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Abstract

Background: Responses to transcranial magnetic stimulation (TMS) are notoriously variable.
Previous studies have observed a dependence of TMS-induced responses on ongoing brain activity,
for instance sensorimotor rhythms. This suggests an opportunity for the development of more
effective stimulation protocols through closed-loop TMS-EEG. However, it is not yet clear how
features of ongoing activity affect the responses of cortical circuits to TMS.

Objective/Hypothesis: Here we investigate the dependence of TMS-responses on power and phase of
ongoing oscillatory activity in a computational model of TMS-induced I-waves.

Methods: The model comprises populations of cortical layer 2/3 (L2/3) neurons and a population
of cortical layer 5 (L5) neurons and generates I-waves in response to TMS. Oscillatory input to the
L2/3 neurons induces rhythmic fluctuations in activity of L5 neurons. TMS pulses are simulated at
different phases and amplitudes of the ongoing rhythm.

Results: The model shows a robust dependence of I-wave properties on phase and power of ongoing
rhythms, with the strongest response occurring for TMS at maximal L5 depolarization. The amount
of phase-modulation depends on stimulation intensity, with stronger modulation for lower intensity.

Conclusion: The model predicts that responses to TMS are highly variable for low stimulation
intensities if ongoing brain rhythms are not taken into account. Closed-loop TMS-EEG holds
promise for obtaining more reliable TMS effects.
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Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive technique for stimulating cortical circuits
through the use of externally applied magnetic fields. Currently, its therapeutic potential is
limited, as the effects of a given stimulation protocol cannot be reliably predicted. TMS effects are
notoriously inconsistent, with the same stimulation protocol inducing plasticity effects in opposite
directions. This holds not only across subjects but even within a single subject [1, 2, 3, 4]. A major
goal of current research is therefore to better understand and eliminate the sources of this variability.
While the spatial accuracy of TMS has markedly increased through the use of neuronavigation
techniques [5], an optimization of temporal aspects of stimulation could yield more consistent
plasticity effects.

In this context, several recent TMS-EEG studies have shown a dependence of TMS responses
on features of brain activity at stimulation onset in post-hoc evaluation. This was shown for
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slow oscillation up- and down-states in sleep [6], oscillatory power [7, 8, 9] and phase of different
oscillatory rhythms [10, 11, 12], see [13] for review. The recent development of real-time triggered
TMS-EEG systems now allows to precisely control stimulation based on measurements of ongoing
brain activity [14]. Therefore, an improved understanding of the interaction between ongoing brain
activity and TMS on cortical circuits is called for to support the development of more reliable
plasticity induction protocols based on real-time triggered TMS-EEG.

When TMS is performed over the motor cortex, two main read-outs can be used to quantify the
effects. First, TMS induces a twitch of the targeted muscle, which causes a motor evoked potential
(MEP), measurable by electromyography. Second, in patients with electrodes implanted in the
epidural space [15] a characteristic high-frequency discharge can be recorded following TMS, termed
D- & I-waves. While such recordings are rare, understanding I-wave dynamics gives insight into how
cortical circuits are driven by TMS. Here we use computational modeling to better understand how
ongoing rhythmic brain activity may influence the effects of TMS on cortical circuits. We extend
a previous model of TMS-induced D- & I-waves [16] to investigate the joint effect of background
activity and stimulation pulses on cortical responses.

In the extended model, we test for systematic effects of ongoing rhythmic brain activity, such as
phase and power of the µ-rhythm, on different measures of the TMS-induced responses. We find
that the effects of TMS are modulated by phase and power of the oscillatory background activity at
the time of stimulation and that TMS produces the largest responses when triggered at times when
pyramidal neurons are highly depolarized. Furthermore, we show that higher response variability is
observed for higher oscillatory power and discuss the implications of these findings for TMS-EEG.
Additionally, we show that phase and power affect I-wave amplitudes and raw spike counts to a
different degree, which reveals limitations of using compound signals to evaluate TMS effects.

Material and Methods

Model assumptions

The model generates D- and I-waves through an interaction between membrane mechanisms and
dendritic processing of synaptic inputs. It makes two crucial assumptions: first, I-wave periodicity
depends on the length of the refractory period of corticospinal tract neurons in layer 5 (L5) of
motor cortex. The refractory period determines the maximum firing rate these neurons can achieve.
Single-unit recordings during direct motor cortex stimulation [17] show that neurons involved in
I-wave generation are capable of firing with a frequency of ~670 Hz, corresponding to a refractory
time of 1.5 ms, as also supported by more recent studies [18]. The second assumption is that the
arrival of synaptic input to these neurons is distributed across their dendritic trees. In combination,
these properties result in high-frequency discharge patterns after TMS.

Model structure

The circuit model consists of layer 5 (L5) neurons each receiving input from 300 layer 2/3 (L2/3)
neurons, as illustrated in Fig. 1 (left). The L5 neurons have a detailed morphology (reconstructed
by [19]), consisting of 188 compartments. The L2/3 neurons are modeled as single cylinders, the
diameter equal to the length (taken from [20]). They are of excitatory and inhibitory type, with
ratio 4:1. The L2/3 neurons project with one synapse each onto the dendritic branches of the
L5 neuron in a feed-forward manner. For simplicity, we assume that the synapses are distributed
uniformly across the dendritic tree [21], with a constant density per unit length. The conduction
delay between L2/3 and L5 neurons is set to 1 ms. This will determine the latency between
the D- and the first I-wave. [22] investigated this delay with single-unit recordings and found a
symmetric distribution of latencies around 1 ms. The full model comprises 100 L5 neurons with a
myelinated axon, consisting of nodes of Ranvier and myelin sheaths. Model output is evaluated with
two different measures, TMS-induced spikes and TMS-induced I-wave amplitudes. The simulated
epidural recording of I-waves is based on the mean membrane potential of all L5 neurons at the
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Figure 1: Network structure and activity. (a) Model structure: 60 inhibitory and 240 excitatory L2/3 neurons
connect to a multi-compartmental L5 neuron in a feed-forward manner. 100 of these subnetworks are combined
to produce the model output. (b) Example L2/3 firing patterns over time. The inhomogeneous Poisson input is
modulated by a 10 Hz sine wave. At time=0, a TMS pulse is applied. (c) The resulting L5 firing, recorded in the
axon. The green shaded area marks the response to the TMS pulse. (d) Spiking behavior around the time of the
TMS pulse. (e) Example D- and I-wave model output, pooled over all subnetworks. In the background, the generated
spikes are displayed. The dispersion of spike times increases for subsequent I-waves, resulting in a smaller amplitude
for I2- and I3-waves.
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middle of the axon. The mean membrane potential is convolved with a Gaussian kernel (σ=0.25 ms)
to account for different L5 conduction delays. I-wave peak amplitudes were calculated as peak value
minus next trough value [23]. Peaks and troughs are identified with a local extrema search, which
determines the peak maximum/minimum amplitude value by comparing each data point in the
time series with its neighbors in a window of 0.5 ms. If it is larger/smaller than all neighbors, it is
identified as a maximum/minimum. This reliably determines I-wave peaks and subsequent troughs.

Model dynamics

L5 membrane potential dynamics are governed by Hodgkin-Huxley type equations in all compart-
ments. L2/3 current types consist of sodium and delayed rectifier currents for action potential
generation and a slow voltage-dependent potassium current for spike-frequency adaptation. Cur-
rent types are specified in Table 1. Synaptic conductance changes are implemented as a sum
of exponentials, allowing for independent rise and decay times. Four different types of synapse
dynamics are used: fast and slow excitation (AMPA- and NMDA-type dynamics) and fast and slow
inhibition (GABAA and GABAB-type dynamics). These are reflected in different rise and decay
times for the respective synapses. Time constants, reversal potentials and conductances are given in
Table 1. Conductances are multiplied by synaptic weights drawn from a lognormal distribution to
model the lognormal-like distribution of synaptic efficacies in the cortex [24]. To enable rhythmic
spontaneous firing, peak conductance and reversal potential for GABAB was adjusted, as well as
the peak conductance for AMPA (see model summary table), as the original values [16] resulted in
inhibition outweighing excitation, with no spontaneous firing possible. The L2/3 to L5 synapses
exhibit a form of short-term synaptic depression. After each presynaptic spike the maximal synaptic
conductance is decreased by a depression factor d = 0.5, with an exponential recovery with time
constant τD = 200 ms [25].

0 250 500 750 1000
time [ms]

high moderate no oscillation

Figure 2: Network input: L2/3 neurons receive rhythmic input with varying power of the oscillatory rhythm. Top:
The stimulus generating function for three different conditions: constant firing (purple), firing with an oscillation of
moderate (orange) or high power (green). The power was varied by changing the offset of the generating sine, while
maintaining the same mean firing rate for each condition by varying the amplitude. Bottom: Example raster plots
for each condition.
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Figure 3: Proportion of directly activated neurons for different stimulation intensities as a percentage of the active
motor threshold. Recruitment is stimulation-intensity dependent, with the implemented assumption that inhibitory
L2/3 neurons are more easily recruited than L2/3 excitatory neurons. In comparison, L5 neurons have the lowest
probability to be directly activated by TMS.

Spontaneous activity and stimulation

To model rhythmic spontaneous activity, L2/3 neurons receive input from an inhomogeneous Poisson
process, modulated by a 10 Hz sine wave, representing rhythmic thalamic input [26, 27]. We model
three different levels of oscillation power. Example input spikes to L2/3 neurons are illustrated in
Fig. 2. The oscillatory drive leads to rhythmic firing in the L2/3 neurons. The inhibitory L2/3 firing
rates are about three times higher than excitatory rates [28], see Fig. 1 (right) for an example of
baseline firing. Spontaneous firing rates for L2/3 neurons are 2.0 ± 1.6 Hz for excitatory and 8.4 ±
4.7 Hz for inhibitory neurons [29]. The rhythmic firing in the L2/3 neurons results in subthreshold
oscillations of the somatic L5 neurons’ membrane potentials [30]. The individual mean firing rate
of the L5 neurons is 1.8 ± 2.3 Hz, meaning that individual neurons do not fire in each cycle of the
oscillation. To investigate any state-dependent effects of TMS, we vary the timing of the TMS
pulse relative to the phase of the background oscillation. We also vary oscillatory power and TMS
intensity.

Due to neuronal membrane time constants and conduction delays, membrane oscillations of L5
neurons are delayed with respect to the oscillatory driving input to the L2/3 neurons. We estimate
this delay by fitting a sine function to the spontaneous membrane potential oscillation of the L5
cells. The L5 membrane oscillations are delayed by 14.0 ms with respect to the driving oscillation.
All results are plotted against the phase of the subthreshold oscillations in the somatic membrane
potential of the L5 neurons (subsequently referred to as: L5 phase). Because the membrane is most
depolarized at L5 phase φ = 1

2π, also the probability of firing is highest at this phase. Conversely,
the probability of firing activity is lowest at L5 phase φ = 3

2π.

TMS is modeled as a current injection into the somata of the L2/3 and axon of L5 neurons.
The current has a temporal structure, modeling the output of an underdamped RLC circuit of
commercial TMS systems. To model different excitability levels of neurons, depending on their
location and orientation with respect to the coil [31], the maximal amplitude of the pulse Imax is
drawn from an exponential distribution with scale parameter β. To model different stimulation
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intensities, Imax is multiplied by gain factor γ. The parameter β is a free parameter, adapted to
the firing threshold for each neuron type to cover a broad range from no to a high number of
neurons activated by TMS. This results in three parameters: βL5, βL2/3inh and βL2/3exc . We make
the assumption that inhibitory L2/3 neurons are easier to activate by TMS than excitatory L2/3
neurons [32]. For the L5 neurons the fraction of activated neurons is even smaller, reflecting the
fact that a higher stimulation intensity is needed to evoke a D-wave compared to I-waves. The
fraction of activated neurons for each type is illustrated in Fig. 3. The stimulation intensity is
increased by increasing γ.

To enable comparisons to experimental recordings, γ is translated to a scale based on the active
motor threshold (AMT). Experimental I-wave recordings performed at varying intensities [33, 32, 34]
show that at AMT typically only a small I1-wave is visible, while the response tends to saturate
at four I-waves for increasing intensity. Therefore, we chose two γ values to correspond to these
situations, with linear interpolation in between. However, as recordings show large variability
between subjects, as well as sensitivity to parameters such as location and orientation or type of
the coil used, this mapping is to be viewed as a rough approximation.

Model implementation

The model is implemented in Python and NEURON [35]. The time step for numerical integration
is set to 0.025 ms. Each stimulation starts after a settling time of 300 ms during which the
rhythmic input to the L2/3 neurons entrains oscillatory activity. Results are obtained as means of
25 simulations, with error bars showing the standard deviation. For additional details regarding
the model structure and all parameter settings, see Table 1. More details concerning the model
derivation can be found in [16].

Results

I-wave characteristics and their dependence on stimulation intensity

In a first step, we established that the model with spontaneous background activity is still able to
produce the characteristic I-waves seen in epidural recordings. Examples of generated I-waves for
different simulated stimulation intensities are compared to experimentally obtained data (replotted
from [23]) in Fig. 4. Increasing the stimulation intensity increases the number of I-waves and their
amplitude. Using a common multiplicative gain factor for recruitment of excitatory and inhibitory
neurons produces a sigmoidal model response (see Fig. 5), as it becomes harder to recruit additional
neurons for increasing stimulation intensities. Here we pooled over random phases, simulating TMS
stimulation without EEG-feedback. Exemplarily, the high oscillatory power condition was used here.
The scale parameter for the exponential distribution from which the current for injection is drawn
was adjusted to match experimental results [23, 34]. The dependence on stimulation intensity is
captured qualitatively by both, the spike measure as well as the I-wave amplitude measure.

Modulation by oscillatory phase

In a next step, we investigated how the model’s response to TMS depends on the precise time
of stimulation relative to the phase of the network’s oscillatory background activity. We first
consider the case of high oscillatory power. We found that applying a TMS pulse at a specified
phase of the background stimulation affects the number of generated spikes and the amplitude of
I-waves differently. The model shows systematic modulation of the number of generated L5 spikes
depending on the phase at which the TMS pulse is applied, as seen in Fig. 6 (Top). The largest
number of spikes is elicited when the peak of L5 somatic subthreshold oscillations coincides with
the timing of the TMS pulse (peak phase bin φ = 1

2π). The difference between peak and trough
response (phase bin with φ = 3

2π) depends on stimulation intensity, with larger differences for lower
stimulation intensities. The more background activity is present at the time of the TMS pulse,
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Figure 4: Left: Examples of I-waves generated by the model for different stimulation intensities. The number and
amplitude of generated I-waves increases as a function of the stimulation intensities. Results shown are for 10 trials,
pooled over random phases. Right: I-waves measured experimentally, data replotted from [23]. Averaged over 10
trials.
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Figure 5: Input-output-curve. Left: number of spikes as a measure. Right: peak amplitude values as a measure.
Amplitudes are normalized by the maximum mean value which was attained for the I1-wave. The number of spikes as
well as peak amplitude values of generated I-waves increase with increasing stimulation intensity, with qualitatively
similar behavior. Number of trials: 25, TMS onset at random phases, error bars represent one standard deviation.
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the more spikes can be elicited, as the TMS pulse is more likely to push neurons across their the
action potential threshold towards spiking. L5 neurons which generate a large number of spikes
in response to TMS are more likely to have a more elevated somatic membrane potential before
stimulation onset in comparison to L5 neurons with a small number of TMS-induced spikes, see
Fig. 7. The large standard deviation in this figure indicates that pre-TMS membrane potential is
only one factor contributing the response to TMS in the model.

In contrast, Fig. 6 (Bottom) shows that I-wave amplitudes show comparatively little modulation by
phase, depending on the stimulation intensity. For early I-waves, no clear differentiation between
peak maxima and peak minima of L5 excitability can be seen for larger intensities. Only the I3-wave
amplitude shows a clear amplitude modulation between peak and trough phase conditions in the
expected direction when comparing to the spike measure. For 100% AMT, only in the peak phase
condition a response will be elicited and no spikes in the trough phase condition, resulting in a
large value of the min-max modulation index.

The number of generated spikes for peak and trough phase conditions is shown in Fig. 8 which
illustrates how a smaller number of spikes can result in unchanged I-wave amplitude. A neuron
is defined as active, if it fires in the respective I-wave interval. For the I1-wave, even though the
overall number of active neurons is reduced by 9.1%, the number of spikes at the peak I1-time differs
only by a small amount between conditions, which results in a similar I-wave peak amplitude. Only
when spike timing relative to I-wave peak and number of spikes differ greatly, as for the I3-wave,
the I-wave peak amplitude is changed between conditions. Correspondingly, a smaller number of
spikes with less dispersion can yield larger I-wave amplitudes as compared to larger number of
spikes with higher dispersion. This demonstrates a varying degree of sensitivity of the spikes and
I-wave amplitude measures to changes in spontaneous activity.

Modulation by oscillatory power

Finally, we tested for the effect of oscillatory power. The different conditions are illustrated in Fig 2.
As shown in Fig. 9, if the oscillatory rhythm is pronounced with clearly differentiable high-activity
and low-activity states, the response will be strongly modulated by the phase of the oscillatory
rhythm. This results in an increased variability of the spike number elicited by a single pulse, when
collapsing over phases.

Discussion

Successful clinical application of TMS is hampered by the large and unexplained variability in the
effects of various plasticity induction protocols. Since activity drives plasticity [36], much of this
variability may be explained by factors inducing variability in cortical responses such as the brain
state at the moment of stimulation. Our model reveals interactions between TMS responses and
ongoing cortical oscillatory background activity and shows how cortical rhythms can contribute
to the variability of TMS effects. The model is able to produce realistic I-waves and shows a
dependence of TMS responses on power and phase of ongoing brain oscillations. It predicts that
the strongest TMS response can be obtained for stimulation at the moment when L5 pyramidal
neurons are maximally depolarized.

Differentiation between numbers of spikes and I-wave amplitudes.

Our results indicate that in the interplay with spontaneous activity, a differentiation has to be
made between a spike measure and an I-wave measure of TMS effects. The number of generated L5
spikes shows a clear modulation according to the phase, while the corresponding effect on I-wave
amplitudes can be smaller. We argue that this is related to a previously observed phenomenon:
unchanged I-wave dynamics for vastly different MEP amplitudes. For certain TMS protocols
[37, 38], large changes in MEP amplitude can be measured, but the corresponding I-waves are
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Figure 6: Phase-modulation as evaluated by different measures. Mean over 25 trials for each phase bin, error bars
show one standard deviation. Top: Phase-modulation as evaluated by spike counts. Top left: absolute I-wave spike
number is modulated by phase, shown for the first three I-waves. Top middle: sum of the first three I-wave spikes is
modulated by phase and stimulation intensity. Top right: Phase-modulation of spikes constituting respective I-waves,
as evaluated with Smax−Smin

Smax+Smin
· 100 with Smax as the number of spikes in phase bin φ = 1

2π and Smin in phase bin
φ = 3

2π. Bottom: Phase-modulation as evaluated by peak I-wave amplitude. Bottom Left: I-wave amplitude for
the first three I-waves. Normalized by highest observed I-wave peak. Bottom Middle: sum of the first three I-wave
amplitudes per stimulation intensity. Bottom Right: Phase-modulation, evaluated with peak values analogous to the
top right figure.
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Figure 9: Phase-modulation for different oscillatory power conditions as evaluated by spike number. Left: Differences
between power conditions for stimulation intensity = 130% AMT. The difference is more pronounced for higher
oscillation power and leads to more variability in spike number for high oscillation power. Mean over 25 trials for each
phase bin, error bars show one standard deviation. Right: Phase-modulation index (as in Fig. 6) for all intensities.
The highest degree of modulation is achieved for high power of the ongoing rhythm and small stimulation intensities.
Mean over 25 trials for each data point, error bars show one standard deviation.

hardly changed. As shown in Fig. 8, different numbers of spikes can produce the same I-wave
amplitudes. This suggests that I-waves are a less sensitive read-out measure compared to the
total number of generated spikes. Looking at individual I-waves, the model suggests that later
I-waves are more sensitive to changes in experimental conditions, as a large reduction of the number
of spikes is needed to reduce I-wave amplitude significantly. But it is unclear how a high level
of synchrony for later I-waves can be preserved with a reduced I1-wave. Interestingly, reliable
modulation of early I-waves without changes in later I-waves was observed for the cTBS protocol
[39]. Further investigation of experimental conditions where specifically the I1-wave is modulated
would therefore be of interest. While the investigation of I-waves has given valuable insights into
cortical circuits that contribute to the behavioral output [15], the interpretation remains difficult.
The motor system is assumed to be based on rate coding [40, 41], so multi-unit recordings should
be more predictive of MEP characteristics, compared to I-waves. However, there is recent evidence
for an effect of precise spike timing on behavior [42]. As I-waves occur on a very fast time scale,
simultaneous recordings of L5 spiking activity, I-waves, and muscle activity should reveal which
measure is more predictive of MEP amplitude.

Modulation by oscillation phase and relation to TMS-EEG

The model shows a clear dependence of TMS-response on pre-stimulation activity, with larger
responses in a phase of larger L5 neuron depolarization. But there is no trivial correspondence
between the phase of L5 membrane potential oscillations and the phase of the µ-rhythm, as measured
by electroencephalography. The EEG signal is recorded with multiple electrodes on the scalp. In
the sensor space, neighboring electrodes are necessarily related through volume conduction, but
will exhibit phase-shifts [43]. The signal from a spatial filter constructed from sensor space may be
shifted with respect to the phase of the generators of the µ–rhythm. The location of the functional
areas generating the rhythm will vary between subjects [44], and also between frequency bands
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[45, 46]. Therefore, individualized filters may have to be used. Since the inverse problem of EEG
has many solutions [47], attempts using source-reconstructed filters will have to make assumptions
about the orientation of the dipole. This may also contribute to a mismatch between the phase
of the targeted µ-generators and the global phase according to which the TMS stimulation is
applied. Knowing that maximum MEP amplitude will be evoked at a phase where L5 neurons are
maximally depolarized could help to identify the µ-generators and constrain the construction of
effective spatial filters [48]. The dependence of phase-modulation on intensity could help to explain
inter-individual differences, as experimentally, stimulation intensity is chosen with respect to subject
individual criteria, such as resting or active motor threshold, size of MEPs, or subject comfort level.
In general, the model predicts the largest modulation of TMS responses by oscillation phase when
the stimulation intensity is low.

Modulation by oscillation power and the role of subthreshold oscillations

The degree of phase-modulation is also dependent on the degree to which oscillatory rhythms are
present in the motor system of the subject. The more pronounced the rhythms are, the more
the TMS response is modulated by the phase of the ongoing activity. It is unclear, however, if
different levels of EEG power in a frequency band for different subjects are due to less power
in the neural activity, or a different orientation of the dipole making it harder to pick up the
signal [49, 50]. This uncertainty about the true oscillatory power in the neural activity impedes
inter-subject comparisons. In addition, the individual location of the corresponding motor areas has
to be considered. Furthermore, membrane oscillations are modulated by task-related activity [30].
Overall, we predict less variability of MEPs at lower power of the generators of the oscillations.

Model limitations

Our model has a simple feed-forward structure. While this appears sufficient for modeling the
responses to single-pulse TMS, the addition of recurrent connections may be required for capturing
how reverberating activity due to early TMS pulses influencing the responses to later pulses. This
is an interesting topic for future work.
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Methods Summary

Here we provide a summary of the neural network model in table form, following the guidelines
proposed in [51]. For a full specification, see the available model code at http://TBD.

A) Model Summary
Populations: one subnetwork consists of 300 L2/3 neurons, 1 L5 neuron, pooling over 100 subnetworks
Connectivity: feed-forward connections from L2/3 neurons to L5 neuron

with synapses uniformly distributed over the L5 dendritic tree
Neuron Model: multi-compartmental L5 neuron, L2/3 single-compartment neurons
Synapse model sum of exponentials; four different types, reflecting AMPA-, NMDA-, GABAA-, GABAB-type

dynamics
Plasticity short-term synaptic depression on L2/3 → L5 synapses
Input L2/3: inhomogeneous Poisson spike trains, TMS pulse of varying strength to all neurons
Measurements membrane potentials and spike activity
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B) Populations number
L5 compartmental model 1
L2/3 single-compartment neurons 300

AMPA 190
NMDA 50
GABAA 40
GABAB 20

C) Connectivity
L2/3 → L5 L2/3 neurons are connected to L5 neuron in a feed-forward manner

weights drawn from a lognormal distribution, µ = −1.5, σ2 = 0.5

D) Neuron Model
all gating variables follow first-order kinetics

L5 detailed compartmental morphology [19]
CM

dV
dt = −gleak(V − Eleak)− INa − IK − IKDR

Eleak = −70 mV; dendrites: gleak = 0.0001 S
cm2 ; soma & axon nodes:

gleak = 0; CM = 1 µF
cm2 , for all compartments, except in myelin,

where CM = 0.04 µF
cm2

sodium INa = ḡNam
3h(V − ENa);

ENa = 40 mV; soma: ḡNa = 0.004 S
cm2 ; dendrites: ḡNa = 0.008 S

cm2

axon: ḡNa = 1.9 S
cm2 ;

potassium IK = ḡK1n
3(V − EK1) + ḡK2n

3
2(V − EK2)

EK1 = EK2 = −80 mV; soma: ḡK1 = 0.06 S
cm2 , ḡK2 = 0.3 S

cm2 ;
dendrites: ḡK1 = 0, ḡK2 = 0.0001; axon: ḡK1 = 1 S

cm2 , ḡK2 = 0;
delayed-rectifier
potassium

IKDR = ḡKDRm
4(V − EKDR) (only in axon)

ḡKDR = 10 S
cm2 ;EKDR = −80 mV

L2/3 single-compartment neurons [20]
CMdV/dt = gleak(V − Eleak)− IKd − INa − IM
gleak = 0.0001 S

cm2 , Eleak = −70 mV
delayed-rectifier
potassium

IKd = ḡKdn
4(V − EKd)

EKd = −100 mV; excitatory: ḡKd = 0.005 S
cm2 ; inhibitory: ḡKd =

0.01 S
cm2

sodium INa = ḡNam
3h(V − ENa)

ENa = 50 mV; ḡNa = 0.05 S
cm2

slow non-inactivating
potassium

IM = ḡMm(V − EM ) (inhibitory L2/3 neurons only)

EM = −100 mV; ḡM = 7 · 10−5 S
cm2

E) Synapse Model
L2/3 → L5
placement uniform distribution on dendritic tree of L5 neuron
conduction delay τdelay = 1 ms [22]
conductance dynamics g(t) = gpeak

[
exp

(
− t−τdelay

τrise

)
− exp

(
− t−τdelay

τdecay

)]
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E) Synapse Model
short-term synaptic depression PSPs are modulated with depression factorD, initial setting

D = 1
[25]

after each pre-synaptic spike D → D · d
d = 0.5, D recovers with dD

dt = 1−D
τD

, τD = 200 ms
AMPA τrise = 0.2 ms„τdecay = 1.7 ms, gpeak = 0.2µS, Erev = 0 mV [52], [53]
NMDA τrise = 2 ms, τdecay = 26 ms, gpeak = 0.03µS, Erev = 0 mV [54]
GABAA τrise = 0.3 ms, τdecay = 2.5 ms, gpeak = 0.5µS, Erev =

−70 mV
[52], [55]

GABAB τrise = 45.2 ms, τdecay = 175.16 ms, gpeak = 0.05µS, Erev =
−70 mV

[56]

input → L2/3
placement center of each L2/3 soma
conduction delay τdelay = 0 ms
conductance dynamics g(t) = gpeak

[
exp

(
− t−τdelay

τrise

)
− exp

(
− t−τdelay

τdecay

)]
τrise = 2 ms, τdecay = 10 ms, gpeak = 0.15µS, Erev = 0 mV

short-term depression none

F) Input
input to L2/3 neurons Inhomogeneous Poisson process with sine modulation of frequency

fµ = 10 Hz, λt = r · sin(fµ · 2π + φ) + c
high power rexc = 6 Hz, rinh = 12 Hz, c = 0 [29]
moderate power rexc = 2 Hz, rinh = 4 Hz, c = 1
no oscillation homogeneous Poisson process rexc = 2 Hz, rinh = 4 Hz
TMS placement applied as a current injection to L2/L3 somata and L5 axon
TMS current dynamics i(t) = ipeak · sin(ω · t) exp(− t

τ ) [57]
τ = 0.08 ms, ipeak ∼ γ · exp( 1

β )[nA]
scale parameter βL5 = 6, βL2/3inh = 116, βL2/3exc = 74
gain factor γ ∈ [0.2 ... 6.25]

γ = 0.2 corresponds to 90% AMT
γ = 5.25 corresponds to 145% AMT

G) Measurements
L2/3 spike activity
L5 spike activity and membrane potential [mV]
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