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Abstract		20 

Microbes assemble into complex, dynamic, and species-rich communities that play critical roles 21 

in human health and in the environment. The complexity of natural environments and the large 22 

number of niches present in most habitats are often invoked to explain the maintenance of 23 

microbial diversity in the presence of competitive exclusion. Here we show that soil and plant-24 

associated microbiota, cultivated ex situ in minimal synthetic environments with a single 25 

supplied source of carbon, universally re-assemble into large and dynamically stable 26 

communities with strikingly predictable coarse-grained taxonomic and functional compositions. 27 

We find that generic, non-specific metabolic cross-feeding leads to the assembly of dense 28 

facilitation networks that enable the coexistence of multiple competitors for the supplied carbon 29 

source. The inclusion of universal and non-specific cross-feeding in ecological consumer-30 

resource models is sufficient to explain our observations, and predicts a simple determinism in 31 

community structure, a property reflected in our experiments. 32 

 33 

Introduction	34 

The observations that large numbers of microbial species coexist in diverse habitats, 35 

ranging from the human gut (1) to marine ecosystems (2), have renewed interest in 36 

understanding the principles that govern the assembly of large microbial communities. 37 

Competition amongst microbes for limiting environmental resources is believed to be an 38 

important factor shaping community structure. For example, microbes with low competitive 39 

ability in local habitats, such as the different human body sites (3), are selected against during 40 
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community assembly in a process known as environmental filtering (4). Ecological theory 41 

suggests that if species interactions are mediated by competition for resources, then the number 42 

of surviving species is bounded by the number of resources in the environment (5). In an extreme 43 

case, the competitive exclusion principle (6, 7) suggests that species whose growth is limited by 44 

the same single environmental resource cannot coexist in that environment without  additional 45 

compensatory mechanisms (5). Indeed, mathematical models of large ecosystems of competing 46 

species suggest that the ensuing communities are intrinsically unstable, unless specific 47 

conditions, like non-transitive competition effects, are met (8, 9). For this reason, the complexity 48 

of natural environments, which is characterized by either the supply of large numbers of different 49 

resources (10), spatial and temporal structure (11), or the presence of biotic interactions such as 50 

phage predation (12), is often thought to underlie the maintenance of microbial diversity in large 51 

ecosystems (5). 52 

Although most of the work on community assembly has focused on competition (13, 14), 53 

facilitation may also be an important force that structures large ecological communities (15–18). 54 

Facilitation may be particularly important amongst microbes, whose metabolism involves the 55 

secretion of byproducts that increase environmental complexity, which potentially creates new 56 

niches leading to syntrophy (19, 20). Several examples of facilitation-mediated coexistence on a 57 

single limiting nutrient are known (21–23), including cases where syntrophic interactions emerge 58 

de novo in long-term evolutionary experiments (24–26) , making it reasonable to hypothesize 59 

that these interactions are common within natural microbial communities.  60 

To determine whether facilitation-mediated coexistence on a single limiting nutrient is 61 

indeed a universal phenomenon, we developed a high-throughput ex situ cultivation protocol to 62 

monitor the spontaneous assembly of ecologically stable microbial communities derived from 63 
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natural habitats. By precisely manipulating the chemical composition of synthetic growth media, 64 

we were able to systematically investigate the interplay between competition and facilitation 65 

during environmental filtering, and gain insight into the rules of microbial community assembly 66 

in large communities.  67 

Stable	microbial	communities	on	a	single	limiting	resource	68 

 We devised a top-down approach to monitor community assembly in high-throughput, in 69 

which we forced naturally existing communities to re-assemble in synthetic (M9) minimal media 70 

containing a single externally-supplied source of carbon (Methods) as well as single sources of 71 

all of the necessary salts and chemical elements required for microbial life (fig 1a). Intact 72 

microbiota suspensions were extracted from diverse natural ecosystems, such as various soils 73 

and plant leaf surfaces (Methods). Suspensions of microbiota from these environments were 74 

highly diverse and taxonomically rich (fig. S1), ranging between 110 and 1290 exact sequence 75 

variants (ESV). We first inoculated 12 of these suspensions of microbiota into fresh minimal 76 

media with glucose as the only added carbon source, and allowed the cultures to grow at 30°C in 77 

static broth. We then passaged the mixed cultures in fresh media every 48 hours with a fixed 78 

dilution factor of ! = 8×10'(	for a total of 12 transfers (~84 generations). At the end of each 79 

growth cycle, we assayed the community composition using 16S rRNA amplicon sequencing 80 

(fig. 1a, Methods). High resolution sequence denoising allowed us to identify ESVs, which 81 

revealed community structure at single nucleotide resolution (27).   82 

Most communities stabilized after ~60 generations, reaching stable population equilibria 83 

in nearly all cases (fig. 1b, S2). For all of the 12 initial ecosystems, we observed large multi-84 

species communities after stabilization that ranged from 4 to 17 ESVs at a sequencing depth of 85 

10,000 reads (fig. S3-4, see Methods). We confirmed the taxonomic assignments generated from 86 
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amplicon sequencing by culture-dependent methods, including the isolation and phenotypic 87 

characterization of all dominant genera within a representative community (fig. S5). 88 

 89 
 90 

Figure 1: Top down assembly of bacterial consortia. (a) Experimental scheme: large ensembles of taxa 91 
were obtained from 12 leaf and soil samples, and used as inocula in passaged-batch cultures containing 92 
synthetic media supplemented with glucose as the sole carbon source.  After each transfer, 16S rRNA 93 
amplicon sequencing was used to assay bacterial community structure. (b) The community structure of a 94 
representative community (from inoculum 2) after every dilution cycle (~7 generations), revealing a 5-95 
member consortia from the Enterobacter, Raoultella, Citrobacter, Pseudomonas and Stenotrophomonas 96 
genera.   The community composition after 84 generations is shown at the exact sequence variant (ESV) 97 
level (c) or the family taxonomic level, converging to characteristic fractions of Enterobacteriaceae and 98 
Pseudomonadaceae (d) (Monte Carlo permutation test, P < 10-4).  (e) Simplex representation of family-99 
level taxonomy before (t = 0) and after (t = 84) passaging experiment. (f-g) Experiments were repeated 100 
with 8 replicates from a single source (inocula 2), and communities converged to very similar family level 101 
distributions (g), but displayed characteristic variability at the genus and species level (f). 102 
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Convergence	of	bacterial	community	structure	at	the	family	taxonomic	level	104 

High-throughput isolation and stabilization of microbial consortia allowed us to explore 105 

the rules governing the assembly of bacterial communities in well-controlled synthetic 106 

environments. At the species (ESV) level of taxonomic resolution, the 12 natural communities 107 

assembled into highly variable compositions (fig. 1c). However, when we grouped ESVs by 108 

higher taxonomic ranks we found that all 12 stabilized communities, with very diverse 109 

environmental origins, converged into highly similar family-level community structures 110 

dominated by Enterobacteriaceae and Pseudomonadaceae (fig. 1d). In other words, the same 111 

family-level composition arose in all communities despite their very different starting points, 112 

indicating the existence of a dynamic attractor at the family taxonomic level (Monte Carlo 113 

permutation test, * < 10',,	fig. 1d-e), which was not observed when communities were 114 

examined at the genus or species levels (Monte Carlo permutation test, * = 0.12, Methods). 115 

To better understand the origin of the taxonomic variability observed below the family-116 

level, eight replicate communities were started from each one of the 12 starting microbiome 117 

suspensions (inocula), and propagated in minimal media with glucose as in the previous 118 

experiment. Given that the replicate communities were assembled in identical habitats and were 119 

inoculated from the same pool of species, any observed variability in community composition 120 

across replicates would suggest that random colonization from the regional pool and microbe-121 

microbe interactions are sufficient to generate alternative species-level community assembly. 122 

Indeed, for most of the inocula (nine out of twelve), replicate communities assembled into 123 

alternative stable ESV-level compositions, while still converging to the same family-level 124 

attractor described in fig. 1e (see also fig. S6). One representative example is shown in fig. 1f-g; 125 

all eight replicates from the same starting inoculum assemble into strongly similar family-level 126 
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structures, which are quantitatively consistent with those found before (fig. 1d). However, 127 

different replicates contain alternative Pseudomonadaceae ESVs, and the Enterobacteriaceae 128 

fraction is constituted by either an ESV from the Klebsiella genus, or a guild consisting of 129 

variable subcompositions of Enterobacter, Raoultella, and/or Citrobacter as the dominant taxa. 130 

The remaining (three out of twelve) inocula reached highly convergent community compositions, 131 

with all replicates exhibiting strongly similar population dynamics and population structures at 132 

all levels of taxonomic resolution (fig. S7). The reproducibility in population dynamics between 133 

replicate communities ensures that experimental error is not the main source of variability in 134 

community composition. 135 

Despite the observed species level variation in community structure, the existence of 136 

family-level attractors suggests the existence of fundamental rules governing community 137 

assembly. Recent work on natural communities has consistently found that environmental 138 

filtering selects for convergent function across similar habitats, while at the same time allowing 139 

for taxonomic variability within each functional class (28, 29). In our assembled communities in 140 

glucose media, fixed proportions of Enterobacteriaceae and Pseudomonadaceae may have 141 

emerged due to a competitive advantage, given the well-known glucose uptake capabilities of the 142 

phosphotransferase system in Enterobacteriaceae and ABC transporters in Pseudomonadaceae 143 

(30). This suggests that the observed family-level attractor may change if we assemble 144 

communities adding a different carbon source to our synthetic media. To determine the effect of 145 

the externally provided carbon source on environmental filtering, we repeated the community 146 

assembly experiments with eight replicates of all 12 natural communities, using two alternative 147 

single-carbon sources, citrate or leucine, instead of glucose. Consistent with previous 148 

experiments on glucose minimal media, communities assembled in citrate or leucine contained 149 
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large numbers of species: communities stabilized on leucine contained 6-22 ESVs, while 150 

communities stabilized on citrate contained 4-22 ESVs at a sequencing depth of 10,000 reads. As 151 

was the case for glucose, replicate communities assembled on citrate and leucine also differed 152 

widely in their ESV-level compositions, while converging to carbon source-specific family-level 153 

attractors (fig. 2a, S8-9). Family-level community similarity (Renkonen similarity) was on 154 

average higher between communities passaged on the same carbon source (median: 0.88) than 155 

between communities passaged from the same environmental sample (median 0.77, one-tailed 156 

Kolmogorov-Smirnov test, P < 10-5; fig. S10). Communities stabilized in citrate media were 157 

composed of a significantly lower fraction of Enterobacteriaceae (Mann–Whitney U test, * <158 

10'0), and displayed an enrichment of Flavobacteriaceae relative to communities grown on 159 

glucose (Mann–Whitney U test, * < 10'0), while communities stabilized in leucine media had 160 

no growth of Enterobacteriaceae and an enrichment for Comamonadaceae relative to 161 

communities grown on glucose (Mann–Whitney U test, * < 10'0) or citrate (Mann–Whitney U 162 

test, * < 10'0).   163 

These results suggest that the supplied source of carbon exerts a strong environmental 164 

filter on community assembly. To quantify this effect, we used a machine learning approach and 165 

trained a support vector machine (SVM) to predict the identity of the supplied carbon source 166 

from the family-level community composition. We obtained a cross-validation accuracy of 167 

97.3% (fig. 2b; Methods). Importantly, we found that considering the tails of the family-level 168 

distribution (as opposed to just the two dominant taxa) increases the predictive accuracy (fig. 169 

2b), which indicates that carbon source-mediated environmental filtering extends to the entire 170 

family-level distribution, including the more rarefied members.  171 

 172 
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 173 

 174 

 175 

Figure 2: Family-level and metagenomic attractors are associated with different carbon sources.   176 
(a) Family-level community compositions are shown for all replicates across 12 inocula grown on either 177 
glucose, citrate or leucine as the limiting carbon source. (b) A support vector machine (see Methods) was 178 
trained to classify the carbon source from the family-level community structure.  Low abundant taxa were 179 
filtered using a predefined cutoff (x-axis) before training and performing 10-fold cross validation 180 
(averaged 10 times).  Classification accuracy with only Enterobacteriaceae and Pseudomonadaceae 181 
resulted in a model with ~93% accuracy (right bar), while retaining low abundant taxa (relative 182 
abundance cutoff of 10-4) yielded a classification accuracy of ~97% (left most bar). (c) Metagenomes 183 
were inferred using PICRUSt (50), and dimensionally reduced using tSNE, revealing that carbon sources 184 
are strongly associated with the predicted functional capacity of each community.   185 

 186 
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Substantial environmental filtering is thus exerted by the supplied carbon source, and it 190 

leads to quantitative rules of assembly. Rather than selecting for the most fit single species, 191 

environmental filtering leads to communities that contain fixed fractions of multiple coexisting 192 

families that are determined by the carbon source in a strong and predictable manner (fig. S10). 193 

This suggests the existence of underlying mechanisms of taxonomic selection by function. 194 

Consistent with this idea, we find that the inferred community metagenomes assembled on each 195 

type of carbon source exhibit substantial clustering by the supplied carbon source (fig. 2c), and 196 

are enriched in pathways for its metabolism (fig. S16). Interestingly, when we spread the 197 

stabilized communities on agarose plates, we routinely found multiple identifiable colony 198 

morphologies per plate, evidencing that multiple taxa within each community are able to grow 199 

independently on (and thus compete for) the single supplied carbon source. This suggests that the 200 

genes and pathways that confer each community with the ability to metabolize the single 201 

supplied resource are distributed among multiple taxa in the community, rather than being 202 

present only in the best competitor species.  203 

Widespread	metabolic	facilitation	stabilizes	competition	and	promotes	coexistence		204 

Classic consumer-resource models indicate that when multiple species compete for a 205 

single externally supplied growth-limiting resource, the only possible outcome is competitive 206 

exclusion unless specific circumstances apply (5, 8–12). However, this situation does not 207 

adequately reflect microbes, whose ability to engineer their own environments is well 208 

documented both in the lab (20, 25, 31, 32) and in nature (33, 34). Thus, we hypothesized that 209 

the observed coexistence of competitor species in our experiments may be attributed to the 210 

generic tendency of microbes to secrete metabolic byproducts into the environment, which could 211 

then be reutilized by other community members.   212 
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To determine the plausibility of niche creation mediated by metabolic byproducts, we 213 

analyzed one representative glucose community in more depth. We isolated members of the four 214 

most abundant genera in this community (Pseudomonas, Rauoultella, Citrobacter and 215 

Enterobacter), which together represented ~ 97% of the total population in that community (fig 216 

3a). These isolates had different colony morphologies and were also phenotypically distinct (fig. 217 

S5). All isolates were able to form colonies in glucose agarose plates and all grew independently 218 

in glucose as the only carbon source, which indicates that each isolate can compete for the single 219 

supplied resource. To test the potential for cross-feeding interactions in this community, we grew 220 

monocultures of the four isolates for 48 hours in synthetic M9 media containing glucose as the 221 

only carbon source (fig. 3b). After 48 hours, the glucose concentration was too low to be 222 

detected, indicating that all of the supplied carbon had been consumed and any carbon present in 223 

the media originated from metabolic byproducts previously secreted by the cells. To test whether 224 

these secretions were enough to support growth of the other species in that community, we 225 

filtered the leftover media to remove cells, and added it to fresh M9 media as the only source of 226 

carbon (fig. 3b). We found that all isolates were able to grow on every other isolate’s secretions 227 

(e.g. fig. 3c), forming a fully connected facilitation network (fig. 3d). Growth on the secretions 228 

of other community members was strong, often including multiple diauxic shifts (fig. S11), and 229 

the amount of growth on secretions was comparable to that on glucose (fig. S12), suggesting the 230 

pool of secreted byproducts are diverse and abundant in this representative community. 231 

To find out if growth on metabolic byproducts is frequent among our communities, we 232 

thawed 95 glucose-stabilized communities (7-8 replicates from 12 initial environmental habitats) 233 

and grew them again on glucose as the only carbon source for an extra 48 hour cycle. In all 95 234 

communities glucose was completely exhausted after 24 hours of growth (fig. 3e); yet, most 235 
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communities continued growing after glucose had been depleted (fig. 3e), showing that growth 236 

on previously secreted byproducts is widespread. Moreover, community growth on the secreted 237 

byproducts is strong: on average, communities produce ~25% as much biomass on the secretions 238 

alone as they did over the first 24 hours when glucose was present (fig. 3f). Growth after glucose 239 

depletion is on average ~5-fold higher than the proportion of measured dead cells in 240 

representative communities (fig. S13), supporting the hypothesis that metabolic byproduct 241 

secretion (rather than cell lysis) is the dominant source of the observed cross-feeding. Other 242 

mechanisms may also operate together with facilitation in specific communities to support high 243 

levels of biodiversity (9, 35–38). Surprisingly, we found that multi-species communities still 244 

form in the absence of spatial structure, and we did not observe effects from temporal 245 

competitive niches in our experiments (fig. S14-15). Although beyond the scope of this work, 246 

efforts to elucidate the roles of other mechanisms that may stabilize competition, like phage 247 

predation (12) or non-transitive competition networks (39), will more fully characterize the 248 

landscape of interactions in these microcosms. 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 
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 257 

Figure 3: Non-specific metabolic facilitation stabilizes competition for the supplied 258 
resource (a) The major taxa in a representative community from inoculum 2 were isolated, 259 
grown under conditions with minimal media (M9) and glucose, and the metabolic byproducts 260 
were used as the sole carbon source in growth media for other isolates. (b) Experimental set-up: 261 
isolates were grown in minimal media with glucose for 48 hours, and cells were filtered out from 262 
the suspension.  The suspension of byproducts was mixed 1:1 with 2X M9 media and used as the 263 
growth media for other isolates (see also Methods).  (c) An example growth curve for 264 
Citrobacter growing either with M9 supplemented with 0.2 % glucose (grey line) or the 265 
metabolic byproducts from Enterobacter (black line).  (d) All isolates were grown on every other 266 
isolate’s metabolic byproducts, and logistic models were used to fit growth curves. We plotted 267 
the fitted growth parameters (carrying capacity) as edges on a directed graph, where the edges 268 
encode the carrying capacity of the target node isolate when grown using the secreted byproducts 269 
from the source node isolate. Edges from the top node encodes the carrying capacity on 0.2 % 270 
glucose, which is comparable in edge width/color to several of the other interactions. (e-f) All 271 
communities stabilized on glucose were grown in glucose-supplemented M9 media, and optical 272 
densities at 620 nm were measured, showing that after glucose was depleted (~24 hours), 273 
communities on average grew an additional 25%.   274 
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Including	cross-feeding	in	a	generic	consumer	resource	model	recapitulates	275 

experimental	observations 276 

 The above experiments suggest that competition for the single supplied limiting nutrient 277 

may be stabilized by non-specific metabolic facilitation, leading to coexistence. To test whether 278 

this feature alone could promote widespread coexistence, we simulated a community assembly 279 

process on a single supplied carbon source using a version of the classic MacArthur consumer 280 

resource model (CRM) (40), which was modified to include non-specific cross-feeding 281 

interactions. Cross-feeding was modeled through a stoichiometric matrix that encodes the 282 

proportion of a consumed resource that is secreted back into the environment as a metabolic 283 

byproduct (Supporting Information). Setting this matrix to zero results in no byproducts being 284 

secreted, and recovers the classic results for the CRM in a minimal environment with one 285 

resource: the species with highest consumption rate of the limiting nutrient competitively 286 

excludes all others (fig. 4a, inset). However, when we drew the stoichiometric matrix from a 287 

uniform distribution (while ensuring energy conservation), and initialized simulations with 288 

hundreds of “species” (each defined by randomly generated rates of uptake of each resource) 289 

coexistence was routinely observed (fig. 4a). All of the coexisting “species” in this simulation 290 

were generalists, capable of growing independently on the single supplied resource as well as on 291 

each other species’ secretions.  292 

 Our experiments have shown that the family-level community composition is strongly 293 

influenced by the nature of the limiting nutrient, which may be attributed to the metabolic 294 

capabilities associated with each family. We modeled this scenario by developing a procedure 295 

that sampled consumer coefficients from four metabolic “families”, ensuring that consumers 296 

from the same family were metabolically similar (see Supporting Information). We randomly 297 
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sampled a set of 100 consumer vectors (or “species”) from four families, then simulated growth 298 

on 20 random subsets of 50 species on one of three resources (labeled here as A, B or C). As in 299 

our experimental data (fig. 2a), simulated communities converged to similar family-level 300 

structures (fig. 4c), despite displaying variations at the species level (fig. 4b). We confirmed the 301 

correspondence between family-level convergence and functional convergence by computing the 302 

community-wide metabolic capacity per simulation, resulting in a predicted community-wide 303 

resource uptake rate for each resource (Supporting Information). Communities grown on the 304 

same resource converged to similar uptake capacities with an enhanced ability to consume the 305 

limiting nutrient (fig. 4d). Importantly, this functional convergence is exhibited even when 306 

consumers are drawn from uniform distributions, with no enforced family-level consumer 307 

structure, suggesting that the emergence of functional structure at the community level is a 308 

universal feature of consumer resource models (fig. S16). Strikingly, the composition of 309 

surviving species within each metabolic family frequently displayed “guilds” of species capable 310 

of supporting the stable growth of rare (<1% relative abundance) taxa, rather than a single 311 

representative from each family (fig. 4e), similar to our experimental data (fig. 1c,e). Our model 312 

suggests that guilds of species are stabilized by a dense facilitation network (fig. 4f), consistent 313 

with observations of widespread metabolic facilitation in experiments (fig. 3d). Thus, we find 314 

that simulations of community dynamics with randomly generated metabolisms and resource 315 

uptake capabilities capture a wide range of qualitative observations found in our experiments.  316 
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317 
Figure 4: A simple extension of classic ecological models recapitulates several experimental 318 
observations. MacArthur’s consumer resource model was extended to include 10 byproduct 319 
secretions along with consumption of a single primary limiting nutrient (see Supporting 320 
information), controlled by a global stoichiometric matrix Dβα, which encodes the proportion of 321 
the consumed resource α that is transformed to resource β and secreted back into the 322 
environment. Consumer coefficients were sampled from 4 characteristic prior distributions, 323 
representing four “families” of similar consumption vectors.  (a) Simulations using a randomly 324 
sampled global stoichiometric matrix generically resulted in coexistence of multiple competitors, 325 
while setting this matrix zero eliminated coexistence (a, inset).  Random ecosystems often 326 
converged to very similar family-level structures (c), despite variation in the species-level 327 
structure (b). The family-level attractor changed when providing a different resource to the same 328 
community (b-c, subplots).  (d) Total resource uptake capacity of the community was computed 329 
(Supporting Information), analogous to the inferred metagenome (see fig. 2d), and is, like the 330 
family-level structure, highly associated with the supplied resource. (e) Communities that formed 331 
did not simply consist of single representatives from each family, but often consisted of guilds of 332 
several species within each family, similar to experimental data. (f) The topology of the flux 333 
distribution shows that surviving communities all compete for the primary nutrient and 334 
competition is stabilized by differential consumption of secreted byproducts. The darkness of the 335 
arrows corresponds to the magnitude of flux. 336 
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	337 

Discussion	338 

The theory and experiments described above allow us to evaluate how the interplay 339 

between competition and facilitation governs microbial community assembly. Our results 340 

indicate that assembly of large communities is to be expected even in simple nutrient limited 341 

environments. We find substantial evidence that generic, non-specific facilitation stabilizes 342 

competition, enabling the coexistence of multiple taxa that compete for a single supplied limiting 343 

resource. Overall, our results indicate that resource-mediated facilitation and competition are not 344 

easily separable in microbial communities. The theoretical and computational framework for 345 

modeling community assembly is largely based on networks of pairwise competitive or 346 

facilitative interactions (41–44). Although recent work has called attention upon higher-order 347 

interactions (8, 39), the extent to which they affect microbial community assembly remains 348 

poorly understood. Our results suggest that collective interactions, such as those naturally arising 349 

when multiple species collectively transform their environment by consuming and secreting 350 

resources, may generally play an important and underappreciated role in the dynamics and 351 

assembly of large microbial ecosystems. Future work should shed light on the implications and 352 

full extent of collective interactions in microbial ecosystems. 353 

The mechanisms of microbe-microbe interactions are not limited to competition for 354 

resources, and they can include a wide range of direct and indirect physical, chemical and 355 

biological processes, from detoxification to predation or killing by contact (45–48). The range of 356 

processes that may simultaneously operate in any one community, and the non-linear nature of 357 

their effects, introduce significant complications for the bottom-up prediction of community 358 
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assembly outcomes at the species level, particularly for large communities with large number of 359 

species (17). As an illustration of these challenges, we found that even in replicate habitats that 360 

are inoculated from the same starting natural microbiota, communities often assemble into 361 

different alternative states at the species level (fig. 1f). Encouragingly, however, we find that the 362 

opposite is true at higher orders of taxonomic description. When we group taxa by family, re-363 

assembly from widely different initial communities exhibits an emergent simplicity: while the 364 

specific mechanisms of interaction between individual strains in each community (or even the 365 

starting inoculum) may vary widely across communities, coarse-grained community assembly is 366 

deterministic and predictable, and functionally induced by the type of carbon source available in 367 

the media.   368 

The same quantitative assembly rules for large communities also emerge in generic 369 

consumer-resource simulations when they are initialized with species with random metabolisms, 370 

agnostic to specific mechanisms of species interactions in each community. This suggests that 371 

this emergent simplicity at higher levels of organization is a generic property of large, diverse 372 

ecosystems. Thus, we hypothesize that many of the patterns observed in recent large-scale 373 

microbiome studies – for example, the convergence of the metagenome and phylum-level 374 

structure in systems as diverse as the human gut (1, 49), plant foliage (28) or the oceans (2) – 375 

may reflect universal properties of large self-sustained microbial communities. 376 
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Methods 536 

Isolating	microbial	communities	from	natural	ecosystems	537 

Leaf or soil samples (~1 g) were collected from natural environments using sterile tweezers and 538 

placed in 15 mL falcon tubes.  In the lab, 10 mL of 5% NaCl buffer was added to each sample 539 

and allowed to incubate for ~48 hours at room temperature.  40% glycerol stock solutions were 540 

prepared from aqueous sample suspensions and frozen at -80 °C for storage. 541 

Preparation	of	96-well	media	plates	542 

All media contained 0.07 C-mole/L of carbon source (glucose, citrate or leucine) and was sterile-543 

filtered with a 0.22 µm filter (Millipore).  Stock solutions of carbon sources were stored at 4°C 544 

for no more than 1 month.  M9 media was prepared from concentrated stocks of M9 salts 545 

(without MgSO4 or CaCl2) and stock solutions of MgSO4 and CaCl2.  500 µL cultures containing 546 

450 µL of sample and 50 µL stock carbon source were grown in 96 deep-well plates (VWR). For 547 

the first two cell passages, cycloheximide was added to the media at a concentration of 200 548 

µg/mL to inhibit eukaryotic growth. 549 

Passaging	microbial	populations	550 

Starting inocula were obtained directly from the initial buffered solution of microbiota by 551 

inoculating 4 µL into 500 µL culture media.  For each sample, 4 µL of the culture medium was 552 

dispensed into all 60 wells of the fresh media plate.  Cultures were allowed to grow for 48 hours 553 

at 30 °C in static broth, then each culture was triturated 10 times to ensure communities were 554 

homogenized before passaging. Passaging was performed by taking 4 µL from each culture to 555 

use as inocula in 500 µL of fresh media, and cells were allowed to grow again.  Cultures were 556 

passaged 12 times (~84 generations).  Optical density (OD620) was used to measure biomass in 557 

cultures after the 48-hour growth cycle.  Samples to be sequenced were collected and stored by 558 
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spinning down in a micro-centrifuge for 10 min at 14,000 RPM at room temperature. Cell pellets 559 

were stored at -20 °C. 560 

Fermentation	assays	and	isolation	of	strains	561 

Four bacterial strains from a representative community stabilized in glucose were isolated and identified 562 

taxonomically. The community was plated onto 0.5% agarose Petri-dishes containing M9 supplemented 563 

with 0.2% glucose and were allowed to grow for 48 hours at 30°C. Single colonies were then picked 564 

from these plates according to their colony morphologies, re-streaked on fresh agarose plates and grown 565 

for another 48 hours at 30°C. Single colonies from each isolate grown for 48 hours at 30°C in liquid M9 566 

supplemented with 0.2% glucose were finally stored at -80 °C in 40% glycerol.  Isolates were also 567 

identified according to their differential ability to ferment the following 16 carbohydrates: adonitol, 568 

arabinose, cellobiose, dextrose, dulcitol, fructose, inositol, lactose, mannitol, mannose, melibiose, 569 

raffinose, rhamnose, salicin, sucrose, and xylose (fig S5 a-b). Fermentation ability was assessed using a 570 

phenol red broth base with an added carbohydrate at a final concentration of 1% w/v, except for 571 

cellobiose (0.25%) due to its low solubility. Each isolate was grown on an agarose plate, and a single 572 

colony was picked and re-suspended into 100 µL  1x PBS. 2 µL of each isolate was inoculated into 50 573 

µL of Phenol red broth + carbon source (in a 384 well-plate, Corning). Spectrophotometric 574 

measurements of phenol red (OD450 and OD551) were measured after 0h, 12, 16, and 19 hours of 575 

incubation. Clustering of O.D. profiles after 19 hours revealed 4 distinct phenotypic profiles, consistent 576 

with morphologies (fig. S5c). Taxonomic assignments of isolates were verified using full-length 16S 577 

rRNA sequencing of DNA extracted from single colonies grown on agarose plates (GENEWIZ), using 578 

the online RDP classifier (51). 579 

Metabolic	facilitation	assay	and	measurement	of	glucose	depletion	580 

To determine whether microbial cross-feeding is a potential mechanism that enables coexistence, 581 
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four isolates from a single representative community were inoculated in 5 mL of M9 media with 582 

0.2% glucose, then incubated for 48 hours at 30 °C (fig. 3a). Cells were then separated from the 583 

spent media (SM) using the following procedure: cells were centrifuged at 3000 rpm for 10 min, 584 

and SM was filter-sterilized and stored at 4 °C. Cells were re-suspended in the same volume of 585 

PBS, and washed two times times by centrifugation (3000rpm, 10min). Cells were diluted to an 586 

OD620 of 0.24 prior to inoculation. There was no detectable glucose remaining in any SM as 587 

measured using the Glucose GO Assay Kit (Sigma), with the exception of the SM from 588 

Pseudomonas, which was adequately controlled for (see main text). SM was then mixed 1:1 with 589 

fresh 2X M9 media with no carbon source. Each isolate was inoculated in each isolate’s SM-590 

based M9 in triplicate at 1% v/v in a 384 well plate (Corning). The plate was incubated in a 591 

standard plate reader (Thermo 498 Scientific), and OD620 was measured every 10 min at 30 °C. 592 

We sought to determine whether glucose-stabilized communities were able to grow after 593 

glucose depletion, which would suggest that biomass accumulation is attributed to consumption 594 

of metabolic byproducts. For this, 95 glucose-stabilized communities were inoculated in a 96 595 

deep-well plate from frozen stock in 500 µL of M9 0.2% glucose. Two initial transfers with 48 596 

hours incubation were performed as previously described (30 °C no shaking). The third transfer 597 

was performed in duplicate and with final volume 600 µL. From these two plates, 100 µL 598 

samples were taken at 24, 36, 48 and 56 hours. OD620 was measured, followed by the 599 

measurement of glucose using the Glucose GO Assay Kit (Sigma). Glucose concentrations were 600 

inferred using linear regression from the standard curve, although no sample at any time point 601 

showed detectable levels. 602 

Cell	death	measurements	603 

Samples were obtained at 12-hour intervals to measure the accumulation of biomass and 604 
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determine the frequency of dead cells. Bacteria stained with the LIVE/DEAD BacLight Bacterial 605 

Viability Kit (L-7012, Invitrogen) following manufacturer instructions were spotted on 1% 606 

agarose pads. Microscopy was performed on an Eclipse Ti-E microscope (Nikon, Tokyo, Japan), 607 

equipped with Perfect Focus System (Nikon), a phase-contrast objective Plan Apochromat 608 

100X/1.40 NA (Nikon), and an ORCA-Flash4.0 V2 Digital CMOS camera (Hamamatsu 609 

Photonics, Hamamatsu City, Japan). Red fluorescence of dead cells was recorded with a Texas 610 

Red bandpass filter. Images were acquired with MetaMorph software (Molecular Devices, 611 

Sunnyvale, CA, USA) and analyzed with Microbe J (52). 612 

DNA	extraction,	library	preparation,	sequencing	and	analysis	613 

Cell pellets were re-suspended and incubated at 37 °C for 30 min in enzymatic lysis buffer (20 614 

mM Tris-HCl, 2mM sodium EDTA, 1.2% Triton X-100) and 20 mg/mL of lysozyme from 615 

chicken egg white (Sigma-Aldrich) to lyse the cell walls of Gram-positive bacteria. Following 616 

cell lysis, the DNA extractions were performed following the DNeasy 96 protocol for animal 617 

tissues (Qiagen). The clean DNA was eluted in 100 µL elution buffer of 10 mM Tris-HCl, 0.5 618 

mM EDTA at pH 9.0. DNA concentration was quantified using Quan-iT PicoGreen dsDNA 619 

Assay Kit (Molecular Probes, Inc.) and normalized to 5 ng/µL for subsequent 16S rRNA 620 

sequencing. 16S rRNA amplicon library preparation was conducted using a dual-index paired-621 

end approach developed by Kozich et al. (53).  Briefly, PCR-amplified libraries were prepared 622 

using dual-index primers (F515/R806) to generate amplicons spanning the V4 region of the 16S 623 

rRNA gene, then pooled and sequenced using the Illumina MiSeq platform. For each sample, a 624 

30-cycle PCR was performed in duplicate in 20 µL reaction volumes using 5 ng of DNA, dual 625 

index primers, and AccuPrime Pfx SuperMix (Invitrogen).  Thermocycling conditions consisted 626 

of a 2-min initial denaturation step at 95 °C,  followed by 30 cycles of the following PCR 627 
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scheme: (a) 20-second denaturation at 95 °C, (b) 15-second annealing at 55 °C, and (c) 5-min 628 

extension at 72 °C.  PCR was terminated after a 10-min extension step at 72 °C.  After pooling 629 

amplicons from duplicate reactions, the PCR products were purified and normalized using the 630 

SequalPrep PCR cleanup and normalization kit (Invitrogen). Libraries were then pooled and 631 

sequenced using Illumina MiSeq v2 reagent kit, which generated 2x250 base pair paired-end 632 

reads at the Yale Center for Genome Analysis (YCGA).  For shaking control experiments (fig. 633 

S15), library preparation and sequencing was performed at SeqMatic (Fremont, CA).  634 

Sequencing and library preparation were identical when compared to the procedure described 635 

above, except primers targeted the V3-V4 region of 16S rRNA gene.  636 

QIIME 1.9.0 (54) was used to demultiplex and remove barcodes, indexes and primers 637 

from raw files, producing FASTQ files with for both the forward and reverse reads for each 638 

sample. Dada2 v. 1.1.6 (27) was used to infer unique sequence variants from each sample, and 639 

naïve Bayes was used to assign taxonomy using the SILVA v. 123 database (51, 55). 640 

Metagenome inference was performed using PICRUSt (50). Denoised ESVs were assigned to 641 

OTUs using the greengenes database (version 13.5) using the QIIME function 642 

pick_closed_reference_otus, with a 97% similarity cutoff.   Communities were normalized using 643 

the normalize_otus.py function in PICRUSt, and the metagenomes were estimated using the 644 

estimate_metagenome.py routine. 645 

Statistical	tests	for	community	convergence	646 

We developed a Monte Carlo permutation test to determine if a group of stabilized communities 647 

converged to a consistent community structure at a defined level of taxonomic rank.  For each 648 

community, we first grouped sequence variants by either genus or family taxonomic rank, then 649 

transformed relative genus or family abundances using a centered log-ratio transform (clr) (3, 650 
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56).  We then calculated the variance for each taxonomic label (genus or family) across all 651 

samples and summed over all taxa, resulting in a metric we call ℎ2345, where rank was either 652 

genus or family.  This metric captures the total variability of the community at pre-defined levels 653 

of taxonomic rank.   To determine if this variability is lower than what we would expect by 654 

chance, we permuted the labels for the sequence variants 10, times and computed ℎ23456  for each 655 

random permutation.  The probability that a low community-wide variance could be observed by 656 

chance (*(ℎ2345 > ℎ23456 )) was estimated by computing the fraction of instances when ℎ2345 657 

exceeded ℎ23456 .   658 

Prediction	of	media	carbon	source	from	community	structure	659 

To access the predictive quality of the community structure and inferred metagenomes, we 660 

trained and evaluated multi-class support vector machine (SVM) models.  SVMs were 661 

constructed using the MATLAB function fitecoc and evaluated using 10-fold cross validation in 662 

fig 2b or leave one out cross-validation in fig. S16.  Features used in the in the SVM were either 663 

the clr-transformed relative abundances at the family taxonomic level in fig. 2b or the clr-664 

transformed inferred metagenome composition in fig. S16.  665 

Low	abundant	growth	with	no	supplied	carbon	source	666 

Passaging experiments were performed using M9 synthetic media with no additional carbon 667 

sources, which resulted in the stabilization of very low abundant microbial communities (fig S4).  668 

Growth was often several orders of magnitude lower than growth on either the primary nutrient 669 

(fig S4c) or secreted byproducts  (fig 3e-f), suggesting that metabolic consumption of secreted 670 

byproducts is more likely to contribute to stabilizing competition than consumption of low levels 671 

of latent resources in the D.I. water.  To determine community richness resulting from growth on 672 

the provided resource, we estimated the abundance of 16S amplicon reads deriving from 673 
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contamination either by cross-well contamination or microbial growth on the low levels of total 674 

organic carbon in D.I. water (fig. S4a-b).  For each of the 12 initial points, communities 675 

propagated for 84 generations with either with M9 and 0.2% glucose, or M9 and no additional 676 

carbon source.  We plated communities on 0.5% agarose plates containing M9 minimal media 677 

and 0.2% D-glucose to determine the colony forming units (CFU) per ml (fig. S4c). CFU/ml was 678 

used as a proxy for total cell number in the community because of the strong correlation with cell 679 

counting using a hemocytometer (fig. S4d).  The relative contribution of CFU for growth on 680 

water alone compared to growth on D-glucose was then used as a relative frequency cutoff for 681 

each of the 12 initial communities, respectively (fig. S4e).   These values allowed us to estimate 682 

lower bounds for community diversity derived from the supplied the carbon source (fig. S6b). 683 

 684 

 685 

 686 
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