- 1 Roosting in exposed microsites by a nocturnal bird, the rufous-cheeked nightjar:
- 2 implications for water balance under current and future climate conditions
- 3
- 4 Ryan S. O'Connor
- 5 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and
- 6 Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
- 7 Email: <u>oconn163@gmail.com</u>
- 8

9 R. Mark Brigham

- 10 Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
- 11 Email: Mark.Brigham@uregina.ca.
- 12
- 13 Andrew E. McKechnie*
- 14 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and
- 15 Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
- 16 South African Research Chair in Conservation Physiology, National Zoological Gardens of
- 17 South Africa, P.O. Box 754, Pretoria 0001, South Africa.
- 18 Email: <u>aemckechnie@zoology.up.ac.za.</u>
- 19
- 20 * Author for correspondence

21 Abstract

22 Nocturnally active birds roosting in exposed diurnal microsites with intense solar radiation can 23 experience operative temperatures (T_e) that markedly differ from air temperature (T_a). 24 Quantifying Te thus becomes important for accurately modeling energy and water balance. We 25 measured T_e at roost and nest sites used by Rufous-cheeked Nightjars (*Caprimulgus rufigena*) 26 with three-dimensionally printed biophysical models covered with the integument and plumage 27 of a bird. Additionally, we estimated site-specific diurnal water requirements for evaporative 28 cooling by integrating T_e and T_a profiles with evaporative water loss (EWL) data for Rufous-29 cheeked Nightjars. Between 12:00 and 15:00 hrs, average T_e at roost sites varied from 33.1 to 30 49.9 °C, whereas at the single nest site T_e averaged 51.4 °C. Average diurnal EWL, estimated 31 using T_e, was as high as 10.5 and 11.3 g at roost and nest sites, respectively, estimates 3.8- and 32 4.0-fold greater, respectively, than when calculated with T_a profiles. These data illustrate that 33 under current climatic conditions, Rufous-cheeked Nightjars can experience EWL potentially 34 approaching their limits of dehydration tolerance. In the absence of microsite changes, climate 35 change during the 21st century could perhaps create thermal conditions under which Rufous-36 cheeked Nightjars exceed dehydration tolerance limits before the onset of their nocturnal active 37 phase.

38 Keywords: Microclimate, evaporative cooling, biophysical ecology, operative temperature,

39 Caprimulgus rufigena, Rufous-cheeked Nightjar

40 Introduction

41 Organisms frequently experience the thermal environment at fine spatial scales, typically relative 42 to their body size, resulting in microclimates that substantially differ from coarse regional 43 macroclimates derived from standardized weather data (Beckman et al. 1973, Campbell and 44 Norman 1998, Potter et al. 2013). An organisms immediate thermal environment arises from a 45 complex suite of interacting abiotic variables, including solar and thermal radiation, air 46 temperature (T_a), wind speed, surface temperature and humidity (Porter and Gates 1969, Bakken 47 1976, Bakken 1989). Due to the fine scale at which microclimates occur, animals occupying the 48 same habitat can simultaneously experience a thermally diverse range of microclimates (Sears et 49 al. 2011), leading to large variation among individuals in energy and water demands. 50 Behaviorally, animals may control their rate of heat loss or gain through postural changes (Porter 51 et al. 1994) and/or by occupying thermally-buffered refugia (Wolf et al. 1996, Scheffers et al. 52 2014). Additionally, endotherms may temporarily abandon normothermic T_b by expressing 53 patterns of thermoregulation that lead to energy and water conservation (e.g., facultative 54 hypothermia or hyperthermia; McKechnie and Lovegrove 2002, Tieleman and Williams 1999), 55 conditions under which microhabitat selection will have a large influence on energy and/or water 56 savings. A thorough understanding of the microclimates an individual experiences within its 57 habitat is thus a prerequisite for predicting energy and water requirements under current and 58 future climates (Kearney and Porter 2009, Porter et al. 2010). 59 Operative temperature (T_e) , the temperature of an animal model in thermodynamic 60 equilibrium with its environment in the absence of metabolic heating or evaporative cooling 61 (Bakken 1976), is commonly used to quantify microclimates at spatial scales relevant to an 62 animal (Bakken 1992, Dzialowski 2005). Operative temperature can be measured using either

63	mathematical, statistical or biophysical models (Bakken 1992, Angilletta 2009). Biophysical
64	models traditionally consist of a thin copper cast electroformed to match the size and shape of
65	the focal animal and, in the case of ectotherms that lack pelages, painted to match the
66	absorptivity of the focal species (Bakken and Gates 1975, Dzialowski 2005). For thermal
67	investigations of endotherms, the skin and pelage of the animal of interest is typically wrapped
68	around the cast to incorporate the thermal properties of fur or feathers (e.g., Ward and Pinshow
69	1995, Bozinovic et al. 2000, Tieleman and Williams 2002). Hence, biophysical models integrate
70	the abiotic factors of the thermal environmental (i.e., radiation, Ta, wind speed and surface
71	temperature) with an animal's physical attributes (i.e., size, shape and color) to determine the Te
72	experienced in a particular microsite (Bakken and Angilletta 2014).
73	Nightjars and nighthawks (Caprimulgidae) are a nocturnally active avian taxon that
74	generally roost and nest on the ground during their diurnal rest phase. Several species have been
75	reported occupying sites devoid of shade and continuously subjected to intense solar radiation,
76	even in midsummer (e.g., Cowles and Dawson 1951, Bartholomew et al. 1962, Steyn 1971,
77	Grant 1982, Cleere and Nurney 1998). Moreover, forced convective heat loss at these sites is
78	
	likely minimal due to reduced wind speeds at ground level (Chen et al. 1998). Caprimulgids,
79	likely minimal due to reduced wind speeds at ground level (Chen et al. 1998). Caprimulgids, therefore, can experience microclimates wherein T_e peaks at 50 - 60 °C (Weller 1958, Grant
79 80	
	therefore, can experience microclimates wherein Te peaks at 50 - 60 °C (Weller 1958, Grant
80	therefore, can experience microclimates wherein T_e peaks at 50 - 60 °C (Weller 1958, Grant 1982, Ingels et al. 1984). Under such extreme heat, caprimulgids must elevate evaporative water
80 81	therefore, can experience microclimates wherein T_e peaks at 50 - 60 °C (Weller 1958, Grant 1982, Ingels et al. 1984). Under such extreme heat, caprimulgids must elevate evaporative water loss (EWL) above baseline levels for prolonged periods to avoid lethal hyperthermia (Grant

85 Like many other nightjars, Rufous-cheeked Nightjars may select roost and/or nest sites with

86	partial or no shading, even in mid-summer (R.S. O'Connor personal observation, Cleere and
87	Nurney 1998). No attempts, however, have been made to quantify the range of Te values that
88	Rufous-cheeked Nightjars experience in the field, despite the importance of these data for
89	understanding their water budgets. We used two types of three dimensionally (3-D) printed
90	biophysical models to measure Te at roost and nest sites, one consisting of a 3-D printed plastic
91	body (hereafter $T_{e\text{-plastic}}$) and the second type a plastic body covered with the skin and feathers of
92	a Rufous-cheeked Nightjar (hereafter T_{e-skin}). We also integrated T_e and T_a profiles measured at
93	each site with EWL data derived from a laboratory heat tolerance investigation for this species
94	(O'Connor et al. 2017b) to predict site-specific water requirements for evaporative cooling
95	during the diurnal inactive period.
96	
97	Methods
97 98	Methods Roost and nest location
98	Roost and nest location
98 99	<i>Roost and nest location</i> We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two
98 99 100	Roost and nest location We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at
98 99 100 101	Roost and nest location We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at Dronfield Nature Reserve (28° 39' S, 24° 48' E, ~1218 m a.s.l.) near Kimberley, South Africa.
98 99 100 101 102	Roost and nest location We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at Dronfield Nature Reserve (28° 39' S, 24° 48' E, ~1218 m a.s.l.) near Kimberley, South Africa. Nightjars were captured at night on roads with a handheld net and spotlight. Upon capture, we
98 99 100 101 102 103	Roost and nest location We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at Dronfield Nature Reserve (28° 39' S, 24° 48' E, ~1218 m a.s.l.) near Kimberley, South Africa. Nightjars were captured at night on roads with a handheld net and spotlight. Upon capture, we fitted nightjars with a radio transmitter (BD-2T, Holohil Systems, Carp, Ontario, Canada)
98 99 100 101 102 103 104	Roost and nest location We quantified Te at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at Dronfield Nature Reserve (28° 39' S, 24° 48' E, ~1218 m a.s.l.) near Kimberley, South Africa. Nightjars were captured at night on roads with a handheld net and spotlight. Upon capture, we fitted nightjars with a radio transmitter (BD-2T, Holohil Systems, Carp, Ontario, Canada) positioned between the scapulars using a backpack-style harness built from Teflon ribbon
98 99 100 101 102 103 104 105	Roost and nest location We quantified T _e at six roost sites and one nest site used by six Rufous-cheeked Nightjars (two roost sites were used by the same individual) between 26 October and 12 December 2015 at Dronfield Nature Reserve (28° 39' S, 24° 48' E, ~1218 m a.s.l.) near Kimberley, South Africa. Nightjars were captured at night on roads with a handheld net and spotlight. Upon capture, we fitted nightjars with a radio transmitter (BD-2T, Holohil Systems, Carp, Ontario, Canada) positioned between the scapulars using a backpack-style harness built from Teflon ribbon (Telonics, Mesa, AZ, USA). Additionally, we injected a passive-integrated transponder (PIT) tag

108 after transmitters were attached and PIT tags injected. We tracked birds to their roost sites using

109 telemetry. Once a site was located, we recorded the latitude and longitude and marked the 110 location with a metal stake for eventual placement of our models. On average, models were set 111 up 3.5 days after discovering a roost location. For the nest site, we waited until incubation was 112 complete before placing our models. 113 114 *Biophysical model construction and T_e measurements* 115 We followed Watson and Francis (2015) and used 3-D printed models to measure T_e. These 116 authors compared T_e values of 3-D printed models to those recorded using traditional 117 electroformed copper models and found that T_e distributions of the two model types were 118 generally similar when placed in identical habitats. Furthermore, Watson and Francis (2015) 119 reported no substantial differences in the response of models to radiant heat or varying T_a. 120 Finally, 3-D printed models are more anatomically accurate and easier to produce than traditional 121 electroformed copper models, and hence are a good substitute for measuring Te (Watson and 122 Francis 2015). 123 We constructed four 3-D printed biophysical models, consisting of two T_{e-skin} models and 124 two T_{e-plastic} models. To construct our T_{e-plastic} models, we took a series of 49 pictures at 90° and 125 45° angles encompassing 360° of a deceased Rufous-cheeked Nightjar (Supplementary Material 126 A, Figure S1). These photos were uploaded to 123d Catch (http://www.123dapp.com/catch) 127 which automatically stitched them into a 3-D model. Because we were unable to capture photos 128 of the bird's ventral surface during this procedure, we used Blender v. 2.75 129 (https://www.blender.org/) to manually impose a plane to the underside of each model. The 130 digital 3-D model was then scaled using Cura (https://ultimaker.com/en/products/cura-software) 131 and saved as an .stl file and emailed to 3DForms (Johannesburg, South Africa,

132	http://www.3dforms.co.za/) for printing. The Te-plastic models were printed using Makerbot's
133	(Makerbot Industries LLC, Brooklyn, NY, USA) cool grey acrylonitrile butadiene styrene (ABS)
134	filament with a 0% fill and an approximately 2-mm thick shell. The final $T_{e-plastic}$ models were
135	smoothed post printing, and measured approximately 225 mm from tip of bill to tail, 44 mm
136	from top of head to base and 53 mm wide. The $T_{e-plastic}$ models were printed with a removable lid
137	on the base, which we secured with adhesive prior to model deployment (Supplementary
138	Material A, Figure S2). A type-T thermocouple (Omega, Norwalk, CT, USA) was inserted
139	through a hole drilled in the base of each model and sealed in place with an adhesive. The tip of
140	the thermocouple was centered horizontally and vertically within the model to avoid any effects
141	of thermal stratification (Bakken 1992; Supplementary Material A, Figure S2). Prior to
142	deployment, thermocouples were calibrated in a water bath between 5 and 50 $^{\circ}$ C in 5 $^{\circ}$ C
143	increments against a mercury thermometer traceable to the US National Bureau of Standards.
144	To construct our Te-skin models, we provided two Rufous-cheeked Nightjar carcasses to a
145	taxidermist who separated the skin from the bodies. We took 32 pictures in series of a skinned
146	body, again encompassing 360° and taken at 90° and 45° angles (Supplementary Material A,
147	Figure S3). These photos were compiled, scaled and printed using the same software and plastic
148	as outlined above. We scaled these models based on measurements provided by the taxidermist,
149	with the final dimensions of the body measuring approximately 39.5 mm long x 14 mm wide x
150	23.4 mm high. Due to the smaller size of these models, they had to be printed in halves and then
151	glued together. Consequently, some tiny gaps remained on the models and we sealed these using
152	plaster-of-Paris and a cyanoacrylate adhesive (Supplementary Material A, Figure S4). We
153	ensured models were airtight by completely submerging them in water to observe if any escaping
154	air bubbles formed. We inserted a type-T thermocouple (Omega, Norwalk, CT, USA) into the

155	approximate center of each model through a hole drilled in the ventral surface. Thermocouples
156	were sealed in place and calibrated prior to placement as described for the T _{e-plastic} models above.
157	The final plastic bodies were then returned to the taxidermist who wrapped them in the skin to
158	create the complete Te-skin models. Because the smoothing process left the 3-D printed plastic
159	bodies slippery, the taxidermist had to wrap a ~5-mm layer of cotton wool around the bodies to
160	increase adhesion between the skin and the plastic (Supplementary Material A, Figure S5).
161	Both Te-skin and Te-plastic models were placed side by side at a specific site (Supplementary
162	Material A, Figure S6) either in the morning (mean placement time = $07:48$) or at night (mean
163	placement time = 19:12). Models were first placed facing true north, whereafter we alternated the
164	cardinal direction approximately every 24 hours (mean time in each direction = 22.9 hours), with
165	the models positioned in every cardinal direction before relocation to a new site. Therefore, the
166	mean time models remained at a site was approximately 4 days (mean time at a site = 3.8 days).
167	We recorded Te-skin and Te-plastic values simultaneously every minute using a 4-channel
168	thermocouple data logger (model SD-947, Reed Instruments, Wilmington, NC, USA). We buried
169	the thermocouple wiring between the models and logger in the sand to prevent heat from solar
170	radiation conducting along the wire (Bakken 1992). Operative temperature data were transferred
171	onto a personal computer every time we changed the direction of the models. Weather data were
172	recorded every minute with a portable weather station (Vantage Pro2, Davis Instruments,
173	Hayward, CA, USA), placed ~2.0 m above the ground and calibrated as described by Smit et al.
174	(2013).
175	

176 Data analysis

177	All analyses were conducted in R v. 3.4.0 (R Core Team 2017) with values presented as mean \pm
178	standard deviation (SD). We categorized the data into three periods, namely diurnal (i.e., sunrise
179	to sunset), midday (i.e., 12:00 - 15:00 hours) and nocturnal (i.e., sunset to sunrise). Sunrise and
180	sunset times were calculated using the R package maptools (Bivand and Lewin-Koh 2017). We
181	compared overall differences among Te-skin and Te-plastic models for all sites combined during the
182	diurnal period by fitting a linear mixed-effect model using the R package <i>lme4</i> (Bates et al.
183	2015), with Te a continuous response variable and <i>skin</i> a two-level categorical predictor. We
184	included Te model as a random factor because of repeated Te measurements within the same
185	model. We report the effect size <i>skin</i> had on T _e , represented as the parameter estimate ($\beta \pm SD$)
186	and the associated 95% confidence interval (95% CI). We considered the mean difference
187	between $T_{e\text{-skin}}$ and $T_{e\text{-plastic}}$ models to be statistically significant if the 95% CI did not overlap
188	zero. We then analyzed diel patterns in T_{e-skin} and T_a at each site by aggregating all values
189	recorded each minute during a recording period and taking the average. For example, mean $T_{\text{e-}}$
190	skin at 12:00 hours within a site represents the average of all Te-skin values recorded at 12:00 hours
191	at that site over the entire recording period. Because there were occasional gaps in our
192	temperature recordings (e.g., when changing position of the models), not every minute was
193	represented for every day and consequently sample sizes for each minute ranged from 1 to 5. To
194	determine when and for how long T_{e-skin} exceeded free-ranging modal body temperature (T_{b-mod}),
195	we isolated all diurnal T _e values > 39.7 °C at roost sites and all T _e values > 38.8 °C at the nest site
196	(O'Connor et al. 2017a). We additionally calculated the direction and magnitude that Te-skin
197	deviated from free-ranging T_{b-mod} at each site during the diurnal and midday periods by
198	aubtracting T from each T is using (i.e. AT T). Overall react site overages represent
	subtracting T_{b-mod} from each T_{e-skin} value (i.e., $\Delta T_e - T_{b-mod}$). Overall roost site averages represent

200	To estimate site-specific diurnal EWL during a recording period, we integrated T_e and T_a
201	traces with the EWL data reported by O'Connor et al. (2017b). We used free-ranging T_{b-mod} for
202	roosting birds (i.e., 39.7 °C; O'Connor et al. 2017a) as an inflection point at roost sites and the
203	Tb-mod of an incubating Rufous-cheeked Nightjar (i.e., 38.8 °C; O'Connor et al. 2017a) as an
204	inflection point at the nest site. At T_a and $T_e \leq T_{b\text{-mod}}$, we predicted EWL assuming EWL (g hr^-1)
205	= 0.007x + 0.002, and at T _a and T _e > T _{b-mod} we assumed EWL (g hr ⁻¹) = $0.099x - 3.610$, where x
206	represents either Te or Ta. For all Te calculations we used Te-skin values. We calculated a mean
207	EWL estimate for each minute over a 24-hour period by aggregating all values at each minute as
208	described above for the diel T_{e-skin} and T_a calculations. We then summed all mean EWL
209	predictions for each minute between sunrise and sunset to obtain the total average amount of
210	water lost during just the diurnal period at a given site. We expressed total EWL during the
211	diurnal period as a percentage of body mass (M_b) assuming an average M_b of 57.1 g, which was
212	the average M_b of birds at capture when being weighed for a total body water study (O'Connor et
213	al. unpublished data).
214	

214

215 **Results**

We recorded 36,648 T_e values for each model type. Except for a single roost situated under a camelthorn (*Vachellia erioloba*) tree, and thus shaded for most of the day, all roost sites were partially shaded and experienced periods of full solar exposure throughout the day. In contrast, the nest site was completely exposed and hence continuously subjected to intense solar radiation. Average diurnal T_a across sites during the study period was 28.0 ± 2.8 °C and average solar radiation level was 544.5 ± 37.3 W m⁻². Within each site, mean T_{e-skin} values were generally similar to those of T_{e-plastic} during both the diurnal and midday periods (Table 1). On average,

223 mean T_{e-plastic} values were 0.9 ± 2.0 °C greater than T_{e-skin} values during the diurnal period and 224 0.2 ± 0.6 °C greater during the midday period (Table 1). In contrast, differences between mean 225 maximum T_e within sites were larger (Table 1), with mean maximum T_{e-plastic} values 3.4 ± 3.7 °C 226 greater than mean Te-skin values. The overall difference between Te-skin and Te-plastic models during 227 the diurnal period for all sites combined was not significant (skin $\beta = -0.920 \pm 3.48$ °C, 95% CI = 228 -8.14 °C, 5.93 °C), with mean $T_{e-skin} = 36.3 \pm 10.8$ °C and mean $T_{e-plastic} = 37.3 \pm 11.5$ °C. 229 During the nocturnal period, T_e did not deviate far from T_a at roost sites or the nest site 230 (Figure 2 and Figure 3). For example, the mean difference between T_{e-skin} and T_a during the 231 nocturnal period at roost and nest sites combined was 0.6 ± 2.3 °C (range = -6.8 – 8.8 °C). 232 Beginning at sunrise, however, T_e increased rapidly to values far above T_a (Figure 2 and Figure 233 3). Except for at roosts 3 and 5, mean T_{e-skin} exceeded free-ranging T_{b-mod} for extended periods 234 (Figure 2). On average, T_{e-skin} from roost sites exceeded T_{b-mod} by 08:27 h (range = 08:12 - 08:41) 235 h; Figure 2). The overall average duration that T_{e-skin} exceeded T_{b-mod} during the diurnal period at 236 roost sites was 6.8 hours (range = 4.6 - 7.9 hours; Figure 2). During this time, overall mean T_e-237 $_{skin} = 43.6 \pm 3.5$ °C (range = 39.9 – 48.9 °C) while the overall average T_a = 33.2 ± 3.5 °C (range = 238 28.1 – 38.0 °C). During the midday period, mean $\Delta T_e - T_{b-mod}$ among roost sites ranged from – 239 6.6 ± 3.3 to 10.2 ± 7.6 °C (Figure 4). 240 Mean total diurnal EWL estimated based on T_{e-skin} ranged from 2.8 - 10.5 g among roost 241 sites, with evaporative water requirements being 1.2 - 3.8-fold greater when calculated using T_e 242 compared with estimates based on T_a (Figure 5). Expressed as a percentage of M_b , total diurnal

243 EWL among roost sites ranged from 4.9 – 18.4% of Mb.

At the nest site, mean T_{e-skin} exceeded incubating T_{b-mod} by 09:33 and did not decrease below T_{b-mod} until 18:20 (~8.75 hours; Figure 3). During this period, T_{e-skin} averaged 48.0 ± 4.0

246 °C (range = 38.9 - 53.4 °C), while average T_a = 31.3 ± 1.7 °C (range = 26.6 - 33.5 °C). The 247 average $\Delta T_e - T_{b-mod}$ during the midday period at the nest site was 12.6 ± 4.2 °C (Figure 4). 248 Diurnal evaporative water requirements at the nest site were 11.3 g when estimated from T_{e-skin} , a 249 value 4-fold greater than when estimated using T_a values (Figure 6). Total estimated diurnal 250 water loss at the nest site was equivalent to 19.8% of Mb. 251 252 Discussion 253 We show that Rufous-cheeked Nightjars regularly experienced microclimates where T_e 254 substantially exceeded free-ranging T_b (O'Connor et al 2017a). The high environmental 255 temperatures reported here are consistent with those reported by previous authors who 256 characterized the diurnal thermal environments occupied by nightjars and other thermally 257 exposed birds (e.g., Weller 1958, Bartholomew and Dawson 1979, Grant 1982, Tieleman and 258 Williams 2002, Amat and Masero 2004a, Carroll et al. 2015a). Our data further underscore the 259 significant contribution that solar radiation can have on the total heat load of an animal and that 260 T_a alone typically provides only a minimum index of a terrestrial animal's thermal stress in hot 261 environments (Porter and Gates 1969, Sears et al. 2011). This is exemplified by the fact that 262 maximum T_a exceeded 38 °C on just 3 days during our recording period whereas maximum T_e 263 exceeded 38 °C on 27 days.

We did not find significant differences in average diurnal T_e measurements among our T_eskin and T_{e-plastic} models. In a similar study, Walsberg and Weathers (1986) compared T_e values from copper taxidermic mounts covered with the integument of four bird species to T_e values recorded from painted metal spheres. When averaged over a 5-day period, Walsberg and Weathers (1986) found that mean differences among the models were less than 2.0 °C. However,

269 Walsberg and Weathers (1986) noted that when T_e was averaged over time scales of less than 270 several hours, differences between models reached up to 6.3 °C. Indeed, this likely explains the 271 larger differences we observed among our models for mean maximum T_e because these averages 272 were derived from single point estimates as opposed to data spanning more than several hours. 273 Hence, our findings support the conclusion reached by Walsberg and Weathers (1986) that 274 complex Te models may not always be necessary, as long as numerous data are collected over 275 extended periods. Likewise, Bakken (1992) suggested that in some instances, a rough 276 approximate representation of the study animal can be adequate and the appropriate T_e model 277 used will depend on the relative importance of several considerations, such as field conditions or 278 the study's objective. However, investigators should attempt to use models with physical 279 properties matching those of a study animal whenever possible (Bakken 1992, Bakken and 280 Angilletta 2014).

281 Our data show that predicted diurnal water requirements can be several-fold greater when 282 calculated using T_e compared to T_a , reiterating the importance of using spatially relevant 283 microclimates when assessing an animal's physiological stress (Huey 1991, Helmuth et al. 2010, 284 Porter et al. 2010). Moreover, the amount of water lost based on Te values was equivalent to a 285 substantial percentage of M_b, suggesting that, on hot, cloudless days, Rufous-cheeked Nightjars 286 might be approaching their limits of dehydration tolerance. Unfortunately, few data exist on 287 acute dehydration tolerance among birds when exposed to severe heat stress over time scales of 288 hours on very hot days (Wolf 2000, McKechnie and Wolf 2010, Albright et al. 2017). Wolf and 289 Walsberg (1996), however, reported acute dehydration tolerance limits in Verdins (Auriparus 290 *flaviceps*; ~7 g) when water loss exceeded 11% of M_b, a physiological threshold far lower than 291 the maximum water losses predicted here. An important factor known to enhance dehydration

292	tolerance among birds and mammals is the ability to conserve plasma volume (Horowitz and
293	Borut 1970, Arad et al. 1989, Carmi et al. 1993). However, plasma volume conservation is
294	apparently affected by the T _a at which dehydration occurs (Carmi et al. 1994). Carmi et al.
295	(1994), for example, found that Rock Pigeons (Columbia livia) could maintain plasma volume at
296	T_a of 36 °C for ~32 hours but, when exposed to T_a of 40 °C for ~28 hours, plasma volume
297	decreased by 8.9%, despite similar total losses in water between the T_a groups. To our
298	knowledge, there are no data on whether caprimulgids conserve plasma volume during acute heat
299	stress, but we speculate that Rufous-cheeked Nightjars and relatives have evolved mechanisms
300	increasing permeability for osmotic diffusion between the extracellular and intracellular
301	compartments, thereby aiding plasma volume conservation and allowing them to tolerate
302	prolonged periods of high EWL.
303	Despite a large rapid depletion of body water during the diurnal rest phase, we predict that
304	Rufous-cheeked Nightjars with a mean M_b of 57.1 g can periodically replenish body water by
305	obtaining a maximum of 10.3 g H ₂ O through preformed and metabolic water (Supplementary
306	Material B). However, the temporal window for nightjars to forage is highly variable and
306 307	
	Material B). However, the temporal window for nightjars to forage is highly variable and
307	Material B). However, the temporal window for nightjars to forage is highly variable and constrained by several ecological and environmental factors (Mills 1986, Jetz et al. 2003,
307 308	Material B). However, the temporal window for nightjars to forage is highly variable and constrained by several ecological and environmental factors (Mills 1986, Jetz et al. 2003, Ashdown and McKechnie 2008, Woods and Brigham 2008). Consequently, nightjars may not
307 308 309	Material B). However, the temporal window for nightjars to forage is highly variable and constrained by several ecological and environmental factors (Mills 1986, Jetz et al. 2003, Ashdown and McKechnie 2008, Woods and Brigham 2008). Consequently, nightjars may not always acquire enough insects to offset EWL, increasing their dependence on drinking water.

312 in T_e with the projected 4 $^{\circ}$ C increase in T_a during the 21st century (Smith et al. 2011), maximum

313 predicted water requirements at roost and nest sites for Rufous-cheeked Nightjars at Dronfield

314 could reach values of 13.8 and 15.1 g, respectively, equivalent to 24.2 and 26.4% of Mb.

315 Presumably, nightjar populations with no access to drinking water will be highly vulnerable to 316 climate change because of the increasing difficulty of offsetting water deficits solely through 317 preformed and metabolic water.

318 Given the design and construction of our T_e models, it is possible that multiple sources of 319 error were introduced in our T_e estimates. Firstly, the size difference between our 3-D printed 320 bodies could have created issues with thermal stratification (Bakken 1992, O'Connor et al. 2000, 321 Bakken and Angilletta 2014). However, the generally small size of our models (< 100 g) 322 combined with the thickness of the plastic ($\sim 2 \text{ mm}$) and the placement of the thermocouples 323 likely mitigated this issue (Bakken 1992). The second potential source of error stems from the 324 layer of cotton wool wrapped around the plastic body of our Te-skin models. This cotton added an 325 insulative layer which likely increased the time constant of our models. Bakken (1992) and 326 O'Connor (2000) proposed that the time constant desired ultimately depends on the study 327 question and rapid time responses are plausibly more important in studies on animals where 328 behavioral thermoregulation is paramount (e.g., ectotherms). Because nightjars are inactive 329 during the day, behavioral thermoregulation is minimal, aside from postural adjustments, and an 330 instantaneous time constant may not be as imperative. In any event, because we lacked the 331 necessary equipment (e.g., wind tunnel and solar simulator), we could not accurately calibrate 332 our models prior to use, an issue that appears to be common among operative temperature studies 333 (Walsberg and Wolf 1996, Dzialowski 2005).

334

335 Conclusions

One of the most pressing issues facing biologists today is predicting how organisms will respond
to climate change (Schwenk et al. 2009, Sears and Angilletta 2011). A vital step towards

338 addressing this issue is knowing the degree to which an organism is exposed to environmental 339 change (Williams et al. 2008). Organismal exposure, however, will be mediated through 340 microhabitat selection and the use of microrefugia which can substantially buffer or amplify an 341 environmental signal (e.g., Woods et al. 2015, Morelli et al. 2016, Pincebourde et al. 2016, 342 Lenoir et al. 2017). Hence, organisms usually experience microclimates at spatial scales much 343 finer than those recorded at gridded weather stations (Campbell and Norman 1998, Helmuth et 344 al. 2010). An understanding of the thermal heterogeneity an organism is exposed to across its 345 range of microclimates is necessary when assessing its physiological stress under current and 346 future climate conditions.

347 During our study, Rufous-cheeked Nightjars experienced microclimates where Te 348 substantially exceeded normothermic T_b for periods of several hours each day. Although 349 diurnally active birds may also experience similarly high environmental temperatures when 350 foraging, they also can periodically escape midday heat by seeking out shaded microhabitats 351 with more moderate microclimates (Goldstein 1984, Carroll et al. 2015b, Pattinson and Smit 352 2017). Hence, diurnal birds can reduce rates of EWL through behavioral thermoregulation 353 (Williams et al. 1999, Wolf 2000). In contrast, nightjars remain inactive and experience the full brunt of the sun, resulting in large evaporative water requirements (Grant 1982). The capacity for 354 355 nightiars to tolerate high heat loads stems from a combination of a low resting metabolic rate and 356 an energetically efficient mechanism for dissipating heat (Dawson and Fisher 1969, O'Connor et 357 al. 2017b, Talbot et al. 2017). Both of these traits serve to reduce an individual's total heat load 358 by minimizing endogenous heat production. Several authors have suggested that the use of 359 exposed sites by ground nesting species presents a trade-off between lower predation risk due to 360 early predator detection and increased heat stress (Amat and Masero 2004b, Tieleman et al.

361 2008). However, increasing temperatures could alter the dynamics of this trade-off, possibly 362 forcing nightjars to use more shaded microhabitats despite greater predation risk. Our EWL 363 estimates based on T_e values suggest that Rufous-cheeked Nightjars require exceedingly high 364 EWL rates. The physiological mechanisms allowing nightjars to tolerate large losses in body 365 water are presently unknown, but could pertain to an increased capacity to maintain plasma 366 volume. Additionally, free-ranging Rufous-cheeked Nightjars likely conserve water through 367 facultative hyperthermia (O'Connor et al. 2017a). Under current thermal conditions, Rufous-368 cheeked Nightjars can apparently offset evaporative water losses with preformed water from 369 their diet and metabolic water. Climate change, however, will likely increase evaporative water 370 requirements, in turn increasing the importance of drinking water and, possibly, even resulting in 371 conditions where nightjars cannot make it to sunset without becoming lethally dehydrated.

372

373 Acknowledgements

We sincerely thank Alex Mullinos at 3dforms for his patience and help with 3-D printing and Dr. James Meyer for performing the taxidermy necessary to complete the models. Without their assistance, this study would not have been possible. We additionally thank Duncan MacFadyen and E. Oppenheimer & Son for granting us access to their property. Cathy Bester and all field assistants provided invaluable help during the field season. Lastly, Bruce Woodroffe and Awesome Tools (Cape Town, South Africa) provided discounted lighting equipment, for which we are greatly appreciative.

381 **References**

- 382 Albright, T.P., Mutiibwa, D., Gerson, A.R., Smith, E.K., Talbot, W.A., O'Neill, J.J., McKechnie,
- 383 A.E., and Wolf, B.O. 2017. Mapping evaporative water loss in desert passerines reveals an
- expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. **114**(9): 2283–2288.
- doi:10.1073/pnas.1613625114.
- 386 Amat, J.A., and Masero, J.A. 2004a. How Kentish plovers, *Charadrius alexandrinus*, cope with
- heat stress during incubation. Behav. Ecol. Sociobiol. 56(1): 26–33. doi:10.1007/s00265004-0758-9.
- 389 Amat, J.A., and Masero, J.A. 2004b. Predation risk on incubating adults constrains the choice of
- thermally favourable nest sites in a plover. Anim. Behav. **67**(2): 293–300.
- doi:10.1016/j.anbehav.2003.06.014.
- 392 Arad, Z., Horowitz, M., Eylath, U., and Marder, J. 1989. Osmoregulation and body fluid
- compartmentalization in dehydrated heat-exposed pigeons. Am. J. Physiol. 257: R377R382.
- 395 Ashdown, R.A.M., and McKechnie, A.E. 2008. Environmental correlates of freckled nightjar
- 396 (*Caprimulgus tristigma*) activity in a seasonal, subtropical habitat. J. Ornithol. **149**(4): 615–
- 397 619. doi:10.1007/s10336-008-0309-7.
- Bakken, G.S. 1976. A heat transfer analysis of animals: unifying concepts and the application of
 metabolism chamber data to field ecology. J. Therm. Biol. 60: 337–384.
- 400 Bakken, G.S. 1989. Arboreal perch properties and the operative temperature experienced by
- 401 small animals. Ecology **70**(4): 922–930.
- 402 Bakken, G.S. 1992. Measurement and application of operative and standard operative
- 403 temperatures in ecology. Am. Zool. **32**(2): 194–216. doi:10.1093/icb/32.2.194.

- 404 Bakken, G.S., and Angilletta, M.J. 2014. How to avoid errors when quantifying thermal
- 405 environments. Funct. Ecol. **28**(1): 96–107. doi:10.1111/1365-2435.12149.
- 406 Bartholomew, G.A., and Dawson, W.R. 1979. Thermoregulatory behavior during incubation in
- 407 Heermann's gulls. Physiol. Zool. **52**(4): 422–437.
- 408 Bartholomew, G.A., Hudson, J.W., and Howell, T.R. 1962. Body temperature, oxygen
- 409 consumption, evaporative water loss, and heart rate in the poor-will. Condor **64**: 117–125.
- 410 Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting linear mixed-effects models
- 411 using lme4. J. Stat. Softw. **67**(1): 1–48. doi:10.18637/jss.v067.i01.
- 412 Beckman, W.A., Mitchell, J.W., and Porter, W.P. 1973. Thermal model for prediction of a desert
- 413 iguana's daily and seasonal behavior. J. Heat Transfer **95**(2): 257. doi:10.1115/1.3450037.
- 414 Bivand, R., and Lewin-Koh, N. 2017. maptools: tools for reading and handling spatial objects. R

415 Package Version 0.9-2. https://CRAN.R-project.org/package=maptools.

- 416 Bozinovic, F., Lagos, J.A., Vásquez, R.A., and Kenagy, G. 2000. Time and energy use under
- 417 thermoregulatory constraints in a diurnal rodent. J. Therm. Biol. **25**(3): 251–256.
- 418 doi:10.1016/S0306-4565(99)00031-5.
- Carmi, N., Pinshow, B., and Horowitz, M. 1994. Plasma volume conservation in pigeons: effects
 of air temperature during dehydration. Am. J. Physiol. 267: R1449–R1453.
- 421 Carmi, N., Pinshow, B., Horowitz, M., and Bernstein, M.H. 1993. Birds conserve plasma volume
- 422 during thermal and flight-incurred dehydration. Physiol. Zool. **66**(5): 829–846.
- 423 Carroll, J.M., Davis, C.A., Elmore, R.D., and Fuhlendorf, S.D. 2015a. A ground-nesting
- 424 galliform's response to thermal heterogeneity: implications for ground-dwelling birds. PLoS
- 425 One **10**(11): e0143676. doi:10.1371/journal.pone.0143676.
- 426 Carroll, J.M., Davis, C.A., Elmore, R.D., Fuhlendorf, S.D., and Thacker, E.T. 2015b. Thermal

- 427 patterns constrain diurnal behavior of a ground-dwelling bird. Ecosphere 6(11): art222.
- 428 doi:10.1890/ES15-00163.1.
- 429 Chen, Y.C., Bundy, D.S., and Hoff, S.J. 1998. Modeling the variation of wind speed with height
- 430 for agricultural source pollution control. Agric. Biosyst. Eng. Publ. **104**(1B): 1685–1691.
- 431 Cowles, R.B., and Dawson, W.R. 1951. A cooling mechanism of the Texas nighthawk. Condor
 432 53(1): 19–22.
- 433 Dawson, W.R., and Fisher, C.D. 1969. Responses to temperature by the spotted nightjar
 434 (*Eurostopodus guttatus*). Condor **71**(1): 49–53.
- 435 Dzialowski, E.M. 2005. Use of operative temperature and standard operative temperature models
- 436 in thermal biology. J. Therm. Biol. **30**(4): 317–334. doi:10.1016/j.jtherbio.2005.01.005.
- 437 Goldstein, D.L. 1984. The thermal environment and its constraint on activity of desert quail in
- 438 summer. Auk **101**(July): 542–550.
- 439 Grant, G.S. 1982. Avian incubation: egg temperature, nest humidity, and behavioral
- 440 thermoregulation in a hot environment. Ornithol. Monogr. **30**(30): iii-75.
- 441 doi:10.2307/40166669.
- 442 Helmuth, B., Broitman, B.R., Yamane, L., Gilman, S.E., Mach, K., Mislan, K.A.S., and Denny,
- M.W. 2010. Organismal climatology: analyzing environmental variability at scales relevant
 to physiological stress. J. Exp. Biol. 213(6): 995–1003. doi:10.1242/jeb.038463.
- 445 Horowitz, M., and Borut, A. 1970. Effect of acute dehydration on body fluid compartments in
- 446 three rodent species, *Rattus norvegicus*, *Acomys cahirinus* and *Meriones crassus*. Comp.
- 447 Biochem. Physiol. **35**: 283–290.
- 448 Huey, R.B. 1991. Physiological consequences of habitat selection. Am. Nat. 137: S91–S115.
- 449 doi:10.1086/285141.

- 450 Ingels, J., Ribot, J.H., and de Jong, B.H.J. 1984. Vulnerability of eggs and young of the blackish
- 451 nightjar (*Caprimulgus nigrescens*) in Suriname. Auk **101**(2): 388–391.
- 452 Jetz, W., Steffen, J., and Linsenmair, K. 2003. Effects of light and prey availability on nocturnal,
- 453 lunar and seasonal activity of tropical nightjars. Oikos **103**(3): 627–639.
- 454 doi:10.1034/j.1600-0706.2003.12856.x.
- 455 Kearney, M., and Porter, W. 2009. Mechanistic niche modelling: combining physiological and
- 456 spatial data to predict species' ranges. Ecol. Lett. **12**(4): 334–350. doi:10.1111/j.1461-
- 457 0248.2008.01277.x.
- 458 Lenoir, J., Hattab, T., and Pierre, G. 2017. Climatic microrefugia under anthropogenic climate
- 459 change: implications for species redistribution. Ecography. **40**(2): 253–266.
- 460 doi:10.1111/ecog.02788.
- 461 McKechnie, A.E., and Lovegrove, B.G. 2002. Avian facultative hypothermic responses: a

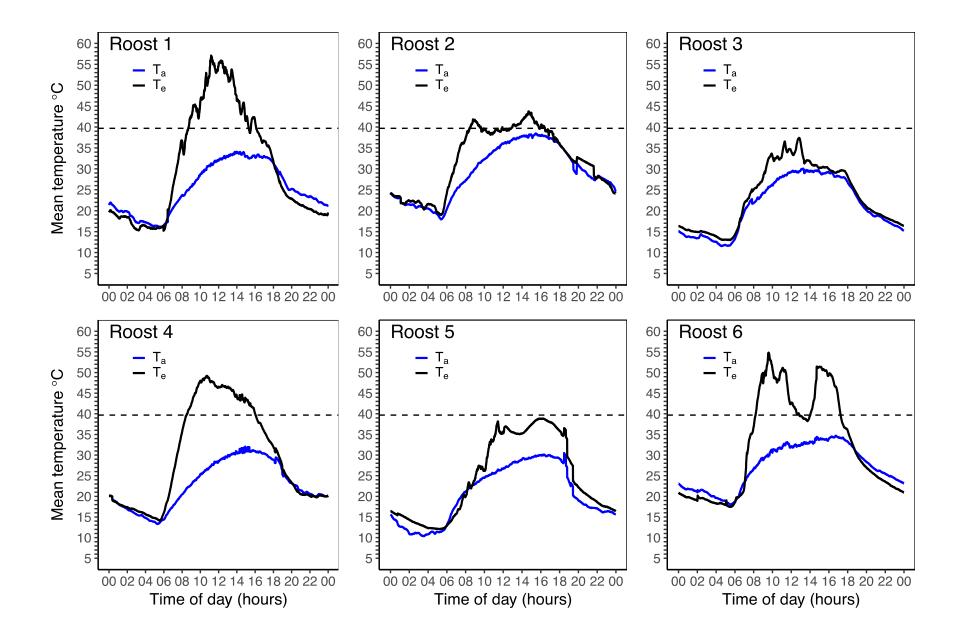
462 review. Condor **104**: 705–724. doi:10.1650/0010-5422.

- 463 McKechnie, A.E., and Wolf, B.O. 2010. Climate change increases the likelihood of catastrophic
- 464 avian mortality events during extreme heat waves. Biol. Lett. 6(2): 253–6.
- 465 doi:10.1098/rsbl.2009.0702.
- 466 Mills, A.M. 1986. The influence of moonlight on the behavior of goatsuckers (Caprimulgidae).
- 467 Auk **103**(2): 370–378.
- 468 Morelli, T.L., Daly, C., Dobrowski, S.Z., Dulen, D.M., Ebersole, J.L., Jackson, S.T., Lundquist,
- 469 J.D., Millar, C.I., Maher, S.P., Monahan, W.B., Nydick, K.R., Redmond, K.T., Sawyer,
- 470 S.C., Stock, S., and Beissinger, S.R. 2016. Managing climate change refugia for climate
- 471 adaptation. PLoS One **11**(8): e0159909. doi:10.1371/journal.pone.0159909.
- 472 O'Connor, M.P., Zimmerman, L.C., Dzialowski, E.M., and Spotila, J.R. 2000. Thick-walled

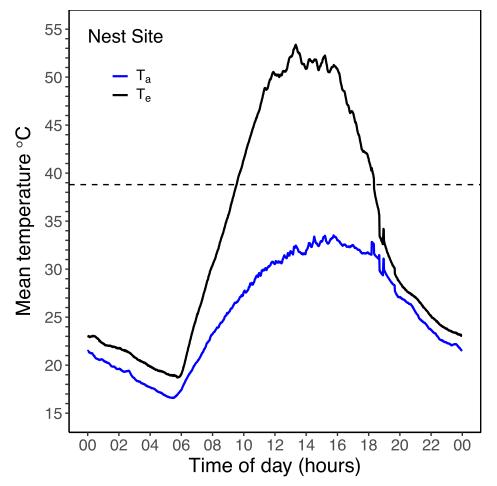
- 473 physical models improve estimates of operative temperatures for moderate to large-sized
- 474 reptiles. J. Therm. Biol. **25**(4): 293–304. doi:10.1016/S0306-4565(99)00101-1.
- 475 O'Connor, R.S., Brigham, R.M., and McKechnie, A.E. 2017a. Diurnal body temperature patterns
- 476 in free-ranging populations of two southern African arid-zone nightjars. J. Avian Biol.
- 477 **48**(9): 1195–1204. doi:10.1111/jav.01341.
- 478 O'Connor, R.S., Wolf, B.O., Brigham, R.M., and McKechnie, A.E. 2017b. Avian
- thermoregulation in the heat: efficient evaporative cooling in two southern African
- 480 nightjars. J. Comp. Physiol. B **187**(3): 477–491. doi:10.1007/s00360-016-1047-4.
- 481 Pattinson, N.B., and Smit, B. 2017. Seasonal behavioral responses of an arid-zone passerine in a
- 482 hot environment. Physiol. Behav. **179**(June): 268–275. doi:10.1016/j.physbeh.2017.06.018.
- 483 Pincebourde, S., Murdock, C.C., Vickers, M., and Sears, M.W. 2016. Fine-scale microclimatic
- 484 variation can shape the responses of organisms to global change in both natural and urban
- 485 environments. Integr. Comp. Biol. **56**(1): 45–61. doi:10.1093/icb/icw016.
- 486 Porter, W.P., and Gates, D.M. 1969. Thermodynamic equilibria of animals with environment.
- 487 Ecol. Monogr. **39**(3): 227–244.
- 488 Porter, W.P., Munger, J.C., Stewart, W.E., Budaraju, S., and Jaeger, J. 1994. Endotherm
- 489 energetics from a scalable individual-based model to ecological applications. Aust. J.
- 490 Zool. **42**(1): 125. doi:10.1071/ZO9940125.
- 491 Porter, W.P., Ostrowski, S., and Williams, J.B. 2010. Modeling animal landscapes. Physiol.
- 492 Biochem. Zool. **83**(5): 705–712. doi:10.1086/656181.
- 493 Potter, K.A., Woods, H.A., and Pincebourde, S. 2013. Microclimatic challenges in global change
 494 biology. Glob. Chang. Biol. 19(10): 2932–2939. doi:10.1111/gcb.12257.
- 495 Scheffers, B.R., Edwards, D.P., Diesmos, A., Williams, S.E., and Evans, T.A. 2014.

- 496 Microhabitats reduce animal's exposure to climate extremes. Glob. Chang. Biol. **20**(2):
- 497 495–503. doi:10.1111/gcb.12439.
- 498 Schwenk, K., Padilla, D.K., Bakken, G.S., and Full, R.J. 2009. Grand challenges in organismal
- 499 biology. Integr. Comp. Biol. **49**(1): 7–14. doi:10.1093/icb/icp034.
- 500 Sears, M.W., and Angilletta, M.J. 2011. Introduction to the Symposium: responses of organisms
- 501 to climate change: a synthetic approach to the role of thermal adaptation. Integr. Comp.
- 502 Biol. **51**(5): 662–665. doi:10.1093/icb/icr113.
- 503 Sears, M.W., Raskin, E., and Angilletta, M.J. 2011. The world is not flat: defining relevant
- 504 thermal landscapes in the context of climate change. Integr. Comp. Biol. **51**(5): 666–675.
- 505 doi:10.1093/icb/icr111.
- 506 Smit, B., Harding, C.T., Hockey, P.A.R., and McKechnie, A.E. 2013. Adaptive thermoregulation
- 507 during summer in two populations of an arid-zone passerine. Ecology **94**(5): 1142–1154.
- 508 doi:10.1890/12-1511.1.
- 509 Smith, M.S., Horrocks, L., Harvey, A., and Hamilton, C. 2011. Rethinking adaptation for a 4 °C
- 510 world. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. **369**(1934): 196–216.
- 511 doi:10.1098/rsta.2010.0277.
- 512 Steyn, P. 1971. Notes on the breeding biology of the freckled nightjar. Ostrich **42**: 179–188.
- 513 doi:10.1080/00306525.1971.9633405.
- 514 Tieleman, B.I., van Noordwijk, H.J., and Williams, J.B. 2008. Nest site selection in a hot desert:
- 515 trade-off between microclimate and predation risk? Condor **110**(1): 116–124.
- 516 doi:10.1525/cond.2008.110.1.116.116.
- 517 Tieleman, B.I., and Williams, J.B. 1999. The role of hyperthermia in the water economy of
- 518 desert birds. Physiol. Biochem. Zool. **72**(1): 87–100. doi:10.1086/316640.

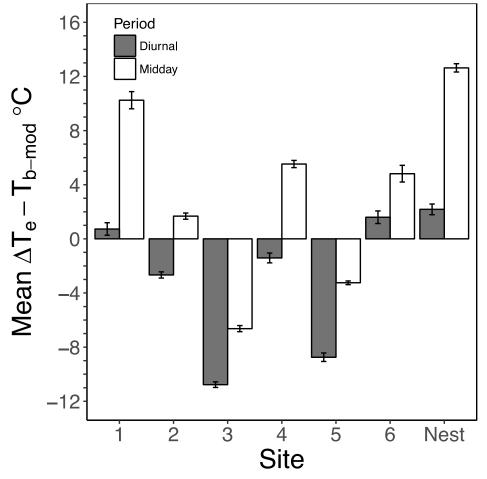
- 519 Tieleman, B.I., and Williams, J.B. 2002. Effects of food supplementation on behavioural
- 520 decisions of hoopoe-larks in the Arabian desert: balancing water, energy and
- 521 thermoregulation. Anim. Behav. **63**(3): 519–529. doi:10.1006/anbe.2001.1927.
- 522 Walsberg, G.E., and Weathers, W.W. 1986. A simple technique for estimating operative
- 523 environmental temperature. J. Therm. Biol. **11**(1): 67–72. doi:10.1016/0306-
- 524 4565(86)90020-3.
- Walsberg, G.E., and Wolf, B.O. 1996. An appraisal of operative temperature mounts as tools for
 studies of ecological energetics. Physiol. Zool. 69(3): 658–681.
- 527 doi:10.1086/physzool.69.3.30164221.
- 528 Ward, D., and Pinshow, B. 1995. Temperature regulation of the great grey shrike (Lanius
- *excubitor*) in the Negev desert—II. Field measurements of standard operative temperatures
 and behaviour. J. Therm. Biol. 20(3): 271–279. doi:10.1016/0306-4565(94)00051-J.
- 531 Watson, C.M., and Francis, G.R. 2015. Three dimensional printing as an effective method of
- 532 producing anatomically accurate models for studies in thermal ecology. J. Therm. Biol. **51**:
- 533 42–46. doi:10.1016/j.jtherbio.2015.03.004.
- Weller, M. 1958. Observations on the incubation behavior of a common nighthawk. Auk 75(1):
 48–59.
- 536 Williams, J.B., Tieleman, B.I., and Shobrak, M. 1999. Lizard burrows provide thermal refugia
- 537 for larks in the Arabian desert. Condor **101**(3): 714–717. doi:10.2307/1370208.
- 538 Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., and Langham, G. 2008. Towards an
- 539 integrated framework for assessing the vulnerability of species to climate change. PLoS
- 540 Biol. **6**(12): e325. doi:10.1371/journal.pbio.0060325.
- 541 Wolf, B. 2000. Global warming and avian occupancy of hot deserts: a physiological and

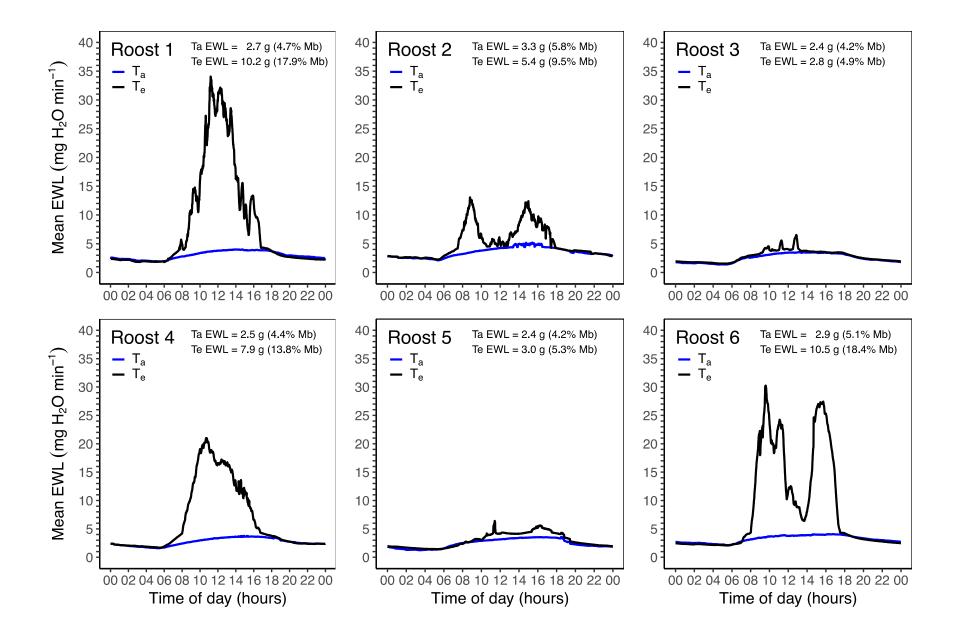

- 542 behavioral perspective. Rev. Chil. Hist. Nat. **73**(3): 395–400. doi:10.4067/S0716-
- 543 078X200000300003.
- 544 Wolf, B.O., and Walsberg, G.E. 1996. Thermal effects of radiation and wind on a small bird and
- 545 implications for microsite selection. Ecology **77**(7): 2228–2236. doi:10.2307/2265716.
- 546 Wolf, B.O., Wooden, K.M., and Walsberg, G.E. 1996. The use of thermal refugia by two small
- 547 desert birds. Condor **98**(2): 424–428. doi:10.2307/1369162.
- 548 Woods, C.P., and Brigham, R.M. 2008. Common poorwill activity and calling behavior in
- relation to moonlight and predation. Wilson J. Ornithol. **120**(3): 505–512. doi:10.1676/06-
- 550 067.1.
- 551 Woods, H.A., Dillon, M.E., and Pincebourde, S. 2015. The roles of microclimatic diversity and
- 552 of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54:
- 553 86–97. doi:10.1016/j.jtherbio.2014.10.002.

555


556	Table 1. Mean \pm SD diurnal (i.e., sunrise to sunset), midday (i.e., $12:00 - 15:00$ hours) and
557	maximum operative temperatures (T_e °C) recorded at six roost sites and one nest site used by six
558	different Rufous-cheeked Nightjars (Caprimulgus rufigena; roosts 1 and 2 were occupied by the
559	same individual). Te was recorded at each site separately between 26 October and 12 December
560	2015, near Kimberly, South Africa at 1-minute intervals using two types of 3-D printed models,
561	including one type covered with skin and feathers (i.e., skin) and one without skin and feathers
562	(i.e., plastic). Sample sizes were identical between skin and plastic models, ranging from 2352 to
563	3497 for diurnal measurements and 543 to 806 for midday measurements. Values in parentheses

564 represent T_e ranges.


Site	Mean diurnal T _e		Mean midday Te		Mean maximum Te	
	Skin	Plastic	Skin	Plastic	Skin	Plastic
Roost 1	$\begin{array}{c} 40.4 \pm 11.4 \\ (14.3 - 65.6) \end{array}$	$\begin{array}{c} 40.6 \pm 12.6 \\ (16.6 - 64.8) \end{array}$	$\begin{array}{c} 49.9 \pm 7.6 \\ (36.6 - 65.6) \end{array}$	$\begin{array}{c} 50.3 \pm 7.1 \\ (39.1 - 64.8) \end{array}$	$\begin{array}{c} 60.8 \pm 6.0 \\ (54.1 - 65.6) \end{array}$	$\begin{array}{c} 62.8 \pm 2.9 \\ (59.5 - 64.8) \end{array}$
Roost 2	$\begin{array}{c} 37.0 \pm 6.7 \\ (13.9 - 53.5) \end{array}$	$\begin{array}{c} 41.0 \pm 9.4 \\ (14.0 - 62.0) \end{array}$	$\begin{array}{c} 41.4 \pm 3.1 \\ (38.3 - 53.5) \end{array}$	41.4 ± 2.3 (37.2 – 52.4)	$\begin{array}{c} 48.1 \pm 5.5 \\ (40.5 - 53.5) \end{array}$	$58.3 \pm 3.8 \\ (53.0 - 62.0)$
Roost 3	$28.9 \pm 6.2 \\ (11.5 - 43.6)$	$\begin{array}{c} 29.2 \pm 6.6 \\ (10.9 - 44.7) \end{array}$	$\begin{array}{c} 33.1 \pm 3.3 \\ (28.4 - 43.6) \end{array}$	$\begin{array}{c} 33.0 \pm 3.7 \\ (28.0 - 44.7) \end{array}$	$38.5 \pm 4.6 \\ (32.5 - 43.6)$	$38.9 \pm 5.2 \\ (32.7 - 44.7)$
Roost 4	$\begin{array}{c} 38.3 \pm 10.3 \\ (10.2 - 55.5) \end{array}$	$\begin{array}{c} 37.8 \pm 11.0 \\ (8.3 - 55.5) \end{array}$	$\begin{array}{c} 45.2\pm 3.6\\(39.1-51.5)\end{array}$	$\begin{array}{c} 45.3 \pm 5.4 \\ (35.9 - 53.4) \end{array}$	50.1 ± 4.8 (43.9 - 55.5	$52.0 \pm 5.5 \\ (43.8 - 55.5)$
Roost 5	$\begin{array}{c} 31.0 \pm 9.1 \\ (6.6 - 48.7) \end{array}$	$\begin{array}{c} 34.7 \pm 10.8 \\ (8.0-55.0) \end{array}$	$\begin{array}{c} 36.5 \pm 1.9 \\ (31.5 - 42.1) \end{array}$	$\begin{array}{c} 38.1 \pm 4.4 \\ (28.8 - 47.2) \end{array}$	$\begin{array}{c} 43.0 \pm 4.0 \\ (39.9 - 48.7) \end{array}$	$50.0 \pm 6.3 \\ (41.5 - 55.0)$
Roost 6	$\begin{array}{c} 41.3 \pm 11.7 \\ (16.9 - 62.6) \end{array}$	$\begin{array}{c} 40.6 \pm 12.1 \\ (14.6 - 62.2) \end{array}$	$\begin{array}{c} 44.5 \pm 7.3 \\ (33.8 - 60.3) \end{array}$	$\begin{array}{c} 44.5 \pm 7.3 \\ (31.1 - 57.6) \end{array}$	$58.2 \pm 4.7 \\ (53.2 - 62.6)$	$59.3 \pm 2.7 \\ (56.9 - 62.2)$
Nest	$\begin{array}{c} 41.0 \pm 11.5 \\ (15.4 - 60.4) \end{array}$	$\begin{array}{c} 40.6 \pm 11.2 \\ (15.0 - 62.0) \end{array}$	$51.4 \pm 4.2 \\ (44.5 - 60.4)$	$51.1 \pm 4.9 \\ (42.1 - 62.0)$	$55.1 \pm 4.5 \\ (49.5 - 60.4)$	$56.0 \pm 4.9 \\ (50.0 - 62.0)$


Figure 2. Mean operative temperature (T_e) and air temperature (T_a) for a 24-hour day (e.g., 02 = 02:00 hours; 22 = 22:00 hours) at six roost sites used by five Rufous-cheeked Nightjars (*Caprimulgus rufigena*; roosts 1 and 2 are from the same bird). T_e was recorded at 1-min intervals using a 3-D printed model covered with the skin and feathers of a Rufous-cheeked Nightjar. T_e was recorded at each roost site separately and remained at a site for approximately four days. Horizontal dashed lines represent free-ranging modal body temperature for roosting Rufous-cheeked Nightjars (39.7 °C; O'Connor et al. 2017a). T_a was also recorded at 1-minute intervals.

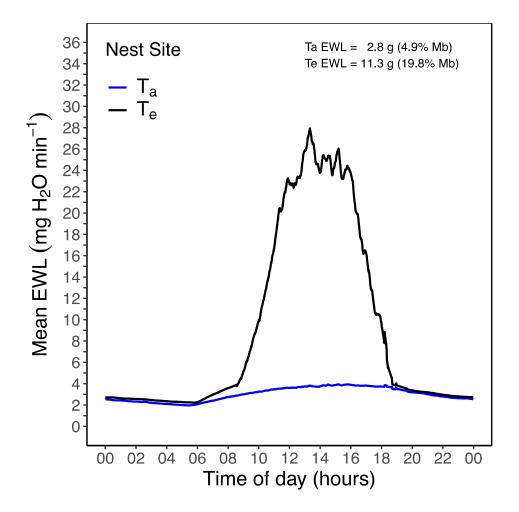

Figure 3. Mean operative temperature (T_e) and air temperature (T_a) for a 24-hour day (e.g., 02 = 02:00 hours; 22 = 22:00 hours) at a Rufous-cheeked Nightjar (*Caprimulgus rufigena*) nest site. T_e was recorded at 1-min intervals using a 3-D printed model covered with the skin and feathers of a Rufous-cheeked Nightjar. The model remained at the site for approximately four days. The horizontal dashed line represents the free-ranging modal body temperature for an incubating Rufous-cheeked Nightjar (38.8 °C; O'Connor et al. 2017a). T_a was also recorded at 1-minute intervals.

Figure 4. Mean difference between operative temperature (T_e) and free-ranging modal body temperature (T_{b-mod}) during the diurnal (i.e., sunrise to sunset) and midday (i.e., 12:00 – 15:00 hours) periods at six roost sites and one nest site used by six Rufous-cheeked Nightjars (*Caprimulgus rufigena*; roosts 1 and 2 are from the same individual). T_e was recorded at each site separately between 26 October and 12 December 2015, near Kimberly, South Africa at 1minute intervals using a 3-D printed model covered with the skin and feathers of a Rufouscheeked Nightjar. Error bars represent 95% confidence intervals.

Figure 5. Mean evaporative water loss (EWL) predictions for a 24-hour day (e.g., 02 = 02:00 hours; 22 = 22:00 hours) at six roost sites used by five Rufous-cheeked Nightjars (*Caprimulgus rufigena*; roosts 1 and 2 were used by the same bird). EWL was predicted every minute by plugging either T_e or T_a into EWL models from O'Connor et al. (2017b). Ta EWL and Te EWL represent the sum of all mean EWL predictions at each minute for only the diurnal period. Values in parentheses represent the amount of water lost during the diurnal period as a percentage of body mass (57.1 g).

Figure 6. Mean evaporative water loss (EWL) predictions for a 24-hour day (e.g., 02 = 02:00 hours; 22 = 22:00 hours) for a Rufous-cheeked Nightjar (*Caprimulgus rufigena*) nest site. EWL was predicted every minute from T_e or T_a using EWL data from O'Connor et al. (2017b). Ta EWL and Te EWL represent the sum of all mean EWL predictions at each minute for only the diurnal period. Values in parentheses represent the amount of water lost during the diurnal period as a percentage of mean Rufous-cheeked Nightjar body mass (57.1 g).