central fixation, each scene 
was presented for 12s while eye movements were recorded. Scenes were presented in 
the same order for all subjects. 
A 13-point calibration procedure was performed at the start of each session to map eye 
position to screen coordinates. Successful calibration required an average error of less 
than 0.49° and a maximum error of less than 0.99°. Fixations and saccades were 
segmented with EyeLink’s standard algorithm using velocity and acceleration thresholds 
(30/s and 9500°/s; SR Research, 2010b).  
Eye movement data were imported offline into Matlab using the EDFConverter tool. The 
first fixation, always located at the center of the display as a result of the pretrial fixation 
period, was eliminated from analysis. 
 Attention maps. The distribution of attention over a scene is a function of the 
locations and durations of eye fixations (Henderson, 2003). Although maps created from 
fixation locations alone (Henderson & Hayes, 2017) and from the duration-weighted 
fixations were similar, they were not identical (see also Henderson, 2003). An example 
of the difference can be seen in Figure 3 by comparing fixation density maps based on 

location alone (Figure 3a) to maps of location weighted by duration (Figure 3b). The 
difference in the two maps is shown in Figure 3c, with regions of greater difference 
shown with hotter colors. As can be seen, some regions changed their relative 
attentional weighting when duration was considered. For the present analyses, we 
therefore created attention maps from fixation density weighted by fixation duration.  
To create duration-weighted attention maps, a duration weight was generated for every 
fixation. Because average fixation durations vary reliably and systematically across 
subjects (Castelhano & Henderson, 2008a; Henderson & Luke, 2014; Rayner, Li, 
Williams, Cave, & Well, 2007), duration weights were based on subject-normalized 
values. We first generated each subject’s fixation duration distribution across all 40 
scenes. We then defined 2 parameters for these distributions, an upper bound 95th 

 
Figure 3. Duration-weighted fixation density. Example (a) fixation density and (b) duration-
weighted fixation density, for all fixations on one scene. (c) The density difference depicting the 
absolute-value difference in the two densities, with hotter regions representing greater difference. 
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percentile cutoff (any values in the 95 percentile received a weight value of 1.0) and the 
lower bound minimum weight cutoff of 0.1 (any value below the 0.1 percentile received 
a weight value of 0.1 to avoid weights of 0). Each fixation was therefore weighted from 
0.1 to 1.0 based on its place in the overall distribution. Fixation-weighted values were 
accumulated across all subjects adding the weight to each location, producing a 
weighted fixation frequency matrix for each scene. Finally, a Gaussian low pass filter 
with a circular boundary and a cutoff frequency of -6dB was applied to the matrix for 
each scene to account for foveal accuity/eye tracker error. An example of a resulting 
duration-weighted attention map is shown in Figure 4c. 

 
Results 

We can take meaning maps and saliency maps as predictions concerning how viewers 
will distribute their attention over scenes. To investigate how well meaning maps and 
saliency maps predict the distribution of attention, it is important to assess the degree of 
association between the meaning maps and saliency maps themselves. For the scenes 
used here, the correlation between meaning and salience was 0.80 averaged across 
the 40 scenes (Henderson & Hayes, 2017). This correlation is consistent with the 
suggestion that attention effects that have previously been attributed to salience could 
be due to meaning (Henderson et al., 2007, 2009; Nuthmann & Henderson, 2010). At 
the same time, meaning and salience did not share 36% of their variance, and we can 

 
Figure 4. Example data used in the analyses. (a) Real-world scene, (b) viewers’ fixations 
superimposed on the scene as blue dots, and (c) the duration-weighted attention map derived from 
the fixations. (d) Meaning map and (e) saliency map for the example scene, and (f) the difference 
between the meaning and saliency maps, with regions of greater meaning shown in read and greater 
saliency shown in blue. 
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ask how well this unshared variance in each predicts attention. 
The critical empirical question in the pesent study was how well the two types of 
prediction maps (meaning and saliency maps) capture the distribution of attention. To 
investigate this question, we used linear correlation (Bylinskii, Judd, Oliva, Torralba, & 
Durand, 2016) to determine the degree to which meaning maps (Figure 4d) and 
saliency maps (Figure 4e) statistically predicted the spatial distribution of attention 
(Figure 4b) as captured by the duration-weighted attention maps (Figure 4c). This 
method allows us to assess the degree to which meaning maps and saliency maps 
account for shared and unique variance in the attention maps. 
Figure 6 presents the primary data for each of the 40 scenes. Each data point shows 
the relationship (R2 value) between the meaning map and the observed attention map 
for each scene (red), and between the saliency map and the observed attention map for 

each scene (blue). The top half of Figure 5 shows the squared linear correlations. On 
average across the 40 scenes, meaning accounted for 50% of the variance in fixation 
density (M=0.50, SD=0.12) and saliency account for 35% of the variance in fixation 
density (M=0.35, SD=0.12). A two-tailed t-test revealed this difference was statistically 
significant, t(78) = 5.38, p < .0001, 95% CI [0.09,0.20]. 
To examine the unique variance in attention explained by meaning and salience when 
controlling for their shared variance, we computed squared semi-partial correlations 
(bottom half of Figure 5). Across the 40 scenes, meaning accounted for a significant 
19% additional variance in the attention maps after controlling for salience (M=0.19, 
SD=0.11), whereas saliency maps accounted for a non-significant 4% additional 
variance after controlling for meaning as saliency (M=0.04, SD=0.04). A two-tailed t-test 
confirmed that this difference was statistically significant, t(78) = 8.22, p < .0001, 95% 
CI [0.11, 0.18]. These results show that meaning explained the distribution of attention 
over scenes better than salience. 
It has been been proposed that attention is initially guided by image salience, but that 

 
Figure 5. Squared linear correlation and semi-partial correlation by scene and across all scenes. The 
line plots show the linear correlation (top) and semi-partial correlation (bottom) between duration-
weighted fixation density and meaning and salience by scene. The scatter box plots on the right show 
the corresponding grand mean (black horizontal line), 95% confidence intervals (colored box), and 1 
standard deviation (black vertical line) for meaning and salience across all 40 scenes. 
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as viewing progresses over time, meaning begins to play a greater role (Anderson, 
Donk, & Meeter, 2016; Anderson, Ort, Kruijne, Meeter, & Donk, 2015; see also 
Henderson & Hollingworth, 1999). To test this proposal, we conducted temporal time-
step analyses. Linear correlation and semi-partial correlations were conducted based on 
a series of attention maps, with each map generated from each sequential eye fixation 
(i.e., 1st, 2nd, 3rd fixation, etc.) in each scene. This allowed us to test whether the relative 
importance of meaning and salience in predicting attention changed over time. The 
results are shown in Figure 6. For the linear correlations, the relationship was stronger 
between the meaning and attention maps for all time steps (top of Figure 6) and was 
highly consistent across the 40 scenes. Meaning accounted for 33.0%, 32.1%, and 
29.7% of the variance in the first 3 fixations, whereas salience accounted for only 9.5%, 
15.2%, and 16.6% of the variance in the first 3 fixations, respectively. Two sample two-
tailed t-tests were performed for all 38 time points, and p-values were corrected for 
multiple comparisons using the false discovery rate (FDR) correction (Benjamini & 
Hochberg, 1995). This procedure confirmed the advantage for meaning over salience at 
all 38 time points (FDR < 0.05). 
The improvement in R2 for the meaning maps over saliency maps observed in the 
overall analyses was again found to hold across all 38 time steps (bottom of Figure 6) 

(FDR < 0.05), with meaning accounting for 26.1%, 21.7%, and 17.4% of the unique 
variance in the first 3 fixations, whereas salience accounted for 2.7%, 4.6%, and 4.2% 
of the unique variance in the first 3 fixations, respectively. In conclusion, counter to the 
salience-first hypothesis but consistent with results based on unweighted fixations 
reported (Henderson & Hayes, 2017), in both the correlation and semi-partial correlation 
analyses meaning accounted for more variance in attention than salience from the very 
first fixation. These results indicate that meaning begins guiding attention as soon as a 
scene appears. 

 
Figure 6. Squared linear correlation and squared semi-partial correlation as a function of fixation 
number. The top panel shows the squared linear correlation between duration-weighted fixation density 
and meaning and salience as a function of fixation order across all 40 scenes. The bottom panel shows 
the corresponding semi-partial correlation as a function of fixation order across all 40 scenes. Error bars 
represent standard error of the mean. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207076doi: bioRxiv preprint 

https://doi.org/10.1101/207076
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

Central Region Knock-Out Analyses 
It is commonly found in eyetracking studies that viewers tend to concentrate their 
fixations near the center of a real world scene and rarely fixate the outside borders of a 
scene (Borji et al., 2013; Henderson et al., 2007; Tatler, 2007). As noted in the 
methods, in creating the final meaning maps, we used a multiplicative center bias 
operation to down-weight the scores in the periphery, as is commonly done with 
saliency maps. However, to further ensure that the advantage of meaning maps over 
saliency maps in predicting the distribution of attention was not due to a center bias 
advantage for the meaning maps, we also conducted additional analyses in which the 
data from the central 7° of each map (attention, meaning, and saliency) were removed. 
Differences in the success of meaning and saliency maps in this analysis therefore can 
not be due to differences in the ability of meaning maps to predict central fixations. The 
results of these analyses were qualitatively and quantitatively very similar to the 
complete analyses. 

Figure 7 presents the linear correlation data used to assess the degree to which 
meaning maps and saliency maps accounted for shared and unique variance in the 
attention maps for each scene excluding the central 7°. Each data point shows the R2 
value for the prediction maps (meaning and saliency) and the observed attention maps 
for saliency (blue) and meaning (red). The top of Figure 9 shows the squared linear 
correlations. On average across the 40 scenes, meaning accounted for 46% of the 
variance in fixation density (M=0.46, SD=0.11) and saliency account for 34% of the 
variance in fixation density (M=0.34, SD=0.13). A two-tailed t-test revealed this 
difference was statistically significant, t(78) = 4.39, p < .0001, 95% CI [0.06, 0.17]. 
To examine the unique variance in attention explained by meaning and salience 
excluding the central 7° and when controlling for their shared variance, we computed 
squared semi-partial correlations. These correlations, shown in the bottom of Figure 7, 
revealed that across the 40 scenes, meaning captured more than 3 times as much 

 
Figure 7. Squared linear correlation and semi-partial correlation by scene and across all scenes with 
7° center removed. The line plots show the linear correlation (top) and semi-partial correlation 
(bottom) between duration-weighted fixation density and meaning and salience by scene after 
removing the central 7° from each scene. The scatter box plots on the right show the corresponding 
grand mean (black horizontal line), 95% confidence intervals (colored box), and 1 standard deviation 
(black vertical line) for meaning and salience across all 40 scenes. 
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unique variance (M=0.17, SD=0.10) as saliency (M=0.05, SD=0.05). A two-tailed t-test 
confirmed that this difference was statistically significant, t(78) = 6.78, p < .0001, 95% 
CI [0.08, 0.16]. These results confirm those of the complete analysis and indicate that 
meaning was better able than salience to explain the distribution of attention over 
scenes even when the central 7° of maps was removed. 
To test whether the overall advantage of meaning over salience early in viewing ws due 
to meaning at the center, we conducted the fixation series analysis excluding the central 
7° of maps. Figure 8 shows the temporal time-step analyses with the central 7° of maps 
removed. Linear correlation and semi-partial correlation were conducted as in the main 
time-step analyses based on a series of attention maps generated from each sequential 

eye fixation in each scene. Using the same testing and false discovery rate correction 
as in the main analyses, 34 of 38 time points were significantly different in both the 
linear and semi-partial analyses (FDR < 0.05), excluding fixations 21, 25, 27, and 28. 
Importantly for assessing initial control of attention during scene viewing, in the linear 
correlation analysis (top of Figure 8), meaning accounted for 22.9%, 27.0%, and 26.7% 
of the variance in the first three fixations, whereas salience accounted for only 10.2%, 
14.9%, and 16.2% of the variance in the first three fixations. Critically, when controlling 
for the correlation among the two prediction maps with semi-partial correlations, the 
advantage for the meaning maps observed in the overall analyses was also found to 
hold across all time steps, as shown in the bottom of Supplementary Figure 8 (FDR < 
0.05). Meaning accounting for 17.9%, 17.8%, and 15.7% of the unique variance in the 
first 3 fixations, whereas salience accounted for 5.2%, 5.6%, and 5.4% of the unique 
variance in the first three fixations, respectively. Consistent with the overall correlation 
and semi-partial correlation analyses, meaning produced an advantage over salience 
from the very first fixation even when the central region of each map was removed from 
the analysis. These results indicate that when overt attention leaves the center of a 
scene, meaning guides even those earliest shifts of overt attention. These results are 

 
Figure 8. Squared linear correlation and squared semi-partial correlation as a function of fixation 
number with 7° center removed. The top panel shows the squared linear correlation between fixation 
density and meaning (red) and salience (blue) as a function of fixation order averaged over all 40 
scenes. The bottom panel shows the corresponding semi-partial correlation as a function of fixation 
order averaged over all 40 scenes. Error bars represent standard error of the mean.  
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especially strong evidence for the control of attention by meaning because removing the 
central 7° should disadvantage the meaning maps because photographers tend to 
center meaningful information in photographs (Tatler, 2007). Nevertheless, the meaning 

maps continued to outperform the saliency maps in both the overall variance and 
unique variance accounted for in the attention maps. 
Saccade Amplitude Analyses 
It could be that meaning controls attention as it is guided within objects and nearby 
scene regions, but that salience controls attention as it is guided from one scene region 
to another. If this is true, then meaning should be more highly related to attentional 
selection following shorter saccades, whereas image salience should be more highly 
related of attention following longer saccades. To investigate this prediction, we 
conducted an analysis in which we examined how meaning and salience related to 
attention following saccades of different amplitudes. 

 

 
Figure 9. Squared linear correlation and squared semi-partial correlation as a function of saccade 
amplitude to fixation. (a) The distribution of saccade amplitudes observed in the experiment. (b) The 
squared linear correlations between duration-weighted fixation density for meaning and salience as a 
function of the saccade amplitude percentiles prior to fixation. (c) The corresponding semi-partial 
correlations as a function of saccade amplitude. Data points are averages across all 40 scenes. Error bars 
represent standard error of the mean. 
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Figure 9 presents the distribution of saccade amplitudes in the present study. The 
average amplitude was 3.5 degrees, but as typically observed in scene viewing, 
saccade amplitude varied considerably (Henderson & Hollingworth, 1999). Once again, 
we used correlation analyses to assess the degree to which meaning maps and 
saliency maps accounted for shared and unique variance in the attention maps data for 
fixations following saccades of different amplitudes. For these analyses saccade 
amplitudes were binned by percentile. Each data point shows the R2 value for the 
observed attention maps for saliency (blue) and meaning (red) at each saccade 
amplitude decile. The middle of Figure 9 shows the squared linear correlations and the 
bottom of Figure 9 shows the unique variance accounted for by meaning and salience. 
The R2 values for meaning and salience differed for all amplitudes except the very 
longest decile in both figures (FDR < .05). These results confirm those of the complete 
analysis and indicate that meaning was better able than salience to explain the 
distribution of attention over scenes even when attention was not limited to the object or 
scene region at the current point of attention. 
 

General Discussion 

Image salience as instantiated by computationally derived saliency maps currently 
provides a central theoretical framework and empirical paradigm for understanding how 
attention is guided through real-world scenes. Yet human viewers are known to be 
highly sensitive to the semantic contents of the visual world that they perceive, 
suggesting that attention may be directed by semantic content rather than image 
salience. Until recently it has been difficult to directly contrast the influence of image 
salience and meaning. Recently we introduced a new method for identifying and 
representating the spatial distribution of meaning in any scene (Henderson & Hayes, 
2017). The resulting “meaning maps” quantify the spatial distribution of semantic 
content across scenes in the same format that saliency maps quantify the spatial 
distribution of image salience. Meaning maps therefore provide a method for 
disentangling the distribution of meaning from the distribution of image salience. In the 
present study, we used meaning maps to test the relative importance of meaning and 
salience during scene viewing by testing meaning maps and saliency maps against 
observed duration-weighted attention maps. 
The results showed that both meaning maps and saliency maps were able to account 
for considerable variance in attention maps, suggesting that they both offered good 
predictions concerning attention. However, meaning maps and saliency maps are 
themselves strongly correlated (Henderson & Hayes, 2017). When these correlations 
were statistically controlled, meaning maps accounted for additional unique variance in 
the duration-weighted distribution of attention over scenes. On the other hand, the 
variance due to visual salience was completely accounted for by meaning, such that 
saliency maps accounted for no additional unique variance in the attention maps when 
the variance accounted for by meaning was controlled. These results suggest that 
meaning plays the primary role in directing attention through scenes.  
A similar dominance of meaning over sailence was observed throughout the viewing 
period, with unique variance accounted for by meaning beginning with the first subject-
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determined fixation. Contrary to salience-first models, these results suggest that 
meaning influences attentional guidance more strongly than salience both early and 
later during scene viewing. The results indicate that meaning begins guiding attention 
as soon as a scene appears, and suggest that viewers are able to determine very 
quickly (within the first glimpse) where meaningful regions within the current scene are 
to be found and to direct their attention based on that assessment. 
The strong role of meaning in guiding attention in scenes can be accommodated by a 
theoretical perspective that places explanatory primacy on scene semantics. For 
example, on the cognitive relevance model (Henderson et al., 2007, 2009), the priority 
of an object or scene region for attention is determined solely by its meaning in the 
context of the scene and the current goals of the viewer, and not by its visual features or 
salience. On this model, meaning determines attentional priority, with image properties 
used only to generate perceptual (“proto-”) objects and other perceptually based 
potential saccade targets. Critically, then, attentional priority is assigned to potential 
attentional targets not based image saliency, but rather based on knowledge 
representations (e.g., knowledge about what objects are likely to be present and where 
those objects are likely to be found). In this model, the visual stimulus is relevant in that 
it is used to generate perceptual (“proto”) objects and other targets for attention, and 
processes related to salience may be relevant in determining whether a perceptual 
object is generated, but the image features themselves provide a flat (that is, unranked) 
landscape of potential attentional targets rather than a landscape ranked by salience. 
Instead, on this model, knowledge representations provide the attentional priority 
ranking to the targets based on their meaning (Henderson, 2003; Henderson et al., 
2007, 2009).  
It is important to note that the cognitive relevance model does not require meaning be 
assigned simultaneously across the entire scene to all perceptually mapped potential 
saccade targets. That is, the model does not require a strong “late-selection” view of 
scene perception in which all objects and scene regions are fully identified before they 
are attended. There are two reasons for this. First, when a scene is initially 
encountered, the “gist” of the scene can be quickly apprehended (Biederman, 1972; 
Potter, 1975) and can guide attention at the very earliest points of scene viewing 
(Castelhano & Henderson, 2003, 2008b; Henderson & Hollingworth, 1999; Oliva & 
Torralba, 2006). Apprehending the gist allows access to schema representations that 
provide constraints on what objects are likely to be present and where those objects are 
likely to be located (Henderson, 2003; Henderson & Hollingworth, 1999). Information 
retrieved from memory schemas can be combined with low-quality peripheral visual 
information from the periphery to assign tentative meaning to perceptual objects and 
other scene regions. These initial representations provide a rich set of priors and can be 
used to generate predictions for guiding attention to regions that have not yet been 
identified (Henderson, 2017). Second, as shown in the present study as well as many 
others (Henderson et al., 1999), most saccades during scene viewing are relatively 
short, with the average amplitude of about 3.5° in the present study. The implication is 
that attention is frequently guided from the current location to the next location based on 
visual information that is relatively close to the fovea, where identity and meaning can 
easily be ascertained. Extraction of meaning from nearby cannot be the entire story for 
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attentional guidance given that meaning continues to dominate salience even for 
fixations following longer saccades, as shown in the present study, but it does suggest 
that for the many shorter shifts of attention, meaning is at least partly derived from a 
spatially local semantic analysis of the scene. For longer saccades, it is likely that 
guidance is based on scene representations retrieved from memory as described 
above. 
The present results at first glance appear to be at odds with past studies that have 
shown strong correlations between visual salience and attention. How can we account 
for this discrepancy? One explanation can be found in the strong correlation between 
meaning and visual salience. We have hypothesized in the past that this correlation is 
likely to be high (Henderson et al., 2007). Meaning maps provide a method for testing 
hypothesis, and strong support was found for it, with a correlation of 0.80 between 
meaning and salience (Henderson & Hayes, 2017). Given this correlation, salience can 
do a reasonably good job of predicting meaning-driven attention. From an engineering 
perspective, this might be sufficient. However, from the perspective of the study of 
human vision in which the goal is to provide a theoretical account of how the brain 
guides attention, a focus on salience will be misleading. Instead, the present results 
along with previous results (Henderson & Hayes, 2017) strongly suggest that meaning, 
not visual salience, is the causal factor that guides attention. 
Limitations and Future Directions 
We note several caveats of this study and our earlier meaning map investigation 
(Henderson & Hayes, 2017). First, we have so far used a single viewing task. It has 
been shown that attention as indexed by eye movements differs over the same scene 
depending on the task (Castelhano, Mack, & Henderson, 2009; Henderson et al., 1999; 
Mills, Hollingworth, Van der Stigchel, Hoffman, & Dodd, 2011), and it could be that 
under other task instructions, image salience would play a greater role than meaning. 
Furthermore, comparing the results from Henderson and Hayes (2017) and the present 
results show that the results were similar for attention maps created from duration-
weighted and unweighted fixation densities. It may be that differences in these attention 
maps would be more pronounced for other types of tasks. While this is a possibility, the 
memorization task is a relatively unstructured free-viewing task in which viewers are not 
explicitly or implicitly directed to meaningful scene regions. Therefore, this task would 
not seem to favor image-based over meaning-based attentional guidance. 
Nevertheless, we can not rule out the possibility that salience might play a more 
important role in other tasks, and it will be important to assess the relative influences of 
meaning and salience in guiding attention across viewing tasks.  
Second, although meaning was the stronger predictor of attention for the majority of 
scenes (36 out of 40 scenes) and overall on average, salience did perform better for 4 
of the scenes. The question arises why these latter scenes showed the opposite 
pattern. One possibility is that there may simply be statistical noise in one or more of the 
maps (meaning, saliency, or attention) for a given scene that occasionally leads to a 
noise-based reversal of the actual pattern. Another possibility is that there is some 
systematic difference in the scenes that show the reversed pattern. We were not able to 
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discern any particular regularities in those particular scenes, but a future direction for 
study will be to compare different classes of scenes (e.g., indoor versus outdoor; natural 
versus man-made) to determine whether meaning and salience play greater or lesser 
roles for specific types of scenes. 
Third, in the present study we defined meaning in a context-free manner, in the sense 
that each scene patch was rated for meaning without regard to the scene it came from. 
Meaning could instead be defined in a context-dependent manner, with the meaning of 
a scene region assessed in terms of its scene context. Similarly, meaning could vary as 
a function of the viewer’s task. Here we focused on context-free meaning as a first step, 
but it will be important to determine how meaning changes as the context changes, and 
in turn how context-dependent meaning influences attention.  
Conclusion 
In this study we employed recently developed methods for comparing the relationship 
between the spatial distribution of meaning and image salience and the spatial 
distribution of attention in scene viewing (Henderson & Hayes, 2017). We investigated 
the relative importance of meaning and salience on the guidance of attention in scenes 
as indexed by attention maps based on duration-weighted fixations. We found that the 
spatial distribution of meaning was better able than image salience to account for the 
guidance of attention, both overall and when controlling for the correlation of meaning 
and salience. Furthermore, we found that the stronger influence of meaning persisted 
when the central region of each scene was removed from the analyses, appeared from 
the very beginning of scene viewing, and held over both shorter and longer shifts of 
attention. This pattern of results is consistent with a cognitive relevance theory of scene 
viewing in which attentional priority is assigned to scene regions based on semantic 
information value rather than visual salience. 
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Appendix 
Patch Density Parameter Estimation 

The optimal meaning map grid density for each patch size was estimated by simulating 
the recovery of known image properties (i.e., luminance and entropy). For the sake of 
simplicity and visualization, the simulation procedure will be described in terms of 
luminance recovery, but the same procedure was also applied to edge density and 
entropy recovery.   
The first step in the recovery simulation was to generate the ground truth luminance 
image for each scene for a given patch size, which sets an upper limit on the luminance 
resolution that can be recovered. The ground truth luminance image for each scene was 
computed by taking the scene luminance image and convolving it with a circular mean 
mask for a given patch size (i.e., 3° and 7°). Then, the patch density grid (simulating 
patch ratings) was systematically varied from 50 to 1000 patches (3°) and 40 to 200 (7°) 
and recovery of the ground truth was performed for each grid. The recovery procedure 
consisted of taking the mean of each patch from the original luminance image and then 
using thin plate interpolation to interpolate between the patches across each grid. If the 
patch density was low enough that the entire image was not tiled, then the background 
was set to the mean value across all the patch samples in the grid. 

Figure A1 shows an example of the recovery procedure for the scene shown in Figure 
1a for a patch density of 88 (a) and 300 (b). As can be seen by comparing the ground 
truth (left) to the interpolated recovery (right), a patch density of 300 provides an 
excellent estimate of the ground truth. Figure A2 shows luminance, edge density, and 

 
Figure A1. Example of scene luminance recovery. From left to right, the 3° ground truth luminance, 
simulated rating density, and interpolated recovery images are shown for a patch density of 88 (a) and a 
patch density of 300 (b). A comparison of the ground truth and recovery indicates that a patch density 
value of 300 provided excellent recovery. 
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entropy recovery (R2) for the 3° patch size (a) and the 7° patch size (b) as a function of 
patch density. Recovery improvement plateaus at a patch density of 300 patches for the 
3° patch size and 108 patches for the 7° patch size.   
 

It is worth noting that the recovery procedure makes two assumptions. First, it assumes 
that meaning can be interpolated from sub-sampling like luminance and entropy.  
Second, it assumes that our rating task provides an accurate estimate of meaning at 
each patch sample location. A priori we did not know whether these assumptions about 
meaning or our rating task were satisfied. While we still can not judge whether the 
selected patch densities or rating task are optimal for measuring meaning, the accuracy 
of the meaning map prediction results suggests the recovery simulations using 
luminance and entropy provided reasonable sample density values for each patch size 
and the rating task provided reasonably accurate estimates of patch meaning. 
 
 
 

 

 
Figure A2. Ground truth recovery as a function of patch density for 3° and 7° patch sizes. The top 
panel shows the ground truth recovery (R2) across all 40 scenes for luminance, edge density, and entropy 
for the 3° patch size.  The bottom panel shows the corresponding ground truth recovery (R2) for the 7° 
patch size. Error bars represent standard error of the mean. 
. 
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