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Abstract 18 

There are numerous ways to reach for an apple hanging from a tree. Yet, our motor system 19 

uses a specific muscle activity pattern to generate reaching movements that have similar 20 

characteristics. For many decades, we know that this pattern features activity bursts and 21 

silent periods. We suggest that these bursts are a strong evidence against the common view 22 

that the brain continuously controls the commands to the muscles. Instead, we suggest a 23 

model that changes these commands in a discrete way. We use unsupervised machine 24 

learning to identify transitions in the state of the muscles, and show that fitting a discrete 25 

model to the kinematics of movement using only one parameter predicts the transitions in 26 

the state of the muscles. Such discrete controller suggests that the brain reduces the 27 

complexity of the motor control problem as well as the wear-and-tear of the muscles by 28 

sending commands to the muscles at sparse times. Identifying this discrete controller can 29 

be applied in the control of prostheses and physical human-robot interaction systems such 30 

as exoskeletons and assistive devices.   31 
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Introduction 32 

During multi-joint arm movement, there is activity alteration between agonist and 33 

antagonist muscles groups. For hand point-to-point reaching movements, the muscles 34 

exhibit a unique activation pattern which consist of switching between activity bursts and 35 

silent periods, known as the tri-phasic muscles activity pattern (Hallett, Shahani et al. 1975, 36 

Flanders 1991, Flanders, Pellegrini et al. 1996). These patterns characterize muscle activity 37 

in different types of movements (Bizzi, Kalil et al. 1971, Hallett and Marsden 1979, 38 

Mustard and Lee 1987, Hoffman and Strick 1990), suggesting that a central program 39 

controls the precise timing of switching (Sanes and Jennings 1984). Yet, the origin of such 40 

central program is still unknown. Here, we show that an intermittent control model can 41 

explain these activity patterns during hand reaching. 42 

Many studies aimed to reveal the nature of such central program by examining kinematic 43 

characters of the hand during point-to-point reaching motion. While there are various ways 44 

to reach from one point to another, these movements are typically made using a straight-45 

line path with a stereotypic bell-shaped velocity trajectory (Morasso 1981). These motion 46 

features suggest that a simple control mechanism is responsible for generating such 47 

movement. To explain this mechanism, different models based on optimal control theory 48 

were proposed, such as minimum jerk (Flash and Hogan 1985), minimum joints torque 49 

(Uno, Kawato et al. 1989), or minimum muscle tension change (Dornay, Uno et al. 1996). 50 

The difference between these models is that each model has different prediction regarding 51 

the control signal that is used to generate motion. This control signal is assumed to serve 52 

as the basis for the central program that is responsible for muscle activation and eventually 53 

hand motion.  54 

Most of the optimal control models that describe hand movement are based on continuously 55 

changing control signal that generates the motion. However, the abrupt changes in the 56 

muscles activity as seen in the EMG signals suggest that the control signal is a result of an 57 

intermittence based control mechanism. Such mechanism would occasionally change the 58 

control signal at certain sparse points in time according to a control law.   59 
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Recently, an intermittent optimal control based model was suggested to explain the 60 

kinematic of the trajectory of reach (Ben-Itzhak and Karniel 2008) and object manipulation 61 

(Leib and Karniel 2012) movements. This model is based on minimizing hand acceleration 62 

which results in a piecewise constant control signal (Minimum Acceleration with 63 

Constraints model). The resulting control signal is characterized by two transitions between 64 

control values that generate motion (Ben-Itzhak and Karniel 2008). Here, we show that this 65 

intermittence optimal control based model that describes the kinematics of hand motion 66 

can also explain the timing of the muscles activity. We compare the timing of transitions 67 

in the control signal as predicted by this model with the timing of transitions in muscles 68 

activity, and provide a possible explanation to the tri-phasic muscle pattern. 69 

The previously proposed minimum muscle tension model predicts muscle activity 70 

alteration between the agonist and antagonist muscles during reaching, but the predicted 71 

pattern is different from the tri-phasic pattern (Dornay, Uno et al. 1996). In contrast, we 72 

show here that the MAC control signal predicts alterations in muscle activity that are 73 

similar to the observed tri-phasic pattern. This bang-bang control signal, transmitted from 74 

the brain, serves as the neural drive for generating muscle activity (Dowling 1992) which 75 

will result in hand movement. Due to Electromechanical delays between the muscle 76 

activity onset and movement onset (Norman and Komi 1979), we expected some 77 

differences between the transitions times in the control signal, which we derive from 78 

kinematic data, and the transitions in EMG signals. However, we show that adding this 79 

constant delay to our predictions drastically improves the fit.  80 
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Results 81 

We used EMG signals and hand position data that were recorded during center-out and 82 

out-center reaching movements in a previous study (d'Avella, Portone et al. 2006). 83 

Movements were made between a center position and eight different targets positioned 84 

evenly on a circle. An example for one movement is depicted in the upper panel of Figure 85 

1A. All movements were characterized by sigmoidal position trajectories and bell shaped 86 

velocity trajectories. We extracted the movement duration and movement length from these 87 

signals, and used these parameters to calculate the Minimum Acceleration with Constraints 88 

(MAC) model trajectory. This model minimizes the acceleration of the hand while 89 

constraining the jerk value, and yields a piecewise-constant jerk trajectory with two switch 90 

times between jerk values. We fitted the optimal MAC predicted position to the recorded 91 

position signal by finding the value of the jerk that minimizes the error between model's 92 

prediction and actual position. Using this fitting process between the MAC model predicted 93 

position trajectory to the actual hand position trajectory allowed for extracting the 94 

transition times MACt1
 and MACt2

 from the fitted control signal (Figure 1A, middle panel). We 95 

call these transitions MAC-predicted transitions. This process is depicted in the middle 96 

panel of Figure 1A. In addition, during the movement, EMG was recorded from 17-18 97 

muscles. Using an algorithm of multiple point-change detection implemented using the 98 

Markov Chain Monte Carlo (MCMC) method, we detected the transition times EMGt1
 and 99 

EMGt2
 in each EMG signal independently from the kinematics information. We call these 100 

transitions EMG-detected transitions.  101 

An example for reaching movement and EMG recorded from one muscle during motion is 102 

depicted in Figure 1A (bottom panel). In this example, we found that the EMG-detected 103 

transitions times of the EMG signal are similar to the MAC-predicted transitions times of 104 

the MAC model control signal. An example of the transition times within the three-phase 105 

pattern in all the muscles that were recorded during a single movement is depicted in Figure 106 

1B. For many of the muscles, the EMG-detected transitions were remarkably coincident 107 

with the MAC-predicted transition times. For example, this was true for the TrLat, DeltA, 108 

TrapMed, and TeresMaj, and very close also for BicLong and Brac. However, for some of 109 

the muscles, the MAC-predicted transitions times did not match the EMG-detected 110 
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transitions times, but rather it seemed that both transitions were shifted together, 111 

predominantly towards earlier in time.  112 

A correlation analysis between MAC-predicted transitions and EMG-detected transitions 113 

for all muscles of a single participant across all trials is depicted in Figure 2A. In this 114 

example, the MAC-predicted and EMG-detected transitions are correlated for both 
1t  and 115 

2t  separately and together. However, there is relatively large variance in the ability of the 116 

MAC model to predict the EMG transitions, as indicated by the point scatter in each panel. 117 

An analysis of the correlation coefficients across all participants confirmed this observation 118 

(Figure 2B). We found a correlation coefficient of 0.47 ± 0.17 (mean ± STD) between MACt1  119 

and EMGt1 , a correlation coefficient of 0.52 ± 0.18 between MACt2
 and EMGt2

, and a correlation 120 

coefficient of 0.84 ± 0.08 when both transition times are analyzed together.   121 
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A) 

 

B) 

 
Figure 1: Examples for EMG transitions times predicted by the transition times of 

the MAC model control signal.  

A) Example for matching between MAC transitions and EMG transitions. Upper panel 

represents an example of a position trajectory (black line) and the fitted MAC model to 

this data (blue line). Middle panel represents the model’s jerk control signal that was 

used to generate the model’s position trajectory. Here we marked the transition times, 
MACMAC tt 21 , , using a dashed blue lines. Bottom panel represents an EMG signal from one 

muscle (red line). The first transition in this signal, EMGt1
, is represented by a black square, 

and the second transition, EMGt2
, is represented by a black circle. 

B) Example for matching between the transitions times observed in the activity of 

multiple muscles during a single reaching movement and the MAC-predicted transition 

times. Each raw represent an EMG signal recorded from a single muscle whose name is 

indicated on the left side. The MCMC detected transitions in EMG signals (EMG-

detected) are marked as in (A). The two vertical blue lines represent the MAC-predicted 

transitions extracted from the MAC model that were fitted to this movement. The two 

vertical gray lines represent the initial and end times of the movement. 
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Figure 2: Correlation analysis between the MAC predicted transitions and EMG 

detected transitions.  

A) Representative correlation between MAC-predicted and EMG-detected transitions 

for all movement of a single participant. Each panel represents the EMG-detected 

transitions as a function of MAC-predicted transitions for all muscles. The information 

of each movement is represented using one square and circle. Empty squares represent 

the first transition data (
1t ) and circles represent the second transition data (

2t ).  In each 

panel, the fitted regression line for the first transition data is represented using a dashed 

black line, and the fitted regression line for the second transition is represent using a 

solid gray line. For some muscles the predictions of the MAC model match the 

transitions in the EMG signal; however, there is large variability around the regression 

line. 

B) Mean correlation coefficient for all muscle across all participants. The mean 

correlation coefficient for the first transition and second transition is marked using an 

unfilled bar, and the mean value for the second transition is marked using a filled bar. 

Error bars represent 95% confidence intervals calculated using a t-distribution.  

 124 

We reasoned that the variability in the ability of the model to predict the accurate timing 125 

of transition is a result of temporal shifting of the tri-phasic activity pattern between 126 

different muscles (Flanders 1991, Flanders, Pellegrini et al. 1994, Flanders, Pellegrini et 127 

al. 1996). These shifts are apparently an important variable for the motor system (Karst 128 

and Hasan 1991, Hoffman and Strick 1999) and ranged between 30 and 100 ms (Cavanagh 129 

and Komi 1979). Previous studies captured such shifts using time-varying synergies 130 
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(d'Avella, Portone et al. 2006). For example, in Figure 1B, we show that some muscles are 131 

activated before movement starts. Since the MAC model is fitted to the hand position 132 

signal, it cannot accurately predict these shifted transitions. However, if indeed one central 133 

program is used to activate muscles but it arrives to different muscles at different times, we 134 

can eliminate the effect of the different temporal shifts between the muscles by looking at 135 

the difference in the times of the transitions. One way of looking at the time differences is 136 

examining the temporal difference between the first activity transitions in the EMG signal 137 

and the MAC control signal ( EMGMAC ttt 111  ), and then compare it with difference 138 

between the second activity transitions in the same signals ( EMGMAC ttt 222  ). If indeed 139 

the EMG activation is correlated with the MAC control signal, we expect to see that the 140 

two differences are similar (
21 tt  ). To examine this, we fitted a two-degrees of freedom 141 

regression line between 
1t  and 

2t  . If the two values are similar, we expect to get a 142 

regression line with a unit slope and a zero intercept. Alternatively, different result will 143 

mean that the two values are not linked, suggesting that the MAC-predicted transitions 144 

cannot predict the EMG-detected transitions. Figure 3A shows an example for this analysis 145 

for all the muscles of one participant. In this example, we found that all the regression slope 146 

values were close to 1, and that the intercept values were close to 0. Generally, we found 147 

that the mean value of the slope was 0.87 ± 0.17 (mean ± STD) and the mean value of the 148 

intercept was -0.003 ± 0.005. These results support the idea that the EMG transitions are 149 

correlated with the MAC transitions.  150 
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Figure 3: correlation between temporal difference between EMG-detected 

transitions and MAC-predicted transitions.  

A) Differences analysis of a single participant movements. Each panel represents the 

difference between the second EMG-detected transition and the second MAC-predicted 

transition ( EMGMAC ttt 222  ) as a function of this difference but for the first transitions 

( EMGMAC ttt 111  ). Each movement is represented using a single colored square. The 

black line in each panel represents the regression line that was fitted to the data. By 

comparing this regression lines to an ideal correlation between the variables (dashed gray 

line) we found that the two values are similar to each other 

B) Mean slope and intercept values for all muscles across all participants. Error bars 

represent 95% confidence interval estimated using a t-distribution.   
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A different approach to understand the effect of the temporal shift on the ability of the 152 

MAC model to predict the tri-phasic transitions timing is to find the temporal shift of the 153 

activity pattern for each muscle. To do so, we extracted sets of delay values that generated 154 

the highest correlation coefficient between EMG-detected transitions ( EMGEMG tt 21 , ) and 155 

MAC-predicted transitions ( MACMAC tt 21 , ) for all muscles. Each set was assembled from one 156 

to ten delay values. This means that we extracted ten sets of delay values, where the first 157 

one included only one delay value, and the 10th set included ten delay values. Using a single 158 

delay value from the set, we shifted both EMGEMG tt 21 ,  EMG transitions. The single delay 159 
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value that was picked from the set was the one that minimizes the temporal difference 160 

between the EMG-detected transitions and MAC-predicted transitions. An example for the 161 

result of such “shift-corrected” analysis using the 5th set of five different delay values is 162 

depicted in Figure 4A: we show the correlation between EMG-detected transitions and 163 

MAC-predicted transitions for a single participant after optimizing five different possible 164 

shifts. We found that increasing the number of possible delay values increased the 165 

correlation between the EMG-detected transitions and MAC-predicted transitions (Figure 166 

4B). This increase occurs simultaneously for both EMG transitions since we observed that 167 

the difference between the first transition in the EMG and MAC control signal ( EMGMAC tt 11 168 

) is very similar to the difference between the second transitions ( EMGMAC tt 22  ). This means 169 

that both EMG-detected transitions can be aligned with the two MAC-predicted transitions 170 

using a simple shift. On average, we can achieve a strong correlation (a correlation 171 

coefficient>0.7) between EMG-detected transitions and MAC-predicted transitions timing 172 

using five delay values.  173 
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Figure 4: Correlation analysis between the MAC predicted transitions and EMG 

detected transitions with added temporal shifts. 

A) Same example as in Figure 2A with shifted EMG transitions. We shifted the two 

EMG transitions detected in each movement by a single value out of five delay 

possibilities. Following this shift we observed an increase in correlation for both the first 

and second transitions. All notation are similar to Figure 2A.  

B) The correlation coefficient value as a function of possible shifts used on the EMG 

transitions. Allowing more delay values to shift the EMG transitions increased the 

correlation between the MAC predicted transitions and the EMG transitions. In all the 

delay sets, the same shift was applied on both t1 and t2 of the same muscle. 
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Discussion 176 

In this study we suggest that an intermittent optimal control based model can predict both 177 

transitions in the state of the muscles as well as the kinematic features of the hand during 178 

point-to-point reaching movement. We show that the timing of transitions in the piecewise-179 

constant control signal used to describe the hand trajectory are synchronized with the 180 

transitions times that are observed in EMG signals. These results suggest that the muscles 181 

are activated using a variation of this single piecewise-constant signal. We observed a 182 

temporal shift of the tri-phasic pattern that suggests that the activation signal arrives to the 183 

muscles at different times during the movement. Nevertheless, we found that the time that 184 

elapses between the first notable transition in muscles activity and the transition in the 185 

activation signal is similar to the time elapses between the second transitions in these 186 

signals.  187 

Previous studies struggled with the question how the motor system generates muscle 188 

activity pattern. In many conditions, the CNS generates muscle activity and ultimately hand 189 

motion by specifying a centrally programed motor command (Sanes and Jennings 1984). 190 

We show that the MAC model explains the connection between movement characteristics 191 

and the pattern of muscles activity. Therefore, we suggest that it can be a possible candidate 192 

control policy for such central mechanism. Previous studies examined the relations 193 

between the temporal profiles of agonist-antagonist muscle system during reaching 194 

movement and showed that the agonist initial activity is terminated before peak velocity 195 

while the burst of the antagonist muscle initiate before peak velocity (Brown and Cooke 196 

1990). Such activity profile is well explained by the MAC model where the first transition 197 

time in the control signal occurs prior to the peak velocity time. Another feature of the 198 

model is the jerk constraint which can generate different transitions times in the control 199 

signal without changing any other movement constraints such as duration or length. Thus, 200 

by changing the jerk constraint we can generate short and long EMG bursts patterns that 201 

are similar to the EMG patterns with different bursts durations that were found during 202 

reaching movements with the same duration and length but to different positions in space 203 

(Flanders, Pellegrini et al. 1994) or during movements with external load attached to the 204 

hand (Hong, Corcos et al. 1994).    205 
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To summarize these results, we suggest a control scheme (Figure 5) based on intermittent 206 

control (Karniel 2013). In this scheme, the brain sends pulse-like commands at specific 207 

times to generate the hand movement, as predicted by the control signal of the MAC model. 208 

This signal is then transformed into muscle activation profiles. Previous studies showed 209 

that this transformation can be described as a low pass filter (Crosby 1978, Patla, Hudgins 210 

et al. 1982, Dowling 1992). The resulted muscle activation signal is integrated to produce 211 

a momentum at the joint (Coggshall and Bekey 1970). The relation between the muscle 212 

activation and muscle momentum depends on different factors such as the muscle current 213 

length (Gordon, Huxley et al. 1966). In addition, these muscle activations patterns can be 214 

temporally shifted in order to create a specific spatiotemporal organization of muscle 215 

activity, or time-varying muscle synergies (d'Avella, Portone et al. 2006). Indeed, a time-216 

varying synergy prescribes the activation of different muscles at different times, thus 217 

predicting different transition times in individual muscles with respect to the synergy onset. 218 

This provides an explanation to the temporal shift of the transitions in the control signal 219 

between groups of muscles that we found in this study. Finally, using the muscle 220 

momentum and considering the limb moment of inertia, we can calculate the angular 221 

velocity of the joint.  222 

     223 

 

Figure 5: A sketch of the muscle activation system based on intermittent control. The 

brain is responsible for generating arm movements be sending a piecewise constant control 
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signal which is filtered using a low pass filter and then transformed into muscle activation 

pattern based on the state of the muscle. The produced torque can be simulated by 

integrating this electrical activity and used to generate the arm movement. In this study, 

we showed that the transitions in the control signal as predicted by the MAC model hand 

movement match the transitions in the EMG activity, suggesting that the brain could use 

the MAC criteria to generate reaching movement. Bottom flow chart shows simulated 

signals of a single link arm movement using an agonist-antagonist muscle system activated 

using the MAC control signal. In each panel we plot the signals after the different 

transformations starting from a piecewise-constant MAC signal  

 224 

There is a wide range of evidence for the existence of intermittent control in the motor 225 

system (Gawthrop, Loram et al. 2011). Many studies examined the intermittent nature of 226 

movements during tracking (Navas and Stark 1968, Miall, Weir et al. 1986, Miall, Weir et 227 

al. 1987, Neilson, Neilson et al. 1988, Hanneton, Berthoz et al. 1997, Squeri, Masia et al. 228 

2010, Gawthrop, Loram et al. 2011) where it was suggested that a refractory period of the 229 

central nervous system (Neilson, Neilson et al. 1988) or exceeding a threshold of tracking 230 

error (Miall, Weir et al. 1986, Hanneton, Berthoz et al. 1997, Gawthrop 2010) is 231 

responsible for generating movements. In addition, Intermittent control is also evident 232 

during isometric force tasks (Slifkin, Vaillancourt et al. 2000, Vaillancourt, Mayka et al. 233 

2006), and tasks that require tracking a target while experiencing forces (Squeri, Masia et 234 

al. 2010), switching between motion and force control (Venkadesan and Valero-Cuevas 235 

2008), rhythmic movements (Doeringer and Hogan 1998), object manipulation (Gawthrop, 236 

Loram et al. 2009, Loram, Gollee et al. 2011, Leib and Karniel 2012), in handwriting and 237 

drawing (Viviani and Terzuolo 1982, Schenk, Walther et al. 2000), and in catching 238 

(D'Andola, Cesqui et al. 2013). Here, we suggest that the intermittent control policy is 239 

evident even in the simplest reach movements, and that it provides a compelling 240 

explanation to the well known triphasic muscle activity pattern.  241 

To further support the results presented here, we suggest examining the muscle activity 242 

pattern during more complex movement, such as via-point movements, while developing 243 

related computational models based on intermittent control. In addition, our predictions 244 

may be tested using neural activity at higher levels of the motor system hierarchy. Indeed, 245 
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different studies found evidence for intermittent control strategy such as in the case of the 246 

bursting activities separated by pauses in Pukinje cells (Loewenstein, Mahon et al. 2005). 247 

In this study we provide a link between the discrete nature of muscle activity and the 248 

continuous signals that characterize hand movement. Using an intermittent control model 249 

that describe the hand trajectory during reaching movements we were also able to capture 250 

the transitions in the state of the muscles during the movement. This result suggests that 251 

the motor system uses discrete control based approach to generate movement instead of a 252 

continuous control approach which is considered by many to be a fundamental way to 253 

describe the characters of the motor system.  254 

Understanding whether the motor system employ intermittent control to generate motion 255 

can have potential implications. For example, it can be useful in simplifying the control of 256 

prostheses and other physical human-robot interaction system. Intermittent control is 257 

especially attractive in simplifying control when computational resources are limited and 258 

in conditions with delay, such as in the case of online processin of information during the 259 

control of smart prosthesis. Moreover by comparing the timing of the transitions events 260 

between impaired and unimpaired populations, we can learn about the origin (central or 261 

peripheral) of specific motor diseases, which can be useful for developing patient-tailored 262 

physical therapy and other forms of treatment of motor pathologies.  263 
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Methods 264 

We used data previously published by d'Avella et al. (d'Avella, Portone et al. 2006). The 265 

dataset we analyzed included trajectories of three participants that made center-out and out-266 

center hand movement to eight equally spaced targets positioned on a 30 cm circle. Each 267 

participant made five center-out and five out-center movements in the frontal plane 268 

between the center and each of the eight targets summing to a total of 80 movements. 269 

During the movement, endpoint trajectory and the EMG activity of 17-18 muscles (as 270 

shown in Table 1, for more details on the experimental design and apparatus see the original 271 

work by d'Avella et al.) were recorded. 272 

Table 1. Summary of muscles recorded for each subject. Subjects' number are based on the 273 

numbers reported in the original work. 274 

Muscle 
Subjects 

3 6 7 

Biceps brachii, short head (BicShort) + + + 

Biceps brachii, long head (BicLong) + + + 

Brachialis (Brac) + + + 

Pronator Teres (PronTer) + + - 

Brachioradialis (BrRad) + + + 

Triceps brachii, lateral head (TrLat) + - + 

Triceps brachii, long head (TrLong) + + + 

Triceps brachii, medial head (TrMed) + + + 

Deltoid, anterior (DeltA) + + + 

Deltoid, medial (DeltM) + + + 

Deltoid, posterior (DeltP) + + + 

Pectoralis major, clavicular (PectClav) + + + 

Pectoralis major, sternal (PectInf) - + + 

Trapezius, superior (TrapSup) + + + 

Trapezius, medial (TrapMed) + - + 

Trapezius, inferior (TrapInf) - + + 

Latissimus dorsi (LatDors) + + + 

Teres Major (TeresMaj) + + + 

Infraspinatus (InfraSp) + + + 

 275 

 276 

 277 
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Minimum Acceleration with Constraints model 278 

To extract the predicted transitions from the hand position signal, we used the Minimum 279 

Acceleration with Constraints (MAC) model. This model for reaching movement is based 280 

on minimizing the hand acceleration during motion while constraining the maximum value 281 

of the hand jerk 
mu . The solution to this problem is a straight line, of the following form 282 

          
1

0 0x x x xt r t T
L

   
 283 

where )0(x  and )(Tx are the initial point and end point of the movement respectively. L  284 

is the length of the movement and )(tr  is a time dependent function consist of three 285 

segments of third order polynomials 286 
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This model predicts two transitions in the control signal at times MACMAC tt 21 ,  (Figure 1A). 289 

To fit the model to the hand movement data we first used the recorded velocity signal to 290 

identify movement initiation and end times. Using these times we extracted the initial and 291 

target positions of the motion as well as the duration of the movement (T). Following 292 

finding the parameters, we fitted the MAC model by optimizing the jerk constraint in such 293 

way that the Root Mean Square Error (  



T

i

model

i

data

i xx
T

RMSE
1

21
) between the 294 

recorded position signal (
datax ) and model's position signal (

modelx ) will be minimized. 295 

Using the jerk constraint from the position RMSE optimization process, movement 296 

duration and length allowed us to find the two transitions times predicted by the MAC 297 

model according to equation (3). 298 

Detecting transitions in EMG signal 299 

To detect transitions in the EMG signal, we used an algorithm of multiple point-change 300 

detection which is based on a Bayesian approach and implemented using the Markov Chain 301 

Monte Carlo (MCMC) method (Lavielle and Lebarbier 2001). The algorithm marked the 302 

transitions in the EMG signal based on changes in the mean and variance of the signal 303 

magnitude. We considered only the transitions within the three-phase pattern. In some 304 

cases, such as for the TereMaj or the TrLat muscles depicted in Figure 1B,  305 

the algorithm detected additional transitions of the start and end of the three-phase pattern. 306 

In such cases, we omitted the two additional transitions and considered only the transitions 307 

between the first phase and third phase of the pattern. 308 

 309 

Data analysis 310 

For each movement, we identified the active muscles that showed significant EMG activity 311 

by setting a threshold of EMG magnitude (average magnitude>0.05 μV). We then extracted 312 
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the activity transitions in the EMG signal of each muscle ( EMGEMG tt 21 , ) and the transitions 313 

in control signal of the fitted MAC model ( MACMAC tt 21 , ).  This procedure was repeated for 314 

all movements. We examined the overall ability of the MAC model to predict transitions 315 

in the EMG signals by fitting a regression line between the MAC predicted transitions 316 

timing and the EMG detected transitions timing. We used separate regression lines for the 317 

first transitions, i.e. between MACt1  and EMGt1 , and for the second transition, i.e. between MACt2
 318 

and EMGt2
. 319 

Since different muscle groups exhibit activity pattern at different stages of the movement, 320 

and even before movement initiated (Moran and Schwartz 1999), understanding whether 321 

the transitions in the EMG signal match the transitions in MAC control signal require 322 

temporal shift in order to synchronized between them. We can formulate this temporal shift 323 

as the temporal difference between the first transition in the EMG and MAC control signal, 324 

i.e.  EMGMAC ttt 111  , or between the second transition, i.e. EMGMAC ttt 222  . If the EMG 325 

transitions are a temporally shifted version of the MAC transitions this means that 
1t326 

should have similar value to 
2t . To quantify this, we fitted a two degrees of freedom 327 

regression line to the data with 
1t  as the independent variable and 

2t  as the dependent 328 

variable. A perfect match between the two differences will result in a regression line with 329 

unit slope and zero intercept.  330 

In addition, we estimated the optimal temporal shift between the EMG transitions and 331 

MAC transitions. To do so, we searched for sets of shifts values starting from a single shift 332 

to a set of ten shift values. To find the optimal shift values for each set, we varied the values 333 

of the shifts between -300ms and 300ms with jumps of 1ms. For example, for a set of three 334 

shifts we started the search from the possible shifts vector [-298, -299, -300] and ended the 335 

search at [298, 299, 300] covering all possible combinations. To each MAC predicted 336 

transitions pair, MACMAC tt 21 , , we added one value from a candidate shifts vector. The shift 337 

chosen was the shift that had the smallest absolute distance between the MAC predicted 338 

transitions and the EMG detected transitions, EMGEMG tt 21 , , i.e. 339 

MACEMGMACEMG ttttdistance 2211  . We repeated this calculation for all muscles and 340 

for all movements. For each possible shifts vector we calculated the correlation between 341 

MAC-predicted transitions and EMG-detected transitions for each muscle and averaged 342 
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the correlation values. We chose the optimal shifts vector as the vector that gave the highest 343 

average correlation value. We repeated this this procedure for each participant. Here we 344 

present the results for the first ten sets. Increasing the number of possible shift values will 345 

increase the correlation value between the MAC-predicted transitions and EMG-detected 346 

transitions since there will be more possible shift values to choose from. Ultimately, we 347 

can find the optimal shift for every MAC-predicted transitions and EMG-detected 348 

transitions pair by increasing the number of possible values in the set.  349 
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