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Abstract

Haploinsufficiency is a major mechanism of genetic risk in developmental disorders (DD). Accurate
prediction of haploinsufficient genes is essential for prioritizing and interpreting deleterious variants.
Current methods based on mutation intolerance in population data suffer from inadequate power
for genes with short transcripts. Here we showed haploinsufficiency is strongly associated with
epigenomic patterns, and then developed a new computational method (Episcore) to predict
haploinsufficiency from epigenomic data using a Random Forest model. Based on data from recent
exome sequencing studies of DD, we show that Episcore performs favorably to current methods in
prioritizing loss of function de novo variants. Our method enables new applications of epigenomic
data, and facilitates discovery and interpretation of novel candidate risk variants in genetic studies of

DD.
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Introduction

Haploinsufficiency (HIS) due to hemizygous deletions or heterozygous likely-gene-disrupting (LGD)
variants plays a central role in the pathogenesis of various diseases. Recent large-scale exome and
genome sequencing studies of developmental disorders, including autism, intellectual disability,
developmental delay, and congenital heart disease ', have estimated that de #nor0 LGD mutations
explain the cause of a significant portion of patients with these developmental disorders and the
enrichment rate of de novo LGD variants indicates about half of these variants are associated with
disease risk. However, relatively few genes have multiple LGD variants (“recurrence”) in a cohort
129 lacking of which provides insufficient statistical evidence to distinguish individual risk genes
from the ones with random mutations . On the other hand, most of the enrichment of LGD
variants can be explained by HIS genes °. Therefore, a comprehensive catalog of HIS genes can
greatly help interpreting and prioritizing mutations in genetic studies.

Currently, there are two main approaches of predicting HIS genes based on high-throughput
data. Huang et al. uses a combination of genetic, transcriptional and protein-protein interaction
features from various sources to estimate haploinsufficient probabilities for 12,443 genes °, on par
with Steinberg et al., which generated the probabilities for more (over 19,700) human genes by a
Support Vector Machine (SVM) model’. The other type is based on mutation intolerance '*'* in
populations that do not have early onset developmental disorders. Lek et al 2016 "' estimated each
gene’s probability of haploinsufficiency (pLI: Probability of being Loss-of-function Intolerant) based
on the depletion of observed rare LGD variants in over 60,000 exome sequencing samples.
Although effective, ExAC pLlI is biased towards genes with longer transcripts or higher background
mutation rates, since the statistical power of assessing the significance depends on a relatively large
expected number of rare LGD variants from background mutations.

We sought to predict HIS using epigenomic data that are orthogonal to genetic variants and
generally independent of gene size. Our method is motivated by recent studies indicating that
specific epigenetic patterns are associated with genes that are likely haploinsufficient. Specifically,
genes with increased breadth of H3K4me3, typically associated with actively transcribing promoters,
are enriched with tumor suppressor genes ', which are predominantly haploinsufficient based on
somatic mutation patterns . Another study reported H3K4me3 breadth regulates transcriptional
precision °, which is critical for dosage sensitivity. These observations led us to hypothesize that
haploinsufficient genes are tightly regulated by a combination of transcription factors and epigenetic

modifications to achieve spatiotemporal precision of gene expression, and such regulation can be
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detected by distinct patterns of epigenomic marks in relevant tissues and cell types. Based on this
model, we developed a Random Forest—based method (“Episcore”) using epigenetic data from the
Epigenomic Roadmap '* and ENCODE Projects ' as input features and a few hundreds of curated
HIS genes as positive training data. To assess the performance of prioritizing candidate risk variants
in real-world genetic studies, we used large data sets of de #ovo mutations from recent studies of birth
defects and neurodevelopmental disorders, and showed that Episcore had better performance than
existing methods. Additionally, Episcore is less biased by gene length or background mutation rate
and complementary to mutation-based metrics in HIS-based gene prioritization. Our analysis
indicates that epigenetic features in stem cells, brain tissues, and fetal tissues have the highest

contribution to Episcore.

Results
Haploinsufficient (HIS) and Haplosufficient (HS) genes show distinct distributions of
epigenomic features

To examine the correlation of gene haploinsufficiency and epigenomic patterns, we analyzed
ChlIP-seq data from Roadmap and ENCODE projects, including active (H3K4me3, H3K9ac, and
H2A.Z) and repressive (H3K27me3) promoter modifications, and marks associated with enhancers
(H3K4mel, H3K27ac, DNase I hypersensitivity sites). We used the width of called ChIP-seq peaks
for promoter features and counted the number of peaks within 20kb upstream or downstream of
transcription start sites (I'SS) for enhancer features, unless otherwise stated. As each histone
modification is characterized in multiple cell types, we refer to the combination of an epigenetic
modification and a cell type as one epigenetic feature.

Figure 1A shows the correlation among epigenetic features, and the correlation of epigenetic
features and ExAC pLlI score. As expected, active promoter or enhancer marks are highly correlated
with each other and with ExAC pLI score, and anti-correlated with repressor marks in general. The
repressor marks from stem cells or fetal tissues have positive correlations with active marks and
ExAC pLI scores, suggesting many genes with bivalent marks in stem cells are likely
haploinsufficient.

To further investigate the association of haploinsufficiency and patterns of epigenetic
modifications, we compiled a list of 287 known HIS genes (Supplementary Table 1) from a recent

8,18

study " and human-curated ClinGen dosage sensitivity map. We also collected a list of 717 HS
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genes, of which one copy of each gene had been deleted in two or more subjects based on a CNV
study in 2,026 healthy individuals . For promoter features, HIS and HS genes clearly have distinct
distributions of peak length (Figure 1B-D). HIS genes on average have larger peak length for both
the active marker H3K4me3 (Figure 1B) and the repressive marker H3K27me3 (Figure 1C),
suggesting the difference between HIS and HS genes is not only on the level of expression but also
on distinct mechanisms of regulation. Furthermore, other epigenetic modifications associated with
active promoters, including H2A.Z and H3K9ac, also display wider peaks upstream of HIS genes
(Supplementary Figure 1 A and B). In addition, HIS and HS genes also differ in the number of
interacting enhancers. A naive approach was attempted first by assigning enhancers to genes by
counting all the peaks of enhancer marks in 40kb windows around transcription start sites. As result,
HIS genes have a slightly larger number of H3K4me peaks than HS genes (p < 10, permutation
test, Supplementary Figure 1C). To better infer enhancer-gene relationship, we adopted a recently

55 20

published method named “EpiTensor” *, which decomposes a 3D tensor representation of histone
modifications, DNase-Seq, and RNA-Seq data to find associations between distant genomic regions.
When restricted to pre-defined topologically-associated domains (T'ADs), associated regions
identified by EpiTensor correspond well to enhancer-promoter interactions found by Hi-C.
Epitenosr revealed much larger differences between HIS and HS genes than the naive approach.
HIS genes have a median of 9 interacting enhancers, while HS genes have a median of 0 (p < 10,
permutation test, Supplementary Figure 1C). When averaged across tissues, HIS genes shifts

towards a larger number of mean interacting enhancers, as compared to HS genes (Figure 1D),

supporting the notion that HIS genes have more regulatory complexity.

Predicting haploinsufficiency with epigenomic features

To leverage the strong association between epigenomic patterns and gene haploinsufficiency,
we developed a computational method to predict haploinsufficiency using Random Forest (Figure
2A) and other supervised learning models (Supplementary Figure 2 A and B). The input features
included peak length of 4 promoter marks (H3K4me3, H3K9ac, H2A.Z and H3K27me3) and the
number of EpiTensor-inferred interacting enhancers in various tissues. Performance evaluation by
10-fold cross validation and AUC (Area Under Curve) in ROC (Receiver Operating Characteristic)
curves showed that all of these methods achieved high AUC values of 0.86~0.88 (Figure 2B and
Supplementary Figure 2 A and B), supporting the utility of epigenetic features in predicting

haploinsufficiency. As Random Forest performs best and requires minimal parameterization, results
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from Random Forest are chosen as final metrics measuring the probability of being
haploinsufficient, termed “Episcore” (Supplementary Table 2). Despite completely different data
and methods used, Episcore and ExAC pLlI score displayed overall concordance. The median
Episcore of likely HIS genes defined by pLI is two times larger than the median score of likely HS
genes (p < 10”) (Supplementary Figure 2C).

Episcore provides better prioritization of de novo LGD variants in developmental disorders

A major goal of predicting haploinsufficiency is to facilitate prioritization of variants
identified in genetic studies of developmental disorders. We compared Episcore with pLI scores
from ExAC ', S, values (denoting selective effects of heterozygous LLGD variants) %, and ranks of
mouse heart expression level *', using de #ovo LGD variants identified in a recently published whole
exome sequencing study of 1,365 trio families with congenital heart disease (CHD) *. LGD variants
include frameshift, nonsense and canonical splice site mutations. Genes with all 4 metrics were
included for comparison, although we note Episcore (19,430 genes) made predictions for more
genes than pLI (18,225 genes), S, (17,200 genes) and ranks of mouse heart expression level (17,624
genes, due to loss in orthologue matching). Different predictions are compared by the enrichment
rate of variants. For the same number of top-ranked genes from each metric, we calculated the
number of LGD variants located in these genes and estimated the number of LGD variants due to
background mutation ». Across a wide range of top-ranked genes, Episcore always showed larger
enrichment than ExAC pLlI, S, or heart expression level (Figure 3A). We also applied the same
approach to de novo synonymous variants identified in the CHD dataset and observed no enrichment
(Supplementary Figure 3A). Additionally, we compared these predictions by precision-recall-like
curve (PR-like) based on enrichment. Since the total number of positive variants (true disease-
causing variants) is unknown, we used estimated number of “true positives” instead of “true positive
rate (recall)” in this comparison. For top-ranked genes from each method, the number of true
positives were estimated by subtracting expected number of LGD variants based on background
mutation rate from the observed in these genes. We measured precision by dividing the estimated
number of true positives by the total number of observed LGD variants in these genes. Across a
wide range of precision, Episcore consistently showed superior recall compared to pLIL S, and
heart expression level (Figure 3B) and other methods *’ (Supplementary Figure 3 B and C).

We further assessed Episcore based on a second CHD WES cohort (“PCGC”) of 2,645

patent-offspring trios from a recent publication **. Genes with multiple LGD variants in this data
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set, or the ones with one LGD variant and at least one LGD variant in the first cohort (“DDD
CHD?”) have much higher Episcore compared to genes with LGD variants in controls (unaffected

siblings in Simons Simplex Collection autism study *)(Supplementary Figure 4).

Episcore provides complementary information to mutation intolerance metrics

Haploinsufficiency predicted by mutation intolerance in a general population (such as ExAC
pLI metric) is intrinsically biased towards genes with longer CDS (coding sequence) lengths or
higher background mutation rates. The distribution of genes with top 20% pLlI scores shifts towards
longer CDS length or higher background mutation rate, as compared to the distribution of all genes
or top 20% highly-expressed genes in developing heart *' (Figure 3 C and D). Top 20% genes
ranked by Episcore have similar distribution to all genes in the genome for either CDS length or
background mutation rate (Figure 3 C and D).

Since Episcore and pLI use distinct types of input data, a combination of these two scores
might achieve better performance. We used a logistic regression method to integrate Episcore and
pLI based on a collection of 4,293 trio families affected by various developmental disorders (DD) °.
Specifically, we used a total of 45 genes with de #ovo LGD variants in 3 or more probands as
positives, and randomly sampled 45 genes from genes with no observed de #ovo LGD variant as
negatives to estimate coefficients in the logistic model. Both Episcore and pLI have significant
coefficients (P < 107), supporting these two methods convey complementary information. We
found that the resulting meta-score outperformed Episcore or pLI alone (Figure 3 E and F). The
meta-score obtained the same sensitivity as pLI, while maintaining the precision equal to Episcore

(Figure 3F).

Brain tissues, fetal tissues, and stem cells have highest contribution to the predicted
haploinsufficiency.

To evaluate contribution of each epigenetic feature to HIS prediction, we calculated
Spearman correlation coefficients between each feature and Episcore. These correlation coefficients
were analyzed in two ways. First, we grouped them based on the molecular entities they represent,
such that the same epigenetic modification from different tissues would be in one group. Each of
the 5 resulting categories has distinct distributions of Spearman correlation coefficients, suggesting
different contributions to Episcore (Figure 4A). Except for the repressive mark H3K27me3, most of

them have larger correlation coefficients than gene expression values, suggesting these features and
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our model not merely reflected expression abundance but also epigenetic regulation specific to HIS
genes.

Second, we grouped the correlation coefficients based on tissues, thus each tissue had
several correlation coefficients for different epigenetic modifications. As contributions of different
epigenetic modifications varied considerably, we converted every correlation coefficient to a Z-score
using the mean and standard deviation of each epigenetic modification and further averaged them
for each tissue. The averaged Z-score represents the importance of this tissue to haploinsufficiency
prediction. In general, stem cells and neural tissues have large average Z-scores (Figure 4B).
Interestingly, for tissues in the same category, fetal tissues usually have larger average Z-scores than
postnatal tissues.

Finally, to illustrate the contribution of different tissues to HIS, we examined in detail the
histone modifications around TSS of several known HIS genes. A CHD risk gene recently
discovered through de novo LGD variants, RBFOX?2 ®, was shown in Figure 4C. RBFOX2 had
expanded H3K4me3 and H3K9ac in stem/fetal cells, and heart and brain tissues, but not in blood
cells. Correspondingly, H3K27me3 displayed the reverse pattern, extensive in blood cells but limited
in other tissues. On the contrary, a known house-keeping gene, CIWC22, showed unanimous amount
of histone modification across tissues. Together, these showcased that HIS genes had wide

deposition of epigenetic modification specifically in certain tissues.

Discussion

In this study we showed there is a strong correlation between epigenomics patterns across
tissues and gene haploinsufficiency, and then developed a computational method (Episcore) to
predict HIS using epigenomic features and Random Forest method. Episcore had superior
performance in prioritization of de novo LGD variants in congenital heart disease and
neurodevelopmental disorders, compared to mutation intolerance metrics such as ExAC pLI "
Additionally, we showed that Episcore and pLI are complement to each other and can be combined
to achieve better performance.

Existing HIS prediction methods based on intolerance of mutations or gene network
properties have inadequate statistical power and accuracy in genes with small transcript size and
difficulty in interpretability in specific diseases or biases towards well-studied genes. Epigenomic
data have several advantages to address these issues: (a) orthogonal to genetic mutations, and

therefore provide additional information that could improve power; (b) much less biased by
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transcript size, and will be most helpful to predict HIS of genes with shorter transcripts; (c)
intrinsically tissue specific, lending a direct link to interpretation in specific diseases; (d) integrating
large amount of data that are not biased towards well-studied genes. These advantages contribute to
the superior performance of Episcore in prioritizing de novo LGD variants from exome sequencing
studies.

There are likely a variety of mechanisms underlining the correlation of epigenomics patterns
and haploinsufficiency. First, broad H3K4me3 peaks contributed most to Episcore prediction of
HIS. Broad H3K4me3 peaks are associated with reduced transcriptional noise at cell population and
single cell levels *°, which is probably required to maintain precision expression level of HIS genes in
specific cell types and developmental stages. Second, associated with transcriptional programs in
hematopoietic differentiation, “regulatory complexity” is required to achieve cell-type specific
expression patterns of the lineage defining genes *. Consistently, we found the number of enhancers
interacting with the promotor of a gene is highly correlated with predicted HIS score. Third, many
HIS genes are regulators that define cell lineages during differentiation but have low expression in
stem cells. Bivalent chromatin domains in embryonic stem cells, in which both active marker
H3K4me3 and repressor marker H3K27me3 are present, are generally associated with lineage
control genes *’. We observed that H3K27me3 are positively correlated with H3K4me3 in stem
cells, mutation intolerance, known HIS genes (Figure 1A and 1C) and Episcore predicted HIS scores
(Figure 4A), supporting the association of bivalent marks with HIS. Finally, we found epigenetic
features from stem cells and fetal tissues contribute most to prediction, highlighting the importance
of early developmental stages in the arise of HIS.

Currently, Episcore is limited by availability and resolution of epigenomic data, especially
cell-type specific data from complex tissues or organs such as the brain, and data from tissues at
various developmental stages. Complex developmental disorders, such as autism, involve a large
number of cell types during a broad range of developmental stages. It is critical to generate and
integrate much more fine-grained epigenomic data from cells of specific types at specific time points
to improve genetic discoveries by Episcore approach in studies of such diseases. We expect such
data sets will become available in near future from ongoing projects ***’, and will enable us to

improve prediction of HIS and facilitate novel discoveries in genetic studies.
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Methods

Collection and Preprocessing of Training Genes
In this study, we used Ensembl release 75 for gene annotation and TSS (transcription start
site) locations. All genomic coordinates are based on hgl9 human genome assembly. Any non-hg19

coordinates were lifted over to hg19 using UCSC LiftOver tool ( https://genome.ucsc.edu/cgi-

bin/hgLiftOver ). Conversion of gene symbols to Ensembl IDs were based on annotation tables

downloaded from Ensembl BioMart.
Positive training set data (curated haploinsufficient genes) were collected from these two

18

sources: (1) haploinsufficent training genes used in previous studies *'* and (2) genes with
haploinsufficient score of 3 in ClinGen Dosage Sensitivity Map (

http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/ ). For the negative training set (curated

haplosufficient genes), we used genes deleted in two or more healthy people, based on CNVs
detected in 2,026 normal individuals . Only genes with half or more of its length covered by any
deletion were considered “deleted” in an individual.

The raw training set may have some false positives and false negatives, as it contained results
from automated literature mining that is known to give noisy output. To optimize the performance,
we did the following pruning of the raw training set: (1) we only kept protein-coding genes in
autosomes, as non-protein-coding genes or genes on sex chromosomes may be under different
epigenetic regulation; (2) from the positive training set, we removed genes with both ExAC pLI <
0.1 and expected loss-of-function variants > 10 ' and (3) from the negative training set, we removed
genes with both pLLI > 0.9 and expected loss-of-function variants > 10. After filtering, the positive
training set has 287 genes and the negative training set has 717 genes. The full list of training genes

is available in Supplementary Table 1.

Preprocessing of Epigenetic Feature Data
The uniformly processed peak calling results of Roadmap and ENCODE projects were
downloaded from http://egg2.wustl.edu/roadmap/web_portal/processed _data.html. For promoter

features (H2A.Z, H3K27me3, H3K4me3 and H3K9ac), “GappedPeaks” were used to allow for

broad domains of ChIP-seq signal. The assighment of a GapppedPeak to a gene follows these steps
in order: (1) for each gene, only TSSs of Ensembl canonical transcripts were used. (2) assigned a

GappedPeak to a TSS if the GappedPeak overlaps with the upstream 5kb to downstream 1kb region
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around the TSS. This definition of basal cis-regulatory region around promoter follows GREAT
tool *'. Assigning one GappedPeak to multiple TSSs was allowed. (3) For TSSs having more than 1
GappedPeak assigned, kept the closest one. (4) For genes with multiple TSSs and hence mutilple
assigned GappedPeaks, kept the longest GappedPeak. After these four steps, if one gene had been
associated with a GappedPeak, then we used the width of the peak as an epigenetic feature in the
following machine learning models. If a gene had no associated GappedPeak, then the peak width is
0.

To calculate the number of interacting enhancers of a gene, we used two approaches. In a
simple approach, we counted peaks of ChIP-seq signals that are associated with enhancers. The
ChIP-seq signals we used include H3K4mel, H3K27ac and DNase I hypersensitivity site, and each
ChIP signal was counted and recorded separately. We used “NarrowPeak” instead of “GappedPeak”
in the counting to better estimate the number of interacting enhancers, as enhancer regions are not
long and GappedPeak has the risk of merging nearby ChIP-seq signals. For each gene, we counted
peaks in (1) the surrounding TAD (Topologically Associated Domain), based on TADs reported in
% or (2) +/- 20kb of each TSS (Only TSSs of Ensembl canonical transcripts were used. For genes
with multiple TSSs and thus several numbers of interacting enhancers, we kept the largest one). In a
more advanced approach, we adapted EpiTensor *’ to infer gene-enhancer relationship. We made a
few changes when using EpiTensor: (1) we used normalized coverage of ChIP-seq signal instead of
raw coverage in Zhu et al. 2016 *; (2) we used the coverage of H3K27ac, H3K27me3, H3K36me3,
H3K4mel, H3K4me3, H3K9me3, DNase I and RNA-seq as input for EpiTensor to balance
between more input data types and more cell types included, as not every cell type has all these
histone modifications characterized. The number of data types included are fewer than the ones
used in Zhu et al. 2016 *, but it could still achieve desirable performance (personal

communications); (3) we used enhancer annotation from 15-state chromHMM (

http://egg2.wustl.edu/roadmap/web_portal/chr_state learning.html#core 15state ), while the
original EpiTensor paper * used results of an early study. Based on the output of EpiTensor, which
predicts enhancer-promoter pairs, we counted the number of interacting enhancers each gene has in
various tissues.

Finally, the results of peak width and interacting enhancers were consolidated into a matrix,
with each row being a different gene and each column representing a combination of a tissue and a

data type, e.g. “H3K4me3 peak width in foreskin fibroblast”. One combination of a tissue and a data
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type was referred to as one epigenetic feature in the main text. This matrix was used as input for

machine learning models described in the following section.

Machine learning approaches to predict haploinsufficiency

Several machine learning approaches have been tried, including Random Forest, SVM and
SVM with LASSO feature selection. Random Forest was implemented using R package
“randomForest”. SVM was implemented using R package “e1071”. LASSO was implemented using
R package “glmnet”, with alpha value equal to 1. For each machine learning approach, method
performance was assessed based on 100 runs of 10-fold cross-validation. In each run, 10% of the
training genes were randomly selected and left out to form a test set for validation. The remaining
data were used to train the model, after which the test set was used to calculate model sensitivity and
specificity. We used R package “ROCR” to make an ROC curve based on the 100 runs and
calculated AUC values.

For the prediction step, all training genes were used to train the model. For each machine
learning approach, we made it to output the probabilities of being positive (i.e. probabilities of being
HIS in our study). The whole process was repeated 30 times and we took the arithmetic mean of the

30 sets of probabilities as the final results.

Comparing Episcore and other metrics in variant prioritization

We used two approaches to compare Episcore and other metrics in variant prioritization,

2 <«
b

based upon customized “enrichment of de novo LGD variants”, “the number of true-positives” and
“precision”. The formula to calculate these three statistics are as follows.

For any gene 1, the number of expected de novo LGD variants in each gene, E,, was calculated
as:

E,=2XN XR,

where N is the number of probands in the sequencing cohort and R, is gene-specific LGD mutation
rate. LGD variants include nonsense, frameshift and canonical splice site mutations. The
background mutation rate per gene of each mutation type was obtained from Samocha et al. 2014 »,
For each gene, R; is the sum of background mutation rate of nonsense, frameshift and canonical

splice site mutations.

For any gene set, the enrichment of de novo LGD variants, D, was calculated as:
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M
YiEj

where M is the total number of observed de novo LGD variants in this gene set and 1 is any gene in

D =

the gene set. M was calculated using an empirical dataset. In this study, we used results from two

22
and another whole exome

whole exome sequencing studies on congenital heart disease >
sequencing study on various developmental disorders °.
For any gene set, the number of true positives, TP, was calculated as:
TP=M — },E;
For any gene set, the precision (positive predictive value), PPV, was calculated as:

ppy= Y2

For each metric (Episcore, pLlI, etc.), a series of top-ranked genes were selected, such as top
500 genes, top 2000 genes, etc. In the first approach, enrichment of de novo LGD variants, D, was
calculated for any set of top-ranked genes, and then enrichment values were plotted and compared,
as shown in Figure 3A. In the second approach, the number of true positives, TP, and the precision
(true discovery rate), PPV, were calculated for any set of top-ranked genes. TP and PPV were
plotted and compared, as shown in Figure 3B. Ideally, recall (true positive rate) should be calculated
and plotted along with precision (true discovery rate). However, for any empirical dataset, it is
unknown to us whether or not a variant is disease-causing. In other words, when comparing variant
prioritization results with the real roles of these variants, we cannot determine what part is false
negative. Thus, we are unable to calculate true positive rate and have to use the number of true
positives instead.

To examine the utility of Episcore in prioritizing genes with only one LGD mutation, we
utilized two independent Congenital Heart Disease (CHD) cohorts: DDD (Deciphering
Developmental Disorders consortium) CHD * and PCGC (Pediatric Cardiac Genomics
Consortium) CHD *', Both these two study included trios from an eatlier CHD study * to increase
detection power. To avoid duplication, we removed these eatlier trios from DDD CHD cohort and
then selected genes based on the following two criteria: (1) only have 1 LGD variant reported in
PCGC CHD WES cohort and (2) among top 3000 genes ranked by Episcore. For each of the
selected genes, we enumerated the number of LGD variants it had in DDD CHD WES cohort.
Finally, we found many of these genes selected based on Episcore and PCGC cohort also had LGD
variant in DDD cohort.

Epigenetic features critical in the prediction
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A Spearman correlation coefficient was calculated between each epigenetic feature and
Episcore. One epigenetic feature here corresponds to a data type (like H3K4me3 peak width) in
certain tissue/cell type (like foreskin fibroblast). To examine which data types are more important,
these Spearman correlation coefficients were plotted by data type, e.g. correlation coefficients from
H3K4me3 peak width were plotted in one section. To examine what tissue/cell types ate more
important, we calculated averaged z-score for each tissue/cell type. The average z-score is calculated
following these two steps: (1) we converted every Spearman correlation coefficient to a Z-score
using mean and standard deviation specific to each data type and (2) for each tissue/cell type, we
averaged the Z-scores it has. To select example genes, epigenetic profiles were visualized in

Integrative Genomic Viewer.
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Figure Legends

Figure 1. The potential of using epigenetic features to classify HIS genes. (A) Heatmap showing
Spearman correlation between epigenetic features contains three groups of features: active
promoter, repressive promoter and enhancer features. Epigenetic features inside one group strongly
correlate with each other. Different feature types, including various histone modifications, histone
variant and DNase I hypersensitivity sites, are color-coded. Above the heatmap, a bar denoting
Spearman correction between epigenetic features and pLI shows many epigenetic features relate to
HIS with varying degree. Data from stem cells or fetal tissues are also marked by color lines. (B-C)
HIS and HS genes have different distributions of peak length from promoter features (B,

14
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H3K4me3; C, H3K27me3). For each gene, peak length was averaged across tissues. (D) HIS and HS
genes have different distributions of interacting enhancers inferred by Epitensor. For each gene, the

number of interacting enhancers was averaged across tissues.

Figure 2. The Random Forest model to predict haploinsufficiency. (A) A flowchart of the method.
(B) ROC curve of 10-fold cross-validation. The red curve is the average of 100 randomized cross-
validation runs, with error bar showing standard deviation. The mean and median AUC of the 100

runs are 0.88 and 0.89, respectively.

Figure 3. Benchmark the performance of Episcore in variant prioritization using the empirical data.
(A-B) Comparison of Episcore, pL1, S, and heart expression level (HE) in variant prioritization
using CHD exome sequencing data . In (A), burden refers to the ratio between the number of de
novo LGD variants observed in top genes ranked by each metric and the number of expected de novo
LGD variants due to background mutation. Episcore has higher enrichment in top 1000-2500 genes
and similar enrichment afterwards. In (B), true positive is the difference between the observed and
expected de novo LGD variants. Precision is calculated by dividing the number of true positives by
the number of observed e novo LGD variants. The blue curve for Episcore shifts upright, showing
Episcore has better precision at the same number of true positives and vice versa. (C-D) Episcore
has much less bias towards genes with longer CDS length (C) or larger background mutation rate
(D). Grey histogram in the background represents CDS length or mutation rate of all genes in the
genome. The blue curve for pLI shifts right, while the curves for Episcore and HE are similar to the
distribution of all genes. (E-F) A combination of Episcore and pLlI, the metascore, has better
performance in variant prioritization when benchmarked using DDD exome sequencing data.
Metascore is the output from a logistic regression model, using Episcore and pLlI as input.

Enrichment, true positive and precision were calculated similarly to (A-B).

Figure 4. Epigenetic features critical in the prediction. (A) Spearman correlation between epigenetic
feature and Episcore. Features used in the Random Forest model, including H2A.Z, H3K27me3,
H3K4me3, H3K9ac and the number of interacting enhancers, all have positive correlation with
Episcore. Spearman correlation coefficients between gene expression level, measured in RPKM
(reads per kilobase per million reads), and Episcore were also plotted for comparison. (B) Stem cells,

and neural and fetal tissues are the most important ones in the prediction. The importance of each
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tissue in generating Episcore is measured by average Z-score, which is converted from Spearman
correlation coefficients between epigenetic feature and Episcore. (C) The epigenetic profile of an
example HIS gene, RBFOX?2, and a house-keeping gene, CIWC22. Each small box represents 100bp
region around TSS and the darkness of the color reflects averaged fold change of reads between

ChIP-seq library and input.
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