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Abstract

Mendelian randomization (MR) is widely used to identify causal relationships among her-
itable traits, but it can be confounded by genetic correlations reflecting shared etiology. We
propose a model in which a latent causal variable mediates the genetic correlation between two
traits. Under the latent causal variable (LCV) model, trait 1 is fully genetically causal for trait 2
if it is perfectly genetically correlated with the latent causal variable, implying that the entire
genetic component of trait 1 is causal for trait 2; it is partially genetically causal for trait 2
if it has a high genetic correlation with the latent variable, implying that part of the genetic
component of trait 1 is causal for trait 2. To quantify the degree of partial genetic causality,
we define the genetic causality proportion (gcp). We fit this model using mixed fourth moments
E(α2

1α1α2) and E(α2
2α1α2) of marginal effect sizes for each trait, exploiting the fact that if

trait 1 is causal for trait 2 then SNPs affecting trait 1 (large α2
1) will have correlated effects

on trait 2 (large α1α2), but not vice versa. We performed simulations under a wide range of
genetic architectures and determined that LCV, unlike state-of-the-art MR methods, produced
well-calibrated false positive rates and reliable gcp estimates in the presence of genetic corre-
lations and asymmetric genetic architectures; we also determined that LCV is well-powered to
detect a causal effect. We applied LCV to GWAS summary statistics for 52 traits (average
N=331k), identifying partially or fully genetically causal effects (1% FDR) for 59 pairs of traits,
including 30 pairs of traits with high gcp estimates ( ˆgcp > 0.6). Results consistent with the
published literature included genetically causal effects on myocardial infarction (MI) for LDL,
triglycerides and BMI. Novel findings included a genetically causal effect of LDL on bone min-
eral density, consistent with clinical trials of statins in osteoporosis. These results demonstrate
that it is possible to distinguish between genetic correlation and causation using genetic data.

Introduction

Mendelian Randomization (MR) is widely used to identify potential causal relationships among
heritable traits, potentially leading to new disease interventions.1–12 Genetic variants that are
significantly associated with one trait, the “exposure,” are used as genetic instruments to test
for a causal effect on a second trait, the “outcome.” If the exposure does have a causal effect
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on the outcome, then variants affecting the exposure should affect the outcome proportionally.
For example, the MR approach has been used to show that LDL3,13 and triglycerides4 (but not
HDL3) have a causal effect on coronary artery disease (CAD). However, a challenge is that genetic
variants can affect both traits pleiotropically, and these pleiotropic effects can induce a genetic
correlation, especially when the exposure is polygenic.2,11,12,14–16 This challenge can potentially
be addressed using curated sets of genetic variants that aim to exclude pleiotropic effects, but
curated sets of genetic variants are unavailable for most complex traits (curation is more likely to
be successful for molecular traits with simpler genetic architectures). One potential solution has
been to apply MR bidirectionally, using genome-wide significant SNPs for each trait in turn.11,17,18

This approach relies on the assumption that if there is no genetically causal relationship, then
genome-wide significant SNPs for each trait are equally likely to have correlated effects; however,
this assumption can be violated due to differences in trait polygenicity or GWAS sample size.

We introduce a latent causal variable (LCV) model, under which the genetic correlation between
two traits is mediated by a latent variable having a causal effect on each trait. A special case of the
LCV model is when trait 1 is fully genetically causal for trait 2, implying that the entire genetic
component of trait 1 is causal for trait 2. More generally, trait 1 may be partially genetically causal
for trait 2, implying that part of the genetic component of trait 1 is causal for trait 2, and we
quantify the degree of partial causality using the genetic causality proportion (gcp). In simulations
we confirm that LCV, unlike other methods, avoids confounding due to genetic correlations, even
in the presence of unequal polygenicity or unequal power between the two traits. Applying LCV
to GWAS summary statistics for 52 diseases and complex traits (average N=331k), we identify
both genetically causal relationships that are consistent with the published literature and novel
genetically causal relationships.

Results

Overview of methods

The latent causal variable (LCV) model is based on a latent variable L that mediates the genetic
correlation between the two traits (Figure 1a). Under the LCV model, trait 1 is fully genetically
causal for trait 2 if it is perfectly genetically correlated with L, implying that the entire genetic
component of trait 1 is causal for trait 2 (Figure 1b). More generally, trait 1 is partially genetically
causal for trait 2 if the latent variable has a stronger genetic correlation with trait 1 than with
trait 2, implying that part of genetic component of trait 1 is causal for trait 2. In order to quantify
the proportion of the genetic component of trait 1 that is causal for trait 2, we define the genetic
causality proportion (gcp) of trait 1 on trait 2. The gcp ranges between 0 (no genetic causality) and
1 (full genetic causality). A high value of gcp (even if it is not exactly 1) implies that interventions
targeting trait 1 are likely to affect trait 2, to the extent that they mimic genetic perturbations to
trait 1. (However, we caution that the success of an intervention may depend on its mechanism
of action and on its timing relative to disease progression.) An intermediate value of gcp implies
that some but not all interventions targeting trait 1 will affect trait 2. For example, a recent study
provided evidence consistent with either a fully causal relationship between age at menarche (AAM)
and height or a shared hormonal pathway affecting both traits.11 If this shared pathway (modeled
by our latent variable L) has a large causal effect on AAM but a small causal effect on height, then
AAM would be partially but not fully genetically causal for height. Indeed, LCV provides evidence
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for only a partially genetically causal relationship ( ˆgcp = 0.43 (0.10), see below).
In order to test for partial genetic causality and to estimate the gcp, we exploit the fact that

if trait 1 is partially genetically causal for trait 2, then most SNPs affecting trait 1 will have
proportional effects on trait 2, but not vice versa (Figure 1c-e). Instead of using thresholds to
select subsets of SNPs,11 we compare the mixed fourth moments E(α2

1α1α2) and E(α2
2α1α2) of

marginal effect sizes for each trait. The rationale for utilizing these mixed fourth moments is that
if trait 1 is causal for trait 2, then SNPs with large effects on trait 1 (i.e. large α2

1) will have
proportional effects on trait 2 (large α1α2), so that E(α2

1α1α2) will be large; conversely, SNPs with
large effects on trait 2 (large α2

2) will generally not affect trait 1 (small α1α2), so that E(α2
2α1α2)

will not be as large. Thus, estimates of the mixed fourth moments can be used to test for partial
genetic causality and to estimate the gcp.

LCV assumes that this bivariate distribution is a sum of two independent distributions: (1)
a shared genetic component, whose values are proportional for both traits; and (2) a distribution
that does not contribute to the genetic correlation (more precisely, a distribution whose density
is mirror symmetric across both axes; see Online Methods). We interpret the first distribution
as “mediated” effects (corresponding to π; see Figure 1a) and the second distribution as “direct”
effects (corresponding to γ). The LCV model assumption is strictly weaker than the “exclusion
restriction” assumption of MR (see Online Methods); in particular, the LCV model permits both
correlated pleiotropic effects (mediated by L) and uncorrelated pleiotropic effects (not mediated by
L), while the exclusion restriction assumption permits neither. Under the LCV model, the genetic
causality proportion is defined as the number x such that:

q2
2

q2
1

= (ρ2
g)x, (1)

where qk is the normalized effect of L on trait k and ρg is the genetic correlation16 (note that
ρg = q1q2). When the gcp is positive, trait 1 is partially or fully genetically causal for trait 2; when
it is negative, trait 2 is partially or fully genetically causal for trait 1 (in most instances, we order
the two traits so that gcp ≥ 0). We note that partial genetic causality and the gcp can be defined
without making LCV (or other) model assumptions (see Online Methods).

In order to estimate the gcp, we utilize the following relationship between the mixed fourth
moments of the marginal effect size distribution and the parameters q1 and q2:

E(α3
1α2) = κπq3

1q2 + 3ρg, (2)

where π is the effect of a SNP on L and κπ = E(π4) − 3 is the excess kurtosis of π (see Online
Methods). This equation implies that if E(α3

1α2)2 ≥ E(α1α
3
2)2, then q2

1 ≥ q2
2.

We calculate statistics S(x) for each possible value of gcp = x, based on equation (2). These
statistics utilize estimates of the heritability,19 the genetic correlation,16 and the cross-trait LD
score regression intercept,16 in addition to estimates of the mixed fourth moments. We estimate
the variance of these statistics using a block jackknife and obtain an approximate likelihood function
for the gcp. We compute a posterior mean estimate of gcp (and a posterior standard deviation)
using a uniform prior on [−1,1]. We test the null hypothesis (that gcp = 0) using the statistic S(0).
Details of the method are provided in the Online Methods section. We have released open source
software implementing the LCV method (see URLs).
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Simulations with no LD: comparison with existing methods

To compare the calibration and power LCV with existing causal inference methods, we performed
a wide range of null and causal simulations involving simulated summary statistics with no LD. We
compared four main methods: LCV, random-effect two-sample MR5,9 (denoted MR), MR-Egger,7

and Bidirectional MR11 (see Online Methods). We also performed secondary comparisons to two
extensions of MR based on the weighted median estimator (MR-WME)8 and mode-based estimator
(MR-MBE)10 (whose performance was roughly similar to MR and to MR-Egger respectively; results
of secondary methods are reported in supplementary tables). We applied each method to simulated
GWAS summary statistics (N = 100k individuals in each of two non-overlapping cohorts; M =
50k independent SNPs20) for two heritable traits (h2 = 0.3), generated under the LCV model
(simulations under LCV model violations are described below). For each simulation, we display a
scatterplot illustrating the bivariate distribution of true SNP effect sizes on the two traits. LCV
uses LD score regression19 to normalize the summary statistics and cross-trait LD score regression16

to estimate the genetic correlation; for simulations with no LD, we use constrained-intercept LD
score regression16 for both of these steps, resulting in relatively precise estimates of the heritability
and the genetic correlation (simulations with LD are described below). A detailed description of
all simulations is provided in the Online Methods section, and simulation parameters are described
in Table S1.

First, we performed null simulations (gcp = 0) with uncorrelated pleiotropic effects (via γ1, γ2;
see Figure 1a) and zero genetic correlation. 1% of SNPs were causal for both traits (with inde-
pendent effect sizes, explaining 20% of heritability for each trait), and 4% of SNPs were causal for
each trait exclusively (Figure 2a, Table S2a-d). LCV produced conservative p-values (0.0% false
positive rate at α = 0.05); our normalization of the test statistic can lead to conservative p-values
when the genetic correlation is low (see Online Methods; analyses of real phenotypes are restricted
to genetically correlated traits). All three main MR methods produced well-calibrated p-values.
Even though the “exclusion restriction” assumption of MR– that there is no pleiotropy– is violated
here, these results confirm that uncorrelated pleiotropic effects do not confound random-effect MR
at large sample sizes.21 We caution that such pleiotropy is known to produce false positives if stan-
dard errors are computed using a less conservative fixed-effect approach.22 In these simulations, all
methods except LCV used the set of approximately 170 SNPs (on average) that were genome-wide
significant (p < 5 × 10−8) for trait 1 (or approximately 330 SNPs that were genome-wide significant
for either trait, in the case of Bidirectional MR).

Second, we performed null simulations with a nonzero genetic correlation. 1% of SNPs had
causal effects on L, and L had effects q1 = q2 =

√
0.2 on each trait (so that ρg = 0.2); 4% of

SNPs were causal for each trait exclusively (Figure 2b, Table S2). Even though only ∼20% of
significant SNPs for the exposure had pleiotropic effects on the outcome, MR and MR-Egger both
exhibited severely inflated false positive rates; in contrast, Bidirectional MR and LCV produced
well-calibrated p-values. Thus, correlated pleiotropic effects violate the MR exclusion restriction
assumption in a manner that leads to false positives. These simulations also violate the MR-Egger
assumption that the magnitude of pleiotropic effects on trait 2 are independent of the magnitude of
effects on trait 1 (the “InSIDE” assumption),7 as SNPs with larger effects on L have larger effects
on both trait 1 and trait 2 on average, consistent with known limitations.22

Third, we performed null simulations with a nonzero genetic correlation and differential poly-
genicity in the non-shared genetic architecture between the two traits. 1% of SNPs were causal for
L with effects q1 = q2 =

√
0.2 on each trait, 2% were causal for trait 1 but not trait 2, and 8% were
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causal for trait 2 but not trait 1 (Figure 2c, Table S2h-j). Thus, the likelihood that a SNP would
be genome-wide significant was higher for causal SNPs affecting trait 1 only than for causal SNPs
affecting trait 2 only. We hypothesized that this ascertainment bias would cause Bidirectional MR
to incorrectly infer that trait 1 was causal for trait 2. Indeed, Bidirectional MR (as well as other
MR methods) exhibited inflated false positive rates, while LCV produced well-calibrated p-values.

Fourth, we performed null simulations with a nonzero genetic correlation and differential power
for the two traits, reducing the sample size from 100k to 20k for trait 2. 0.5% of SNPs were causal for
L with effects q1 = q2 =

√
0.5 on each trait, and 8% were causal for each trait exclusively (Figure 2d,

Table S2k-m). Because per-SNP heritability was higher for shared causal SNPs than for non-shared
causal SNPs, shared causal SNPs were more likely to reach genome-wide significance in the smaller
trait 1 sample (N = 20k); thus, we hypothesized that Bidirectional MR would incorrectly infer that
trait 1 was causal for trait 2. Indeed, Bidirectional MR (as well as other MR methods) exhibited
inflated false positive rates, while LCV produced well-calibrated p-values.

Next, we performed causal simulations to assess whether LCV is well-powered to detect a causal
effect. We consider the relative power of LCV and MR methods to be of secondary importance,
given that MR often produces false positives (Figure 2); nonetheless, we report simulation results
for the MR methods in addition to LCV, for completeness. We note that LCV had lower power in
simulations with LD (see Simulations with LD). First, we chose a set of default parameters: sample
size was reduced to N = 25k for each trait, 5% of SNPs were causal for trait 1 (the causal trait),
there was a (fully) causal effect of size q2 = 0.2 of trait 1 on trait 2, and an additional 5% of SNPs
were causal for trait 2 only (Figure 3a). There were ∼15 genome-wide significant SNPs on average,
explaining ∼2% of h2. MR and LCV were well-powered to detect a causal effect at α = 0.001, while
bidirectional MR had lower power and MR-Egger had very low power. Second, we reduced the
sample size for trait 1 (Figure 3b, Table S3b-d), finding that LCV had high power while the MR
methods had low power, owing to the low number of genome-wide significant SNPs. We caution
that LCV produces false positives in simulations with LD with very low sample size, due to noisy
heritability estimates, so in practice we restrict our analyses of real traits to data sets with highly
significant heritability estimates (see Simulations with LD). Third, we reduced the sample size for
trait 2 (Figure 3c, Table S3e-g). LCV and MR had high power, while bidirectional MR and MR-
Egger had low power. Fourth, we reduced the causal effect size of trait 1 on trait 2 (Figure 3d and
Table S3h-j). LCV had low power, MR had moderately low power, and other methods had very low
power. Fifth, we increased the polygenicity of the causal trait (Figure 3e, Table S3k-m). LCV had
high power while the MR methods had low power, again owing to the low number of genome-wide
significant SNPs. We also simulated a partially genetically causal relationship (gcp=0.25-0.75),
with similar results (Table S3p-r). We compared our gcp estimates in fully causal simulations with
our gcp estimates in partially causal simulations, finding that LCV reliably distinguished the two
cases, unlike existing methods (Table S3a,p-r). We note that these estimates are biased toward
zero due to our use of a mean-zero prior, but we show below that our posterior mean estimates are
unbiased in the Bayesian sense (see Simulations with LD). We also note that our estimates of the
genetic correlation, which is equal to the size of the causal effect, were unbiased in these simulations
(Table S3).

In summary, we determined using simulations with no LD that LCV produced well-calibrated
null p-values in the presence of a nonzero genetic correlation, unlike MR and MR-Egger. LCV
avoided confounding when polygenicity or power differed between the two traits, unlike Bidirectional
MR and other methods (Figure 2). We also determined that LCV was well-powered to detect a
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true causal effect (Figure 3).

Simulations with no LD: LCV model violations

In order to investigate potential limitations of our approach, we performed null and causal simu-
lations under genetic architectures that violate LCV model assumptions. As noted above, partial
genetic causality is well-defined without making LCV (or other) model assumption (see Online
Methods). There are two classes of LCV model violations: independence violations and propor-
tionality violations. Roughly, independence violations involve a violation of the independence as-
sumption between (1) mediated effects (π) and (2) direct effects (γ) while still satisfying a key
proportionality condition related to the mixed fourth moments; as a result, independence viola-
tions are not expected to cause LCV to produce false positives (see Online Methods). Propor-
tionality violations, on the other hand, violate this proportionality condition and are potentially
more problematic. A representative example of an independence violation is a bivariate Gaussian
mixture model where one of the mixture components generates imperfectly correlated effect sizes
on the two traits. These SNPs underlying this mixture component can be viewed as having both
an effect on L and also a residual effect on the two traits directly, in violation of the independence
assumption. First, we performed null simulations under a Gaussian mixture model with a nonzero
genetic correlation. These simulations were similar to the simulations reported in Figure 2b, except
that the correlated SNP effect sizes (1% of SNPs) were drawn from a bivariate normal distribution
with correlation 0.5 (explaining 20% of heritability for each trait; in Figure 2b, these effects were
perfectly correlated). Similar to Figure 2b, LCV and bidirectional MR produced p-values that
were well-calibrated, while MR and MR-Egger produced inflated p-values (Figure 4a, Table S4a-d).
Second, similar to Figure 2c, we included differential polygenicity between the two traits, finding
that differential polygenicity caused all existing methods including bidirectional MR, but not LCV,
to produce false positives (Figure 4b, Table S4f-h). Third, similar to Figure 2d, we included dif-
ferential power between the two traits, again finding that LCV produced well-calibrated p-values
while existing methods produced false positives (Figure 4c, Table S4i-k).

A representative example of a proportionality violation is a model in which two intermediaries
L1 and L2 have different effect sizes on the two traits, and L1 and L2 also have unequal poly-
genicity. First, for comparison purposes, we considered a model with two intermediaries with equal
polygenicity; 2% of SNPs were causal for each intermediary, and 4% of SNPs were causal for each
trait exclusively. Because this model implies only an independence violation (see Online Methods),
we expected that LCV would not produce false positives. Indeed, LCV produced well-calibrated p-
values (Figure 4d, Table S5a). Similar to Figure 2b and Figure 4a, Bidirectional MR also produced
well-calibrated p-values, while MR and MR-Egger produced false positives. Second, we shifted the
polygenicity of the two intermediaries in opposite directions: 1% of SNPs were causal for L1 and
8% of SNPs were causal for L2, resulting in a proportionality violation. We expected that LCV
would produce false positives, as the intermediary with lower polygenicity would disproportion-
ately affect the mixed fourth moments. Indeed, LCV (as well as other methods) produced false
positives, indicating that proportionality violations cause LCV to produce false positives (Figure
4e, Table S5b-d). We investigated the gcp estimates produced by LCV in these simulations, find-
ing that LCV produced low gcp estimates ( ˆgcp ≈ 0.5; Figure S1a). We varied the difference in
polygenicity as well as the difference in the relative effect sizes of the two intermediaries, finding
that extreme parameter settings (e.g., a 32× difference in polygenicity in conjunction with a 25×
difference in the relative effect sizes of L1 and L2) were required to cause LCV to produce high gcp
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estimates (gcp > 0.6; Figure S1a). Thus, proportionality violations of LCV model assumptions can
cause LCV (and other methods) to produce false positives, but genetic causality remains the most
parsimonious explanation for high gcp estimates.

Finally, we performed (fully) causal simulations under LCV model violations. First, we simu-
lated an independence violation by specifying a Gaussian mixture model where every SNP affecting
trait 1 also affected trait 2, but the relative effect sizes were noisy (Figure 4f, Table S4l-n). Sample
size and polygenicity were similar to Figure 3a (4× lower sample size than Figure 4a). As expected,
LCV had lower power to detect a causal effect than in Figure 3a, although it still had moderately
high power. Second, we simulated a proportionality violation by specifying both a causal effect
(corresponding to L1) and an additional genetic confounder (corresponding to L2) (Figure 4g, Ta-
ble S5i-k). LCV had lower power to detect a causal effect than in Figure 3a, although it still had
high power. We investigated the gcp estimates produced by LCV in these simulations, finding that
they were substantially lower than 1 (Table S5i-k and Figure S1b). Therefore, gcp estimates lower
than 1 should not be viewed as conclusive evidence against a fully causal effect; an alternative
explanation is that model violations cause LCV to underestimate the gcp.

In summary, we determined in null simulations that independence violations do not cause
LCV to produce false positives; in addition, these simulations recapitulated the limitations of
existing methods that we observed in simulations under the LCV model (Figure 2). Proportionality
violations caused LCV (as well as existing methods) to produce false positives; however, extreme
values of the simulation parameters were required in order for LCV to produce high gcp estimates.
In causal simulations, we determined that both independence and proportionality violations lead
to reduced power for LCV (and other methods), as well as downwardly biased gcp estimates for
LCV.

Simulations with LD

Next, we performed simulations with LD; we note that LD can potentially affect the performance
of our method, which uses a modified version of LD score regression16,19 to normalize effect size
estimates and to estimate genetic correlations. LD was computed using M = 596k common SNPs
in N = 145k samples of European ancestry from the UK Biobank interim release.27 Unlike our
simulations with no LD, these simulations also included sample overlap. Because existing methods
exhibited major limitations in simulations with no LD (Figure 2 and Figure 4), we restricted these
simulations to the LCV method. A detailed description of the simulations is provided in the Online
Methods section.

First, we performed null simulations to assess calibration. We chose a set of default parameters
similar to Figure 2b and varied each parameter in turn. In particular, similar to Figure 2, these
simulations included uncorrelated pleiotropy, genetic correlations, differential polygenicity between
the two traits, and differential power between the two traits (Table 1a-f and Table S6a-m). LCV
produced approximately well-calibrated or conservative false positive rates. Slight inflation was ob-
served due to noise in our heritability estimates (Table 1a,c-f and Table S6c-m); proper calibration
was restored by using constrained-intercept LD score regression19 (resulting in more precise heri-
tability estimates) (Table S7a-f). To avoid problems with noisy heritability estimates, we restrict
our analyses of real traits to data sets with highly significant heritability estimates (Z score for
nonzero h2 = Zh > 7). We also determined that uncorrected population stratification led to false
positives (Table S9).

Second, we performed causal simulations to assess power. We chose a set of default parameters
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similar to our null simulations, finding that LCV was well-powered (Table 1h), although its power
was lower than in simulations with no LD (Figure 3a). We varied each parameter in turn, finding
that power was reduced when we reduced the sample size, increased the polygenicity of the causal
trait, reduced the causal effect size, or simulated a partially causal rather than fully causal genetic
architecture (Table 1i-l and Table S6u-bb), similar to simulations with no LD (Figure 3b-f). These
simulations indicate that LCV is well-powered to detect a causal effect for large GWAS under most
realistic parameter settings, although its power does depend on genetic parameters that are difficult
to predict.

Third, to assess the unbiasedness of gcp posterior mean (and variance) estimates, we performed
simulations in which the true value of gcp was drawn uniformly from [−1,1] (corresponding to
the prior that LCV uses to compute its posterior mean estimates, see Online Methods). We
expected posterior-mean estimates to be unbiased in the Bayesian sense that E(gcp∣ ˆgcp) = ˆgcp
(which differs from the usual definition of unbiasedness, that E( ˆgcp∣gcp) = gcp).26 Thus, we binned
these simulations by ˆgcp and plotted the mean value of gcp within each bin (Figure S2). We
determined that mean gcp within each bin was concordant with ˆgcp. In addition, the root mean
squared error was 0.15, approximately consistent with the root mean posterior variance estimate
of 0.13 (Table S8).

In summary, we confirmed using simulations with LD that LCV produces well-calibrated false
positive rates under a wide range of realistic genetic architectures; some p-value inflation was
observed when heritability estimates were noisy, but false positives can be avoided in analyses of
real traits by restricting to traits with highly significant heritability (Zh > 7). We also confirmed that
LCV is well-powered to detect a causal effect under a wide range of realistic genetic architectures,
and produces unbiased posterior mean estimates of the gcp.

Application to real phenotypes

We applied LCV and the MR methods to GWAS summary statistics for 52 diseases and complex
traits, including summary statistics for 37 UK Biobank traits27,28 computed using BOLT-LMM29

(average N=429k) and 15 other traits (average N=54k) (see Table S10 and Online Methods). The
52 traits were selected based on the significance of their heritability estimates (Zh > 7), and traits
with very high genetic correlations (∣ρg ∣ > 0.9) were pruned, retaining the trait with higher Zh. As
in previous work, we excluded the MHC region from all analyses, due to its unusually large effect
sizes and long-range LD patterns.19

We applied LCV to the 429 trait pairs (32% of all trait pairs) with a nominally significant
genetic correlation (p < 0.05), detecting significant evidence of full or partial genetic causality for
59 trait pairs (FDR < 1%), including 30 trait pairs with ˆgcp > 0.6. We primarily focus on trait
pairs with high gcp estimates, which are of greatest biological interest (and extremely unlikely to
be false positives; see Simulations with no LD: LCV model violations and Figure S1a). Results
for selected trait pairs are displayed in Figure 5, results for the 30 trait pairs with ˆgcp > 0.6 are
reported in Table 2, results for all 59 significant trait pairs are reported in Table S11, and results
for all 429 genetically correlated trait pairs are reported in Table S12.

Myocardial infarction (MI) had a nominally significant genetic correlation with 31 other traits,
of which six had significant evidence (FDR < 1%) for a fully or partially genetically causal effect
on MI (Table 2); there was no evidence for a genetically causal effect of MI on any other trait.
Consistent with previous studies, these traits included LDL,3,13 triglycerides4 and BMI,30 but not
HDL.3 The effect of BMI was also consistent with prior MR studies,30–33 although these studies did
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not attempt to account for pleiotropic effects (also see ref. 34, which detected no effect). There was
also evidence for a genetically causal effect of high cholesterol, which was unsurprising (due to the
high genetic correlation with LDL) but noteworthy because of its strong genetic correlation with
MI, compared with LDL and triglycerides. The result for HDL and MI did not pass our significance
threshold (FDR < 1%), but was nominally significant (p = 0.02, Table S12); we residualized HDL
summary statistics on summary statistics for three established causal risk factors (LDL, BMI and
triglycerides), determining that residualized HDL remained genetically correlated with MI but
showed no evidence of genetic causality (p = 0.8). On the other hand, most of the six traits with
significant causal effects on MI remained significant after residualizing on the established causal
risk factors (Table S13). However, we caution that applying LCV to summary statistics that have
been residualized on another complex trait, or computed using a complex trait as a covariate,
can lead to false-positive or false-negative results due to collider bias;35,36 therefore, we do not
recommend applying LCV to residualized summary statistics as a primary analysis. We confirmed
that self-reported MI in UK Biobank was highly genetically correlated with CAD in CARDIoGRAM
consortium data39 (ρ̂g = 1.34(0.25); not significantly different from 1).

We also detected evidence for a fully or partially genetically causal effect of hypothyroidism on
MI (Table 2). Although hypothyroidism is not as well-established a cardiovascular risk factor as
high LDL, its genetic correlation with MI is comparable (Table 2), and this effect is mechanistically
plausible.40,41 While this result was robust in the conditional analysis (Table S13), and there was
no strong evidence for a genetically causal effect of hypothyroidism on lipid traits (Table S12),
it is possible that this effect is mediated by lipid traits. A recent MR study of thyroid hormone
levels, at ∼20× lower sample size than the present study, provided evidence for a genetically causal
effect on LDL but not CAD.42 On the other hand, clinical trials have demonstrated that treatment
of subclinical hypothyroidism using levothyroxine leads to improvement in several cardiovascular
risk factors.43–47 We also detected evidence for a fully or partially genetically causal effect of
hypothyroidism on T2D (Table S11), consistent with a longitudinal association between subclinical
hypothyroidism and diabetes incidence,48 as well as an effect of thyroid hormone withdrawal on
glucose disposal in athyreotic patients.49

We identified four traits with evidence for a fully or partially genetically causal effect on hyper-
tension (Table 2), which is genetically correlated with MI (ρ̂g = 0.49(0.10)). These included geneti-
cally causal effects of BMI, consistent with the published literature,11,38 as well as triglycerides and
HDL. The genetically causal effect of HDL indicates that there exist major metabolic pathways af-
fecting hypertension with little or no corresponding effect on MI. The positive partially genetically
causal effect of reticulocyte count, which had a low gcp estimate ( ˆgcp = 0.41(0.13)), is likely related
to the substantial genetic correlation of reticulocyte count with triglycerides (ρ̂g = 0.33(0.05)) and
BMI (ρ̂g = 0.39(0.03)).

We detected evidence for a (negative) genetically causal effect of LDL on bone mineral den-
sity (BMD; Table 2). A meta-analysis of seven randomized clinical trials reported that statin
administration increased bone mineral density, although these clinical results have generally been
interpreted as evidence of a shared pathway affecting LDL and BMD.50 Moreover, familial defective
apolipoprotein B leads to high LDL cholesterol and low bone mineral density.51 To further validate
this result, we performed two-sample MR using 8 SNPs that were previously used to show that
LDL affects CAD (in ref. 3; see Online Methods), finding modest evidence for a (negative) causal
effect (p = 0.04). Because there is a clear mechanistic hypothesis linking each of these variants
to LDL directly, this analysis provides separate evidence for a genetically causal effect (LCV does
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not prioritize variants that are more likely to satisfy instrumental variable assumptions). We also
detected a partially genetically causal effect of height on BMD, with a lower gcp estimate (Table 2).

We detected evidence for a fully or partially genetically causal effect of triglycerides on five
cell blood traits: mean cell volume, platelet distribution width, reticulocyte count, eosinophil
count and monocyte count (Table 2). These results highlight the pervasive effects of metabolic
pathways, which can induce genetic correlations with cardiovascular phenotypes. For example,
shared metabolic pathways may explain the high genetic correlation of reticulocyte count with MI
(ρ̂g = 0.31(0.06)) and hypertension (ρ̂g = 0.27(0.04)).

Although we have focused primarily on the 30 trait pairs with high gcp estimates ( ˆgcp > 0.6),
approximately half of significant trait pairs had lower gcp estimates. Given that there is lower
power to detect trait pairs with low gcp values (Table S3a,p-r), it is likely that partial genetic
causality with gcp < 0.6 is more common than full or nearly-full genetic causality with gcp > 0.6.
Trait pairs with low gcp estimates can suggest plausible biological hypotheses. For example, we
identified a partially genetically causal effect of age at menarche (AAM) on height ( ˆgcp = 0.43(0.10),
Table S11), suggesting that these traits are influenced by a shared hormonal pathway that is more
strongly correlated with AAM than with height, as recently hypothesized.11

A recent study reported genetic correlations between various complex traits and number of
children in males and females.52 We identified only one trait (balding in males) with a fully
or partially causal effect on number of children (negative effect on number of children in males;
Table 2). For college education, which has a strong negative genetic correlation with number of
children (ρ̂g = −0.31(0.07) and −0.26(0.06) in males and females respectively), we obtained low gcp
estimates with low standard errors ( ˆgcp = 0.00(0.09) and ˆgcp = 0.04(0.21) respectively, Table S12),
providing evidence against causality. Thus, a genetic correlation with number of children does not
imply a causal effect. This result does not contradict the conclusion of reference 52 that complex
traits are under natural selection, as natural selection produces a change in the mean value of a
trait even if the trait is non-causally correlated with fitness.53

It has been reported that polygenic autism risk is positively genetically correlated with ed-
ucational attainment16 (and cognitive ability,54 a highly genetically correlated trait57), possibly
consistent with the hypothesis that common autism risk variants are maintained in the population
by balancing selection.55,56 If balancing selection involving a trait related to educational attain-
ment explained a majority of autism risk, we would expect that most common variants affecting
autism risk would also affect educational attainment, leading to a partially genetically causal ef-
fect of autism on educational attainment. However, we detected evidence against such an effect
( ˆgcp = 0.13(0.13), ρ̂g = 0.23(0.07); Table S12); thus, balancing selection acting on educational
attainment or a closely related trait is unlikely to explain the high prevalence of autism.

Several causal or plausibly causal relationships were not identified by LCV (Table S14). We note
that non-significant LCV p-values do not constitute evidence against a causal effect, (confidently low
gcp estimates do constitute evidence against a causal effect, but LCV did not produce confidently
low gcp estimates for most trait pairs discussed below; Table S14). First, LCV did not identify
a causal effect of BMI on T2D, due to two outlier loci that do not support a causal effect. After
applying an outlier removal procedure to remove these loci (see Online Methods), LCV provides
convincing evidence for a fully or partially genetically causal effect (p = 9×10−6). Pleiotropic outlier
loci can cause LCV to produce false negatives (but not false positives); however, this phenomenon
appears to be uncommon (Table S15), and we generally do not recommend removing outlier loci
because they may contain valuable information. Second, LCV did not identify a causal effect of
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asthma on pulmonary function (FVC or FEV1/FVC). A possible explanation is diagnosis bias:
if individuals with low pulmonary function (for reasons unrelated to asthma) are more likely to
be diagnosed with asthma, then this bias would mask the causal effect of asthma on pulmonary
function. Third, LCV did not identify a causal effect of smoking status on pulmonary function or
MI. A possible explanation is that many SNPs affect smoking status only indirectly, with a primary
effect on smoking heaviness or deepness of inhalation.59 Such SNPs would have much larger effects
on cardiopulmonary traits than would be expected based on their effect on smoking status. This
type of pleiotropy causes LCV to have lower power (Figure 4f). Fourth, LCV did not identify a
causal effect of anorexia on BMI. A possible explanation is the high polygenicity of anorexia, as
LCV has lower power when the polygenicity of the causal trait is high (Figure S3e). We note that
for most of the trait pairs described above, Bidirectional MR also did not detect a causal effect
(Table S14).

Although none of the significant trait pairs with high gcp estimates (Table 2 are obvious false
positives, we assessed the likelihood of false positives due to LCV model violations using an auxiliary
test for partial genetic causality that does not rely on LCV model assumptions; this test directly
estimates the correlated mixture component of the bivariate distribution of SNP effect sizes and
compares the proportion of heritability explained by this correlated component for each trait.
Simulations indicate that this test is robust to both types of LCV model violations (Table S4 and
S5), though less powerful and prone to false positives due to unequal power, hence not recommended
for broad use (Tables S2 and S3); see Supplementary Note for a description of the method and
its performance in simulations. We applied the auxiliary test to the 30 trait pairs with high gcp
estimates, finding that the estimated direction of effect was concordant with LCV for 30/30 trait
pairs. While the auxiliary test replicated the LCV result at a nominal significance level (single-
tailed p < 0.05) for only 17/30 trait pairs, the fraction 17/30 is expected to be an underestimate
of the true positive rate, due to limited power. Indeed, when we applied the auxiliary test to
the remaining 394 trait pairs, it produced positive results at the corresponding significance level
(two-tailed p < 0.10) for only 41/394 trait pairs (39 expected under the null; includes 7/29 trait
pairs that LCV reported as significant with ˆgcp < 0.6). This analysis confirms that the 30 trait
pairs reported in Table 2 are extremely unlikely to be false positives.

In order to evaluate whether the limitations of MR observed in simulations (Figure 2) are also
observed in analyses of real traits, we applied MR, MR-Egger and Bidirectional MR to all 429
genetically correlated trait pairs (Table S12). MR reported significant causal relationships (1%
FDR) for 271/429 trait pairs, including 155 pairs of traits for which each trait was reported to be
causal for the other trait. This confirms that MR frequently produces false positives in the presence
of a genetic correlation, as predicted by our simulations (Figure 2). In contrast, LCV reported a
significant partially or fully genetically causal relationship for only 59 trait pairs (Table S11), and
never reported a causal effect in both directions. Similarly, Bidirectional MR reported a significant
causal relationship for only 45 trait pairs (including 17 pairs of traits that overlapped with LCV),
and never reported a causal effect in both directions. We provide a comparison between the results
of LCV and Bidirectional MR in Table S16.

Discussion

We have introduced a latent causal variable (LCV) model to identify causal relationships among
genetically correlated pairs of complex traits. We applied LCV to 52 traits, finding that many
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trait pairs do exhibit partially or fully genetically causal relationships. Our results included several
novel findings, including a genetically causal effect of LDL on bone mineral density (BMD) which
suggests that lowering LDL may have additional benefits besides reducing the risk of cardiovascular
disease.

Our method represents an advance for two main reasons. First, LCV reliably distinguishes
between genetic correlation and full or partial genetic causation. Unlike existing MR methods, LCV
provided well-calibrated false positive rates in null simulations with a nonzero genetic correlation,
even in simulations with differential polygenicity or differential power between the two traits. Thus,
positive findings using LCV are more likely to reflect true causal effects. Second, we define and
estimate the genetic causality proportion (gcp) to quantify the degree of causality. This parameter,
which provides information orthogonal to the genetic correlation or the causal effect size, enables
a non-dichotomous description of the causal architecture. Even when both MR and LCV provide
significant p-values, the p-value alone is consistent with either fully causal or partially causal genetic
architectures, limiting its interpretability; our gcp estimates appropriately describe the range of
likely hypotheses.

This study has several limitations. First, the LCV model includes only a single intermediary and
can be confounded in the presence of multiple intermediaries, in particular when the intermediaries
have differential polygenicity (Figure 4e). Indeed, some trait pairs with low gcp estimates are
potentially consistent with such a phenomenon (Table S11). However, the 30 trait pairs with
ˆgcp > 0.6 reported in Table 2 are unlikely to be false positives, both because our simulations show

that model violations generally do not lead to high gcp estimates (see Figure S1a) and because
the estimated direction of effect for all 30 trait pairs was concordant in an analysis using an
auxiliary method that is robust to violations of LCV model assumptions (see Supplementary Note
and Table S11). Second, because LCV models only two traits at a time, it cannot be used to
identify conditional effects given observed confounders.4,60 This approach was used, for example,
to show that triglycerides affect coronary artery disease risk conditional on LDL.4 However, it is
less essential for LCV to model observed genetic confounders, since LCV explicitly models a latent
genetic confounder. Third, LCV can be susceptible to false negatives due to outlier loci, bias in
disease diagnosis, strong pleiotropic effects, or a highly polygenic causal trait (Table S14). However,
LCV is well-powered to detect a causal effect in most simulations (Figure 3), and it detects many
established causal relationships among real traits with very high statistical significance (Table 2).
Fourth, LCV is not currently applicable to traits with small sample size and/or heritability, due
to low power as well as incorrect calibration. However, GWAS summary statistics at large sample
sizes have become publicly available for increasing numbers of diseases and traits, including UK
Biobank traits.29 Fifth, the LCV model can be confounded confounded by shared population
stratification, so it is critical for association statistics to be corrected for stratification. Sixth, while
many trait pairs have high gcp estimates ( ˆgcp > 0.6), it is not clear whether most of these trait
pairs reflect fully or partially genetically causal relationships. A gcp of 1 and a gcp of ∼0.6 would
be interpreted differently, as a gcp of ∼0.6 suggests that only some interventions on trait 1 will
modify trait 2, depending on their mechanism of action. This type of uncertainty can be reduced
at higher sample size, but not eliminated entirely. Seventh, even full genetic causality must be
interpreted with caution before designing disease interventions, as interventions may fail to mimic
genetic perturbations. For example, factors affecting a developmental phenotype such as height
might need to be modified at the correct developmental time point in order to have any effect;
this limitation broadly applies to all methods for inferring causality using genetic data. Eighth,
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LCV does not model LD explicitly (unlike cross-trait LD score regression16), and consequently it
models the marginal, rather than the causal, effect size distribution. Modeling the causal effect
size distribution while explicitly accounting for LD would enable LCV analyses to be conditioned
on various functional annotations, enabling models involving different shared genetic components
such as SNPs linked to gene regulation in different cell types. Ninth, power might also be increased
by including rare and low-frequency variants; even though these SNPs explain less complex trait
heritability than common SNPs,20,61 they may contribute significantly to power if the genetic
architecture among these SNPs is more sparse than among common SNPs. Tenth, we cannot infer
whether inferred causal effects are linear. For example, it is plausible that BMI would have a
small effect on MI risk for low-BMI individuals and a large effect for high-BMI individuals, but
this type of nonlinearity cannot be gleaned from summary statistics (unless MI summary statistics
were stratified by BMI). Eleventh, MR-style analyses have been applied to gene expression,62–64

and the potential for confounding due to pleiotropy in these studies could possibly motivate the use
of LCV in this setting, but LCV is not applicable to molecular traits, which may be insufficiently
polygenic for the LCV random-effects model to be well-powered. Finally, we have not exhaustively
benchmarked LCV against every published MR method, but have restricted our simulations to
the most widely used MR methods.5,7–11 We note that there exist additional methods that aim to
improve robustness by excluding or effectively down-weighting variants whose causal effect estimates
appear to be outliers,6,12 conceptually similar to the weighted median8 and mode-based estimator;10

however, we believe that any method that relies on genome-wide significant SNPs for a single one
trait is likely to be confounded by genetic correlations (Figure 2). We further note that MR should
ideally be applied to carefully curated sets of genetic variants that aim to exclude pleiotropic effects
(MR with curation), but that curated sets of genetic variants are unavailable for most complex
traits; in particular, it is difficult to compare LCV to MR with curation, as the performance of MR
with curation will strongly depend on the quality of information used for curation, which can vary
in practice.

Despite these limitations, for most pairs of complex traits we recommend using LCV instead of
MR. When the exposure is a complex trait, MR is likely to be confounded by genetic correlations,
and it may be impossible to identify valid instruments. However, there are several scenarios in
which MR should be used, either in addition to or instead of LCV. First, when it is possible to
produce a curated set of variants that are likely to represent valid instruments because they have
a mechanistically direct effect on the exposure, it is appropriate to perform MR. For example, an
MR analysis identified a causal effect of vitamin D on multiple sclerosis, utilizing genetic variants
near genes with well-characterized effects on vitamin D synthesis, metabolism and transport; these
variants all provided consistent estimates of the causal effect.66 As another example, cis-eQTLs can
be used as genetic instruments to test for an effect of gene expression because they are unlikely to be
confounded by processes mediated in trans, motivating applications of MR and related methods to
gene expression62–64 (however, these studies also have other limitations, such as the high likelihood
that GWAS SNPs may approximately colocalize with an eQTL63,65). Second, when prior knowledge
about likely pleiotropic factors is available, it is appropriate to perform MR in addition to LCV,
either restricting to a curated set of variants without overt pleiotropic effects or correcting for these
effects in a multivariate regression model.4,60 Third, when one of the traits has low significance for
nonzero heritability, LCV may produce unreliable estimates and MR should be used either instead
of or in addition to LCV. Finally, well-powered MR studies can be used to show that two traits do
not have a strong, fully genetically causal relationship, as confounding due to pleiotropy is more
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likely to lead to false positives than false negatives. In each case, MR should be performed with
multiple genetic variants, a bidirectional analysis11,17 should be performed to reduce the potential
for confounding due to genetic correlations, and consistency of causal effect estimates across variants
should be assessed both manually and analytically.12
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URLs

Open-source software implementing our method is available at github.com/lukejoconnor/LCV.

Online Methods

LCV model

The LCV random effects model assumes that the distribution of marginal effect sizes for the two
traits can be written as the sum of two independent bivariate distributions (visualized in Figure
1c-e in orange and blue respectively): (1) a shared genetic component (q1π, q2π) whose values are
proportional for both traits; and (2) an even genetic component (γ1, γ2) whose density is mirror
symmetric across both axes. Distribution (1) resembles a line through the origin, and we interpret
its effects as being mediated by a latent causal variable (L) (Figure 1a); distribution (2) does not
contribute to the genetic correlation, and we interpret its effects as direct effects. Informally, the
LCV model assumes that any asymmetry in the shared genetic architecture arises from the action
of a latent variable.

In detail, the LCV model assumes that there exist scalars q1, q2, and a distribution (π, γ1, γ2)
such that

(α1, α2) = (q1π + q2π) + (γ1, γ2), where π ⊥ (γ1, γ2) and (γ1, γ2)∼(−γ1, γ2)∼(γ1,−γ2). (3)

Here αk is the random marginal effect of a SNP of trait k, π interpreted as the marginal effect of a
SNP on L, and γk is interpreted as the non-mediated effect of a SNP on trait k. α and π (but not
γ) are normalized to have unit variance, and all random variables have zero mean. (The symbol
“∼” means “has the same distribution as.”) q1, q2 are the model parameters of primary interest,
and we can relate them to the mixed fourth moments, which are observable (equation (2)). In
particular, this implies that the model is identifiable (except when the excess kurtosis κπ = 0; see
Supplementary Note). We do not expect that κπ will be exactly zero for any real trait, but there
will be lower power for traits with higher polygenicity. Note that we have avoided assuming a
particular parametric distribution.

The LCV model assumptions are strictly weaker than the assumptions made by MR. Like LCV,
a formulation of the MR assumptions is that the bivariate distribution of SNP effect sizes can be
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expressed in terms of two distributions. In particular, it assumes that the effect size distribution
is a mixture of (1’) a distribution whose values are proportional for both traits (representing all
SNPs that affect the exposure Y1) and (2’) a distribution with zero values for the exposure Y1
(representing SNPs that only affect the outcome Y2). These two distributions can be compared
with distributions (1) and (2) above. Because (1’) is identical to (1) and (2’) is a special case of (2),
the LCV model assumptions are strictly weaker than the MR assumptions (indeed, much weaker).
We also note that the MR model is commonly illustrated with a non-genetic confounder affecting
both traits. Our latent variable L is a genetic variable, and it is not analogous to the non-genetic
confounder. Similar to MR, LCV is unaffected by nongenetic confounders (such a confounder may
result in a phenotypic correlation that is unequal to the genetic correlation).

The genetic causality proportion (gcp) is defined as:

gcp ∶= log ∣q2∣ − log ∣q1∣
log ∣q2∣ + log ∣q1∣

, (4)

which satisfies

q2
2

q2
1

= (ρ2
g)gcp, (5)

where the genetic correlation ρg is equal to q1q2. gcp is positive when trait 1 is partially genetically
causal for trait 2. When gcp = 1, trait 1 is fully genetically causal for trait 2: q1 = 1 and the
causal effect size is q2 = ρg (Figure 1b,e). The LCV model is broadly related to dimension reduction
techniques such as Factor Analysis67 and Independent Components Analysis,68 although it differs
in its modeling assumptions as well as its goal (causal inference); our inference strategy (mixed
fourth moments) also differs.

Under the LCV model assumptions, we derive equation (2) as follows:

E(α3
1α2) =E((γ1 + q1π)3(γ2 + q2π))

=q3
1q2E(π4) + 3q1q2E(π2γ2

1)
=q3

1q2E(π4) + 3q1q2E(π2)E(γ2
1)

=q3
1q2E(π4) + 3q1q2(1)(1 − q2

1)
=q3

1q2(E(π4) − 3) + 3q1q2. (6)

In the second line, we used the independence assumption to discard cross-terms of the form γpπ
3

and γ3
1π, and we used the symmetry assumption to discard terms of the form γ1γ

3
2 . In the third and

fourth lines, we used the independence assumption, which implies that E(γ2
1π

2) = E(γ2
1)E(π2) =

E(γ2
1) = 1 − q2

1. The factor E(π4) − 3 is the excess kurtosis of π, which is zero when π follows
a Gaussian distribution; in order for equation (2) to be useful for inference, E(π4) − 3 must be
nonzero, and in order for the model to be identifiable, π must be non-Gaussian (see Supplementary
Note).

Estimation under the LCV model

In order to estimate the gcp and to test for partial causality, we utilize six steps. First, we use LD
score regression19 to estimate the heritability of each trait; these estimates are used to normalize
the summary statistics. Second, we apply cross-trait LD score regression16 to estimate the genetic
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correlation; the intercept in this regression is also used to correct for possible sample overlap when
estimating the mixed fourth moments. Third, we estimate the mixed fourth moments E(α1α

3
2) and

E(α3
1α2) of the bivariate effect size distribution. Fourth, we compute test statistics for each possible

value of the gcp, based on the estimated genetic correlation and on the estimated mixed fourth
moments. Fifth, we jackknife on these test statistics to estimate their standard errors, similar to
ref. 19, obtaining a likelihood function for the gcp. Sixth, we obtain posterior means and standard
errors for the gcp using this likelihood function and a uniform prior distribution. These steps are
detailed below.

First, we apply LD score regression to normalize the test statistics. Under the LCV model,
the marginal effect sizes for each trait, α1 and α2, have unit variance. We use a slightly modified
version of LD score regression,19 with LD scores computed from UK10K data.58 In particular, we
run LD score regression using a slightly different weighting scheme, matching the weighting scheme
in our mixed fourth moment estimators; the weight of SNP i was:

wi ∶= max(1,1/`HapMap
i ), (7)

where `HapMap
i was the estimated LD score between SNP i and other HapMap3 SNPs (this is

approximately the set of SNPs that were used in the regression). This weighting scheme is motivated
by the fact that SNPs with high LD to other regression SNPs will be over-counted in the regression
(see ref. 19). Similar to ref. 16, we improve power by excluding large-effect variants when computing
the LD score intercept; for this study, we chose to exclude variants with χ2 statistic 30× the mean
(but these variants are not excluded when computing χ̄2). Then, we divide the summary statistics

by s =
√
χ̄2 − σ̂2

ε , where χ̄2 is the weighted mean χ2 statistic and σ̂2
ε is the LD score intercept. (We

also divide the LD score intercept by s2.) We assess the significance of the heritability by performing
a block jackknife on s, defining the significance Zh as s divided by its estimated standard error.

Second, to estimate the genetic correlation, we apply cross-trait LD score regression.16 Similar
to above, we use a slightly modified weighting scheme (equation (7)), and we exclude large-effect
variants when computing the cross-trait LD score intercept. We assess the significance of the genetic
correlation using a block jackknife.

Third, we estimate the mixed fourth moments E(α1α
3
2) using the following estimation equation:

E(a1a
3
2∣α1, α2) =α1α

3
2 +E(ε1ε32) + 3E(α1α2ε

2
2) +E(α2

2ε1ε2)
=α1α

3
2 + 3E(ε1ε2)E(ε22) + 3α1α2E(ε22) + α2

2E(ε1ε2)
=α1α

3
2 + 3σ̂ε1ε2 σ̂

2
ε2 + 3α1α2σ̂

2
ε2 + α

2
2σ̂ε1ε2 , (8)

where E(ε2k) is the LD score regression intercept for trait k and σ̂ε1ε2 is the cross-trait LD score
regression intercept. For simulations with no LD, we use E(ε2k) = 1/sNk and E(ε1ε2) = 0 instead of
estimating these values.

Fourth, we define a collection of statistics S(x) for x ∈X = {−1,−.01,−.02, ...,1} (corresponding
to possible values of gcp):

S(x) ∶= A(x) −B(x)
max(1/∣ρ̂g ∣,

√
A(x)2 +B(x)2)

A(X) = ∣ρg ∣−xk̂1, B(x) = ∣ρg ∣xk̂2, (9)

The motivation for utilizing the normalization by
√
A(x)2 +B(x)2 is that the magnitude of A(x)

and B(x) tend to be highly correlated, leading to increased standard errors if we only use the
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numerator of S. However, the denominator tends to zero when the genetic correlation is zero,
leading to instability in the test statistic and false positives. The use of the threshold leads to
conservative, rather than inflated, standard errors when the genetic correlation is zero or nearly zero.
We recommend only analyzing trait pairs with a significant genetic correlation, and this threshold
usually has no effect on the results. It is also inadvisable to analyze trait pairs whose genetic
correlation is non-significant because for positive LCV results, the genetic correlation provides
critical information about the causal effect size and direction.

Fifth, we estimate the variance of S(x) using a block jackknife with k = 100 blocks of contiguous
SNPs, resulting in minimal non-independence between blocks. Blocks are chosen to include the same
number of SNPs, and the jackknife standard error is

σ̂S(x) =

¿
ÁÁÁÀ101

100

∑
j=1

(Sj(x) − S̄(x))2 (10)

where Sj(x) is the test statistic computed on blocks 1, ..., j − 1, j + 1, ...100 and S̄(x) is the mean
of the jackknife estimates. We compute an approximate likelihood, L(S∣gcp = x), by assuming
(1) that L(S∣gcp = x) = L(S(x)∣gcp = x) and (2) that if gcp = x then S(x)/σ̂S(x) follows a T
distribution with 98 degrees of freedom.

Sixth, we impose a uniform prior on gcp, enabling us to obtain a posterior mean estimate of
the gcp:

ˆgcp ∶= 1

∣X ∣ ∑x∈X
xL(x) (11)

The estimated standard error is:

ŝe ∶=
¿
ÁÁÀ 1

∣X ∣ ∑x∈X
(x − ˆgcp)2L(x). (12)

In order to compute p-values, we apply a T-test to the statistic S(0).

Existing Mendelian randomization methods

Two-sample MR. As described in ref. 5, we ascertained significant SNPs (p < 5 × 10−8, χ2

test) for the exposure and performed an unweighted regression, with intercept fixed at zero, of the
estimated effect sizes on the outcome with the estimated effect sizes on the exposure (in practice,
a MAF-weighted and LD-adjusted regression is often used; in our simulations, all SNPs had equal
MAF, and there was no LD). To assess the significance of the regression coefficient, we estimated

the standard error as se =
√

1
K ∑

K
k=1 β̄

2
k2

∑K
k=1 β̂

2
k1

, where β̄k2 is the kth residual, N2 is the sample size in the

outcome cohort, and K is the number of significant SNPs. This estimate of the standard error
allows the residuals to be overdispersed compared with the error that is expected from the GWAS
sample size. To obtain p values, we applied a two-tailed t-test to the regression coefficient divided
by its standard error, with K − 1 degrees of freedom.

MR-Egger. As described in ref. 7, we ascertained significant SNPs for the exposure and coded
them so that the alternative allele had a positive estimated effect on the exposure. We performed

17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


an unweighted regression with a fitted intercept of the estimated effect sizes on the outcome on
the estimated effect sizes on the exposure. We assessed the significance of the regression using the
same procedure as for two-sample MR, except that the t-test used K − 2 rather than K − 1 degrees
of freedom.

Bidirectional MR. We implemented bidirectional mendelian randomization in a manner similar
to ref. 11. Significant SNPs were ascertained for each trait. If the same SNP was significant for both
traits, then it was assigned only to the trait where it ranked higher (if a SNP ranked equally high
for both traits, it was excluded from both SNP sets). The Spearman correlations r1, r2 between
the z scores for each trait was computed on each set of SNPs, and we applied a χ2

1 test to

χ2 = 1
1

K1−3 +
1

K2−3

(atanh(r1) − atanh(r2))2, (13)

where Kj is the number of significant SNPs for trait j. In ref. 11, the statistics atanh(rj) were
also used, but a relative likelihood comparing several different models was reported instead of a
p-value. We chose to report p-values for Bidirectional MR in order to allow a direct comparison
with other methods.

Weighted median. As described in ref. 8, we ascertained significant SNPs for the exposure and
computed ratio estimates and weights for each SNP. We computed the weighted median of the ratio
estimates and estimated the standard error using a parametric bootstrap (100 bootstrap runs). We
assessed significance using a Z test.

Mode based estimator. We ascertained significant SNPs for the exposure and computed ratio
estimates for each SNP. We fit a curve to the observed ratio estimates using the Matlab fitdist()
function with a bandwidth parameter as recommended in ref. 10, with uniform SNP weights. We
verified that the Matlab fitdist() function produces identical curves as the original implementation
in R. We computed the mode of the smoothed distribution and estimated its standard error using
a parametric bootstrap (100 bootstrap runs). We assessed significance using a Z test.

Selection of genetic instruments on real data. For our applications of MR and related
methods to real data, we selected genetic instruments using a greedy pruning procedure. We
ranked all genome-wide significant SNPs for the exposure (p < 5× 10−8) by χ2 statistic. Iteratively,
we removed all SNPs within 1cM of the first SNP in the list, obtaining a set of independent lead
SNPs separated by at least 1cM. We confirmed using an LD reference panel that our 1cM window
was sufficient to minimize LD among the set of retained SNPs.

Application of MR to LDL and BMD. We applied two-sample MR (see above) to 8 curated
SNPs that were previously used to show that LDL has a causal effect on CAD in ref. 3. 10 SNPs
were used in ref. 3, of which summary statistics were available for 8 SNPs: rs646776, rs6511720,
rs11206510, rs562338, rs6544713, rs7953249, rs10402271 and rs3846663.

Simulations with no LD

In order to simulate summary statistics with no LD, first, we chose causal effect sizes for each SNP
on each trait according to the LCV model. For all simulations except for Table S4, the causal effect
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size vector for trait k was

βk =
h2
k

M
(qkπ + γk), (14)

where in all simulations except for Table S5, qk was a scalar, and π and γk were 1 ×M vectors.
In Table S5, qk was a 1 × 2 vector and π was a 2 ×M matrix. Entries of π were drawn from
i.i.d. point-normal distribution with mean zero, variance 1, and expected proportion of causal
SNPs equal to pπ. Entries of γk were drawn from i.i.d. point-normal distributions with expected
proportion of causal SNPs equal to pγk ; we modeled colocalization between non-mediated effects
by fixing some expected proportion of SNPs pγ1,2 < min(pγ1 , pγ2) as having nonzero values of both
γ1 and γ2. Then, we centered and re-scaled the nonzero entries of π and γk, so that they had mean
0 and variance 1 and 1 − q2

k, respectively.
For simulations in Table S4, effect sizes were drawn from a mixture of Normal distributions:

there was a point mass at (0,0); a component with σ2
1 = 0, σ2

2 ≠ 0; a component with σ2
1 ≠ 0, σ2

2 = 0;

and a component with σ2
1 ≠ 0, σ2

2 ≠ 0, σ12 =
√
σ2

1σ
2
2.Values ofM,Nk,Nshared, ρtotal, pγk , pγ1,2 , h

2
k, pπ, qk

for each simulation can be found in Table S1.
Second, we simulated summary statistics as

β̂k∼N(βk,
1

Nk
I), (15)

where βk is the vector of true causal effect sizes for trait k and Nk is the sample size for trait k.
When we ran LCV on these summary statistics, we used constrained-intercept LD score regression
rather than variable-intercept LD score regression both to normalize the effect estimates19 and to
estimate the genetic correlation,16 with LD scores equal to one for every SNP.

Characterization of LCV model violations

In this subsection, we define partial genetic causality without making LCV (or other) model as-
sumptions and characterize the type of LCV model violation that causes LCV to produce false
positives and bias. There are two classes of LCV model violations: independence violations and
proportionality violations. Roughly, independence violations involve a violation of the indepen-
dence assumption between mediated effects (π) and direct effects (γ) while still satisfying a key
proportionality condition related to the mixed fourth moments; as a result, independence violations
are not expected to cause LCV to produce false positives (see Online Methods). Proportionality
violations, on the other hand, violate this proportionality condition and are potentially more prob-
lematic. In order to make this characterization, it is necessary to define partial genetic causality
in a more general setting, without assuming the LCV model. Partial genetic causality is defined
in terms of the correlated genetic component of the bivariate SNP effect size distribution, which
generalizes the shared genetic component modeled by LCV; unlike the shared genetic component,
the correlated genetic component does not have proportional effects on both traits (but merely
correlated effects).

Definition of partial genetic causality without LCV model assumptions Let A =
(α1, α2) be the bivariate distribution of marginal effect sizes, normalized to have zero mean and
unit variance. First, we define an even genetic component of A as a distribution T = (t1, t2) that is
independent of its complement A − T and that satisfies a mirror symmetry condition:

(t1, t2) ∼ (−t1, t2) ∼ (t1,−t2). (16)
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Equivalently, the density function of T is an even function of both variables. Note that an even
genetic component does not contribute to the genetic correlation. In order to define the “correlated
genetic component,” we would like to define a maximal even component, i.e. an even component
that explains the largest possible amount of heritability for both traits. However, if A follows
a Gaussian distribution, then there is no maximal even component: instead, the even genetic
component that maximizes the proportion of trait 1 heritability explained fails to maximize the
proportion of trait 2 heritability explained. This fact is related to the observation that the LCV
model is non-identifiable when the effect size distribution for L follows a Gaussian distribution, and
only when it follows a Gaussian distribution (see Supplementary Note). Generalizing this result,
we conjecture that there exists an even component that is maximal up to a Gaussian term. More
precisely, there exists a maximal even component T ∗ = (t∗1 , t∗2) such that for any even component
T = (t1, t2), there exists a (possibly degenerate) Gaussian random variable Z = (z∗1 , z∗2) independent
of T ∗ such that T ∗ +Z is an even component and E((t∗1 + z1)2) ≥ E(t21) and E((t∗2 + z2)2) ≥ E(t22).

We define the correlated genetic component S = (s1, s2) as the complement of the maximal even
component and the Gaussian term. Trait 1 is defined as partially genetically causal for trait 2 if
E(s2

1) > E(s2
2), and vice versa. We may also define the genetic causality proportion using equation

(1), substituting E(s2
k) for q2

k and E(s2
1)E(s2

2) for ρ2
g. However, the interpretation of the gcp is not

as clear in this more general setting. Note that the correlated genetic component may be identically
0, for example if A is bivariate Gaussian or if A itself is an even component; in both cases, there is
no partial causality, and the genetic causality proportion is undefined. In practice, if the correlated
genetic component is 0 or nearly 0, LCV will produce null p-values and low, noisy gcp estimates.

Independence violations and proportionality violations The LCV model assumption is
equivalent to the statement that the correlated genetic component resembles a line through the
origin (and there is no Gaussian term): S = (q1π, q2π), for some random variable π and fixed
parameters q1, q2 such that ρg = q1q2. Under the LCV model we refer to this distribution as the
shared genetic component because its effects are fully shared (rather than merely correlated) between
the two traits. This assumption enables an inference approach based on mixed fourth moments
because it implies that the mixed fourth moments of the correlated component are proportional to
the respective variances:

E(s1s2s
2
k)∝ E(s2

k), (17)

where under the LCV model, the proportionality constant is q1q2E(π4). However, the interpretation
of the gcp is not as clear in this more general setting; in particular, a gcp of 1 implies that every
SNP affecting trait 1 also affects trait 2, but not proportionally. Note that the correlated genetic
component may be identically 0, for example if A is bivariate Gaussian or if A itself is an even
genetic component; in both cases, there is no partial causality, and the genetic causality proportion
is undefined. In practice, if the correlated genetic component is 0 or nearly 0, LCV will produce
null p-values and low, noisy gcp estimates.

Intuitively, this type of violation arises as a result of non-independence between mediated effects
(π) and direct effects (γ), causing “noise? from the direct effects to be incorporated into the
correlated component. For this reason, we call such violations independence violations; genetic
architectures that violate the proportionality condition we call proportionality violations. In the
presence of an independence violation, we obtain the following moment condition, generalizing (6):

E(α1α2α
2
k) = cE(s2

k) + 3ρg (18)
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where c is a proportionality constant. In particular, if E(s2
1) = E(s2

2) (no partial causality), then
E(α1α

3
2) = E(α2α

3
1), and LCV is expected to produce well-calibrated p-values. Conversely, under

a proportionality violation, LCV is expected to produce inflated p-values under the null.

Simulations with LD

In simulations with LD, we first simulated causal effect sizes for each trait in the same manner as
simulations with no LD. Then, we obtained summary statistics in one of two ways, either using
real genotypes or using real LD only.

For simulations with real genotypes modeling population stratification (Table 1g and Table S9),
we chose effect sizes for each SNP and each trait from the LCV model with various parameters
and multiplied these effect size vectors by real genotype vectors from UK Biobank,27 adding noise
to obtain simulated phenotypes. For computational efficiency, we restricted these genotypes to
chromosome 1 (M = 43k). We added stratification directly to the phenotype values along PC1
(computed on 43k SNPs and N1 +N2 individuals), with effect sizes

√
0.01 and

√
0.02 for trait 1

and trait 2, respectively. We then re-normalized phenotypes to have variance 1; afterwards, ∼1%
and ∼2% of variance were explained by PC1 for each trait respectively. We estimated SNP effect
sizes for each trait by correlating each SNP with the phenotypic values in Nk individuals. In
corrected simulations (Table S9b,d,f), we residualized the PC1 SNP loadings (computed on all
N1 +N2 individuals) from the SNP effect estimates, a procedure which is effectively equivalent to
correction of the individual-level data.25

For other simulations, we simulated summary statistics without first simulating phenotypic
values, using the fact that the sampling distribution of Z-scores is approximately:23

Z∼N(
√
NRβ,R), (19)

where R is the LD matrix and β is the vector of true effect sizes. We estimated R from the
N = 145k UK Biobank cohort using plink with an LD window size of 2Mb (M = 596k), which we
converted into a block diagonal matrix with 1001 blocks. The number 1001 was chosen instead
of the number 1000 so that the boundaries of these blocks would not align with the boundaries
of our 100 jackknife blocks; the use of blocks allowed us to avoid diagonalizing a matrix of size
596k, while not significantly changing overall LD patterns (there are ∼50,000 independent SNPs
in the genome, and 1001 << 50,000). Because the use of a 2Mb window causes the estimated
LD matrix to be non-positive semidefinite (even after converting it into a block diagonal matrix),
each block was converted into a positive semidefinite matrix by diagonalizing it and removing
its negative eigenvalues: that is, we replaced each block A = V ΣV T with the matrix B, where
B = V max(0,Σ)V T . Then, because the removal of negative eigenvalues causes B′ to have entries
slightly different from one, we re-normalized each block: C =D−1/2BD−1/2, where D is the diagonal
matrix corresponding to the diagonal of B. Even though the diagonal elements of B are close to
1 (mostly between 0.99 and 1.01), this step is important to obtain reliable heritability estimates
using LD score regression because otherwise the diagonal elements of the LD matrix will be strongly
correlated with the LD scores (r2 ≈ 0.5) and the heritability estimates will be upwardly biased,
especially at low sample sizes.

We concatenated the blocks C1, ...,C1001 to obtain a positive semi-definite block-diagonal matrix
R′. We also computed and concatenated the matrix square root of each block. In order to obtain
samples from a Normal distribution with mean R′β and variance 1

NR
′, we multiplied a vector

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/205435doi: bioRxiv preprint 

https://doi.org/10.1101/205435
http://creativecommons.org/licenses/by-nc/4.0/


having independent standard normal entries by the matrix square root of R′ and added this noise
vector to the vector of true marginal effect sizes, R′β. We computed LD scores directly from
R. For simulations with sample overlap, the summary statistics were correlated between the two
GWAS: the correlation between the noise term in the estimated effect of SNP i on trait 1 and the
estimated effect of SNP j on trait 2 was R′

ijρtotalNshared/
√
N1N2, which is the amount of correlation

that would be expected if the total (genetic plus environmental) correlation between the traits is
ρtotal.

16

Outlier removal

In a secondary analysis, we applied an outlier removal procedure to determine whether our results
on real traits using LCV were unduly influenced by individual loci. We computed the LCV test
statistic S(0) (9) for each of the 100 jackknife blocks, discarded jackknife blocks that were ¿20
standard deviations from the mean, and re-ran the procedure iteratively until no outliers remained.
For most trait pairs, this process results in the removal of 0 blocks; for a handful of trait pairs, it
results in the removal of one or a few.

We do not recommend the broad use of this procedure, because outlier loci may contain valuable
information. In particular, if any SNP affects trait 1 without affecting trait 2 proportionally, this
suggests that trait 1 is not causal for trait 2. An alternative explanation is that its effect on trait 2
is masked by an opposing pleiotropic effect, either of the same causal SNP or of a different causal
SNP at the same locus. If an outlier locus is to be removed, we recommend manually examining it
and determining whether its removal can be justified or whether it provides competing statistical
evidence against a causal effect.
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Tables

ρg pLCV < 0.05 pLCV < 0.001 Mean ˆgcp
a Default parameter values 0.2 0.058 0.003 0.00
b Zero genetic correlation 0 0 0 0.00
c Very high genetic correlation 0.8 0.058 0.002 -0.00
d Uncorrelated pleiotropic effects 0.2 0.054 0.001 0.00
e Differential polygenicity 0.2 0.062 0.002 0.01
f Differential power 0.2 0.063 0.004 -0.01
g Population stratification 0.25 0.34 0.126 -0.21
h Causal 0.2 0.97 0.94 0.76
i Low N1 0.2 0.852 0.768 0.65
j Weak causal effect 0.1 0.422 0.104 0.49
k Y1 more polygenic 0.2 0.155 0.004 0.28
l Partially causal 0.2 0.71 0.35 0.56

Table 1: Null and causal simulations with LD. We report the positive rate (α = 0.05 and
α = 0.001) for a causal (or partially causal) effect for LCV, as well as the mean ˆgcp ( ˆgcp
standard error is less than 0.01 in each row). (a) Default parameter values (see text).
(b) Zero genetic correlation (ρg = 0). (c) Very high genetic correlation (ρg = 0.75). (d)
Uncorrelated pleiotropic effects. (e) Differential polygenicity (0.2% and 0.8% of SNPs
were causal for trait 1 and trait 2, respectively). (f) Differential power (N1 = 20k and
N2 = 500k). (g) Population stratification. (h) Full genetic causality (gcp = 1). (i) Low
trait 1 sample size (N1 = 20k). (j) Weak causal effect (q2 = ρg = 0.1). (k) High trait 1
polygenicity (5% of SNPs causal). (l) Partial genetic causality (gcp = 0.5). Results for
each panel are based on 5,000 simulations.
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Trait 1 Trait 2 pLCV ρ̂g (std err) ˆgcp(std err) MR ref
Triglycerides Hypertension 5 × 10−39 0.25 (0.04) 0.95 (0.04)

BMI Heart attack 3 × 10−9 0.34 (0.09) 0.94 (0.11) 32,38
Triglycerides Heart attack 8 × 10−32 0.30 (0.06) 0.90 (0.08) 4
Triglycerides BP - systolic 6 × 10−41 0.13 (0.03) 0.89 (0.08)

HDL Hypertension 6 × 10−22 -0.29 (0.06) 0.87 (0.09)
LDL High cholesterol 8 × 10−7 0.77 (0.07) 0.86 (0.11)

Triglycerides Mean cell volume 10 × 10−19 -0.20 (0.04) 0.86 (0.11)
Triglycerides BP - diastolic 5 × 10−39 0.11 (0.04) 0.86 (0.10)

Platelet volume Platelet count 6 × 10−10 -0.66 (0.03) 0.84 (0.10)
BMI Hypertension 2 × 10−16 0.38 (0.03) 0.83 (0.11) 11,38

Triglycerides Platelet dist width 5 × 10−17 0.19 (0.04) 0.81 (0.13)
LDL BMD 4 × 10−34 -0.12 (0.05) 0.80 (0.12)
BMI FVC 4 × 10−13 -0.22 (0.03) 0.79 (0.17) 72

Triglycerides Reticulocyte count 2 × 10−10 0.33 (0.05) 0.79 (0.14)
Triglycerides Eosinophil count 3 × 10−17 0.14 (0.05) 0.75 (0.16)

Balding Num children - male 2 × 10−30 -0.16 (0.05) 0.75 (0.13)
HDL Platelet dist width 8 × 10−17 -0.14 (0.04) 0.75 (0.16)

RBC dist width Type 2 Diabetes 3 × 10−4 0.11 (0.03) 0.73 (0.19)
LDL Heart attack 2 × 10−31 0.17 (0.08) 0.73 (0.13) 3,13

Platelet dist width Platelet count 1 × 10−7 -0.47 (0.04) 0.73 (0.15)
Hypothyroidism Type 2 Diabetes 2 × 10−4 0.22 (0.05) 0.73 (0.29)

HDL Type 2 Diabetes 2 × 10−7 -0.40 (0.06) 0.72 (0.17)
Hypothyroidism Heart attack 6 × 10−12 0.26 (0.05) 0.72 (0.16)
High cholesterol Heart attack 2 × 10−4 0.52 (0.12) 0.71 (0.19)

HDL BP - diastolic 4 × 10−17 -0.12 (0.06) 0.70 (0.18)
Platelet dist width Reticulocyte count 1 × 10−7 0.13 (0.04) 0.69 (0.20)

LDL College 1 × 10−10 -0.13 (0.05) 0.68 (0.30)
Triglycerides Monocyte count 1 × 10−4 0.14 (0.04) 0.67 (0.21)

Type 2 Diabetes Ulcerative Colitis 2 × 10−5 -0.14 (0.07) 0.65 (0.23)
BMI Reticulocyte count 4 × 10−5 0.39 (0.03) 0.64 (0.25)

Table 2: Fully or partially genetically causal relationships between complex traits. We
report all significant trait pairs (1% FDR) with high gcp estimates ( ˆgcp > 0.6). pLCV

is the p-value for the null hypothesis of no partial genetic causality; ρ̂g is the estimated
genetic correlation, with standard error; ˆgcp is the posterior mean estimated genetic
causality proportion, with posterior standard error. We provide references for all MR
studies supporting causal relationships between these traits that we are currently aware
of. Results for all 59 significant trait pairs are reported in Table S11, and results for
all 429 genetically correlated trait pairs are reported in Table S12.
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Figure 1: Illustration of the latent causal variable model. We display the relationship
between genotypes X, latent causal variable L and trait values Y1 and Y2. (a) Full
LCV model. The genetic correlation between traits Y1 and Y2 is mediated by a latent
variable, L, which has normalized effects q1 and q2 on each trait. SNPs have random
effects π on L and random effects γ1, γ2 on each trait. See Table S17 for a list of random
variables vs. parameters. (b) When q1 = 1, Y1 is perfectly genetically correlated with L
(so L does not need to be shown in the diagram), and we say that Y1 is fully genetically
causal for Y2. (c) Example genetic architecture of genetically correlated traits with no
genetic causality (gcp = 0, i.e. q2 = q1 < 1; see equation (2)). Slight noise is added to
SNP effects for illustration. Orange SNPs have correlated effects on both traits via
L, while blue SNPs do not. (d) Example genetic architecture of genetically correlated
traits with partial genetic causality (gcp = 0.8, i.e. q2 < q1 < 1). The slope of the
orange line is determined by the gcp and the genetic correlation. (e) Example genetic
architecture of genetically correlated traits with full genetic causality (gcp = 1, i.e.
q2 < q1 = 1). Under full genetic causality, all SNPs affecting trait 1 also affect trait 2.
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Figure 2: Null simulations with no LD to assess calibration. We compared LCV
to three main MR methods (two-sample MR, MR-Egger and Bidirectional MR). We
report the positive rate (α = 0.05) for a causal (or partially causal) effect. We also
display scatterplots illustrating the bivariate distribution of true SNP effect sizes on
the two traits. (a) Null simulation (gcp = 0) with uncorrelated pleiotropic effects and
zero genetic correlation. (b) Null simulation with nonzero genetic correlation. (c) Null
simulation with nonzero genetic correlation and differential polygenicity between the
two traits. (d) Null simulation with nonzero genetic correlation and differential power
for the two traits. Results for each panel are based on 4000 simulations. Numerical
results are reported in Table S2, which also includes comparisons to MR-WME and
MR-MBE.
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Figure 3: Causal simulations with no LD to assess power. We compared LCV to three
main MR methods (two-sample MR, MR-Egger and Bidirectional MR). We report the
positive rate (α = 0.001) for a causal (or partially causal) effect. (a) Causal simulations
with default parameters (results also displayed as dashed lines in panels (b)-(e)). (b)
Higher (unfilled) or lower (filled) sample size for trait 1 (the causal trait). (c) Higher
(unfilled) or lower (filled) sample size for trait 2. (d) Higher (unfilled) or lower (filled)
causal effect size of trait 1 on trait 2. (e) Lower (unfilled) or higher (filled) polygenicity
for trait 1 (the causal trait). Results for each panel are based on 1000 simulations.
Numerical results are reported in Table S3, which also includes comparisons to MR-
WME and MR-MBE.
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Figure 4: Null and causal simulations with no LD and LCV model violations. We
report the positive rate (α = 0.05 for null simulations, α = 0.001 for causal simulations)
for two-sample MR, MR-Egger, Bidirectional MR and LCV. Panels (a)-(c) correspond
to Gaussian mixture model extensions of the models in Figure 2b-d. Panels (f) and (g)
correspond to causal analogues of the models in panels (a) and (d), respectively. We
also display scatterplots illustrating the bivariate distribution of true SNP effect sizes
on the two traits. (a) Null simulation with nonzero SNP effects drawn from a mixture
of Gaussian distributions; one mixture component has correlated effects on each trait.
(b) Null simulation with SNP effects drawn from a mixture of Gaussian distributions,
and differential polygenicity between the two traits. (c) Null simulation with SNP
effects drawn from a mixture of Gaussian distributions, and unequal power between
the two traits. (d) Null simulation with two intermediaries having different effects on
each trait. (e) Null simulation with two intermediaries having different effects on each
trait and unequal polygenicity for the two intermediaries. (f) Causal simulation with
SNP effects drawn from a mixture of Gaussian distributions; all SNPs affecting trait 1
also affect trait 2, but the relative effect sizes were noisy. (g) Causal simulation with
an additional genetic confounder (i.e. a second intermediary) mediating part of the
genetic correlation. Results for each panel are based on 1000 simulations. Numerical
results are reported in Tables S4 and S5, which also includes comparisons to MR-WME
and MR-MBE.
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Figure 5: Partially or fully genetically causal relationships between selected complex
traits. Shaded squares indicate significant evidence for a causal or partially causal
effect of the row trait on the column trait (FDR < 1%). Color scale indicates posterior
mean ˆgcp for the effect of the row trait on the column trait; blue color indicates
ˆgcp > 0.6, grey color indicates ˆgcp < 0.6. “+” or “-” signs indicate trait pairs with a

nominally significant (positive or negative) genetic correlation (p < .05), and the size of
the ”+” or ”-” size is proportional to the genetic correlation. Results for the 30 trait
pairs with ˆgcp > 0.6 are reported in Table 2, results for all 59 significant trait pairs
are reported in Table S11, and results for all 429 genetically correlated trait pairs are
reported in Table S12. HTHY: hypothyroidism. FG: fasting glucose. PDW: platelet
distribution width. BPD: bipolar disorder. SCZ: schizophrenia. BrCa: breast cancer:
PrCa: prostate cancer.
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