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Abstract 

We internally represent the structure of our surroundings even when there is little layout 

information available in the visual image, such as when walking through fog or darkness. One 

way in which we disambiguate such scenes is through object cues; for example, seeing a boat 

supports the inference that the foggy scene is a lake. Recent studies have investigated the 

neural mechanisms by which object and scene processing interact to support object 

perception. The current study examines the reverse interaction, by which objects facilitate the 

neural representation of scene layout. Photographs of indoor (closed) and outdoor (open) real-

world scenes were blurred such that they were difficult to categorize on their own, but easily 

disambiguated by the inclusion of an object. fMRI decoding was used to measure scene 

representations in scene-selective parahippocampal place area (PPA) and occipital place area 

(OPA). Classifiers were trained to distinguish response patterns to fully visible indoor and 

outdoor scenes, presented in an independent experiment. Testing these classifiers on blurred 

scenes revealed a strong improvement in classification in left PPA and OPA when objects 

were present, despite the reduced low-level visual feature overlap with the training set in this 

condition. These findings were specific to left PPA/OPA, with no evidence for object-driven 

facilitation in right PPA/OPA, object-selective areas, and early visual cortex. These findings 

demonstrate separate roles for left and right scene-selective cortex in scene representation, 

whereby left PPA/OPA represents inferred scene layout, influenced by contextual object cues, 

and right PPA/OPA represents a scene’s visual features.  
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Introduction 

 

We recognize scenes at a glance, even though they contain rich and complex visual 

information (Potter, 1975). The ability to rapidly categorize scenes (e.g., as indoor or outdoor) 

has been shown to depend on scene-selective regions in visual cortex – regions defined by 

stronger neural responses to scenes and buildings than to isolated objects (Aguirre, Zarahn, & 

D'Esposito, 1998; R. Epstein & Kanwisher, 1998). For example, when activity in the scene-

selective occipital place area (OPA) is disrupted by TMS, participants are less accurate in 

scene categorization, while object categorization remains unaffected (Dilks, Julian, Paunov, & 

Kanwisher, 2013; Ganaden, Mullin, & Steeves, 2013). This supports the distinction between 

object- and scene-selective pathways (Harel, Kravitz, & Baker, 2013; Mullin & Steeves, 

2011; Park, Brady, Greene, & Oliva, 2011). In everyday life, however, scenes and objects are 

perceived together and their processing heavily interacts, as observed in behavioral studies 

(Bar & Ullman, 1996; Biederman, Mezzanotte, & Rabinowitz, 1982; Davenport & Potter, 

2004; Munneke, Brentari, & Peelen, 2013; Oliva & Torralba, 2007). How are these 

interactions implemented in visual cortex? 

 

In a recent study, we tested how scene processing in scene-selective cortex biases object 

processing in object-selective cortex (Brandman & Peelen, 2017). In that study, objects were 

hard to recognize on their own but easy to recognize when presented within their original 

scene context. This scene-based disambiguation of object processing was reflected in more 

distinct multivariate activity patterns in object-selective areas, with the strength of this effect 

being predicted by activity in scene-selective areas (Brandman & Peelen, 2017). In the current 
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fMRI study, we investigated the reverse interaction, testing how object processing 

disambiguates scene perception. Similar to how scene context disambiguates object 

perception, the presence of objects allows us to interpret an otherwise ambiguous scene (e.g. 

Figure 1a), as often happens to us in darkness or fog, in which layout information is veiled. 

To our knowledge, this role of objects in scene perception has not been explored. Thus, to test 

for influences of object processing on scene representation, we examined the neural 

representation of scene category (indoor, outdoor) in blurred scenes, which were difficult to 

categorize on their own but easily disambiguated by inclusion of an intact object. 

 

In addition to revealing interactions between object- and scene-selective pathways, the current 

study addresses a recent debate about the representational content of scene-selective areas. 

With their discovery, the critical factor in scene-selective responses was found to be the 

presence of spatial layout information. It was therefore suggested that scene-selective areas 

represent place information by encoding the geometry of the local environment (R. Epstein & 

Kanwisher, 1998), as part of a network involved in spatial navigation (R. A. Epstein, 2008). 

One source of information about the spatial layout of scenes (e.g., open vs closed) is provided 

by global visual features, with second-order image statistics being informative for scene 

category or scene “gist” (Torralba & Oliva, 2003). This raises the possibility that spatial 

layout information in scene-selective areas (Kravitz, Peng, & Baker, 2011; Park et al., 2011; 

Walther, Caddigan, Fei-Fei, & Beck, 2009) reflects the feedforward processing of such visual 

features. This view is in line with recent studies showing that scene selectivity itself can be 

(partly) explained by sensitivity to relatively low-level visual features such as cardinal 

orientations and rectilinearity (Nasr, Echavarria, & Tootell, 2014; Nasr & Tootell, 2012; 
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Rajimehr, Devaney, Bilenko, Young, & Tootell, 2011; Zeidman, Mullally, Schwarzkopf, & 

Maguire, 2012). Alternatively, scene representations in scene-selective areas may be more 

abstract, representing the layout of a scene as inferred based on all cues available to the 

individual (R. A. Epstein, 2008; Peelen & Downing, 2017; Wolbers, Klatzky, Loomis, Wutte, 

& Giudice, 2011). 

 

Here we distinguish between these two accounts by measuring the level of scene 

disambiguation gained by object cues (Figure 1c). These objects add contextual cues without 

adding visual features associated with spatial layout. We therefore predicted that regions 

representing global visual scene features should carry most information about scenes without 

objects, because objects would only act as clutter. By contrast, regions representing inferred 

spatial layout should carry most information about scenes in which the layout information is 

disambiguated by the objects. 

 

To measure the amount of scene-category information gained by the inclusion of object cues, 

photographs of real-world indoor (closed) and outdoor (open) scenes were blurred such that 

they were difficult to categorize on their own but easily categorized with an intact object 

overlaid on the scene in its original position. In this way, scene category (or scene layout), 

processed in scene-selective areas (Kravitz et al., 2011; Park et al., 2011; Walther et al., 

2009), was disambiguated by object cues. The objects were also presented alone, to assess the 

baseline level of scene-category information carried by the objects themselves (Harel et al., 

2013). We then measured scene-category information using multivariate pattern analysis 

(MVPA; Haxby et al., 2001), with classifiers trained on the response patterns evoked by intact 
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scenes in a separate experiment, and tested on responses evoked by degraded scenes, 

degraded scenes with objects, and objects alone (Figure 1b). Within each tested brain region, 

the effect of objects on contextual disambiguation of scenes was measured by the difference 

in decoding accuracy for degraded scenes with and without objects. Thereby, we were able 

distinguish between areas representing inferred scene layout and areas representing visual 

scene features.      

 

Methods 

 

For degraded scenes, degraded scenes with objects, and for objects alone, we measured the 

multivariate representations of scene category in the fMRI signal while participants performed 

a 1-back task (see Procedure). In a separate pattern localizer used for classifier training, 

participants viewed intact indoor and outdoor scenes, fully visible and in high resolution, 

presented without objects. In addition, a region-of-interest (ROI) localizer served to localize 

scene- and object-selective ROIs in visual cortex. All procedures were approved by the ethics 

committee of the University of Trento.  

 

Participants 

Nineteen healthy participants (8 female, mean 24 years ± 2.98 SD) were included. All 

participants had normal or corrected to normal vision and gave informed consent. Sample size 

was chosen to match that of previous work examining contextual effects of object and scene 

integration with similar fMRI decoding methods (Brandman & Peelen, 2017). Six additional 

participants were excluded from data analysis due to excessive head motion during scanning 
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(n=4), widespread anatomical artefact (n=1), or failure to follow task instructions (n=1). 

 

Stimuli 

The stimulus set consisted of degraded scenes that were perceived as ambiguous on their own 

but that were easily categorized when presented with an object. Both indoor and outdoor 

scenes included a mixture of animate and inanimate objects of various categories. We ensured 

that the scenes did not contain other objects contextually associated with the foreground 

objects. The main experiment included photographs of 30 indoor and 30 outdoor scenes. Sixty 

photographs of scenes from Unsplash (unsplash.com) and Pixabay (pixabay.com) were 

cropped and cleaned to include one dominant foreground object. The scene excluding the 

object was degraded (blurred) and contrast was reduced for the entire image. Scenes were 

saved with and without the object (object was edited out). The object was also saved in 

isolation, on a uniform gray background of mean luminance of the original background. The 

final images (180 in total) included the degraded scenes, degraded scenes with objects and 

objects alone (see samples in Figure 1a). To avoid familiarity effects passing from scenes with 

objects to scenes alone, the stimulus set was split in two, such that different scenes were 

presented for degraded scenes with objects and for degraded scenes alone within a given 

subject (For example, for two stimuli Beach1 and Beach2, a given participant would either 

view Beach1 alone and Beach2 with a boat, or vice versa). The objects alone matched the 

degraded scenes alone (participants who viewed Beach1 alone would also view its boat 

separately, but not embedded). The two sets were counterbalanced across subjects. The 

pattern localizer used included the 60 scenes from the main experiment (with different 

cropping), and an additional set of 60 new scenes that were matched for category and sub-
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category of the main-experiment set, in high resolution. Visual angle: 5.99x5.99 degrees 

(400x400 pixels). 

 

Stimulus Optimization and Selection 

The stimulus set was optimized and validated in an online behavioral pilot experiment in 

Amazon Mechanical Turk, in which participants rated the degraded scenes’ category on a 

scale of indoor-outdoor, to compare the level of scene ambiguity with and without objects. 

Participants were asked to rate each degraded scene, presented either with its original 

embedded object or alone, on a scale from 1 – indoor to 8 – outdoor. Participants’ ratings 

were normalized to a mean of 0 and standard deviation of 1. The final stimulus set, presented 

in the MRI, consisted of scenes that were perceived as more ambiguous on their own than 

with objects (N=29; indoor: t = 10.83, p < 0.001; outdoor: t = 15.69, p < 0.001), with a mean 

difference of 1.02 between normalized scores of scenes with and without objects. Forty-five 

additional scenes, showing smaller differences in ratings (with versus without an object), were 

tested in the piloting stages but were excluded from the final stimulus set. 

 

Procedure 

On each trial, participants viewed a single briefly presented (80 ms) stimulus. Throughout all 

runs participants performed a 1-back task in which they pressed a button each time an image 

appeared twice in a row. The main experiment consisted of 5 scanner runs of 352 s duration, 

each composed of 4 fixation blocks and 3 blocks for each of the 6 conditions: indoor/outdoor 

x scene/scene-with-object/object (total 18). The main experiment was followed by a pattern 

localizer, which consisted of 3 scanner runs of 336 s duration, each composed of 5 fixation 
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blocks and 4 blocks per condition: indoor/outdoor x old/new (total 16). Each block consisted 

of 16 trials, in which a stimulus was presented for 50 ms followed by a 950 ms fixation. This 

resulted in 240 trials (120 2-sec volumes) per condition in the main experiment, and 192 trials 

(96 2-sec volumes) per condition in the pattern localizer. A category-selectivity localizer 

ended the scanning session, designed to identify scene- and object-selective areas. The 

localizer included 80 grayscale images per category of objects, scenes, bodies and scrambled 

objects (i.e. a random mixture of pixels of each of the object images). It consisted of 2 scanner 

runs of 336 s duration, each composed of 5 fixation blocks and 4 blocks per condition: 

scene/object/body/scrambled-object (total 16). Each block consisted of 20 trials, in which a 

stimulus was presented for 350 ms followed by a 450 ms fixation.  

 

Data Acquisition and Preprocessing 

Whole-brain scanning was performed with a 4T Bruker MedSpec MRI scanner using an 8-

channel head-coil. T2*-weighted EPIs were collected (TR = 2.0 s, TE = 33 ms, 73° flip angle, 

3 × 3 × 3 mm voxel size, 1-mm gap, 30 slices, 192-mm FOV). A high-resolution T1-weighted 

image (magnetization prepared rapid gradient echo; 1 × 1 × 1 mm voxel size) was obtained as 

an anatomical reference. The data were analyzed using MATLAB (MathWorks) with 

statistical parametric mapping (SPM). Each run was preceded by 12 s fixation discarded from 

the analysis. Preprocessing included slice-timing correction, realignment and spatial 

smoothing with a 6 mm full-width at half-maximum (FWHM) Gaussian kernel. A GLM HRF 

model was estimated for each participant for the univariate analyses.  

 

Category-selective ROIs 
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Functional ROIs were defined using a two-step group-constrained subject-specific method 

(e.g. Julian, Fedorenko, Webster, & Kanwisher, 2012). The first selection step was based on 

results of a group analysis in MNI space. Scene-selective areas were defined by contrasting 

activity evoked by scenes against objects, against scrambled objects, and against baseline 

activity. The parahippocampal place area (PPA) and occipital place area (OPA) ROIs were 

generated by identifying temporal and occipital voxels in the ventral visual stream where all 3 

contrasts garnered uncorrected p values less than 0.01 at group-level (random effects). The 

retrosplenial complex (RSC) was too small to perform MVPA (<15 voxels), and was 

therefore excluded from the analysis. Similarly, object-selective areas were defined by 

contrasting activity evoked by objects against scenes, against scrambled objects, and against 

baseline activity. The posterior fusiform sulcus (pFs) and lateral occipital (LO) ROIs were 

generated by identifying temporal and occipital voxels in the ventral visual stream where all 3 

contrasts garnered uncorrected p values less than 0.01 at group-level (random effects). The 

second ROI-selection step was performed for each participant separately, where group-

selected ROIs were used as inclusion masks for individual ROI selection. Only the most 

significant 50 voxels of each ROI, as measured by individually-estimated T-values, were 

selected for multivariate analysis. 

 

Early visual areas 

Early visual ROIs were defined separately for each participant, in each hemisphere, by 

selecting the most significant 50 voxels as measured by an individually-estimated T-contrast 

of scrambled objects against baseline activity, within Brodmann area 17, and excluding 

voxels showing higher responses to scenes than scrambled objects.  
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Multivariate Analysis 

The data within each voxel were detrended and normalized (mean and STD) across the time-

course of each run, and shifted two volumes (4 s) to account for the hemodynamic lag. The 

data were then averaged across blocks within each run, resulting in one block of 8 volumes 

per condition per run. Multivariate analysis was performed using the CoSMoMVPA toolbox 

(Oosterhof, Connolly, & Haxby, 2016). An SVM classifier discriminated between response 

patterns to indoor vs. outdoor scenes. The decoding approach is illustrated in Figure 1b. First, 

decoding of intact scene category was measured within the pattern localizer, by training on 

old-scene trials (i.e. scenes included in the main-experiment set), and testing on new-scene 

trials. Next, cross-decoding was achieved by training on all conditions of the pattern localizer, 

and testing on each of the main-experiment conditions (scene, scene-with-object, object). For 

each participant, cross decoding was performed across the voxels of each ROI, resulting in an 

overall accuracy score for the ROI for each of the 3 conditions.  

 

Controlling for multiple comparisons 

All significant t-tests and correlations reported remained significant when correcting for 

multiple comparisons within each section of the Results, using false discovery rate (FDR) at a 

significance level of .05.  
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Figure 1: Experimental design and predictions. (A) Sample stimuli of the main experiment conditions: 

indoor (closed) and outdoor (open) degraded (blurred) scenes, degraded scenes with objects and 

objects on gray background of mean luminance of the degraded scene; (B) Cross-decoding analysis, 

whereby a classifier was trained on indoor/outdoor scene discrimination from the fMRI response 

patterns, and tested on discrimination of indoor/outdoor degraded scenes, degraded scenes with 

objects, and isolated objects; (C) Prediction of cross-decoding results (decoding accuracy) in areas 

representing inferred scene layout (left panel) and in areas representing scenes’ global visual features 

(right panel).  
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Results 

 

Decoding intact scene category in scene-selective cortex 

We first assessed the representation of intact scene category (indoor vs outdoor scenes) in 

scene-selective areas for the pattern localizer data. Results showed that scene category was 

strongly represented in four scene-selective areas: the right PPA (decoding accuracy M = 

72.37%;), left PPA (M = 72.48%;), right OPA (M = 64.80%;) and left OPA (M = 68.86%;), 

and was decoded significantly above chance (t(18) > 4.69, p < 0.001, for all regions). These 

results are in line with previous findings of scene-category decoding in visual cortex (Walther 

et al., 2009). We found no significant effects of region (PPA, OPA; F(1,18) = 4.12, p = 0.057) 

hemisphere (right, left; F(1,18) = 0.88, p = 0.360) or their interaction (F(1,18) = 1.22, p = 

0.284) in intact scene decoding. 

 

Decoding degraded scene category in scene-selective cortex 

Next, we examined the representation of scene-category in scene-selective areas, the left and 

right PPA and OPA, for each of the three main experiment conditions (Figure 2). Classifiers 

were trained on data from the pattern localizer and tested on the conditions in the main 

experiment using a cross-decoding approach (Figure 1b). Importantly, the effect of our 

context manipulation varied across hemispheres, as revealed by a two-way interaction 

(F(2,36) = 10.35, p < 0.001) between hemisphere (right, left) and context (scene, scene with 

object, object). There was no interaction between region (PPA, OPA) and context (F(2,36) = 

1.65, p = 0.205), and no three-way interaction (F(2,36) = 0.30, p = 0.741). Considering this 
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pattern of results, we examined the average decoding across PPA and OPA, separately for 

each hemisphere.  

The category of degraded scenes could be reliably decoded in both hemispheres of scene-

selective areas (against chance; t(18) > 7.98, p < 0.001, for both hemispheres). However, the 

role of objects in the representation of scene category varied across hemispheres, 

corresponding to the two hypothesized response profiles (Figure 1c). Particularly, in left 

scene-selective areas, objects significantly facilitated the decoding of degraded scenes 

compared to when the scenes were presented without objects (paired t(18) = 2.25, p = 0.037). 

This was not observed in right scene-selective areas, which showed a trend in the opposite 

direction (paired t(18) = 1.80, p = 0.089).  

 

Univariate differences in scene-selective cortex 

In addition, to test whether hemispheric differences found in scene-selective areas were 

related to differences in overall activation in these regions, we examined their indoor and 

outdoor univariate BOLD responses. Data were processed similarly as for multivariate 

analysis, excluding the normalization step. There was a main effect of scene category (indoor, 

outdoor; F(1,18) = 19.46, p < 0.001) with higher activity for indoor than outdoor scenes, 

replicating previous reports (Henderson, Larson, & Zhu, 2007). Importantly, scene category 

did not interact (F < 2.52, p > 0.094, for all tests) with context (scene, scene with object, 

object), region (PPA, OPA), or hemisphere (right, left). Thus, the differences found in 

multivariate representations of scene category across experimental conditions and 

hemispheres cannot be explained by regional response-magnitude differences. 
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Figure 2: Cross-decoding scene category in scene-selective areas. Scene-selective areas (red regions 

in brain maps) were defined by stronger responses to scenes than to objects and scrambled objects in a 

separate localizer run: (A) Parahippocampal place area (PPA); (B) Occipital place area (OPA). In the 

left hemisphere, decoding of scene layout (indoor – closed, outdoor – open) from degraded scenes was 

better for degraded scenes with object than without. In the right hemisphere, objects did not inform 

scene-category decoding.  Thus, objects facilitated the classification of degraded scenes in left scene-

selective areas, but not right scene-selective areas. Data are represented as mean distance from chance 

(50% decoding accuracy)	
  ±SEM. *p<0.05. **p<0.01.   
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Decoding scene category from objects in scene-selective cortex 

Interestingly, results showed that objects presented in their original position on a gray 

background with the mean luminance of the original scene were sufficient predictors of scene 

category in left scene-selective areas (against chance; t(18) = 3.07, p = 0.007), but not right 

scene-selective areas (against chance; t(18) = 1.60, p = 0.127). We hypothesized that this may 

reflect a similar (though reduced) perceptual inference as observed in the degraded scene with 

object condition, with the mean luminance background acting as a more extremely degraded 

scene. We therefore asked whether object-driven facilitation of blurred scenes was associated, 

across participants, with object-based decoding of mean-luminance backgrounds. Results 

revealed that the level of object-driven facilitation, as measured by the difference in decoding 

accuracies between scenes with and without objects, was indeed highly correlated with 

decoding of objects on mean luminance backgrounds in left scene-selective areas (r(17) = 

0.73, p < 0.001), but not right scene-selective areas (r(17) = 0.39, p = 0.100) (Figure 3). These 

results provide further evidence for the hemispheric specificity of object-based facilitation and 

suggest a common origin for the effects observed in the scene-with-object and background-

with-object conditions. 

  

Figure 3: Correlation of object-

driven facilitation of scene 

decoding with object-based scene 

decoding. The difference in 

decoding accuracies for degraded 

scenes with and without objects 

was significantly correlated with 

the decoding accuracy for isolated 

objects in left, but not right, 

PPA/OPA. **p<0.01.  
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Decoding degraded scene category in early visual cortex 

To test whether the hypothesized profile of visual scene representation (Figure 1c) correctly 

predicted low-level visual processing, we examined the decoding of scene category also in 

early visual cortex (Figure 4), using the same cross-decoding approach as for scene-selective 

areas (Figure 1b). Indeed, scene category was reliably decoded in early visual cortex (EVC) 

for scenes alone (against chance; t(18) = 3.89, p = 0.001) but not for scenes with objects 

(against chance; t(18) = 1.38, p = 0.184) or objects alone (against chance; t(18) = 0.033, p = 

0.974). Decoding significantly varied between these three context conditions (F(2,36) = 

13.62, p < 0.001), with no effect of hemisphere (F(1,18) = 0.11, p = 0.741), and no interaction 

(F(2,36) = 0.61, p = 0.551).  

 

Decoding degraded scene category in object-selective cortex 

Finally, we examined representations of scene category in object-selective areas (Figure 5), 

using the same cross-decoding approach as for scene-selective areas (Figure 1b). Results 

showed no differences in context (scene, scene with object, object; F(2,36) = 2.40, p = 0.105), 

region (LO, pFs; F(1,18) = 3.27, p = 0.087) or hemisphere (left, right; F(1,18) = 0.53, p = 

0.477), nor any interactions between them (F < 1.36, p > 0.259). Thus, in contrast to scene-

selective areas in the left hemisphere, representations of scene category in object-selective 

areas were not facilitated by objects. This was further confirmed by a significant interaction 

(F(2,36) = 6.29, p = 0.004) between category-selective areas in the left hemisphere (scene-

selective, object-selective) and context (scene, scene with object, object).  
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Figure 4: Cross-decoding scene category 

in early visual areas. Early visual areas 

(red regions in brain maps) were defined 

by stronger responses to scrambled objects 

than baseline activity within Brodmann 

area 17. Decoding of scene layout (indoor 

– closed, outdoor – open) was most 

accurate for degraded scenes alone, and 

objects did not inform scene decoding. 

Thus, objects did not facilitate the 

classification of degraded scenes in early 

visual areas. Data are represented as mean 

distance from chance (50% decoding 

accuracy)	
  ±SEM. **p<0.01.  

 

Figure 5: Cross-decoding scene category 

in object-selective areas. Object-selective 

areas (red regions in brain maps) were 

defined by stronger responses to objects 

than scrambled objects in a separate 

localizer run: (A) Posterior Fusiform gyrus 

(pFs); (B) Lateral Occipital cortex (LO). 

Results show no differences in decoding 

accuracy for degraded scenes, degraded 

scenes with object and isolated object in 

object-selective areas. Thus, objects did not 

facilitate the classification of degraded 

scenes in object-selective areas. Data are 

represented as mean distance from chance 

(50% decoding accuracy)	
  ±SEM. *p<0.05. 

**p<0.01. 
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Discussion 

 

In the current study, we examined the contribution of contextual object cues to the neural 

representation of real-world scenes. The key finding was that objects affected scene 

representation in left, but not right, scene-selective areas, with no difference between effects 

in OPA and PPA. The magnitude of contextual facilitation in the left scene-selective areas 

was significantly correlated with scene category information carried by objects presented on 

gray background of mean luminance of the original scene. In addition, objects did not 

facilitate scene representations in EVC and object-selective areas. These results provide 

neural evidence for interactions between object and scene processing, with object processing 

facilitating scene representations in left scene-selective areas.  

 

The basis for interpreting the current findings is that the dependent measure in all conditions 

was scene layout classification (indoor/outdoor). Within this framework, we show that 

objects, which are not an integral feature of scene layout, provide information sufficient to 

facilitate the representation of scenes in left scene-selective areas, but not right scene-selective 

areas. This suggests an interaction between object and scene processing, with object 

processing informing scene representations in left PPA/OPA. This raises the question of 

whether object information was processed within the scene-selective cortex, or fed to it by 

external regions. Taking into account the well-established functional dissociation between 

object- and scene-selective processing (Dilks et al., 2013; Ganaden et al., 2013; Harel et al., 

2013; Mullin & Steeves, 2011; Park et al., 2011), we conclude that object information is most 

likely processed in object-selective cortex and thereafter relayed to scene-selective cortex for 
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contextual facilitation. This is also in line with our previous study, which provided evidence 

for the reverse interaction, with scene processing in scene-selective areas informing object 

representation in object-selective areas (Brandman & Peelen, 2017).  

 

What appears to speak against this interpretation is the finding that the response to objects 

alone allowed for above-chance decoding of the layout of the scene from which the objects 

were taken (Figure 2). This raises the possibility that both objects and scenes are processed in 

(left) scene-selective areas. It should be noted, however, that the objects in the isolated-

objects condition were still presented in their original scene position, were presented in an 

experimental context of scenes, and were overlaid on a background frame that had the mean 

luminance of the corresponding scene. In some of these cases, the object subjectively still 

evokes the percept of a scene, or at least its coarse layout, with the gray background simply 

being a more extremely degraded scene (e.g. traffic light and painting in Figure 1a). As such, 

we believe that the above-chance scene decoding in the isolated-objects condition may reflect 

the same interactive process as in the scenes-with-objects condition, though to a lesser extent. 

The strong positive correlation between these two effects is in line with this interpretation. 

 

What is it about the object that facilitates scene category? We propose two plausible 

explanations. The first, following from the idea that left scene-selective representations are 

more semantically abstracted, is that the object provides semantic context. By this account, an 

object more likely to appear in an outdoor scene would bias the representation to open scene 

layouts, whereas an object likely to appear indoors would imply a closed layout. The second 

mechanism by which objects may facilitate scene representation is via a fill-in effect. As such, 
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the objects may assist in directly disambiguating the 3D spatial layout by providing relative 

cues of dimension and distance, thereby facilitating not just semantic interpretation but rather 

the visual percept of scene layout. Further research is needed to dissociate the contributions of 

each of these proposed mechanisms. 

 

Regarding the debate about the representational content of scene-selective areas, we 

hypothesized that areas encoding high-level information about scene layout would exhibit 

higher discriminability of degraded scenes presented with objects than without, whereas areas 

that rely exclusively on information provided by scene-typical visual features would not 

benefit from contextual object cues (Figure 1c). The current findings provide evidence for 

both high-level views (Aminoff, Kveraga, & Bar, 2013; R. A. Epstein, 2008; Kravitz et al., 

2011; Park et al., 2011; Wolbers et al., 2011) and low-level views (Nasr et al., 2014; Nasr & 

Tootell, 2012; Rajimehr et al., 2011; Zeidman et al., 2012) of scene-selective areas. 

Particularly, representations of scene category in the left PPA and OPA were facilitated by the 

presence of an object. This suggests that contextual cues increase the amount of information 

used to disambiguate open and closed scenes, even when low-level typical scene features are 

similar. Thus, scene-selective areas in the left hemisphere carry high-level representations of 

scene layout, beyond information carried by global visual scene features. Such representations 

may contribute to proposed roles of scene-selective areas in high-level functions such as 

navigation (R. A. Epstein, 2008) and semantic context processing (Aminoff et al., 2013). In 

contrast, in the right hemisphere, the PPA and OPA did not appear to represent inferred scene 

layout, but rather represented scene category based only on global visual scene features 
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present in the image. Together, these findings demonstrate different roles for left and right 

PPA/OPA in the representation of scene layout. 

 

Why are high-level representations of scene layout left lateralized? One possibility is that 

representations of scenes in the left hemisphere are more highly abstracted. Given the 

extensively-studied role of the left hemisphere in semantic processing (Price, 2010), and 

following the traditional left-verbal/right-visuospatial model, this may suggest that the 

representations of scenes in the left PPA and OPA are more closely related to their semantic 

interpretation, which is facilitated by contextual object cues, whereas scene representations in 

the right PPA and OPA are independent of semantic cues and therefore unaffected by objects. 

In addition, our results may also be in line with an alternative lateralization model, by which 

the left hemisphere is specialized for high-frequency information and the right hemisphere is 

specialized for low-frequency information, due to hemispheric differences in receptive-field 

sizes (Sergent, 1983). Following this idea, left scene-selective areas may be more sensitive to 

high-frequency object cues, whereas right scene-selective areas would be better tuned to 

global low-frequency features. Both these hypotheses should be tested in future studies 

examining the lateralization of semantic representation and sensitivity to objects in the PPA 

and OPA. 

 

To conclude, we have found that objects play an important role in the processing of real-

world scenes. Specifically, our results show that the representation of scene layout in 

PPA/OPA was facilitated by contextual object cues. Intriguingly, this effect was strongly left 

lateralized, demonstrating separate roles for left and right PPA/OPA in the representation of 
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visual scenes, whereby left PPA/OPA represents inferred scene layout, influenced by 

contextual object cues, and right PPA/OPA represents a scene’s global visual features. 
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