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Abstract 

There is growing interest in applying detailed mathematical models of the heart for ion-channel 

related cardiac toxicity prediction. However, a debate as to whether such complex models are 

required exists. Here an assessment in the predictive performance between two established cardiac 

models, gold-standard and cardiac safety simulator, and a simple linear model Bnet was conducted. 

Three ion-channel data-sets were extracted from literature. Each compound was designated a 

cardiac risk category based on information within CredibleMeds. The predictive performance of each 

model within each data-set was assessed via a leave-one-out cross validation. In two of the data-sets 

Bnet performed equally as well as the leading cardiac model, cardiac safety simulator, both of these 

outperformed the gold-standard model. In the 3rd data-set, which contained the most detailed ion-

channel pharmacology, Bnet outperformed both cardiac models. These results highlight the 

importance of benchmarking models but also encourage the development of simple models. 
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Introduction  

There is a growing belief within the pharmaceutical industry that in order to improve predictions of 

future experiments more detailed mathematical models of biology are required.1,2  However by 

including more detail not only does the number of parameters that need to be estimated increase 

but so does the degree of structural uncertainty i.e. the degree of confidence in the actual structure 

of the equations.3 The objective of this study is to look at this issue within the field of drug induced 

ion-channel cardiac toxicity. This area has a well-defined question relating to prediction where a 

debate about the complexity of the model needed is ongoing.  

The question of interest is: can high-throughput ion-channel screening data predict the propensity 

for a given type of arrhythmia, torsades de pointes (TdeP), in humans.4 In order to answer this 

question the literature is divided in terms of the complexity of the modelling approach required.5 

The complex models used are based on biophysical models which describe the changes in ionic 

currents over time within a single cardiac cell.6 They contain 100s of parameters and 10s of 

differential equations. The drug input into these models involves scaling ion-channel conductance’s 

by the amount of block at a given drug concentration.7 Two biophysical models that have gained 

favour in the literature are the gold-standard, as described by Zhou et al.8, model by O’Hara and 

Rudy9 which is being put forward for use by regulatory agencies10 and another, by TenTusscher et 

al.11, forms a key part of the cardiac safety simulator.12 An alternative simpler model being put 

forward analyses the net difference, via a linear combination, in drug block of the ion-channels of 

interest, termed Bnet.
5 Thus it is based on a higher level of abstraction than biophysical models and 

focusses on known biology/pharmacology.  

Two previous studies have shown that the simple model is likely to give similar predictive 

performance to the more complex models.5,13 However in those studies the definition of 

torsadegenic risk lacked consistency as each data-set used different criterion. Furthermore those 

studies were based only on 3 ion-channels, hERG, Cav 1.2 and Nav 1.5 peak, and so the 

dimensionality of ion-channel space can be considered narrow.  

In this study we analyse the predictive performance of the gold standard, cardiac safety simulator 

and Bnet models using a consistent and reliable definition of torsadegenic risk from CredibleMeds14,15 

across three literature data-sets.16–18 Two of these data-sets, Mirams et al.17 and Kramer et al.16, 

measured drug effect against 3 ion-channels, hERG, Cav 1.2 and Nav 1.5 peak. The third and latest 

data-set, from Crumb et al. 18, considers drug effect on 7 ion-channels, hERG (IKr), KCNQ1 + KCNE1 

(IKs), Kv4.3 (Ito), Kir2.1 (IK1), Cav 1.2 (ICaL), Nav1.5 peak (INa) and Nav1.5 late (INaL),  the largest 

number studied so far.  

By using a consistent definition of torsdagenic risk across different data-sets the analysis conducted 

will provide a detailed view on the performance of each model.  Thus enabling scientists to make a 

more informed decision about which modelling approach is likely to be the most useful for the 

prediction problem considered. 
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Methods 

Data 

Ion-channel IC50 values, defined as concentration of drug the reduces the flow of current by 50%, 

were collected from three publications.16–18 Compounds within those data-sets were classified as 

being TdeP positive or TdeP negative based on their classification by Credible Meds.14,15 A compound 

was classed TdeP positive if it was classified as known (KR) or partial risk (PR) on CredibleMeds which 

refers to whether there is substantial evidence the drug causes QT prolongation and/or TdeP.  A 

compound is classed as TdeP negative if it was classified as conditional risk (CR), the risk of TdeP is 

conditional on other factors e.g. drug-drug interaction, or no risk if it wasn’t listed (NR) as was done 

by Kramer et al.16 All data is provided in supplemental material. 

Model input data   

The percentage block against a given ion-channel inputted into all models was calculated based on 

the effective therapeutic concentration (EFTPC), which was provided in the original articles, using a 

pore block model, 

% 𝐵𝑙𝑜𝑐𝑘 =  
1

1 +
𝐼𝐶50

𝐸𝐹𝑇𝑃𝐶

                                                                        (1) 

           

Models 

Single cell cardiac model simulations 

The AP predict platform25 was used to simulate the gold-standard and cardiac safety simulator 

models in all cases except for one simulation study. A MATLAB version of the gold-standard model 

available on the Rudylab website (http://rudylab.wustl.edu) was used when simulating the block of 7 

ion-channels since that model on AP predict does not allow blocking of INaL – a current measured in 

the Crumb et al. data-set. The default settings within the AP predict platform were used i.e. 1Hz 

pacing for 5 minutes with the APD90, time taken for the action potential to repolarise by 90%, 

recorded using the last cycle. The same protocol was applied in MATLAB when exploring the 7 ion-

channels within the O’Hara model i.e. 1Hz pacing for 5 minutes with APD90 recorded using the last 

cycle. In all simulations drug block was initiated at the beginning of simulations.  

Bnet 

We define the difference in block between repolarisation and depolarisation ion-channels as Bnet, 

𝐵𝑛𝑒𝑡 = ∑ 𝑅𝑖 − 

𝑛

𝑖=1

∑ 𝐷𝑗 

𝑚

𝑗=1
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where Ri and Dj represent the percentage block against repolarisation and depolarisation ion-

channels respectively for a specific drug.  

Classification evaluation  

For each compound the percentage change in APD90 compared to control (no block) from the 

biophysical model simulations was recorded as was the Bnet value. These values were then placed 

within a logistic regression analysis to assess their correlative value to TdeP risk. This was done via a 

leave one out cross validation (LOOCV). This involves training a classifier to n-1 compounds and 

testing on the nth. Thus all compounds perform part of the test-set.  The predicted probability of risk 

for each test compound is then used to generate a ROC AUC (area under the receiver operating 

characteristic curve) and is reported as was done previously.26  

Results 

Data 

The total number of compounds that are TdeP positive (CredibleMeds known (KR) or partial (PR) 

risk) versus TdeP negative (CredibleMeds conditional risk (CR) or not listed (NR)) across the 3 data-

sets of interest can be seen in Figure 1. Although the total number of compounds differs from one 

data-set to another the proportions that are KR or PR does not.  

The distribution of block against each ionic current, at the effective therapeutic concentration 

(EFTPC), across all data-sets can be seen in Figure 2. The plots show that the activity of the 

compounds is greatest against IKr across all data-sets. After IKr, ICaL appears to be the next channel 

for which a substantial amount of activity is seen. A somewhat surprising result is the degree of 

activity against INaL but not INa in the Crumb et al. data-set. The amount of activity against INaL in 

that data-set mirrors that of ICaL activity.  

Classification Evaluation 

The results of the leave-one-out cross validation for each data-set using various models can be seen 

graphically in Figure 3 and also in Table 1. For the Mirams et al. data-set it’s noticeable that the gold-

standard model performs no better than using just block against hERG alone neither of which are 

better than random chance. Both the cardiac safety simulator and Bnet show a similar improvement 

over using just hERG block.   

Moving onto the Kramer et al. data-set the performance of all models improves dramatically over 

the Mirams et al. data-set. Here all 3 models show superior performance over just hERG block. Note 

that again the gold-standard model performance is not as high as Bnet or the cardiac safety 

simulator. In addition the difference between Bnet and the cardiac safety simulator is negligible. 

Within the latest data-set by Crumb et al. the performance of all models, when using only 3 ion-

channels, drops to a level similar to that seen within the Mirams et al. data-set. The key difference 

between the results between those two data-sets is that the gold-standard model now shows similar 

performance to the cardiac safety simulator. Furthermore neither biophysical model performs 

overly better than using hERG block. Bnet however appears to give reasonable performance again and 

appears to show an improvement over using hERG block. Finally if we move onto using all the ion-
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channel data from the Crumb et al. data-set the difference in performance between the models is 

quite striking. Bnet’s performance improves with the addition of more information whereas there is 

little improvement in either biophysical model. The cardiac safety simulator may even have 

regressed slightly.  

In summary the results show that the performance of the models is data-set dependent. However, 

within each data-set the Bnet model performs just as well if not better than leading biophysical 

models.  

Discussion 

There appears to be a strong belief within the field of ion-channel cardiac drug toxicity that large 

scale cardiac models are required to answer a well-defined question10: can high-throughput ion-

channels screening data predict the torsaedgenic risk of a drug in man? The evidence base, that 

suggests that large-scale models perform better than simpler models for this question, simply does 

not exist. As previous studies have shown that the performance of the large-scale cardiac models 

can be mirrored by simpler models.5 Furthermore, the simpler model may have potential to out-

perform large-scale cardiac models.  

There were two major caveats in those previous studies. The first relates to the definition of 

torsadegenic risk, different databases were used, which has been debated within the literature.19 

Within this study the classification was based on information from CredibleMeds.14 Their 

classification is based on an extensive search of both the literature and public databases and are well 

known to the clinical community. Another advantage of the CredibleMeds classification is that they 

do not have a vested interest in the application of mathematical models within drug development.   

The second caveat relates to the dimensionality of the ion-channel space, only 3 ion-channels were 

considered in previous studies.16,17 Therefore an understanding as to how generalizable the 

inferences were on those data-sets to larger dimensions was unknown.  This caveat was addressed 

here by considering a data set by Crumb et al. which measured the drug affinity for 7 ion-channels18 

in addition to the previous data-sets using only 3 ion-channels.16,17 

Both of these caveats were addressed within this study. Three models were evaluated against the 

data-sets: 1) the gold-standard8 single cell model by O’Hara and Rudy9; 2) the single cell model by 

TenTusscher et al.11 which is used within the cardiac safety simulator12; 3) a linear model evaluating 

the net difference in block between ion-channels involved in repolarising and depolarising the action 

potential, Bnet.
5 Each model was assessed via a leave-one-out cross validation. (Note that prospective 

assessment of models is not possible within this field since this would involve developing 

compounds with a TdeP risk which can be considered unethical.)  In addition to using outputs from 

the aforementioned models within the classification exercise the amount of block against hERG 

channel was used as a naïve benchmark. 

Overall the results showed that Bnet was equal if not superior to the biophysical models. The key 

findings were as follows. Within the Mirams et al. data-set the gold-standard model was no better 

than hERG block neither of which was better than random chance. In the largest data-set, by Kramer 

et al., all models show good performance and highlighted the benefit of measuring more than hERG. 

When using information on 7 ion-channels within the Crumb et al. data-set the performance of Bnet 
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was greater than that of the biophysical models.  Both of which showed no improvement in 

performance when moving from 3 to 7 ion-channels unlike Bnet. Furthermore the performance of the 

biophysical models was not all that superior to using only hERG block. In summary the only model 

which consistently showed the benefit of measuring more than hERG was Bnet. 

These results may appear surprising but are not uncommon in prediction problems in other 

fields.20,21 The key reason why complex models are not necessarily more predictive than simpler 

models is due to model error i.e. error in the structure of the model itself.3 The concept of model 

error has not been discussed at all within the cardiac modelling field. Thus the effect of model error 

on predictivity is largely unknown, although in other fields it tends to dominate prediction 

uncertainty.22,23     

A key caveat of the analysis conducted is that the data-sets used may be too small to understand 

how large a discrepancy there truly is between the different models. However it is hoped that by 

continuing to assess new data-sets as they become available that the community will eventually 

have a comprehensive compound list. Other caveats that relate to the Bnet model itself are that it 

doesn’t consider the kinetics of blocking which has been highlighted as an important factor.24 

However these studies have been on a small numbers of compounds and so a true assessment of 

the importance of kinetics cannot be determined from those studies alone. If sufficient evidence 

regarding the importance of drug kinetics does eventually become available the Bnet model can first 

be adapted in one of two possible ways: i) make its variables time-dependent or ii) introduce a 

scaling factor which accounts for the type of modulation (e.g. slow versus fast etc.). Thus there is a 

way to improve the model by considering kinetics of drug block if sufficient evidence suggests this 

will improve predictive/explanatory power.. 

In summary the study conducted here highlights the importance of benchmarking. Furthermore it 

highlights that simple mechanistic models can not only give similar performance to large-scale 

mechanistic models but can out-perform them. Finally it is hoped this study highlights that there is 

more than one solution to a problem and that although the question and quality of data dictates the 

modelling approach it should not dictate the size of the model. 
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Figure 1: Stacked bar-chart shows the proportion of compounds in each data-set that are TdeP 

positive (KR/PR on CredMeds database) or TdeP negative (CR on CredMeds database or not listed, 

NR). 
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Figure 2: Boxplots show the distribution of block for each ionic current across all 3 data-sets.   
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Figure 3: Bar-chart showing the performance of each model across all data-sets studied. The number 

in parentheses for the Crumb data-set refers to the number of ion-channels used 3 v 7. 

 

Table 1: Results of the leave one out cross validation results across all data-sets for all models 

considered. 

Leave One Out Cross Validation ROC AUC 
Data-Set 3 ion-channels hERG 

Bnet Gold-Standard: 
ΔAPD90 

Cardiac Safety 
Simulator: ΔAPD90 

% Block IKr 

Mirams 
(2011) 

0.71 0.53 0.68 0.51 

Kramer 
(2013) 

0.96 0.86 0.94 0.67 

Crumb 
(2016) 

0.71 0.65 0.65 0.61 

 7 ion-channels  
Crumb 
(2016) 

0.82 0.67 0.60*  

*based on 6 ion-channels – INaL not modelled by TenTusscher et al.; ΔAPD90: percentage change in 

APD90 
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Supplementary Data 

The data-sets used in the analysis are given below. For each compound in each data-set the % block 

against an ionic current is given together with the % change in APD90 (time taken for the action 

potential to repolarise by 90%) for the 2 biophysical models under consideration and the compounds 

classification within the Credible Meds database.  

Note that for the Crumb et al. data-set 4 simulation results are provided for each compound. Ohara3 

and TenTusscher3 refer to simulations using information on IKr, INa and ICaL only, whereas OharaAll 

and TenTusscherAll refer to simulations using information on all ionic currents.  

 Kramer et al. 

Compound IKr INa ICaL Ohara Bnet Tentusscher CredMeds 
 Amiodarone 0.00 0.00 0.00 -0.151 0.00 -0.135 KR 
 Astemizole 7.00 0.00 0.00 13.610 7.00 2.526 KR 
 Bepridil 18.00 1.00 3.00 11.508 14.00 1.546 KR 
 Ceftriaxone 5.00 4.00 13.00 0.418 -12.00 -2.473 NR 
 Chlorpromazine 2.00 1.00 1.00 1.200 0.00 -0.046 KR 
 Cilostazol 1.00 0.00 0.00 0.335 1.00 -0.049 KR 
 Cisapride 13.00 0.00 0.00 8.419 13.00 1.586 KR 
 Clozapine 3.00 0.00 2.00 1.326 1.00 -0.167 PR 
 Dasatinib 0.00 0.00 0.00 -0.115 0.00 -0.128 PR 
 Diazepam 0.00 0.00 0.00 -0.194 0.00 -0.153 NR 
 Diltiazem 1.00 1.00 14.00 -2.639 -14.00 -3.240 NR 
 Disopyramide 5.00 0.00 0.00 2.890 5.00 0.491 KR 
 Dofetilide 6.00 0.00 0.00 3.760 6.00 0.679 KR 
 Donepezil 0.00 0.00 0.00 0.046 0.00 -0.086 KR 
 Droperidol 21.00 0.00 0.00 14.418 21.00 2.647 KR 
 Duloxetine 0.00 0.00 1.00 -0.037 -1.00 -0.206 NR 
 Flecainide 33.00 11.00 3.00 25.555 19.00 3.999 KR 
 Halofantrine 31.00 0.00 8.00 21.331 23.00 2.329 KR 
 Haloperidol 9.00 0.00 0.00 5.614 9.00 0.994 KR 
 Ibutilide 89.00 0.00 0.00 141.929 89.00 13.534 KR 
 Lamivudine 1.00 1.00 26.00 -6.209 -26.00 -6.652 NR 
 Linezolid 5.00 2.00 36.00 -6.464 -33.00 -8.994 NR 
 Loratdine 0.00 0.00 0.00 -0.204 0.00 -0.139 NR 
 Methadone 13.00 2.00 1.00 8.001 10.00 1.266 KR 
 Metronidazole 12.00 8.00 51.00 -5.356 -47.00 -13.621 CR 
 Mibefradil 1.00 0.00 2.00 -0.191 -1.00 -0.551 NR 
 Mitoxantrone 0.00 0.00 1.00 -0.351 -1.00 -0.348 NR 
 Moxifloxacin 11.00 1.00 6.00 6.081 4.00 0.048 KR 
 Nifedipine 0.00 0.00 40.00 -10.845 -40.00 -11.092 NR 
 Nilotinib 15.00 1.00 1.00 9.505 13.00 1.616 PR 
 Nitrendpine 0.00 0.00 11.00 -2.444 -11.00 -2.571 NR 
 Paliperidone 8.00 0.00 0.00 5.003 8.00 0.923 PR 
 Paroxetine 1.00 0.00 0.00 0.183 1.00 -0.121 CR 
 Pentobarbital 0.00 0.00 2.00 -0.293 -2.00 -0.464 NR 
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Phenytoin 3.00 6.00 17.00 -1.657 -20.00 -3.622 NR 
 Pimozide 1.00 0.00 0.00 1.234 1.00 0.091 KR 
 Piperacilin 29.00 36.00 53.00 10.513 -60.00 -10.825 NR 
 Procainamide 17.00 7.00 12.00 9.024 -2.00 -0.608 KR 
 Quinidine 82.00 18.00 34.00 100.813 30.00 5.271 KR 
 Raltegravir 1.00 1.00 3.00 -0.125 -3.00 -0.624 NR 
 Ribavarin 3.00 1.00 4.00 0.775 -2.00 -0.715 NR 
 Risperidone 1.00 0.00 0.00 0.258 1.00 -0.041 PR 
 Saquinavir 1.00 1.00 6.00 -0.928 -6.00 -1.467 NR 
 Sertinadole 6.00 0.00 0.00 3.405 6.00 0.604 PR 
 Sitagliptin 0.00 0.00 0.00 -0.112 0.00 -0.172 NR 
 Solifenacin 1.00 0.00 0.00 0.442 1.00 -0.014 CR 
 Sotalol 12.00 0.00 7.00 6.040 5.00 -0.161 KR 
 Sparfloxacin 7.00 0.00 2.00 4.211 5.00 0.415 KR 
 Sunitinib 1.00 0.00 0.00 0.445 1.00 -0.007 PR 
 Telbivudine 4.00 2.00 3.00 2.207 -1.00 -0.128 NR 
 Terfenadine 15.00 0.00 1.00 9.878 14.00 1.691 KR 
 Terodiline 18.00 2.00 3.00 11.852 13.00 1.688 KR 
 Thioradizine 66.00 41.00 22.00 68.619 3.00 5.478 KR 
 Verapamil 26.00 0.00 31.00 10.640 -5.00 -4.088 NR 
 Voricanazole 2.00 0.00 2.00 0.428 0.00 -0.330 CR 
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 Mirams et al. 

Compound INa ICaL IKr Bnet Ohara Tentusscher CredMeds 
 Ajmaline 15.46 2.07 59.06 41.52 57.285 8.149 NR 
 Amiodarone 0.01 0.18 1.64 1.44 1.738 0.203 KR 
 Amitriptyline 0.20 0.35 1.23 0.68 0.495 -0.054 CR 
 Bepridil 0.88 13.52 50.00 35.59 40.320 4.083 KR 
 Chlorpromazine 0.88 0.00 2.52 1.64 1.405 0.197 KR 
 Cibenzoline 11.12 24.55 4.14 -31.53 2.484 -0.177 NR 
 Cisapride 0.03 0.00 42.98 42.95 35.008 5.872 KR 
 Desipramine 6.63 5.94 7.21 -5.37 3.720 -0.439 PR 
 Diltiazem 1.34 21.33 0.70 -21.97 -4.787 -5.206 NR 
 Diphenhydramine 0.08 0.01 0.65 0.55 0.189 -0.058 CR 
 Dofetilide 0.00 0.00 28.57 28.57 20.757 3.752 KR 
 Fluvoxamine 0.95 7.14 10.84 2.75 -0.823 -1.581 CR 
 Haloperidol 0.05 0.21 11.76 11.50 7.482 1.373 KR 
 Imipramine 2.86 1.26 3.02 -1.10 1.618 0.008 PR 
 Mexiletine 8.76 3.97 7.63 -5.10 4.510 0.082 NR 
 Mibefradil 1.21 7.14 0.66 -7.69 -1.133 -1.636 NR 
 Nifedipine 0.02 11.37 0.00 -11.39 -2.609 -2.728 NR 
 Nitrendipine 0.01 89.61 0.03 -89.59 -24.736 -37.183 NR 
 Phenytoin 8.41 4.19 4.31 -8.29 2.252 -0.415 NR 
 Pimozide 1.82 0.61 4.76 2.33 2.792 0.373 KR 
 Prenylamine 0.67 1.35 20.73 18.71 14.000 2.366 NR 
 Propafenone 16.84 11.81 35.39 6.74 26.263 2.362 NR 
 Propranolo 1.22 0.14 0.91 -0.46 0.391 -0.041 NR 
 Quetiapine 0.19 0.32 0.57 0.05 0.090 -0.133 CR 
 Quinidine 16.32 17.18 91.52 58.02 154.967 10.943 KR 
 Risperidone 0.00 0.00 1.19 1.19 0.520 0.015 PR 
 Sertindole 0.07 0.02 10.20 10.11 6.428 1.204 PR 
 Tedisamil 0.42 0.00 3.29 2.86 1.865 0.293 NR 
 Terfenadine 0.92 2.34 50.28 47.02 43.313 6.529 KR 
 Thioridazine 34.85 42.96 96.74 18.93 185.571 6.492 KR 
 Verapamil 0.19 44.75 36.16 -8.79 16.067 -6.865 NR 
  

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2017. ; https://doi.org/10.1101/206946doi: bioRxiv preprint 

https://doi.org/10.1101/206946
http://creativecommons.org/licenses/by/4.0/


 Crumb et al. 

Compound ICaL IKr IK1 Ito IKs INaL INa 
 
Bnet 

Ohara 
All 

Ohara 
3 

TenTusscher 
All 

TenTusscher 
3 

Cred 
Meds 

Amiodarone 1.30 1.60 0.00 4.10 0.00 3.50 0.20 0.70 0.542 0.549 -0.188 -0.214 KR 

Amitriptyline 2.70 1.20 0.00 14.40 10.80 7.60 0.20 15.90 0.595 0.035 2.264 -0.577 CR 

Azithromycin 0.00 14.60 0.00 12.00 0.10 0.00 0.00 26.70 9.527 9.543 1.881 1.802 KR 

Bepridil 5.10 20.30 0.00 0.00 0.00 0.30 0.50 14.40 12.884 12.884 1.483 1.483 KR 

Chloroquine 0.00 11.70 4.40 0.00 0.00 0.00 0.00 7.30 7.809 7.464 1.679 1.409 KR 

Chlorpromazine 1.00 4.30 2.10 0.00 0.00 1.00 0.00 0.20 2.457 2.305 0.327 0.205 KR 

Cibenzoline 0.00 26.40 0.00 0.00 0.00 8.90 1.30 16.20 18.936 18.936 3.453 3.453 NR 

Cisapride 0.00 11.50 0.00 0.00 0.00 0.00 0.00 11.50 7.323 7.323 1.381 1.381 KR 

Diltiazem 52.30 4.30 0.00 0.00 0.00 0.00 0.00 -48.00 -11.655 -11.655 -15.211 -15.211 NR 

Dofetilide 0.00 56.00 0.00 0.00 0.00 0.00 0.00 56.00 51.234 51.234 7.875 7.875 KR 

Flecainide 0.80 51.80 0.00 13.80 0.00 11.00 1.60 52.20 45.627 45.653 7.118 7.087 KR 

Lidocaine 0.00 0.00 0.00 0.00 0.00 13.70 0.00 -13.70 -1.120 0.000 0.000 0.000 NR 

Lopinavir 3.90 8.20 0.00 0.00 0.00 0.00 0.00 4.30 4.315 4.315 0.083 0.083 NR 

Mexiletine 0.00 0.00 0.00 0.00 0.00 14.20 0.00 -14.20 -1.120 0.000 0.000 0.000 NR 

Mibefradil 1.10 5.20 0.00 0.00 0.00 0.10 0.20 3.80 2.884 2.884 0.304 0.304 NR 

Moxifloxacin 0.00 11.00 0.00 0.00 6.90 0.50 0.00 17.40 7.440 6.978 3.093 1.315 KR 

Nilotinib 0.00 41.30 0.00 0.00 0.00 0.00 0.00 41.30 33.152 33.152 5.620 5.620 PR 

Ondansetron 4.30 20.30 0.00 0.00 0.00 1.60 0.00 14.40 13.008 13.008 1.654 1.654 KR 

Propafenone 10.00 25.90 0.00 0.00 0.00 4.80 4.10 7.00 16.718 16.718 1.218 1.218 NR 

Quinidine 0.00 71.60 0.00 14.00 8.40 0.00 0.00 94.00 81.359 79.081 13.128 10.461 KR 

Quinine 12.30 43.50 0.00 5.30 8.30 39.60 11.80 -6.60 30.890 34.133 5.763 3.430 CR 

Ranolazine 0.00 26.70 0.00 0.00 0.00 21.20 0.00 5.50 17.100 19.078 3.479 3.479 CR 

Ritonavir 2.40 7.50 0.00 0.00 0.00 13.00 0.00 -7.90 3.350 4.156 0.326 0.326 CR 

Rufinamide 25.20 0.00 0.00 0.00 0.00 0.00 0.00 -25.20 -6.508 -6.508 -6.419 -6.419 NR 

Saquinavir 5.30 11.30 0.00 0.00 0.00 3.10 1.20 1.70 6.249 6.249 0.202 0.202 PR 

Sertindole 0.00 16.90 0.00 0.00 0.00 0.00 0.00 16.90 11.237 11.237 2.115 2.115 PR 

Sotalol 0.00 15.90 0.00 0.00 0.00 0.00 0.00 15.90 10.497 10.497 1.979 1.979 KR 
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Terfenadine 5.30 39.50 0.00 0.00 0.00 0.00 0.00 34.20 30.157 30.157 -0.139 -0.139 KR 

Toremifene 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 PR 

Verapamil 16.10 6.60 0.00 0.00 0.00 0.00 0.00 -9.50 0.332 0.332 -3.040 -3.040 NR 
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