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SUMMARY 
 

Understanding complex systems such as the human brain requires characterization of the            
system’s architecture across multiple levels of organization—from neurons, to local circuits, to            
brain regions, and ultimately large-scale brain networks. Here we focus on characterizing the             
human brain’s comprehensive large-scale network organization, as it provides an overall           
framework for the organization of all other levels. We leveraged the Human Connectome Project              
dataset to identify network communities across cortical regions, replicating well-known          
networks and revealing several novel but robust networks, including a left-lateralized language            
network. We expanded these cortical networks to subcortex, revealing 288 highly-organized           
subcortical segments that take part in forming whole-brain functional networks. This whole-brain            
network atlas—released as an open resource for the neuroscience community—places all brain            
structures across both cortex and subcortex in a single large-scale functional framework,            
substantially advancing existing atlases to provide a brain-wide functional network          
characterization​ ​in​ ​humans. 
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INTRODUCTION 
 
Understanding the highly distributed neural computations that underlie cognitive abilities in           
humans will require a framework that places neural events in the context of overall brain               
network organization. Several such frameworks have been introduced ​(Power et al., 2011; Yeo et              
al., 2011) ​, based on the idea that the brain exhibits a modular functional architecture enabling               
efficient processing ​(Bullmore and Sporns, 2009) ​. Consistent with this, distributed clusters of            
brain regions are strongly functionally interconnected (showing high statistical association          
between time series), composing distinct functional networks. These functional networks can be            
detected using resting-state functional connectivity (RSFC) with functional MRI (fMRI),          
capitalizing on the phenomenon of spontaneous but coherent low-frequency fluctuations of the            
BOLD (blood-oxygen level dependent) signal. This phenomenon can give insight into the brain’s             
intrinsic functional network organization that likely underlies a host of computations, including            
higher-order cognition. This intrinsic organization is thought to be functionally relevant since            
brain activity patterns during rest and task have high overall correspondence ​(Smith et al.,              
2009b) ​. Moreover, task-evoked activity flow (the movement of task-evoked activations between           
brain regions) can be accurately predicted using RSFC, suggesting that resting-state functional            
networks shape cognitive task activations ​(Cole et al., 2016) ​. This hypothesis is additionally             
supported by findings of strong correspondence between resting-state and task-state functional           
connectivity: Only subtle changes are observed in brain-wide functional connectivity          
organization during a wide variety of (functionally distinct) tasks and rest ​(Cole et al., 2014a;               
Krienen et al., 2014) ​. These findings suggests that, although smaller task-specific changes in             
cortical organization occur during tasks, the main functional network architecture is already            
present​ ​during​ ​rest.  

Yet there remains a large knowledge gap in defining an accurate whole-brain network              
partition, i.e., a neurobiologically-plausible organization of network modules underlying         
distributed neural computations. While a number of network partitions have been developed            
(Doucet et al., 2011; Gordon et al., 2016; Laumann et al., 2015) ​, two of the most widely utilized                  
are those by Power et al. ​(2011) and Yeo et al. ​(2011) ​. Their widespread impact likely stems                 
from their strong correspondence with well-established primary sensory-motor systems, as well           
as correspondence with well-replicated co-activation patterns (e.g., frontoparietal co-activations         
during working memory tasks) in the task fMRI literature ​(Smith et al., 2009b; Yeo et al., 2015) ​.                 
Both groups used clustering algorithms to identify functional networks based on distributed            
patterns of high RSFC between brain regions (for Power et al. ​(2011) ​) or a grid of cortical                 
surface locations (for Yeo et al. ​(2011) ​). Together, they revealed a common brain network              
organization with bilaterally distributed visual, sensorimotor, default mode, and attention          
networks. Furthermore, both solutions revealed a task-positive system (the fronto-parietal, dorsal           
attention and cingulo-opercular networks) and a task-negative system consisting of the default            
mode network ​(Fox et al., 2005; Power et al., 2011) ​. These network partitions have proven to be                 
remarkably valuable in elucidating functional brain organization and have provided an initial            
framework for functional network analyses in a variety of studies, both in health and disease,               
yielding​ ​important​ ​new ​ ​insights​ ​in​ ​multiple ​ ​fields​ ​of ​ ​neuroscience ​ ​​(Sporns, ​ ​2014) ​.  

However, the currently existing network partitions were not able to overcome certain key             
limitations due to technical and methodological constraints, limiting the obtained precision of            
network assignments. As the authors themselves highlighted, the use of volumetric data and             
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spherical regions of interest, large voxel sizes and no comprehensive subcortical network            
solution could all lead to misrepresentations in final network partitions ​(Power et al., 2011; Yeo               
et al., 2011) ​. While these were vital “first generation” network partition attempts, the field of               
neuroimaging is still rapidly developing ​(Glasser et al., 2016; Uğurbil et al., 2013) ​, affording              
leaps in methodological optimization. Consequently, we sought to employ recent major           
methodological advances in acquisition and analytics to derive a “second generation” unified            
whole-brain network partition. The expectation was that these improvements in data quality and             
analysis approach could reveal new insights into the brain’s functional organization.           
Additionally, we sought to develop this improved network partition for use by the neuroscience              
community, with the goal that it can be used to improve results across a variety of studies                 
investigating human brain function in health and disease. We are also making all of the code and                 
data used to produce our partition publically available, assisting future studies seeking to             
iteratively ​ ​improve​ ​upon​ ​the​ ​inevitable ​ ​technical​ ​limits​ ​of ​ ​the​ ​present​ ​work. 

Thus, the goal is not only to provide stronger evidence for previous network assignments               
but also to create a methodologically-improved “second generation” functional network partition           
by addressing numerous well-known limitations of earlier partitions. First, as a starting point, we              
leveraged a recently-developed surface-based cortical parcellation ​(Glasser et al., 2016) ​, which           
combined multiple neuroimaging modalities (i.e., myelin mapping, cortical thickness, task fMRI,           
and RSFC) to drastically improve cortical area assignment. These improvements were driven by             
strong quantitative convergence across independent MR-based modalities, each with         
complementary strengths and weaknesses. Second, we used multi-band fMRI data from the            
Human Connectome Project ​(Van Essen et al., 2013) ​, allowing for superior spatio-temporal            
resolution (i.e. simultaneous acquisition of multiple slices at a small voxel size) relative to data               
used for previous network partitions ​(Feinberg et al., 2010; Moeller et al., 2010) ​. This              
substantially increased the spatial and temporal detail of the RSFC estimates and the resulting              
network partition. Third, we also increased the spatial specificity and anatomical fidelity of the              
RSFC data by using a high-resolution surface-based analysis. Such surface-based methods yield            
far superior across-subject alignment of cortical geometry ​(Anticevic et al., 2008; Glasser et al.,              
2013) (as opposed to volume-based methods ​(Craddock et al., 2012; Shen et al., 2013) ​). This               
collectively results in less spatial blurring across sulcal boundaries within an individual and             
superior​ ​cross-areal​ ​alignment ​ ​across ​ ​individuals​ ​​(Uğurbil​ ​et​ ​al.,​ ​2013) ​. 

Building on these methodological advances, a plausible network partition should have a            
neurobiologically plausible number of networks, including well-known functional systems         
(Mesulam, 1998; Ryali et al., 2012; Stark et al., 2008) as well as subcortical components               
(Buckner et al., 2011; Choi et al., 2012) ​. For example, although many known systems were               
already included in previous network partitions, there was no clear assignment of a language              
network (at least in the “first generation” Power and Yeo network partitions), even though there               
is ample evidence in the literature for the existence of a distributed language system in humans                
(Broca, 1861; Hampson et al., 2002; Wernicke, 1874) ​, and perhaps even a homologous network              
in non-human primates ​(Mantini et al., 2013) ​. In fact, this was a major knowledge gap that was                 
partially addressed by the Glasser cortical parcellation—namely identification of putatively          
novel language-related cortical regions, with clear but heretofore undefined boundaries ​(Glasser           
et al., 2016) ​. Therefore, we explicitly tested the hypothesis that a methodologically improved and              
neurobiologically-plausible network solution should yield a brain-wide language network based          
on RSFC graphs. In turn, such a language network should pass the test of mapping onto                
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language-relevant computations based on independent overlap with task-evoked signals during          
language​ ​processing. 

We additionally sought to overcome a key technical limitation of previously-developed           
network partitions in which there was high uncertainty about the network assignment of the              
ventral cortical surface. This uncertainty stems from sinus-related MRI dropout (due to magnetic             
field inhomogeneities) in these regions. The use of multiband fMRI data not only provides a               
higher signal-to-noise ratio (SNR) due to higher temporal resolution, but also affords less             
dropout due to higher spatial resolution ​(Merboldt et al., 2000; Smith et al., 2013) ​. We               
hypothesized that this would allow for network assignments for regions in MRI dropout areas              
such ​ ​as ​ ​orbitofrontal​ ​cortex,​ ​for ​ ​which​ ​no​ ​clear ​ ​network​ ​assignment​ ​currently ​ ​exists. 

We also sought a highly principled approach to defining networks that would be both              
reproducible and that could be built on by future efforts to refine network definitions even               
further. This required dealing with two challenges that previously-developed network partitions           
faced. First, we made sure that each step taken toward producing the network partition was               
described in detail (and in publically-available code), allowing for precise testing for replication.             
Second, we acknowledged that the brain can be considered hierarchically, deciding to identify             
network structure at a particular level of organization: the same level of organization as primary               
sensory-motor systems. This involved calibrating our community detection algorithm to identify           
primary visual, auditory, and somatomotor systems. This calibration may have resulted in            
merging networks that may be statistically possible to fractionate with different           
parameters—such as shown by the 7-network vs. 17-network solutions by Yeo et al. ​(2011) ​.              
However, as opposed to optimizing for a select statistical parameter, here we identified the level               
of ​ ​organization​ ​consistent​ ​with​ ​the​ ​spatial ​ ​resolution​ ​of ​ ​primary​ ​sensory-motor​ ​systems. 

Finally, a fundamental knowledge gap in the field is a lack of a unified whole-brain               
network partition, which includes all of cortex and subcortex. Prior work utilized the cortical              
network assignment to delineate network partitions for the striatum ​(Choi et al., 2012) and the               
cerebellum ​(Buckner et al., 2011) ​, which revealed a shared functional topography between these             
large anatomical structures (i.e., cortex, striatum, and the cerebellum). However, no study has             
extended this approach simultaneously across the striatum, cerebellum, thalamus and the           
brainstem in a common framework. More generally, there is currently no whole-brain partition             
of the human brain that capitalizes on the aforementioned advances of more precise cortical              
mapping and that concurrently provides a comprehensive subcortical network mapping. To           
address this major knowledge gap, we produced a comprehensive network assignment of all             
subcortical voxels, which we mapped using a connectivity-based clustering analysis building on            
our cortical network solution. Functional interconnections between subcortical units (voxels) and           
cortical regions thus help clarify the functional organization of subcortical structures in the             
context​ ​of ​ ​cortical​ ​brain​ ​systems.  

The resulting brain-wide network solution provides three key innovations: i)          
Methodologically it respects the geometry of cortical convolutions (i.e is explicitly           
surface-based) while providing a unified whole-brain cortical-subcortical solution across         
hundreds of human participants. ii) It provides a discovery of new functional networks while also               
mapping a brain-wide language network in humans. iii) This network partition, which we release              
as part of this report, will be of substantial benefit for future studies both neurobiologically and                
statistically, providing a grounded framework for analysis of neuroimaging data across           
large-scale systems in health and disease. Collectively, while we anticipate future improvements            
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of the provided version 1.0, this constitutes the most accurate estimate of whole-brain functional              
network​ ​organization ​ ​in​ ​humans​ ​to​ ​date. 
 

 
METHODS 

  
Experimental​ ​Model​ ​and ​ ​Subject ​ ​Details 
 
Dataset  
The analyzed dataset consisted of 337 healthy volunteers from the publicly available Washington             
University – Minnesota (WU-Min) Human Connectome Project (HCP) data ​(Van Essen et al.,             
2013) ​. Participants were recruited from Washington University (St. Louis, MO) and the            
surrounding area. We selected participants from the “S1200” release of the HCP who had no               
family relations, resulting in 337 participants being included in our analyses. The dataset             
contains resting-state fMRI data from 180 females and 157 males, with age range 22-37 (mean               
age=28.6, SD=3.7), 90% right-handed. Informed consent was obtained from each participant as            
directed by the institutional review board at Washington University at St. Louis. All analyses              
were approved by the Yale and Rutgers IRBs. In total, four resting-state BOLD sessions were               
collected for each participant, which were used for functional network identification. Participants            
also performed a variety of tasks with fMRI ​(Barch et al., 2013) ​. The analyses here focused on                 
the​ ​data​ ​obtained ​ ​from​ ​the​ ​language ​ ​processing​ ​task. 
 
Method ​ ​Details 
 
Data​ ​Acquisition  
Whole-brain echo-planar imaging acquisitions were measured with a 32 channel head coil on a              
modified 3T Siemens Skyra (Connectome Skyra) at WashU with time to repetition (TR)=720ms,             
time to echo (TE)=33.1ms, flip angle=52, bandwidth=2,290 Hz/pixel, in-plane field of view            
(FOV)=208×180mm, 72 slices, and 2.0mm isotropic voxels, with a multi-band acceleration           
factor of 8 ​(Uğurbil et al., 2013) ​. Data were collected over 2 days. On each day 29 min of rest                    
(eyes open with fixation on a cross-hair) BOLD data across two runs were collected (56 min                
total), followed by 30 min of task fMRI data collection (60 min total). The two 14.5-minute                
resting-state BOLD runs that were collected on the same day were acquired with opposite              
phase-encoding directions (L/R & R/L). Complete parameters and acquisition details for the            
HCP dataset were reported by ​Smith et al. (2013) ​. Task-based imaging details are documented in               
detail by Barch et al. (2013). Each of seven HCP tasks was completed over two consecutive                
fMRI runs. In this report we focused on the language processing task data (“LANGUAGE              
story”) to test the performance of our partition. The acquisition parameters were similar to the               
resting-state BOLD sessions and consisted of two runs collected on the same day acquired with               
opposite phase-encoding directions (L/R & R/L). Structural scans with the following parameters            
were also collected: T1-weighted (0.7 mm isotropic resolution, TR=2400ms, TE=2.14ms, flip           
angle=8, in-plane field of view=224×224) and T2-weighted (0.7 mm isotropic resolution,           
TR=3200ms, TE=565ms, variable flip angle, in-plane field of view=224×224). Complete details           
of all HCP acquisition can be found online        
( ​https://www.humanconnectome.org/storage/app/media/documentation/s900/HCP_S900_Releas
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e_Reference_Manual.pdf​). 
 
Quantification​ ​and ​ ​Statistical​ ​Analysis 
 
The methodological workflows for creating cortical and subcortical network partitions are           
displayed in Fig. 2a and Fig. 3a. In summary, for both partitions, data were first preprocessed via                 
HCP convention, followed by calculation of an average FC matrix (parcel-to-parcel for cortical             
data or parcel-to-voxel for subcortical data). A cortical partition was then calculated using a              
clustering algorithm and several pre-determined (hard and soft) criteria, followed by a            
quantitative evaluation of network solutions. The initial cortical assignment steps are described            
in detail in forthcoming sections. In turn, this cortical network partition was then used to               
calculate subcortical network assignment. Here the subcortical voxel was assigned to the cortical             
network with which is was most highly correlated on average, followed by several quality              
assurance​ ​steps​ ​described​ ​below. 
 
Resting-state​ ​fMRI ​ ​preprocessing 
Preprocessing consisted of the following steps, which closely followed the steps advanced by the              
HCP consortium: i) The ‘minimal preprocessing’ approach outlined by Glasser and colleagues            
(Glasser et al., 2013) ​, which involved intensity normalization, phase-encoding direction          
unwarping, motion correction, and spatial normalization to a standard template ​(Glasser et al.,             
2016) MSMAll, Angular Deviation Penalty (ADP) version; ​(Glasser et al., 2016) ​; ii) High-pass             
filtering (0.009Hz); iii) ICA-FIX for artifact removal ​(Salimi-Khorshidi et al., 2014) ​. The final             
‘minimally preprocessed’ BOLD data was represented in the Connectivity Informatics          
Technology Initiative (CIFTI) file format, which combines surface-based data representation for           
cortex and volume-based data for subcortex gray matter locations (i.e. ‘grayordinates’). The            
CIFTI grayordinate BOLD time series were in turn used for subsequent analysis. Additional             
analyses were performed with Workbench v1.2.3 and Matlab 2014b (The Mathworks). To            
remove any potential artifact at the onset/offset of each new run, the first 100 frames were                
removed from every BOLD run for each subject. Subsequently, BOLD runs were concatenated             
in order of acquisition (resting-state fMRI runs 2-1-4-3, R/L first, then L/R) following removal              
of the mean of each run from each time series. We began by focusing on cortical data, with a                   
subsequent​ ​extension​ ​of ​ ​the​ ​identified ​ ​network​ ​partition ​ ​to​ ​subcortical ​ ​data. 
 
Resting-state​ ​cortical​ ​FC ​ ​matrices 
To sample data at the regional level, we used a recently-developed cortical parcellation ​(Glasser              
et al., 2016) ​, which contains 180 symmetric cortical parcels per hemisphere. This parcellation is              
defined in terms of surface vertices and is shown to be substantially more accurate than any prior                 
parcellations due to the consistency of areal borders between data from different modalities and              
an accurate representation of cortical geometry for each subject via the CIFTI file format              
(Glasser et al., 2016) ​. For each subject, BOLD time courses were extracted from the 360               
independently identified parcels using Workbench. An average BOLD time course for each            
parcel was calculated by averaging across all vertices/grayordinates within that region.           
Subsequently, RSFC between each pair of parcels was calculated for each subject using Pearson              
correlation. A functional connectivity matrix for N regions is defined as the N×N matrix M,               
where M(i, j) contains the Pearson correlation of the time courses between region i and region j.                 
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In this way, a 360 x 360 RSFC matrix was formed for each subject. Finally, a single group                  
average RSFC matrix was formed by averaging across all subjects in the cohort, and setting the                
diagonal​ ​to​ ​zero. 
 
Network ​ ​Detection​ ​Using ​ ​Clustering​ ​Algorithm:​ ​Louvain​ ​Clustering​ ​Algorithm 
We sought to establish a neurobiologically principled approach to community detection driven            
by minimal assumptions and devoid of qualitative decisions. Our approach was based roughly on              
(Cole et al., 2014a)​, which was adapted from methods proposed by Power et al. 2011. We                
identified three “hard” criteria for what we considered a principled network partition solution,             
with​ ​two​ ​additional ​ ​“soft”​ ​criteria.  

The hard criteria included: i) separation of primary sensory-motor cortical networks           
(visual, auditory, and somatomotor) from all other networks. This criterion is based on             
unequivocal evidence supporting the existence of these as functionally distinct sensory and            
motor systems in the human brain. If a network partition is to be neurobiologically-grounded it               
should pass this standard. Note that previous functional network partitions of the human brain              
have had difficulty separating auditory cortex from somatomotor cortex ​(Yeo et al., 2011) ​.             
Consistent with these prior observations, auditory cortex tended to be merged with somatomotor             
cortex for most of the tested algorithms and algorithm parameters. ii) high stability (similarity of               
network partitions) across nearby parameters in the network detection algorithm. This criterion            
served as a heuristic for detecting likely low-noise-influenced partition solutions. iii) High            
modularity (high within-network connectivity relative to between-network connectivity). This         
final criterion is implicit in community detection algorithms, which attempt to optimize network             
partitions for modularity. However, we included this as an additional explicit quantitative            
criterion to ensure that optimizing for other criteria did not reduce modularity substantially. A              
putative​ ​network​ ​solution​ ​had​ ​to​ ​meet ​ ​the​ ​three​ ​“hard”​ ​criteria ​ ​to​ ​even​ ​be​ ​considered.  

The two “soft” criteria for network partition selection included: i) We optimized the             
network partition with the constraint that the number of large-scale functional networks should             
be roughly similar to the number of networks identified in previous functional network solutions              
using RSFC data ​(Power et al., 2011; Yeo et al., 2011) ​. These ranged from 7 networks to 17.                  
Importantly, this number of networks is largely consistent with the number of networks typically              
described in the human fMRI task activation literature, as well as the number of large-scale               
systems described in the animal neuroscience literature. Put differently, while statistically           
possible, a network partition with an order of magnitude finer granularity (e.g. >100             
sub-networks) would not be considered. ii) We sought a network partition with non-primary             
networks (other than primary sensory-motor cortical networks that were part of the “hard”             
criteria our partition, e.g., frontoparietal cognitive control network, default-mode network)          
qualitatively similar to those that were previously identified using RSFC and fMRI task             
activations ​(Power et al., 2011; Smith et al., 2009b; Yeo et al., 2011, 2015) ​. Critically, these two                 
soft criteria had only minimal influence on the finalized partition, since only the hard criteria               
were used to identify that partition. Instead, these criteria were more important for assessing              
community detection algorithms, wherein we determined if a given algorithm was providing            
results (without full parameter optimization) largely consistent with the RSFC, fMRI task            
activation, and animal neuroscience literatures. Notably, RSFC, fMRI task activation, and animal            
neuroscience all have weaknesses that are largely non-overlapping (e.g., movement confounds           
RSFC more than fMRI task activations), such that considering constraints across these sources of              
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evidence​ ​strengthens​ ​our ​ ​conclusions. 
We started by applying the described criteria across a variety of community detection             

algorithms. Among the different algorithms explored were OSLOM ​(Lancichinetti et al., 2011) ​,            
k-means, hierarchical clustering, SpeakEasy ​(Gaiteri et al., 2015) ​, InfoMap ​(Rosvall and           
Bergstrom, 2008) ​, and the Louvain algorithm ​(Blondel et al., 2008) ​. Ultimately, the Louvain             
clustering algorithm method was selected for its ability to easily adjust the resolution of              
community clustering (i.e., the tendency for smaller communities to be detected), which allowed             
for optimization of the community clustering based on the “hard” criteria described above. This              
algorithm was also selected because produced solutions exhibited evidence in support of the             
“soft” criteria—a number of communities that were broadly similar in number and configuration             
to what was found in previous RSFC studies and in meta-analyses of fMRI task data. Briefly, the                 
Louvain algorithm works in the following way: First, it searches for small communities by              
optimizing local modularity. Second, it combines small communities into nodes and builds a new              
network. Finally, this process is iteratively repeated until modularity changes minimally.           
Ultimately, as with other community detection algorithms, the Louvain algorithm attempts to            
optimize for the strength of within-community connections relative to the strength of            
between-community​ ​connections​ ​(i.e.,​ ​modularity) ​ ​​(Blondel​ ​et​ ​al.,​ ​2008) ​. 

  
Iterative​ ​Louvain​ ​Clustering​ ​and​ ​Cluster​ ​Consolidation 
We started by using a gamma (partition resolution) parameter of 1.0, since this is used as a                 
standard resolution for the Louvain algorithm. Initially, this parameter yielded a network            
partition with the auditory network merged with the somatomotor network, violating one of our              
“hard” criteria. We therefore initiated a search over gamma values based on the hard criteria               
described above. As a randomly seeded algorithm dependent on optimization, it is possible that              
one iteration of Louvain would fail to identify the global (or a near-global) maximum for               
community modularity. To address this issue, we ran 1000 randomly-initialized iterations of            
Louvain for each gamma value (range of 1.2 to 1.4 in increments of 0.005), ​using the                
Rutgers-Newark supercomputing cluster (Newark Massive Memory Machine). We assessed         
partition quality by quantifying the stability of the partition solution at each gamma value.              
Stability estimates were computed as the z-rand partition similarity ​(Traud et al., 2011) averaged              
across all other iterations for a given gamma value. Thus, if the same parcels were more                
consistently assigned to the same networks across randomly-initialized iterations for a given            
gamma value then there would be a higher z-rand score for that gamma value, indicating higher                
partition stability. The randomly-initialized iteration with the highest average z-rand (i.e., highest            
mean similarity with all other iterations) was selected as the representative partition solution for              
that gamma value. Z-rand scores and a calculated modularity score for each generated partition              
were​ ​subsequently​ ​examined ​ ​in​ ​the​ ​gamma ​ ​stability​ ​analysis​ ​described​ ​below. 
 
Partition​ ​Stability​ ​Calculation 
For each gamma value, z-rand scores and modularity scores across all iterations were averaged              
to find representative z-rand and modularity values. Next, each mean z-rand score (quantifying             
partition stability across 1000 iterations) was multiplied by its corresponding modularity score to             
find a modularity-weighted z-rand score. The gamma value corresponding to the peak of the              
modularity-weighted z-rand score plot—constrained by the criterion of finding a plausible           
number of networks including primary sensory/motor networks—was selected as the most stable            
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and maximally modular solution (see ​Fig. 2b ​). The partition corresponding to this gamma value              
was ​ ​further​ ​evaluated ​ ​for ​ ​validity​ ​and​ ​stability ​ ​across ​ ​a​ ​number​ ​of ​ ​metrics ​ ​detailed​ ​below.  
 
Functional​ ​Network ​ ​Validation​ ​and​ ​Quality​ ​Assessment ​ ​for ​ ​the​ ​Cortical ​ ​Network ​ ​Partition 
To test the reliability of our network partition (in a distinct manner from the gamma stability                
analysis), we conducted an independent split-half validation analysis across two randomly           
selected subsamples of participants. The network detection algorithm was repeated with the same             
gamma value (1.295) that provided the initial partition solution (based on separation of             
sensory-motor systems, optimal modularity, and gamma stability), but now with two separate            
subsets of the data (N=168 and N=169) consisting of demographically matched subjects (see             
Results​ ​section​ ​for ​ ​details ​ ​on​ ​these​ ​matched ​ ​data​ ​subsets).  

To further quantitatively assess the final cortical network partition and validate the parcel             
assignments, we used several additional measures. First, a network assignment confidence score            
was calculated for each region to express the certainty with which that region could be assigned                
to a particular network ​(Wang et al., 2015) ​. This confidence score was computed as the ratio                
between the assigned network’s correlation value and the out-of-network correlation values for a             
region​ ​​i ​: 

 
where C​i is the network assignment confidence score for region ​i (one of 360 brain regions), r ​s i,j                  
is the Spearman correlation coefficient between the RSFC patterns of region i and region j in the                 
same network, n​j is the total number of other regions in regions i’s network, r ​s i,k ​is the Spearman                   
correlation coefficient between RSFC patterns of region i and region k outside of regions i’s               
network, and n​k is the total number of regions outside region i’s network. If a region’s RSFC                 
pattern is very similar to that of the other regions in its assigned network, the confidence score                 
will​ ​be​ ​high,​ ​but​ ​if​ ​it​ ​is​ ​also​ ​similar ​ ​to​ ​other​ ​networks, ​ ​the​ ​confidence ​ ​score​ ​will​ ​be​ ​lower.  

Second, in addition to these network assignment confidence scores, we calculated           
signal-to-noise ratio (SNR) and participation coefficient ​(Rubinov and Sporns, 2010)          
( ​https://sites.google.com/site/bctnet/measures/list​), and correlated these measures to assess       
whether our network assignment results were affected by SNR (i.e. lower functional connectivity             
in​ ​dropout​ ​regions).  

Third, RSFC pattern asymmetry was calculated to see how similar a region’s or             
network’s RSFC pattern was to that region’s homologue on the other hemisphere. For each              
subject, we correlated each region’s (unilateral) RSFC pattern with that of its homologue (as              
identified by ​(Glasser et al., 2016) ​), and subtracted this value from 1. We subsequently averaged               
these​ ​RSFC ​ ​pattern ​ ​asymmetries​ ​by​ ​network.​ ​Finally, ​ ​scores ​ ​were​ ​averaged ​ ​across ​ ​subjects.  

Fourth, a measure of inter-subject connectivity variability was used to indicate how            
similar a region’s functional connectivity pattern is across subjects. To calculate a region’s             
inter-subject connectivity variability, the rank correlation for each subject’s RSFC pattern for a             
given region with all other subjects was calculated, resulting in a 337 x 337 (number of subjects                 
X number of subjects) connectivity matrix. Averaging all values in this matrix to generate a               
mean pairwise similarity score “S” for each region, and subtracting this score from 1, resulted in                
a​ ​region’s​ ​inter-subject ​ ​connectivity​ ​variability​ ​score​ ​(1-S). 

Once these quality metrics were calculated, each parcel was assessed for reassignment            
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(i.e. assigning a parcel to a different network than the one resulting from the Louvain clustering                
algorithm, based on quantitative assessment of its original assignment). We reassigned parcels if             
the reassignment increased their confidence scores. Reassignment was applied for only three of             
the 360 cortical regions. Two left hemisphere DMN regions (regions 26 and 75) were              
re-assigned to LAN, and one left hemisphere LAN region (region 135) was re-assigned to VMM               
(due to this resulting in higher confidence scores for all three regions). The left hemisphere LAN                
region (region 135) also failed to replicate on the split-half test, further indicating a poor initial                
assignment. The reported quality metrics for the partition were recalculated after reassignment of             
those​ ​three​ ​regions. 
 
Subcortical​ ​network​ ​assignment 
Once the cortical network partition was finalized, the subcortical assignment followed. To assign             
networks to subcortical structures, FC matrices were first created for each subject containing the              
correlations between the 360 cortical parcels and 31870 grayordinates covering the entire            
subcortical CIFTI space. The group FC matrix was then calculated by averaging Fisher’s             
z-transformed Pearson correlation values across subjects. Next, the FC of each subcortical            
grayordinate was averaged across all parcels in each cortical network and the grayordinate was              
assigned to the network with the highest mean Fisher’s z-transformed correlation. This approach             
was chosen to account for the differences in cortical network size, as an unweighted approach               
would​ ​result​ ​in​ ​a​ ​bias​ ​towards ​ ​networks ​ ​with​ ​more​ ​cortical ​ ​parcels. 

To account for any signal bleed-over from the adjacent cerebral cortex or partial volume              
effects in the cerebellum, we removed cerebellar voxels within 2mm of the cortex from the initial                
network assignment (Supplementary Figure S1). These effects were not prominent in other            
subcortical structures. We additionally performed cleanup steps of the raw network assignment            
due to low confidence in making inferences from very small clusters in fMRI data. To achieve                
cleanup, we removed isolated single-voxel parcels that did not share a network assignment with              
any adjacent voxels, and parcels of size 2-4 voxels that did not have a counterpart with the same                  
network assignment within a 2mm radius in the contralateral hemisphere. The total number of              
voxels removed by this process and the map of removed voxels are given in Supplementary               
Figure S2. We also searched for 5-voxel parcels that would be removed under the same criteria.                
The difference achieved with the 5-voxel criteria was trivial. An additional 55 voxels, or 0.17%               
of the total subcortex, was flagged in the 5-voxel version (Supplementary Figure S2 ​) ​, suggesting              
that the 4-voxel version was already fairly stable. To provide a complete functional atlas of the                
entire subcortical space, we used nearest-neighbour interpolation to reassign the voxels removed            
from network assignment in the previous steps. Lastly, parcels which shared a corner and had a                
continuous​ ​contralateral ​ ​counterpart​ ​were​ ​combined. 

The stability of the subcortical network assignment was tested using a split-half            
validation analysis, similar to the procedure performed for the cortical network partition. The             
same network assignment steps described above were performed independently for two separate            
subsets (N=168 and N=169) consisting of matched subjects ( ​Fig. 3A-B ​). To quantitatively            
compare the discovery and replication solutions, the proportion of voxels which were assigned to              
the same network in both solutions was computed. This was done before and after the described                
cleanup steps were performed ( ​Fig. 3E-D ​). The proportion of voxels expected to overlap by              
chance in both solutions was calculated for each network, by using the hypergeometric test for               
proportions given the total number of voxels in the network and the total number of all voxels in                  
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the subcortex. 95% confidence intervals for chance were calculated with the Clopper-Pearson            
method. 

Additionally, the asymmetry of the subcortical partition was evaluated. Because the           
network assignment for the subcortex was computed on the voxel level, rather than the parcel               
level as with the cortex, the asymmetry was also computed voxelwise. A homologous pair of               
voxels was defined to be equally displaced from the midline (y-axis) along the x-axis. Observed               
symmetry was computed as the proportion of voxels in each subcortical network for which the               
homologous voxel was assigned to a different network ( ​Fig. 5E​). Chance asymmetry was             
calculated as the proportion of voxels in each network that would be expected to overlap               
between left and right hemispheres if the voxels were randomly assigned, given the number of               
voxels in the network and the total number of voxels in the subcortex. Additionally, the               
proportion of each subcortical network in the left and right hemispheres was computed ( ​Fig. 5F​).               
Because anatomical connections to and from the cerebellum cross the midline at the level of the                
pons ​(van Baarsen et al., 2016) and functional representation (e.g. of somatotopic maps) is              
mirrored relative to the rest of the brain, the left and right cerebellar hemispheres were               
exchanged​ ​in​ ​this​ ​analysis. 
 
Task​ ​activation ​ ​fMRI 
Briefly, the language processing task consisted of two runs, each with 4 blocks of a               
‘LANGUAGE’ processing task, which consisted of three components: (i) Auditory sentence           
presentation with detection of semantic, syntactic and pragmatic violations; (ii) auditory story            
presentation with comprehension questions; (iii) Math problems that involved sets of arithmetic            
problems and response periods. Both the ‘Story’ and ‘Math’ trials of the LANGUAGE task were               
presented auditorily and participants chose one of two answers by pushing a button. Further              
details concerning the LANGUAGE task have been previously described in full by Barch and              
colleagues ​(Barch et al., 2013; Binder et al., 2011) ​. Notably, Glasser and colleagues ​(2016)              
demonstrated that ​Area 55b, defined through multi-modal parcellation, was robustly activated in            
the ‘Story versus Baseline’ task contrast from the HCP’s ‘LANGUAGE’ task. Here we leveraged              
that contrast to validate the discovery of the language system. ​Specifically, task-evoked signal             
for the LANGUAGE task was computed by fitting a general linear model (GLM) to              
preprocessed BOLD time series data. Two predictors were included in the model, for the ‘Story’               
and ‘Math’ blocks respectively. Each block was approximately 30s in length and the sustained              
activity across each block was modeled (using the Boynton hemodynamic response function            
(Boynton et al., 1996) ​). In turn, three unique contrasts were computed for the LANGUAGE task:               
i) Story versus Baseline, ii) Math versus Baseline, and iii) Story versus Math. Here we focused                
on​ ​the​ ​‘Story​ ​versus ​ ​Baseline’ ​ ​contrast,​ ​as ​ ​reported​ ​by​ ​​(Glasser ​ ​et​ ​al.,​ ​2016) ​. 
 
Visualizations 
All​ ​visualizations ​ ​were​ ​produced​ ​using​ ​Connectome ​ ​Workbench​ ​using​ ​the​ ​CIFTI​ ​format,​ ​which 
combines​ ​surface​ ​data​ ​for ​ ​cortex​ ​with​ ​volume​ ​data​ ​for ​ ​subcortex.​ ​To​ ​convert​ ​a​ ​360-element 
partition​ ​vector​ ​(cortex)​ ​into​ ​a​ ​CIFTI​ ​file,​ ​the​ ​following​ ​steps​ ​were​ ​taken: 
 

1.​​ ​​ ​​ ​​ ​​ ​​For ​ ​each​ ​hemisphere, ​ ​a​ ​template ​ ​32k​ ​vertex​ ​CIFTI​ ​surface​ ​map​ ​file​ ​was ​ ​loaded,​ ​where 
each​ ​vertex​ ​was ​ ​labeled ​ ​with​ ​its​ ​corresponding​ ​parcel ​ ​label​ ​from​ ​the​ ​Glasser ​ ​parcels. 
2.​​ ​​ ​​ ​​ ​​ ​​Each​ ​parcel ​ ​label​ ​was ​ ​replaced​ ​with​ ​its​ ​corresponding​ ​network​ ​label ​ ​from​ ​the 
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360-element​ ​partition​ ​vector. 
3.​​ ​​ ​​ ​​ ​​ ​​Step​ ​2​ ​was ​ ​repeated​ ​for ​ ​the​ ​opposite​ ​hemisphere. 
4.​​ ​​ ​​ ​​ ​​ ​​Results​ ​were​ ​saved​ ​as ​ ​a​ ​func.gii​ ​file​ ​for ​ ​visualization ​ ​in​ ​Connectome ​ ​Workbench. 
5.​​ ​​ ​​ ​​ ​​ ​​(Optional)​ ​Use ​ ​the​ ​wb_command​ ​method​ ​​–metric-label-import ​​ ​to​ ​convert​ ​the​ ​metric ​ ​file 
into​ ​a​ ​label ​ ​file​ ​for ​ ​customized ​ ​color​ ​options. 

 
Data ​ ​and ​ ​Software ​ ​Availability 
Data,​ ​software,​ ​and​ ​the​ ​network​ ​partition ​ ​are​ ​available ​ ​upon​ ​request.​ ​They​ ​will​ ​be​ ​publicly 
released​ ​upon​ ​completion​ ​of ​ ​peer​ ​review. 
 

 
RESULTS 

Cortical​ ​network ​ ​partition 
 

Here we build on the hypothesis that the human brain is a complex dynamical              
computational system with multiple levels of organization, each level building on the next. We              
therefore sought to identify the brain’s large-scale functional network organization based on            
clusters of functionally-defined cortical regions—the likely next-lowest level of organization          
(Felleman and Van Essen, 1991; Glasser et al., 2016; Van Essen and Glasser, 2014) ​. Importantly,               
higher levels of organization are built from the units at lower levels. Consequently, increased              
accuracy in mapping brain regions (lower level) may yield more accurate large-scale brain             
networks (higher level). We therefore quantified functional networks based on regions recently            
identified via convergence across multiple functional and structural criteria ​(Glasser et al., 2016) ​,             
increasing confidence in their accuracy. This yielded a cortical network organization ( ​Fig. 1A             
and Fig. 1C ​) largely consistent with known and recently-identified functional networks, along            
with​ ​several​ ​previously-unidentified ​ ​but​ ​robust​ ​networks. 

 

13 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2017. ; https://doi.org/10.1101/206292doi: bioRxiv preprint 

https://paperpile.com/c/oSkmTV/Ftnd+sDAg+ttSc
https://paperpile.com/c/oSkmTV/sDAg
https://doi.org/10.1101/206292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 1. Cortical-subcortical network partition. A ​) The cortical network partition, as calculated with             
cortical surface resting-state fMRI data using graph community detection. We focused on identifying the              
network level of organization based on interactions among the next-lowest level of organization –              
functional regions. Network detection was calibrated based on identification of the well-established            
primary sensory-motor cortical systems (visual, somatomotor, auditory). Identifying clusters of          
functionally-defined cortical regions revealed many known and several unknown large-scale networks. ​B​)            
The network partition identified in cortex was extended to all subcortical gray matter voxels. Briefly, each                
voxel was assigned to the cortical network with the strongest average resting-state functional connectivity              
(FC) with that voxel. ​C ​) The region-with-region FC matrix within cortex, sorted by network assignment.               
The block-like structure along the diagonal provides a visualization of the greater FC strength within               
(relative to between) each network. The darker off-diagonal lines reflect stronger cross-hemisphere FC             
within networks (since left hemisphere regions are listed first within each network). ​D ​) The parcel-to-parcel               
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FC matrix, including both cortical and subcortical parcels. Note that the tendency for FC values in                
subcortical parcels to be lower relative to cortical parcels was expected due to the use of multiband MRI                  
with​ ​a​ ​32-channel​ ​coil​ ​during​ ​data​ ​collection​ ​(see​ ​​Methods ​).  

 
Briefly, we used graph community detection to identify clusters of highly interconnected            

cortical regions based on RSFC ( ​Fig. 2A ​; see ​Methods for details). We used a standard               
community detection algorithm that identifies communities by optimizing for modularity (high           
within-network and low between-network connectivity strength) ​(Blondel et al., 2008) ​. Several           
principles were used to calibrate the definition of network communities as we searched over              
different “resolution” (gamma) parameters in the community detection algorithm: i) We required            
that primary sensory-motor cortical regions (visual, auditory, somatomotor)—which have been          
known for over a century to be functionally distinct neural systems ​(Fritsch and Hitzig,              
1870) ​—would be identified as separate functional networks. Such separation was clear at the             
default “resolution” setting of the community detection algorithm (gamma=1) for separation of            
visual and somatomotor networks, but the auditory network was merged with the somatomotor             
network. We therefore increased the community resolution parameter until auditory and           
somatomotor networks separated. ii) We optimized for stability (similarity of network partitions            
across neighboring parameter settings) and iii) we optimized for modularity (high           
within-network and low between-network connectivity strength) ( ​Fig. 2B​). This approach          
revealed 12 networks consisting of well-known sensory-motor networks, previously-identified         
cognitive​ ​networks, ​ ​and​ ​novel​ ​networks. 

Well-known networks included primary visual (VIS1), secondary visual (VIS2), auditory          
(AUD), and somatomotor (SMN) networks. Previously-identified cognitive networks—networks        
identified in the last few decades—included the cingulo-opercular (CON), default-mode (DMN),           
dorsal attention (DAN), and frontoparietal cognitive control (FPN) networks. Two primary           
functional network atlases were used to identify these previously-identified networks: Power et            
al. ​(2011) (which was updated by ​(Cole et al., 2013) ​) and Yeo et al. ​(2011) ​. Novel networks                 
included the posterior multimodal (PMM), ventral multimodal (VMM), and orbito-affective          
(ORA) networks. We include additional analyses below to better establish the robustness of these              
networks, given that they have not (to our knowledge) been previously described. Notably, we              
also identified a language network (LAN), which has been known for over a century ​(Broca,               
1861; Wernicke, 1874) ​, yet has been missing from most previous atlases of large-scale             
functional networks ​(Power et al., 2011; Yeo et al., 2011) ​. We include additional analyses below               
to establish that this network is involved in language functions and is likely equivalent to the                
previously-characterized left-lateralized language network consisting of Broca’s area and         
Wernicke’s ​ ​area​ ​(among​ ​other​ ​language-related ​ ​regions). 
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Figure 2. Cortical partition solution workflow and statistics. A ​) ​Schematic workflow used to create              
cortical partition. Data were preprocessed for 337 subjects, functional connectivity was calculated between             
all regions for each subject, and an FC matrix was constructed for each participant. After averaging across                 
subjects, the Louvain clustering algorithm was run with 1000 iterations to detect communities of networks               
for a range of gamma-values. The final cortical partition was a result of two criteria; a plausible number of                   
networks that included primary sensory/motor networks had to be present, and the most stable and               
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maximally modular partition solution was chosen. ​B) ​Plots presenting the modularity-weighted z-rand            
scores and number of networks in the partition for each gamma-value. The dashed line indicates at which                 
gamma-value the community detection gave the most stable and (neurobiologically) plausible results. ​C)             
Split-half validation results for the cortical partition. The original dataset was split in two smaller sets                
consisting of matched subjects’ data and the Louvain clustering algorithm was run with the same               
parameters as for the original partition. The two resulting network partitions were both highly similar to the                 
original​ ​one​ ​presented​ ​in​ ​Fig.1A,​ ​indicating​ ​that​ ​our​ ​partition​ ​is ​ ​reliable.​ ​See​ ​main​ ​text​ ​for​ ​more​ ​details. 

 
Subcortical​ ​extension​ ​of ​ ​the ​ ​cortical ​ ​network ​ ​partition 
 

Previous functional atlases of the human brain have focused primarily on cortical            
network assignments. However, it is well established that vital neural computations are also             
implemented by subcortical regions. Furthermore, many of the subcortical nuclei form functional            
loops, via the thalamus, with cortical territories. Thus, we expanded our network mapping across              
subcortical structures in order to develop a comprehensive whole-brain functional network atlas.            
We built on recent efforts to extend cortical network definitions into cerebellum ​(Buckner et al.,               
2011) and striatum ​(Choi et al., 2012) ​, but extended our network assignment to all subcortical               
structures, additionally including: thalamus, hypothalamus, amygdala, hippocampus, brainstem,        
and​ ​all​ ​of ​ ​basal​ ​ganglia, ​ ​in​ ​addition ​ ​to​ ​all​ ​other​ ​subcortical ​ ​nuclei. 

Briefly, we assigned each voxel to the network with which it shared the highest mean               
connectivity (defined as Pearson’s correlation) across cortical parcels. We then implemented a            
number of quality control cleanup steps to eliminate small parcels that may be noise-driven, or               
that may have been driven by partial volume effects near the cerebellum ( ​Fig. 3A ​; see Methods                
for details). Parcels were also constrained to anatomical boundaries between major subcortical            
structures, as defined by Freesurfer, to conform to the gross anatomy of the subcortex. Put               
differently, a subcortical functional network parcel in the striatum would not ‘bleed’ over into              
the thalamus unless it was independently defined as such explicitly within the thalamus. This              
resulted in a largely symmetric solution with 288 subcortical parcels ( ​Fig. 1B​) that was highly               
replicable across split-half samples, both qualitatively ( ​Fig. 3B-C ​) and quantitatively ( ​Fig. 3D-E,            
see ​Methods ​). The proportion of voxels that were assigned to the same network in both               
Discovery (N=168) and Replication (N=169) samples was highly significant above chance           
expectations for all networks ( ​Fig. 3D ​). After quality control cleanup steps were performed for              
each of these split-half solutions, the proportion of replicated voxels increased for all networks              
(with the exception of LAN and VMM, ​Fig. 3E​). Critically, we found that all 12 cortical                
networks, including higher-order associative networks (such as the FPN and CON), were            
represented in the subcortex with predominantly symmetrical and robustly replicable          
representations. 
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Figure 3. Subcortical partition solution workflow and statistics. A) ​Schematic workflow used to create              
subcortical partition. ​B & C) ​Split-half replication of the subcortical partition. The subcortical network              
assignment procedure was performed independently on two smaller sets of subjects matched for             
demographic variables. D) ​Proportion of voxels in each network with replicated assignments, before any              
cleanup steps. gray bars show proportion of voxels expected to replicate by chance given the size of each                  
network. Solid and dashed red lines indicate upper and lower 95% confidence interval for chance,               
respectively. ​E) ​Proportion of voxels in each network with replicated assignments, after cleanup steps were               
performed (see Methods). The proportion of voxels with identical network assignments in both Discovery              
and Replication samples was significant above chance for all 12 networks (​p ​<0.05), suggesting that the               
subcortical​ ​solution​ ​is ​ ​highly​ ​replicable. 

 
Assessing​ ​quality​ ​of ​ ​cortical-subcortical ​ ​network ​ ​partition 
 

We used a split-half analysis to estimate the reliability of the cortical network partition              
( ​Fig. 2C ​). The identical algorithm (with identical parameters) was applied to a pseudo-random             
set of 168 subjects (selected from the total set of 337 subjects), and then independently to the                 
remaining 169 subjects. The split-half sets were matched on a variety of demographics in order               
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to reduce the chance that observed differences were driven by group differences of potential              
interest (e.g. age or gender). The 168 subjects were selected by first creating a random list of                 
subjects then exchanging subjects between the groups such the 168 subjects were matched, at the               
group level, with the remaining 169 subjects on the following demographics: age, gender,             
handedness, and education. This analysis revealed a highly similar network partition across the             
the two independent matched samples ( ​Fig. 2C ​): adjusted z-rand ​(Traud et al., 2011) of z=190.2               
( ​p​<0.00001) and 92.5% of regions with identical network assignments. These results           
demonstrate​ ​high​ ​reliability ​ ​of ​ ​the​ ​main​ ​cortical ​ ​network​ ​partition. 

To further quantitatively evaluate the cortical partition, we calculated a network           
assignment confidence score ( ​Fig. 4A&C ​), inter-subject connectivity variability ( ​Fig. 4B&D ​),          
and network RSFC pattern asymmetry ( ​Fig. 4E & Fig. 5D ​) for each parcel and network. As                
shown in ​Fig. 4A&C ​, most networks exhibited broadly similar confidence, with a mean score of               
0.36 (SD=0.08), indicating higher RSFC pattern correlation between a region and its assigned             
network than with other networks. Only ORA had a substantially lower confidence score             
(mean=0.19, SD=0.1), possibly as a result of lower SNR in regions assigned to the ORA network                
(mean SNR=152 with range 143-194) compared to other networks (mean SNR all            
networks=228,​ ​range​ ​79-371). 

We hypothesized that low confidence could reflect three potential sources: low SNR,            
high intersubject variability, or high participation (due to variably connected hubs that do not fit               
neatly into a single network partition). We evaluated these possibilities, as shown in ​Fig. 4F​.               
SNR and confidence scores were not significantly correlated (r=0.06, ​p​=.29), which is not             
consistent with the possibility that low SNR affected confidence score substantially in these data.              
Regions with higher participation coefficients, a measure indicating how distributed a node’s            
edges are across networks (potentially violating the assumption of a modular network            
organization), exhibited lower confidence scores (r=-0.25, ​p​<0.00001). This suggests that low           
confidence might be explained by connector hubs (connecting to multiple networks), but only             
partially. Low participation coefficients can also potentially result from low SNR           
(SNR-participation r=0.6, ​p​<0.000001). Again, however, it is not likely that low SNR was a              
significant factor in our confidence score results, since participation and confidence were still             
similarly negatively correlated when SNR was regressed out (r=-0.34, ​p​<0.00001). Note that            
participation coefficient was calculated on the single-subject level, ruling out the possibility that             
high​ ​inter-subject ​ ​variability​ ​drove​ ​the​ ​participation ​ ​results. 

Together, these results suggest network assignment quality was primarily influenced by           
high participation coefficient (strong RSFC with multiple networks) rather than low SNR. This             
suggests that the human brain violates modularity to some extent, reducing assignment            
confidence because some regions are connected to multiple networks. Note, however, that            
connectivity of single regions with multiple networks is not entirely surprising since the brain              
must somehow integrate functionality between networks, which requires variable inter-network          
connectivity. These results suggest the degree of multi-network connectivity may be small            
overall, however, since participation accounts for only 6.25% of the linear variance in confidence              
scores ​ ​(participation-confidence​ ​r=-0.25;​ ​r ​2=​0.0625). 

We also expected that low confidence could be driven by high inter-subject connectivity             
variability, which we calculated as the mean dissimilarity of a given region’s cortex-wide RSFC              
pattern across subject. This could have been driven by the kinds of subject-to-subject variability              
in RSFC patterns shown in several recent studies ​(Braga and Buckner, 2017; Gordon et al.,               
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2017) ​. Inconsistent with this being a major factor, we found a relatively homogeneous level of               
inter-subject variability across the Glasser parcels ( ​Fig. 4B​), with a mean variability score of              
0.42 (SD=0.13) for the networks ( ​Fig. 4D ​). Overall, most networks exhibited low inter-subject             
connectivity variability, relative to a maximum value of 1.0 (in which every subject’s             
connectivity pattern would differ completely from every other). One network with higher            
inter-subject variability was the VMM network (mean=0.59, SD of 4 VMM regions=0.006), but             
this network’s high confidence score suggests its networks assignment are nonetheless accurate            
overall. The ORA network also showed numerically higher inter-subject connectivity variability           
between subjects compared to the other networks (mean=0.7, SD of 6 ORA regions=0.15), in              
concordance with this network's lower confidence score. Note that rather than true inter-subject             
variability this may have been driven by somewhat lower SNR (i.e., greater measurement noise)              
in ORA regions (Spearman correlation between ORA inter-subject variability and SNR: r=-0.25,            
p​<0.00001), likely due to MRI signal dropout from nearby sinuses. These results suggest some              
details are lost by using group-level RSFC (rather than individual-level RSFC) to identify             
networks, ​ ​but​ ​that​ ​most​ ​network​ ​assignments​ ​are​ ​likely ​ ​accurate​ ​and​ ​highly​ ​replicable. 

We additionally assessed partition quality by quantifying inter-hemispheric asymmetry,         
under the assumption that most networks would be highly symmetric across the hemispheres.             
This metric served as a ‘proxy’ test of reliability, since we did not constrain the network partition                 
to be symmetric. Asymmetry scores were calculated as the dissimilarity of cortex-wide RSFC             
patterns across hemispheric homologues (see ​Methods ​). Asymmetry results in ​Fig. 4E show that             
for most regions/networks RSFC patterns were very similar to a region’s/network’s homologue            
on the contralateral hemisphere (network mean=0.05, SD=0.04; all far below complete           
asymmetry of 1.0). As an exception to this, which was expected based on the language               
neuroscience literature, was the LAN network having the highest cortical asymmetry score. This             
reflects the left lateralization of this network (see also ​Fig. 5 and additional analyses for LAN                
below), with 14 LAN regions on the left hemisphere vs. 9 regions assigned to LAN by the                 
Louvain algorithm on the right hemisphere. Overall, this result further demonstrates the quality             
of the network partition, given that all expected network showed substantial inter-hemispheric            
symmetry​ ​with​ ​the​ ​sole​ ​exception ​ ​of ​ ​the​ ​LAN ​ ​network. 
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Figure 4. Quantitative assessment of cortical network partition. A) ​Cortical map with Network             
Assignment Confidence scores, reflecting a region’s fc pattern similarity (calculated using Spearman’s rank             
correlation) to its assigned network divided by similarity to all other networks. These scores are used as a                  
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measure of certainty that the network to which a parcel was assigned is the correct one. The relatively                  
homogeneous map indicates similar confidence across regions. ​B) ​Cortical map displaying Inter-Subject            
Connectivity Variability, a measure comparing the connectivity patterns for each region across subjects.             
Similar to panel A, most cortical regions appear to have highly similar values. ​C) ​Network averages of the                  
parcel-level network assignment confidence scores (in panel A) are displayed. Error bars indicate standard              
deviations. Highest confidence scores were found in DMN and lowest in the new orbito-affective network               
(but note the lower SNR in this area). ​D) ​Group ​Inter-subject connectivity variability scores averaged               
across networks. See Results and Methods for details. E) ​Group FC Pattern Asymmetry, reflecting               
similarity between a region’s (unilateral) functional connectivity pattern and that of its supposed             
homologue region on the opposite hemisphere. ​Note the relatively high asymmetry for the language              
network (LAN) resulting from the left-lateralized language parcels in our partition. ​F) ​Scatterplot showing              
the relationship between Network Assignment Confidence score, Participation Coefficient and SNR for            
each parcel. The table contains Pearson correlation values between the three measures. The non-significant              
correlation between Confidence and SNR indicates that Confidence scores were not substantially affected             
by SNR. However, a negative correlation between Confidence and Participation Coefficient could indicate             
that​ ​lower​ ​confidence​ ​regions ​ ​partly​ ​consist​ ​of​ ​connector​ ​hubs ​ ​that​ ​are​ ​shared​ ​between​ ​multiple​ ​networks.  

 
 
Characterizing​ ​the ​ ​the ​ ​laterality​ ​and ​ ​function ​ ​of ​ ​the ​ ​language​ ​network 
 

As mentioned above, the network identified as a language network (LAN, including            
well-known language-related areas such as Broca’s and Wernicke’s areas) showed high           
asymmetry for its regions’ cortex-wide RSFC patterns. To further test the hypothesis that this              
network carries out language-related functionality, we first analyzed the LANGUAGE task fMRI            
data provided by the HCP to map the amount of overlap of the derived whole-brain LAN                
network with language-activated grayordinates (see ​Fig. 5A&B for cortical and subcortical           
maps). This overlap was significantly higher than expected by chance ( ​Fig. 5C ​), suggesting that              
these areas are indeed largely overlapping with language processing areas (>85% observed            
overlap). Second, we quantified the network’s asymmetry (see ​Methods ​) by calculating           
asymmetry for each cortical parcel ( ​Fig. 5D ​) and subcortical voxel ( ​Fig. 5E&F​). Compared to              
other networks, the LAN network was appreciably more asymmetric in cortex (LAN vs VMM:              
t(336)=3.38, ​p​=0.0008, LAN vs. mean of all other networks: ​p​<0.00001, also see Fig. 4E​).              
Further, there were more LAN parcels identified in the left hemisphere (14 parcels) than the right                
hemisphere (9 parcels) of cortex. Also in subcortex, LAN emerged as one of the most               
asymmetric networks, as can be seen when comparing the proportion of non-overlapping            
subcortical voxels in left and right hemispheres. Similar left lateralization as in cortex was              
observed in subcortex when quantifying the proportion of total voxels in left and right              
hemisphere (left and right reversed for cerebellum, as expected). This asymmetry far exceeded             
chance levels (chance proportion of voxels in left subcortex/right cerebellum for all            
networks=0.50; proportion of voxels in left subcortex/right cerebellum for LAN=0.71; =8.878,         χ2  
p​=0.0029). In turn, we focused on a single asymmetric left-lateralized LAN region, area PSL.              
RSFC seed maps of left and right PSL ( ​Fig. 5G&H​) were strikingly different, with left PSL                
showing high LAN connectivity and low CON connectivity, but right PSL showing the opposite              
pattern. The LAN regions overlapping with language task activations, observed strong           
left-lateralized lateralization, and qualitatively-distinct connectivity patterns in asymmetric        
regions together strongly support the hypothesis that this network implements language           
functionality.  
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Figure 5. Language network evaluation. A & B) ​Overlap between the language network (LAN, teal               
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outline) from our resting-state based network partition and activations from an independent language             
processing task (collected in the same sample of 337 subjects) in cortical and subcortical regions. Pink                
areas indicate overlap between LAN and task activation. Underlay shows task activation t-statistics from              
the ‘Story versus Baseline’ contrast of the LANGUAGE task, replicating the analysis conducted by Glasser               
and colleagues ​(2016)​. ​Note that t-scores are shown here because the high statistics resulted in infinity                
values when converting to Z-scores. ​C) ​Percentage overlap between LAN and task activation in the               
language processing task expected by chance (gray bar) and actual observed overlap in panels A&B (pink                
bar). Dashed lines indicate 95% confidence intervals. ​D) ​Cortical map displaying the asymmetry of parcels.               
The teal outline indicates the language network, which is highly asymmetric compared to the other               
networks, with left hemisphere dominance. E&F) ​Network asymmetry in the subcortex. Colored bars in              
Panel E show the proportion of subcortical voxels in each network that do not overlap when comparing left                  
and right hemispheres. Complete asymmetry (no overlap) is indicated by dotted line at 100% for reference.                
gray bars indicate chance asymmetry calculated given the size of each network. Solid and dashed red lines                 
indicate 95% upper and lower confidence intervals for chance respectively. Panel F displays the proportion               
of total voxels in left and right hemispheres for each network. Chance level for this measure is 50% for all                    
networks; confidence intervals are calculated given the total number of voxels in each network. Because               
functional representation of left and right is reversed in the cerebellum relative to the rest of the brain (due                   
to the midline crossing of projecting fibers ​(van Baarsen et al., 2016)​), left and right cerebellar hemispheres                 
were exchanged in calculating this measure. Like the cortical networks, panel E&F show that subcortical               
networks are symmetric in general, with a left lateralized LAN. In subcortex, VMM is also significantly                
asymmetric. ​G&H) Functional connectivity seed maps for left and right perisylvian language areas (PSL)              
based on resting-state data in 337 subjects. Both the left and right language seed area show strongest                 
connections ​ ​to​ ​ipsilateral​ ​regions.   

 
 
Identification of novel functional networks: Posterior multimodal, ventral multimodal, and          
orbito-affective​ ​networks 
 

Three networks emerged from the reported network detection approach that, to our            
knowledge, do not correspond to previously-described large-scale networks in the human brain            
( ​Fig. 6​). These networks include PMM (posterior multimodal), VMM (ventral multimodal), and            
ORA (orbito-affective) networks. We found converging evidence to support the robustness of all             
three networks. First, all three networks were present for both groups of subjects in the cortical                
split-half analysis ( ​Fig. 2C ​). Second, all three networks had subcortical voxels assigned to them              
( ​Fig. 3 and Fig. 6​), with statistically significant (above chance, ​p​<0.05; see Methods) split-half              
replication of those assignments ( ​Fig. 3D & E​). Third, the PMM and VMM networks were               
within one standard deviation of the cross-network mean confidence scores ( ​Fig. 4D ​), suggesting             
equivalent confidence in these networks as better-established networks. While the ORA network            
exhibited the lowest confidence score, it was still well above chance, consistent with ORA              
regions having higher RSFC among themselves than with regions of other networks. Fourth, the              
inter-subject variability across the PMM network RSFC patterns was near the mean value across              
all networks (PMM inter-subject variability=0.41, cross-network mean=0.42), suggesting that         
PPM inter-subject variability was not appreciably different. In contrast, the VMM and ORA             
networks had somewhat higher inter-subject variability than the cross-network mean. While it is             
not possible to assess statistical significance of this result (due to this statistic being calculated               
across all subjects simultaneously, precluding the ability to use, e.g., t-tests), the high symmetry              
and replicability of these networks suggest these networks are well-defined. Together these            
results suggest that the three novel network identified here are robust and are therefore likely to                
be of broad functional relevance. It will nonetheless be important for future studies to further               
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validate​ ​the​ ​existence ​ ​of ​ ​these​ ​network​ ​and​ ​better ​ ​determine​ ​their​ ​functional ​ ​roles. 
 

 

 
Figure 6. New posterior multimodal, orbito-affective, and ventral multimodal networks. A) ​Cortical            
parcels that are part of the posterior multimodal (PMM) network as detected by the Louvain clustering                
algorithm. B) ​Subcortical areas that were identified as PMM based on correlation with cortical regions. C)                
Cortical seed map of the PMM network showing connectivity to all other parcels (within-network              
connectivity is 1 in all PMM parcels). D) ​Cortical parcels that make up the orbito-affective (ORA) network                 
as detected by the Louvain clustering algorithm. ​E) ​Subcortical areas associated with the ORA network. F)                
Cortical seed map of the ORA network showing connectivity of this network to all other cortical parcels.                 
G) ​Cortical parcels that are part of the ventral multimodal (VMM) network as detected by the Louvain                 
clustering algorithm. ​H) ​Subcortical areas associated with the VMM network. ​I) Cortical seed map              
showing​ ​connectivity​ ​of​ ​the​ ​VMM ​ ​network​ ​to​ ​all​ ​other​ ​parcels.  

 
 
Improved ​ ​language-related​ ​activation​ ​reproducibility ​ ​and ​ ​statistics ​ ​using ​ ​the 
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cortical-subcortical​ ​network ​ ​partition 
 

We next sought to demonstrate the practical utility of the network partition and its              
beneficial impact on actual data analysis. The partition could be applied in a variety of ways,                
such as interpreting task-evoked activations or functional connections in terms of a canonical set              
of functional networks. For this demonstration we focused on the identification of a putative              
“language” network. If this mapping is veridical in relation to the language system, then we               
hypothesized two effects to emerge: i) There should be high overlap between the language              
network and the task-evoked signal produced by the ‘Story versus Baseline’ LANGUAGE task             
(demonstrated in ​Fig. 5​); ii) There should be an appreciable statistical improvement in the ‘Story               
versus Baseline’ LANGUAGE task contrast when going from a ‘dense’ grayordinate-level effect            
to a parcellated effect (as shown for several language-related local areas by Glasser et al. ​(2016) ​)                
in language network regions. Additionally, if the identified language network indeed maps onto             
independently-defined language-related task-evoked fMRI signal, then there should be even          
greater statistical improvement if computing the GLM-derived task-evoked signal across the           
entire language network. Showing such a statistical improvement would demonstrate a powerful            
and empirically useful application of the network partition for detecting neurocognitive effects in             
a​ ​more​ ​robust​ ​way. 

To address the second hypothesis, we calculated statistics for the ‘Story versus Baseline’             
LANGUAGE task contrast after separately fitting the task GLM to: dense grayordinate-level            
time series data ( ​Fig. 7A-B ​, identical to underlay in ​Fig. 5A ​), time series data averaged within a                 
given parcel ( ​Fig. 7C-D ​), and time series data averaged within a given whole-brain network              
( ​Fig. 7E-F​). As hypothesized, the t-statistic across the whole-brain LAN network was markedly             
higher when data were first averaged at the network level before fitting the task GLM, compared                
to fitting the task GLM on the ‘dense’ grayordinate level or parcel-level time series and then                
averaging across LAN regions (network t=24.71; parcel mean t=12.38, SD=10.91; dense mean            
t=8.50, SD=6.98; ​Fig. 7G​). This effect was robustly present within the cortex (network t=24.71;              
parcel mean t=10.93, SE=11.66; dense mean t=8.74, SD=7.00; ​Fig. 7H​) and the subcortex             
(network t=24.71; parcel mean t=1.45, SD=3.86; dense mean t=3.37, SD=3.72; ​Fig. 7I ​). Overall,             
t-statistics for all three LANGUAGE task contrasts were markedly improved by fitting the task              
GLM to parcel-level time series, rather than fitting to dense time series and averaging across               
parcels afterwards ( ​Fig. 7J​, note sigmoidal deviation from diagonal). Importantly, t-statistics           
were further improved when the task GLM was fit on network-averaged time series, compared to               
parcellating by network after fitting on dense ( ​Fig. 7K​) or parcel time series ( ​Fig. 7L​). This                
result strongly supports that the signal-to-noise ratio was substantially improved by first            
averaging BOLD time series data within the identified LAN network. Of note, this result also               
reinforces the inference that the LAN asymmetry reflects true lateralization. Together, these            
task-evoked effects add confidence to the identified language network definition and           
demonstrate the practical utility of the network partition, which is released publicly as part of this                
study. 
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Figure 7. Demonstration of improved reproducibility and statistics with new partition. ​Panels A-F             
show task activations for a language processing (LANGUAGE task ‘Story versus Baseline’ contrast) task at               
three different levels. A) ​Cortical activation map of dense-level analysis. B) ​Subcortical activation map of                
dense-level analysis. C) ​Cortical activation map of parcel-level analysis. Task fMRI data were first              
parcellated at the parcel level before model fitting. ​D) ​Subcortical activation map of parcel-level analysis.               
E) ​Cortical activation map of network-level analysis. ​Task fMRI data were first parcellated at the network                
level before model fitting. ​F) ​Subcortical activation map of network-level analysis. ​Yellow arrows             
highlight subcortical regions with a high task-activated t-score, which overlap with parcels in the LAN               
network. ​G) ​t-statistics (LANGUAGE task ‘Story versus Baseline’ contrast) shown in panels A-F             
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significantly improve for the parcel-level vs. dense-level analysis, and for the network-level vs. parcel-level              
analysis in a combined cortex and subcortex analysis. Error bars are inter-parcel standard deviations. H)               
t-statistics (LANGUAGE task ‘Story versus Baseline’ contrast) in cortex alone again show significantly             
better results for the network-level analysis compared to the dense- and parcel-level analyses. I) ​t-statistics               
(LANGUAGE task ‘Story versus Baseline’ contrast) in subcortex showed substantially better results for the              
network-level analysis compared to the dense- and parcel-level analyses. Note that—in contrast to the              
results for cortex—parcel-level analysis in subcortex does not give an advantage over dense-level analysis.              
J) ​An improvement in t-statistics was found when task designs were fit on parcellated time series instead of                  
on dense time series and subsequently averaging for parcels. Blue dots represent 648 parcels × 3                
LANGUAGE task contrasts (‘Story versus Baseline’; ‘Math versus Baseline’; ‘Story versus Math’). ​K)             
Improvement in t-statistics was also found when fitting task designs on network time series compared to                
fitting on dense time series and then averaging for networks. Blue dots represent 12 networks × 3                 
LANGUAGE task contrasts. L) ​A further improvement in t-statistics was found when fitting on networks               
versus fitting on parcels and then averaging for networks. ​Blue dots represent 12 networks × 3                
LANGUAGE​ ​task​ ​contrasts. 

 
 

DISCUSSION 
 

The human brain is a unified dynamical computational system that, ultimately, can only             
be understood as a whole. Simultaneously, understanding any dynamical system requires           
identifying its functional components and their interactions. We therefore sought to create a             
whole-brain network partition, identifying large-scale network communities of brain regions          
across both cortex and, for the first time, all subcortical areas. This provides a novel network                
organization that, unlike previously-developed network partitions, includes all major portions of           
the human brain. We created this whole-brain partition as a resource to aid neuroscience research               
generally, and we are therefore releasing the partition (along with the data and code that               
produced it) to the neuroscience community (available at        
https://github.com/ColeLab/ColeAnticevicNetPartition​​ ​once​ ​through​ ​peer​ ​review). 

The human brain consists of multiple levels of functional organization. As with other             
natural organized dynamical systems, each level consists of sets of interacting elements. For             
instance, cellular subcomponents (e.g., ion channels) interact to form individual neurons, which            
then interact to form local circuits, which in turn interact to form brain regions. We focused on                 
the next-highest level of organization: large-scale brain networks, each consisting of highly            
interactive communities of brain regions. This level of organization puts all other levels in a               
functional context. Thus, a single prefrontal neuron identified within what we label here as the               
FPN (frontoparietal cognitive control network) could be expected to interact with other FPN             
neurons, even if they are many centimeters away in parietal lobe. This has implications for               
interpreting the dynamics and functions of that single neuron. Thus, despite fMRI not having              
direct access to measurements of any single neuron's activity, the resulting large-scale functional             
network organization identified here using fMRI provides useful information for understanding           
all levels of brain organization. We hope the public availability of this brain-wide functional              
network partition will aid other researchers in identifying the mechanisms underlying brain            
functions​ ​across ​ ​levels​ ​of ​ ​organization. 

As with all neuroscientific methods there are limitations to the approach used here             
(detailed below), but also several major advantages. First, we used a large dataset relative to               
most neuroscientific studies to date (337 subjects), increasing the effective SNR and the             
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likelihood that the results will generalize to new groups of individuals. Second, we used multiple               
quality control metrics to ensure stability and reliability of the network partition, which proved to               
be extremely high by all applied standards. Third, we used a principled approach to decide on the                 
network partition algorithm and associated parameters, involving both stability optimization and           
calibration of parameters based on well-established neurobiologically-grounded constraints (e.g.         
the existence of primary sensory-motor networks). Fourth, we extended the cortical network            
partition to subcortical structures, resulting in a comprehensive map of brain-wide functional            
networks. Finally, we used task fMRI data to demonstrate a practical advantage of using this               
network partition: a substantial increase in the ability to detect network-level functional            
activations. 

Notably, previously published large-scale network partitions have already made a          
substantial positive impact on neuroscientific investigations across health and disease. We expect            
the network partition developed here to be similarly impactful across a variety of neuroscientific              
investigations, improving scientific inferences relative to existing network atlases. For instance,           
the network partition could be used to interpret possible functions of a region-level activation              
using fMRI, EEG, or local field potentials. Alternatively, the network partition could be used in               
studies of network dynamics, placing interactions in a larger functional context to aid in              
summarizing and interpreting results. Another use of the network partition could be as a data               
reduction approach, increasing data processing efficiency while maintaining        
functionally-meaningful large-scale network units. Finally, this novel partition provides for the           
first time a possibility to test hypotheses about brain-wide functional network organization,            
spanning cortex, striatum, thalamus, amygdala, hippocampus, brainstem, the cerebellum, and          
other structures. It is also notable that unlike the brain region and brain network levels, lower                
levels of organization such as the neuron or local circuit are not expected to generalize across                
individuals. This is due to the very low likelihood of functionally-equivalent individual neurons             
aligning anatomically between individuals. Thus, like identifying brain regions, characterizing          
large-scale brain networks provides units of brain organization that can provide a testbed for the               
following question, “what does this brain structure do functionally across individuals?”—a key            
question​ ​for ​ ​generalized ​ ​understanding​ ​of ​ ​human​ ​brain​ ​function. 
 
Extending prior network partitions to converge on a global characterization of human            
brain​ ​network ​ ​organization 

The network partition identified here is, as expected, similar in many ways to             
previously-identified network partitions. However, there are several critical differences that          
provide novel discoveries regarding the large-scale network architecture of the human brain.            
Similar to both the Power et al. ​(2011) and Yeo et al. ​(2011) cortical network partitions, a variety                  
of well-known sensory-motor and previously-discovered cognitive large-scale functional        
networks were identified. Common to both of these network partitions, we identified FPN, CON,              
DMN, DAN, visual, and somatomotor networks. Unlike Yeo et al. but similar to Power et al., we                 
identified a separate auditory network consistent with the primary auditory cortical system.            
Notably, this auditory network was merged with the somatomotor network at various parameter             
settings of our network detection algorithm, consistent with the Yeo et al. result (which used a                
K-means clustering approach). This illustrates the difficulty of identifying the correct           
‘data-driven’ metrics when using a clustering algorithm—auditory and somatomotor regions are           
known to perform highly distinct functions yet their RSFC patterns were difficult to separate              
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without​ ​explicitly ​ ​forcing​ ​this​ ​neurobiologically ​ ​plausible​ ​separation. 
We identified three networks that, to our knowledge, have not been previously identified:             

PMM (posterior multimodal), VMM (ventral multimodal), and ORA (orbito-affective). Unlike          
the language network, we did not predict the existence of these networks based on the prior                
literature. Importantly, lack of pre-existing evidence of the VMM and ORA networks was likely              
driven by signal dropout in the proximity of these networks, due to magnetic field              
inhomogeneities from nearby sinuses ​(Deichmann et al., 2003) ​. The multiband fMRI data used             
here ​(Uğurbil et al., 2013) appears to have reduced the signal dropout near sinuses. This is likely                 
due to smaller voxels (2 mm cubic voxels used here rather than the standard-to-date 3+ mm                
voxels), which can reduce MRI signal dropout ​(Merboldt et al., 2000; Smith et al., 2013) ​. The                
increased precision from using a cortical surface analysis ​(Anticevic et al., 2008) ​, averaging             
across vertices within each parcel, and averaging with a large sample size likely all contributed               
to an increased ability to map RSFC in these dropout areas. While we found some evidence for                 
lower SNR in these regions relative to other cortical regions, we also identified strong reliability               
of the networks using split-half validation and found a symmetric, replicable and robust             
subcortical contribution to these networks, further validating these networks. It will be important             
for future studies to corroborate the existence of these networks, identify their functional roles,              
and​ ​enumerate ​ ​the​ ​factors​ ​(such ​ ​as ​ ​voxel​ ​size)​ ​that​ ​affect ​ ​the​ ​ability ​ ​to​ ​detect ​ ​them. 

It is unclear at this point what functions these networks might perform, given that they               
represent a novel discovery. While we appreciate this partially reflects reverse inference, we             
used observations of the constituent parts of the networks to infer possible functionality and              
provide a label. This is most evident in the case of the ORA network, which overlaps with                 
portions of cortex associated with ‘reward processing’ functionality in posterior orbitofrontal           
cortex ​(Kahnt et al., 2011; Schultz, 2006) ​. Corroborating this interpretation, ORA connected            
strongly with known reward-related areas in subcortex. These included the ventral striatum            
(Delgado et al., 2000; Schultz et al., 1992) ​, midbrain nuclei consistent with the substantia nigra /                
ventral tegmental area (which contain dopamine neurons) ​(Fiorillo et al., 2003) ​, and the globus              
pallidus ​(Justin Rossi et al., 2017) ​. Further, this portion of cortex was modulated differentially by               
rewarding stimuli ​(Camara et al., 2010) ​. This is consistent with a strong role for reward-related               
dopamine projections to ORA, suggesting strong reward processing functionality for this           
network. 

The VMM network consists of four cortical regions on the ventral surface of the temporal               
lobe. The VMM extends into subcortex only minimally, with a cluster in the right ventral               
striatum and small bilateral clusters in the hippocampus. One possible function of this network is               
to represent higher-order semantic categories, consistent with studies of anterior ​(Rogers et al.,             
2006) and inferior temporal lobe ​(De Baene and Vogels, 2010) ​. The novelty of this network               
reduces our ability to identify its functionality, however, such that it will be important for future                
studies​ ​to​ ​better ​ ​determine​ ​what​ ​the​ ​functional ​ ​specializations​ ​of ​ ​this​ ​network​ ​might ​ ​be.  

The PMM network consists of bilateral dorsomedial parietal lobe, bilateral          
temporal-parietal-occipital junction, and right dorsocaudal temporal lobe. The PMM also extends           
into a variety of subcortical locations. These locations include: bilateral amygdala, portions of             
the brainstem, the putamen, multiple portions of cerebellum, a small portion of the caudate, a               
small portion of thalamus, and a portion of the diencephalon consistent with the basal forebrain.               
Most of these subcortical locations were assigned symmetrically across hemispheres and showed            
strong split-half replication. This demonstrates that while these assignments were widespread           
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they were nonetheless robust, suggesting the existence of previously-unknown widespread PMM           
circuits. One possible function of this network could be spatial navigation, given the importance              
of dorsomedial parietal lobe for spatial navigation ​(Marchette et al., 2014) ​. Additionally, PMM             
might be important for identifying and representing event structure in narratives, given that             
PMM regions were recently shown to represent long narrative structures during movie watching             
(Baldassano et al., 2017) ​. It will be important for future studies to carefully map the PMM as                 
identified here to particular functions such as spatial navigation and representing           
situational/narrative​ ​structures. 

Our ability to map the ventral surface of cortex presented a unique opportunity, since              
most previous network partitions omitted these territories due to MRI signal dropout. We not              
only identified two novel networks in these dropout zones, but were also able to test for                
expansion of previously-identified networks into an extensive portion of cortex for the first time.              
We found that orbitofrontal cortex (OFC) was split into thirds, with nearly equal assignment of               
OFC parcels to FPN, DMN, and ORA. It is notable that so much of OFC was assigned to FPN                   
given that the FPN is classically described as primarily lateral prefrontal cortex and parietal              
cortex. This result suggests that the task-rule-oriented representations in lateral prefrontal cortex            
(Cole et al., 2011; Stokes et al., 2013) likely interact extensively with action-outcome and              
stimulus-reward associations in OFC ​(Kahnt et al., 2011) ​. Indeed, some nonhuman primate            
studies have suggested such interactions occur during task performance ​(Wallis and Miller,            
2003) ​. The present study suggests these interactions occur as a part of a global system likely                
specialized for cognitive control and associated goal pursuit ​(Cole et al., 2013, 2014b; Duncan,              
2010) ​. It will be important for future studies to more fully characterize the relationships between               
classic portions of FPN and these portions of OFC previously unassigned due to MRI signal               
dropout. 
 
Mapping ​ ​a​ ​left-lateralized​ ​brain-wide​ ​language​ ​network ​ ​in​ ​the ​ ​human ​ ​brain 

Unlike both the Yeo et al. and Power et al. network partitions, we identified a network                
highly consistent with language functionality. This was based on the proximity of its regions to               
the well-established Broca’s and Wernicke’s areas, its left lateralization being consistent with            
known left lateralization of language functionality ​(Gazzaniga, 2005; Gazzaniga et al., 1962) ​, as             
well as its activation during a language task. Additionally, several of the regions included in this                
network were thoroughly investigated by Glasser et al. ​(2016) ​, establishing these regions as             
distinct functional entities with clear language functionality. Notably, the Power et al. ​(2011)             
partition (updated and visualized more fully by ​(Cole et al., 2013) ​) included a network consistent               
with this language network, but labeled the “ventral attention network”. The present results             
suggest this network was previously mislabeled, since its connectivity pattern, anatomical           
location,​ ​and​ ​task​ ​activations ​ ​are​ ​most​ ​consistent​ ​with​ ​language ​ ​functionality. 

One key feature of the language network identified here is its left lateralization. We              
found that the cortical language network was the most lateralized network in terms of RSFC               
pattern asymmetry ( ​Fig. 4E, 5G, & 5H​), that the subcortical voxels assigned to the language               
network were more left-lateralized than expected by chance ( ​Fig. 5E & 5F​), and that the               
language network overlapped more with language task activations than chance ( ​Fig. 5A, 5B &              
5C ​). Lateralization of language functionality is one of the most well-established findings in the              
human brain ​(Mesulam, 1998) ​, making it somewhat surprising that this has not been emphasized              
in previous RSFC literature. A recent study ​(McAvoy et al., 2015) found that left-lateralized              
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language functionality only emerged in their RSFC analysis when global signal regression was             
not included as a preprocessing step. Inconsistent with this, however, the Power et al. ​(2011)               
network similar to our identified language network was left lateralized (with dorsal and medial              
frontal network assignments being more extensive in the left hemisphere), despite use of global              
signal regression. Thus, while not performing global signal regression may have assisted our             
identification of the language network, it was unlikely that avoiding global signal regression was              
necessary​ ​to​ ​identify ​ ​this​ ​network. 

Beyond simply counting more language-assigned parcels in the left hemisphere (14 left, 9             
right), our use of pattern asymmetry was important for precisely quantifying lateralization. RSFC             
pattern asymmetry revealed that several language network regions had highly distinct global            
patterns of RSFC with their right-hemisphere homologues. This striking qualitative difference           
across homologous parcels is illustrated in detail in Figure 5G & 5H. This parcel, which is                
consistent with Wernicke’s area on the left, was assigned with high confidence to the language               
network on the left but with high confidence to CON on the right. Consistent with this                
assignment difference, many regions with low RSFC for the left hemisphere parcel are high for               
the right hemisphere parcel, and vice versa. Together these results demonstrate the strength of              
left lateralization of the language network, both in terms of the number of left-lateralized parcels,               
asymmetry​ ​of ​ ​global​ ​RSFC ​ ​patterns,​ ​as ​ ​well​ ​as ​ ​its​ ​subcortical ​ ​contributions. 
 
Mapping ​ ​the ​ ​complex​ ​relationships​ ​between ​ ​subcortical​ ​structures ​ ​and ​ ​cortical ​ ​networks 

We found that all 12 cortical functional networks, including higher-order associative           
networks (such as the FPN and CON), were reliably represented across the entire subcortex and               
the cerebellum. This is consistent with known functional loops between all portions of cortex and               
thalamus ​(Behrens et al., 2003) ​, which in turn loop through basal ganglia ​(Middleton and Strick,               
1994) and cerebellum ​(Kelly and Strick, 2003) ​. Also consistent with the observed widespread             
connectivity between cortex and subcortical nuclei, various subcortical nuclei involving a variety            
of neurotransmitters (e.g., substantia nigra, basal forebrain, raphe nucleus) are known to project             
broadly throughout cortex ​(Herlenius and Lagercrantz, 2004) ​. Finally, regions such as amygdala            
(Barbas, 2000; Jolkkonen and Pitkänen, 1998) and hippocampus ​(Eichenbaum et al., 2007) are             
thought to project to and from multiple cortical networks. Importantly, most of what is known               
about these subcortical structures comes from non-human animal studies or localized functional            
neuroimaging studies in humans, with relatively few focused RSFC studies ​(Buckner et al.,             
2011; Choi et al., 2012) ​. The reported results represent the first comprehensive attempt to assign               
each subcortical voxel to a given cortical network. In turn, we establish the replicability,              
stability, symmetry and task-evoked relevance of such a subcortical functional network solution.            
Nevertheless, there were some unexpected findings that will be important to follow up on in               
future research. First, we found that the language network exhibits notable connectivity with the              
amygdala. Second, we identified a large and robust subcortical contribution to the primary visual              
network, perhaps reflecting a distributed ‘attentional system’, involved in overt attention and            
wakefulness. Of note, we did explicitly enforce a separate of the V1 and secondary visual               
cortical networks. Recent work suggests that there may be some residual artifact associated             
primarily with visual and somatomotor systems (respiration, sleep, movement) ​(Bijsterbosch et           
al., 2017; Glasser et al., 2017) ​. It may be possible that assignment of some subcortical structures                
to VIS1 is inflated due to this artifact (perhaps due to eyes open vs. closed correlating with                 
sleep+respiration changes). This current limitation that can be improved in future iterations of             
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the partition by leveraging recently proposed advances in temporal de-noising that circumvents            
global​ ​signal​ ​removal ​ ​​(Glasser ​ ​et​ ​al.,​ ​2017) ​. 

Importantly, prior subcortical network assignment attempts did not incorporate the          
thalamus and the brain stem in their reported solutions. As noted, thalamic sub-nuclei are              
well-known to form functional circuits with cortical networks ​(Barbas, 2000; Zhang et al., 2008)              
and have been shown to exhibit robust patterns of diffusion MRI-derived probabilistic            
tractography with cortical territories ​(Behrens et al., 2003) ​. Therefore, it was vital to demonstrate              
that the subcortical network solution captures the well-established thalamic nuclei configuration.           
A ubiquitously established thalamic structure is the lateral geniculate nucleus (LGN), which            
received initial visual inputs from the retina via the optic nerve and projects in an organized                
anatomical fashion onto V1 in the mammalian neocortex. Therefore, we established that our             
thalamic solution (irrespective of combining or separating the primary and secondary visual            
networks). We observed a well-preserved correspondence of the thalamic network assignment           
whereby the LGN was encompassed by the primary visual network (VIS1) or by the overall               
visual​ ​network​ ​​ ​(when ​ ​combining ​ ​VIS1 ​ ​and​ ​VIS2 ​ ​into​ ​a​ ​single​ ​visual​ ​system)​ ​(see​ ​​Fig.​ ​S3 ​).  

 
Limitations​ ​and ​ ​opportunities ​ ​for​ ​further​ ​improvement​ ​of ​ ​the ​ ​network ​ ​partition 

There are several limitations to the approach used here that represent important            
opportunities for future improvements to understanding the large-scale functional organization of           
the human brain. For instance, any network partition necessarily oversimplifies brain           
organization by removing/downplaying inter-network interactions. Nonetheless, it is useful to          
know the overall network organization while acknowledging the smaller/rarer interactions          
between networks, which may be dynamic over time. Additionally, this is not a fully exhaustive               
search over all possible network organizations. Our partition was likely not fully optimal due to               
the need to use heuristics to identify network organization (for computational tractability)            
(Blondel et al., 2008; Girvan and Newman, 2002) ​. This leaves open the possibility of more               
accurate network organizations in the future. Nonetheless, we assessed multiple algorithms and            
ran a large-scale parameter search, achieving a highly optimal and reliable network partition as              
quantified​ ​by​ ​a​ ​variety ​ ​of ​ ​quality​ ​assessment​ ​metrics. 

Despite covering the whole brain (unlike most previous network partitions), we           
nonetheless maintained a cortical-centric approach. Specifically, we began by creating a cortical            
network partition, which was then extended into subcortical voxels by quantifying the            
relationship between subcortex with the cortical networks. This may introduce a cortico-centric            
bias as the subcortical solution is explicitly driven by defining the cortex partition first.              
Nonetheless, we used this approach to aid in bridging the currently cortico-centric view of              
human brain function to subcortical structures. We also used this approach given the historical              
utility of understanding subcortical functions based on connectivity with specific cortical           
structures. For instance, mapping cerebellar connectivity with cortex in macaque monkeys has            
aided in understanding functional specialization in cerebellum ​(Kelly and Strick, 2003) ​.           
Furthermore, this approach has proved highly productive and impactful in prior attempts at             
mapping striatum and cerebellum onto cortical networks ​(Buckner et al., 2011; Choi et al.,              
2012) ​. We nonetheless expect that future research will benefit from a more even-handed             
partitioning of cortical-subcortical gray matter. This would involve creating functional-defined          
three-dimensional brain parcels in subcortical structures, just as was done as an initial step in               
cortex ​(Glasser et al., 2016) ​. These parcels would then be included in a community detection               
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algorithm along with the cortical parcels. This may reveal distinct subcortical parcels from what              
we identified here, in addition to potentially distinct networks. Notably, it is possible that two               
functional parcels that are neighbors in anatomical space could be merged in our current              
approach if they were both assigned to the same network. Nonetheless, we expect that our               
approach has advanced understanding of subcortical structures, putting them in the functional            
context​ ​defined​ ​by​ ​large-scale ​ ​cortical​ ​networks. 

Additional improvements on the present network partition could stem from even more            
precisely defining the cortical parcels. Presently used parcels were identified based on            
convergence across multiple neuroimaging modalities (e.g., fMRI and structural MRI), likely           
limiting biases from any one modality. Nevertheless, certain decisions were made when deriving             
this parcellation that may be reconsidered in future. For instance, the Glasser parcels force the               
face and non-face representations in the primary motor homunculus to be merged (since primary              
sensory and primary motor regions were defined in part based on cytoarchitecture), even though              
it is clear that these portions of the motor homunculus have distinct RSFC patterns ​(Power et al.,                 
2011; Yeo et al., 2011) ​. Despite such potential limitations the use of multiple modalities when               
defining parcels by Gasser and colleagues likely reduced biases present in any one modality              
(e.g.,​ ​RSFC). 

There is evidence that global signal removal (GSR) is important for reducing respiratory             
and motion artifacts that plague RSFC ​(Power et al., 2014, 2017) ​. The current study omitted               
GSR because Glasser et al. ​(2016) reported that GSR appreciably shifts RSFC gradients (relative              
to other modalities) used for identifying the cortical parcels, which could invalidate use of these               
regions in the present study. Simultaneous with the present study an approach involving temporal              
independent components analysis (ICA) has been developed to remove global noise while            
leaving global signal of neural origin ​(Glasser et al., 2017) ​. This results in RSFC with global                
noise distortions removed without GSR-driven distortions such as RSFC gradient shifts. Future            
work should generate a revised version of the partition after the parcellation has been              
re-computed​ ​using​ ​this​ ​new ​ ​temporal ​ ​ICA ​ ​de-noising​ ​method. 

Another opportunity for future improvement is to better characterize the hierarchical           
nature of brain network organization. This reflects the fact that network organization is likely              
hierarchical in the sense that each large-scale brain network could be broken down into smaller               
and smaller components, eventually reaching the single-region level. Critically, however, we           
used a principled approach to define our target level of organization by setting parameters to               
detect well-established primary sensory-motor cortical systems. Thus, we created a whole-brain           
network partition intentionally defined as being at (or near) the same level of organization as               
these well-established brain systems. We therefore expect that the calibration of our community             
detection algorithm likely identified networks in association cortex that are at the same (or a               
similar) level of organization, and are therefore of similar importance for higher-level cognitive             
functions​ ​as ​ ​primary​ ​sensory-motor​ ​systems​ ​are​ ​for ​ ​perceptual-motor ​ ​functions. 
 
Conclusions 

The results presented here describe the current version (v1.0) of a novel whole-brain             
functional network characterization of the human brain. The primary purpose of this study is to               
describe the network partition dataset, which is now publically available. We additionally            
reported a series of quality assessments and validations of the provided network partition. We              
found evidence that the partition was of high quality and exhibited robust replicability across              
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independent samples as well as across cortical and subcortical structures. While we propose a              
number of important future improvements of the provided version 1.0, this constitutes the most              
accurate estimate of whole-brain functional network organization in humans to date. We            
additionally demonstrated the existence of novel functional networks, such as the lateralized            
language network, providing additional understanding of human brain organization. The result           
was successfully applied to a language fMRI task, demonstrating strikingly improved statistical            
power to detect task-related activations when using the network partition. Collectively, this study             
demonstrates the value of this whole-brain network partition for scientific inquiry into human             
brain​ ​organization ​ ​as ​ ​well​ ​as ​ ​specific ​ ​task​ ​functionality. 
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Supplementary ​ ​Material 
 

 
Supplemental Figure S1. Reassignment of cerebellar voxels near cortex. ​We removed cerebellar voxels within              
2mm of the cortex from the initial network assignment to correct for any potential signal bleed-over from the                  
adjacent cerebral cortex and/or partial volume effects. In the final step, nearby networks were dilated with                
nearest-neighbor interpolation to reassign these voxels. ​A) Subcortical network solution before dilation. Black             
indicates voxels removed from initial subcortical network assignment. ​B) ​Subcortical network solution after dilation.              
C) ​Table of voxel counts for each of the 12 networks in the cerebellum before and after the dilation step. The                     
cingulo-opercular​ ​network​ ​exhibited​ ​the​ ​greatest​ ​percentage​ ​increase​ ​in​ ​size​ ​after​ ​dilation​ ​(13.90%,​ ​120​ ​voxels). 
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Supplemental Figure S2. Cleanup of subcortical network assignment. ​We removed isolated single-voxel parcels             
that did not share a network assignment with any adjacent voxels, and parcels of size 2-4 voxels that did not have a                      
counterpart with the same network assignment within a 2mm radius in the contralateral hemisphere. These removed                
voxels were later reassigned using nearest-neighbour interpolation. ​A) ​Total number of voxels removed by this               
process. We also identified 5-voxel parcels using the same criteria, but this flagged only a trivial number of voxels                   
(55 voxels, or 0.17% of the total subcortex). ​B) ​Map of voxels removed (from parcels of size 1-4 voxels), colored by                     
their​ ​original​ ​network. 
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Supplemental Figure S3. Thalamic network assignment. A) ​Network assignment of the thalamus and ventral              
diencephalon from the network partition described in the manuscript. Top row highlights the horizontal, sagittal, and                
coronal views of the lateral geniculate nucleus (LGN), indicated by green arrows. White stars mark the voxel seeded                  
for structural connectivity in D and E. Bottom row shows cross-sectional view of the parcellation at different slices.                  
B) ​Network assignment of the thalamus and ventral diencephalon, using the same method as in A but with an                   
alternate cortical partition where VIS1 and VIS2 networks are combined into a single network. ​C) ​Network                
assignment of thalamus and ventral diencephalon using cortical network parcellation from Yeo et al. ​(2011)​. ​D)                
Diffusion MRI-derived probabilistic tractography (i.e. ‘structural’ connectivity) of the right LGN to right cortex.              
Tractography results were computed from diffusion MRI data obtained from 334 subjects. Inset shows right LGN                
seed, identified using the Jülich atlas ​(Bürgel et al., 2006; Eickhoff et al., 2005)​, similar coordinates also reported in                   
(Linzenbold et al., 2011; Marx et al., 2004; Smith et al., 2009a)​. E) ​Diffusion MRI-derived probabilistic                
tractography (i.e. ‘structural’ connectivity) of the right LGN to subcortex. White stars mark the right LGN voxel                 
from which connectivity was seeded. Connectivity was strongest between right LGN, other thalamic nuclei, and               
other visual processing regions, including the superior colliculus and brainstem nuclei (blue arrows). Results were               
similar​ ​for​ ​the​ ​left​ ​LGN.​ ​Abbreviations:​ ​LAT,​ ​lateral;​ ​MED,​ ​medial;​ ​ANT,​ ​anterior;​ ​POS,​ ​posterior. 
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