bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Analytic combinatorics for bioinformatics I:
seeding methods

Guillaume J. Filion'?

L Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Center
for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology,
Dr. Aiguader 88, Barcelona 08003, Spain.

2 University Pompeu Fabra, Doctor Aiguader, 08003 Barcelona, Spain.

October 18, 2017

Abstract

Seeding heuristics are the most widely used strategies to speed up se-
quence alignment in bioinformatics. Such strategies are most successful
if they are calibrated, so that the speed-versus-accuracy trade-off can be
properly tuned. In the widely used case of read mapping, it has been so
far impossible to predict the success rate of competing seeding strategies
for lack of a theoretical framework. Here I present an approach to esti-
mate such quantities based on the theory of analytic combinatorics. In a
nutshell, the strategy is to specify a combinatorial construction of reads
where the seeding heuristic fails, translate this specification into a gen-
erating function using formal rules, and finally extract the probabilities
of interest from the singularities of the generating function. I use this
approach to construct simple estimators of the success rate of the seeding
heuristic under different types of sequencing errors. I also show how the
analytic combinatorics strategy can be used to compute the associated
type I and type II error rates (mapping the read to the wrong location,
or being unable to map the read). Finally, I show how analytic combi-
natorics can be used to estimate average quantities such as the expected
number of errors in reads where the seeding heuristic fails. Overall, this
work introduces a theoretical and practical framework to find the success
rate of seeding heuristics and related problems in bioinformatics.

1 Introduction

High throughput sequencing is changing the face of biology [7,15]. More data is
of course better, but recently, technical improvements have started to outpace
the progress of algorithms [14]. When the problems are too large, one has to
replace exact algorithms by heuristics that are much faster, but do not guarantee
to return the right result. Good heuristics are all about understanding the input

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

data. With the right data model, we can calculate the risk of not returning the
right answer and adjust the algorithm to achieve more precision or more speed.
When the data is poorly understood, heuristics may be slow or inefficient for
unknown reasons.

A particular area of bioinformatics where heuristics have been in use for a
long time is the field of sequence alignment [12]. Computing the best alignment
between two sequences is carried out by dynamic programming in time O(mn),
where m and n are the sequence lengths [2]. When at least one of the sequences
is long (e.g. a genome), this is prohibitive and heuristics are required.

The most studied heuristics for sequence alignment are called seeding meth-
ods [16]. In a nutshell, the idea is to search short regions of the two sequences
that are very similar and use them as candidates to anchor the dynamic pro-
gramming alignment, which is performed only locally i.e. between subsequences
of the input. These short regions of high similarity are called “seeds”. The ben-
efit of the approach is that seeds can be found in short time. The risk is that
they may not exist.

This strategy was most famously implemented in BLAST for the purpose of
finding local homology between proteins [1]. By working out an approximate
distribution of the identity score for the seeds [8,9], the authors were able to
calibrate the BLAST heuristic very accurately in order to gain speed. The
algorithm always performs the minimum amount of work for a desired confidence
level.

Seeding methods are also heavily used in the mapping problem (figure 1),
where the original sequence of a read must be found in a reference genome. The
dicovery of indexing methods based on the Burrows-Wheeler transform [3] was
instrumental to develop short read mappers such as BWA and Bowtie [10,11].
With such indexes, one can know the number of occurrences of a substring in a
genome in time independent of the genome size. This yields a powerful seeding
strategy whereby all the substrings of the read are queried in the genome. The
main limitation is that the seeds must have exactly the same sequence in the
read as in the genome.

The heuristic should be calibrated from the probability that a seed of given
length can be found in the read, but this problem has not been fully solved.
The answer depends on the types and frequencies of errors, which are often
context-dependent. Overall, the lack of theory to model seeding probabilities
hinders progress on this line of research.

Here T address this problem for arbitrary error models using the powerful
theory of analytic combinatorics. This field of research was most significantly
developed by Andrew Odlyzko, Robert Sedgewick and Philippe Flajolet [4-6].
The theory is now mature and used to tackle many problems outside the analysis
of algorithms. However, it has not yet been fully realized how useful it can be
for bioinformatics.

This document is predominantly written for bioinformaticians and people
with a working knowledge of sequencing technologies and their applications.
Accordingly, the focus will be on explaining the mathematical concepts, rather
than the technological aspects. Also, my goal here is not to push the boundaries

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Read ACTGACTTACGGCGTAGGATCGATGC

Genome v

(03

&

>

«Q

§ ACTGATTTACGGCGTAGGATCGAAGC =
S ACTCTCTTA-GGCGT-CGATCGAT-C S
T ACTCTCTTACGGCGAAGGATCGAT-C r_D;
S ACTGACTTACGGCGTAGGGTCGATGC v >

Figure 1: Seeding heuristic in the mapping problem. The sequencing read
belongs to an unknown portion of the genome; the task is to find its original sequence
(and usually its location). Because of possible read errors, the read may not be identical
to the original sequence. Most algorithms feature a seeding stage and an alignment
stage. The purposes of seeding and alignment are to output a short list of candidate
sequences, and to determine which is the best, respectively. Seeding is a heuristic
because it does not guanrantee that the overall best sequence is in the list of candidates.

of analytic combinatorics, but to explain how its simplest concepts are useful
to solve common problems in bioinformatics. I have opted for simplicity, to
the detriment of generality and rigor. The results presented here are only a
basic introduction to analytic combinatorics; the field is currently much more
advanced and I refer the interested to the original literature [6].

2 Elements of analytic combinatorics

In order to develop a theoretical framework for the seeding problem, we first
need to familiarize ourselves with the basic concepts of analytic combinatorics.
This section is a general introduction to the concepts and tools, together with
some more specialized material that will prove useful to tackle the problem at
hand.

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

2.1 Weighted generating functions

The central object of analytic combinatorics is the generating function. Here
we will develop a theory based on the slightly more general concept of weighted
generating function.

Definition 1. Let A be a set of combinatorial objects characterized by a size
and a weight. The weighted generating function of A is defined as

Alz) =) w(a), (1)
acA
where |a| and w(a) denote the size and weight of the object a, respectively.
Ezxpression (1) also defines a sequence (ak)r>o such that

Az) = Zakzk. (2)
k=0

By definition ay, =), 4, w(a), where Ay is the class of objects of size k in
A. The number ay, is called the total weight of objects of size k.

Remark 1. Ezpression (2) shows that the terms ar are the coefficients of the Taylor
series expansion of the function A(z).

Remark 2. If the weight of every object a € A is 1, then A(z) is called a simple
generating function, and in expression (2) ar = |Ax| is the number of objects of size
k in A.

Remark 3. Typical combinatorial objects include binary trees, permutations, derange-
ments, multisets etc., but here we will focus exclusively on sequences of symbols from
finite alphabets. In what follows, the reader can think of “objects” as “finite sequences
of symbols”.

Expressions (1) and (2) are of course equivalent. Depending on the context,
we will use one or the other.

Example 1. Let A = {a} and B = {b} be alphabets with a single letter (of size 1).
Assume w(a) = p and w(b) = ¢q. The weighted generating functions of A and B are
then A(z) = pz and B(z) = gz, respectively.

*

The motivation for definition 1 is that operations on combinatorial objects
translate into operations on their weighted generating functions. With the meth-
ods detailed below, we will obtain the weighted generating functions of elaborate
combinatorial objects from simple ones. Using equation (2), we will extract the
weight or probability of objects of size k from such weighted generating func-
tions.

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

This approach is counter-intuitive at first, but propositions 4 and 5 below
will show how we can compute probabilities that are inacessible to more frontal
approaches.

Let us start with the most straightforward ways to obtain new weighted
generating functions from those already available: additions and multiplications.
If A(z) and B(z) are the weighted generating functions of two mutually exclusive
sets A and B, the weighted generating function of AUB is A(z)+B(z), as appears
immediately from expression (1).

Example 2. With the definitions of example 1, the weighted generating function of
the alphabet AU B = {a, b} is pz + gz = A(z) + B(2).

*

Size and weight can be defined for pairs of objects in Ax B as |(a, b)| = |a|+]0|
and w(a,b) = w(a)w(b). In other words the sizes are added and the weights
are multiplied. With this convention, the weighted generating function of the
Cartesian product A x B is A(z)B(z). This simply follows from expression (1)
and

A(2)B(z) = Z w(a)z‘“‘ Zw(b)zlbl _ Z w(a)w(b)z|a|+|b|.

acA beB (a,b)e AxB

Example 3. With the definitions of example 1, A? = {(a,a)} contains a single pair

of letters, with size 2 and weight p®. Its weighted generating function is p?z? = A(z)?.

Example 4. Still with the definitions of example 1, (A U B)? contains the four pairs
of letters (a,a), (a,b), (b,a) and (b,b). They have size 2 and respective weight p?, pq,
gp, and ¢, so the weighted generating function of (AU B)? is (p® + 2pq + ¢*)2> =
(A(z) + B(2))*.

We can further extend the definition of size and weight to any finite Cartesian
product in the same way. The sizes are always added and the weights are
always multiplied. The generating function of a cartesian product then comes
as the product of their generating functions. This allows us to construct finite
sequences of objects.

Example 5. With the definitions of example 1, A* = {(a,q,...,a)} contains a single
k-tuple of letters, with size k and weight p*, so its weighted generating function is
p*2*. Since the sets A, A% A3 ... are mutually exclusive, the weighted generating
function of their union is

pz+p222+p323+...

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

This infinite Taylor series can be expressed as a simple function. For any k > 1,
(1 —p2)(pz + (p2)* + ... + (p2)*) = pz — (p2)**'. If |2| < 1/p, the term (p2)**!
vanishes as k increases. So the weighted generating function of Ug> 1AF is defined for
|z| < 1/p and is equal to

2 3 T pz_(pz)k+l_ bz
pz+(pz)” + (p2)" +... = lim T—p: 1-p
*

Example 5 is fundamental. It can be generalized to any set A of combina-
torial objects.

Proposition 1. Let A be a set with weighted generating function A(z). The
weighted generating function of AT = UiozlAk, called the set of non-empty
sequences of elements of A is defined for |A(z)| < 1 and is equal to

A(z)
1—A(z)

Proof. For k > 1, the weighted generating function of A* is A(2)*. Since the

sets AF are mutually exclusive, the weighted generating function of their union
is A(z) + A(2)? + A(z)3 +... = A(2)/(1 — A(2)), provided |A(z)| < 1. O

We also introduce the empty object ¢, which has size 0 and weight 1. Its
weighted generating function is thus 1. By convention, we define the zeroth
power of a combinatorial set A as A° = {e}. With this definition, we can state
a variant of the previous proposition.

Proposition 2. Let A be a set with weighted generating function A(z). The
weighted genmerating function of A* = UE‘;OA’“, called the set of sequences of
elements of A is defined for |A(2)| < 1 and is equal to

1
1—A(z)

Proof. A* = {e} U AT. By proposition 1, the weighted generating function is
1+ A(2)/(1—A(2)) =1/(1 — A(z)), provided |A(z)| < 1. O

Remark 4. These expressions are not defined for A(z) = 1, i.e. when A contains
only the empty object. In other words, one cannot construct sequences of empty ojects.
More generally, we will always assume that the sets used to construct sequences do
not contain the empty object €. Otherwise, € is present in each A* and they are not
mutually exclusive.

Remark 5. If |A(z)| > 1, the function A(z)/(1 — A(z)) is well defined but the series
A(z) + A(2)? + ... does not converge. This is not a problem, as relation (2) does not
need to hold for every z. However, in what follows we will only consider the values

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

of z for which the relation holds. In other words, we will always assume that |z| is
smaller than the radius of convergence of the weighted generating function of interest.

Remark 6. It is important to insist that the expression “sequences of” refers to the
set A* and not to the set AT, i.e. the empty object € is a sequence of anything. For
clarity, we will systematically use the expression “non-empty sequences of” when € is
ezxcluded.

Example 6. Following the definitions of example 1, (AU B)* is the set of sequences
of a’s and/or b’s. By proposition 2 and example 2, the weighted generating function
of this set is

1
1—(p+q)z

The function 1/(1 — (p+ q)z) is just a compact representation of the infinite series
L,(p+q),(+q?2 @+ q)?°, ... It thus carries all the information about the total
weights of the sequences of any size. If p = ¢ = 1, i.e. if we count the total amount
of sequences with simple generating functions (see remark 2), we obtain 1/(1 — 2z) =
14 2z 4 422 4+ 82% 4+ 162* + ... meaning that there are 2* sequences of size k. If p
and q are the respective probabilities of ocurrence of a and b, with p+ ¢ < 1, then the
equality 1/(1— (p+q)2) =14+ (p+q)z+ (p+q)?2* + (p+ ¢)32% + ... means that the
probability that a sequence of size k contains only a’s and/or b’s is (p + ¢)*.

*

These simple examples are better solved by intuition. However, we will soon
see that analytic combinatorics allows us to solve a wider range of problems.

2.2 Sequences and transfer matrices

In many combinatorial applications, one needs to count the sequences where a
pattern does not occur, or where some symbols may not follow each other. A
convenient way to find the weighted generating functions of such sequences is
to encode this information in so-called “transfer matrices”. We will illustrate
the process with an example from biology.

In many animal genomes, DNA methylation can only occur on the dinu-
cleotide CG. Because of this property, it is interesting to count the sequences
that have no CG. Sequences without CG can be thought of as walks on a di-
rected graph with restricted transitions. Nucleotides are represtend as nodes,
and edges indicate that the nucleotide at the tip can follow the nucleotide at
the base. Sequences without CG correspond to walks on a complete graph where
the edge from C to G is removed (see figure 2).

The same graph can also be represted as an adjacency matrix M, where a 1
at position (7, j) indicates that there is an edge from node i to node j, and a 0
indicates that there is no edge. For instance, the adjacency matrix of the graph
of figure 2 is

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

(Y
|

Figure 2: Graph representation of sequences of nucleotides without CG. A
sequence without CG is equivalent to a walk on this graph. All the transitions are
allowed, except C to G.

4 Q Q>

=== =
— =~ R~ Q
== O = Q
= = =

The main advantage of the adjacency matrix representation is that the pow-
ers of M give an analytical way to count the walks on the graph. The entry of
M™ at position (4,7) is the number of walks of n steps that start with node ¢
and end with node j. So we can count sequences without CG by computing the
successive powers of the adjacency matrix M above.

The same idea can be used to find the weighted generating function of se-
quences of combinatorial objects. We specify the internal structure of sequences
by a “transfer graph”, where the edges represent classes of combinatorial ob-
jects.

Definition 2. A transfer graph is a directed graph whose edges are labelled
by weighted generating functions(themselves representing classes of objects). In
addition, a transfer graph must contain a head vertex with only outgoing edges,
and a tail vertex with only incoming edges. The graph can be represented as a
matriz called a transfer matriz.

Following the edges of a transfer graph from the head vertex to the tail
vertex describes a sequence of combinatorial objects. The associated weighted
generating function is the product of the functions labelling the edges (thus an
absent edge is associated to the function 0).

Transfer graphs have the general structure below. The head vertex is repre-
sented as an open circle and the tail vertex as a closed circle. The edge labelled
¥(2), from the head vertex to the tail vertex represents additional sequences
that we may add to fit a particular definition. Typically, ¢)(z) = 1, as the only
sequence that needs to be added explicitly is the empty object €.

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

The “body” of the graph, represented as a cloud, contains the remaining m
vertices. M (z) is the m x m matrix representation of the corresponding sub-
graph. H(z) is a vector of m weighted generating functions associated with the
m edges from the head vertex to the body of the graph, and T(z) is a vector
of m weighted generating functions associated with the edges from the body of
the graph to the tail vertex. H(z) and T'(z) are called the “head” and “tail”
vectors, respectively.

Remark 7. By convention, rows correspond to outgoing edges and columns to incom-
ing edges. The head vertex always corresponds to the first row/column of the tansfer
matriz and the tail vertezx to the last.

Remark 8. Transfer graphs are reminiscent of deterministic finite automata (DFA).
The initial and accept states of a DFA correspond to the head and tail vertices of a
transfer graph. The alphabet of a DFA corresponds to the combinatorial objects that can
be concatenated (or to their weighted generating functions) and the transition function
corresponds to the transfer matriz. We will not make further use of this analogy in
this document.

Definition 3. Concatenating the objects labelling the edges of a transfer graph
in all possible ways for all possible paths from the head to the tail vertex describes
the sequences generated by the associated transfer matriz.

Example 7. Let A be a class of combinatorial objects with weighted generating
function A(z). Sequences of objects from A can be thought of as walks on the graph
below.

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

I™>Se

The edge from the vertex A to the tail vertex marks the end of the sequence, by

appending a final empty object ¢ with weight 1. The transfer matrix of this graph is
the 3 x 3 matrix

o A °
o [0 A(z) 1

M.(z)= A |0 A(z) 1 :| .
. 0 0 0

The head vector H(z) has dimension 1 and is equal to A(z). The tail vector T'(z)
also has dimension 1 and is equal to 1. M(z), the matrix of the body of the graph is
the 1 x 1 matrix [A(2)].

Example 8. Let A and B be mutually exclusive classes of combinatorial objects with
respective weighted generating function A(z) and B(z). Sequences of objects from A
or B can be thought of as walks on the graph below.

o A B °

o 10 A(2) B(z) 1

A |0 AR B() 1
M=% o 4z Bl 1
° 0 0 0 0

10

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

The head vector H(z) has dimension 2 and is equal to (A(z), B(z))". The tail
vector T'(z) also has dimension 2 and is equal to (1,1) . M(z), the matrix of the body
of the graph is the 2 x 2 matrix

A B
_ A [A(z) B(2)
Mz) = % [A(z) B(z)}

Example 9. With the assumptions of example 8, sequences of objects from A or B
can also be thought of as walks on a the graph below.

A(z)+B(z)
A(z)+B(z)

Indeed, because A and B are mutually exclusive, we know that the weighted gen-
erating function of AUB is A(z)+ B(z). The transfer matrix of this graph is the 3 x 3
matrix

o AUB .

o 0 A(z)+B(2) 1

M.(z)= AUB |0 A(z)+B(2) 1
. 0 0 0

The head vector H(z) has dimension 1 and is equal to A(z)+ B(z). The tail vector
T'(z) also has dimension 1 and is equal to 1. M(z), the matrix of the body of the graph
is the 1 x 1 matrix M (z) = [A(z) + B(2)].

*

Examples 8 and 9 show that the same class of combinatorial sequences may
be associated with multiple transfer graphs and transfer matrices. There are
several ways to construct (and interpret) a weighted generating function.

Example 10. Let A and B be mutually exclusive classes of combinatorial objects with
respective weighted generating function A(z) and B(z). Sequences of objects from A
or B that end with B but without two consecutive objects from B can be thought of
as walks on the graph below.

11

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

The edge with weighted generating function 1 from the head vertex to the tail
vertex is no longer present because the empty object € does not end with B. The
transfer matrix of this graph is the 4 x 4 matrix

o A B °

o 10 A(2) B(2) 0

_ A [0 A(z) B(z) 0
M) =5 10 ak o 1
° 0 0 0 0

The head vector H(z) has dimension 2 and is equal to (A(z), B(z))". The tail
vector T'(z) also has dimension 2 and is equal to (0,1)". M(z), the matrix of the body
of the graph is the 2 x 2 matrix

A B
5 20)

Let us now return to sequences of nucleotides without CG. To specify a trans-
fer matrix, let us assume that G’s and C’s occur with frequency p/2 and that
A’s and T’s occur with frequency ¢/2, where ¢ = 1 — p. The weighted gen-
erating functions of the single nucleotides are thus C'(z) = G(z) = pz/2 and
A(z) = T(z) = qz/2. With these definitions, the transfer matrix of the graph
shown in figure 2 is

12

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

o A c G T .

o [0 A(z) C(z) G(z) T(2) 1

A |10 A(z) C(z) G() T(2) 1

: g |0 A(z) C(») G(2) T(2) 1

T |0 A(z) C(2) G(z) T(2) 1

e [0 0 0 0 0 0
[0 ¢ p p g1
0 ¢ pp gl
0 0 1
=220 4 p p g 1
0 ¢ pp gl
0 0 0 0 00

We still need to find the weighted generating function of sequences without
CG. Proposition 3 below shows how this is done.

Lemma 1. Given a transfer graph and its transfer matric M, (z), the weighted
generating function of paths of n segments from vertex i to vertex j is the entry
of M.(2)"™ at position (i, j).

Proof. Proceed by induction. For n = 1, this is the definition of the transfer
matrix. Assume that the property holds for some n > 1. A path of n + 1
segments from vertex ¢ to vertex j is a path of n segments from vertex i to some
vertex k, followed by a single segment from vertex k to vertex j. Using the
induction hypothesis and taking the union on all vertices 1 < k < m + 2 (recall
that the transfer graph contains a head vertex, a tail vertex and m additional
vertices), the weighted generating function of such paths is

m+2

3 (M(z)”)[i’k] X M(2)p g = (M ()"

prt [i.31
which concludes the proof by induction. O
Proposition 3. The weighted generating function of the sequences generated

by a transfer matriz M, (z) is the top right entry of the matriz (I — M,(z))7!,
assuming that all the eigenvalues of M (z) have modulus less than 1.

Proof. Top right entries correspond to paths from the head to the tail vertex
(see remark 7). From lemma 1, the weighted generating function is the top right
entry of the matrix

I+ M, (2) 4+ M,(2)? + M,(2)> + ...

Observe that (I—M,(2))-(I+M,(2)+M.(2)?+. . .+M,(2)") = [-M,(2)"+1.
If all the eigenvalues of M., (z) have modulus less than 1, the right hand side
converges to the identity matrix I as n goes to infinity. This translates to

13

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

I+ M. (2) + Mo(2)* + Mo (2)> + ... = (I — M. ()71,
which concludes the proof. O

Example 11. Let us continue example 7 where we found that the tranfer matrix of
sequences of objects from A is

o A °
o [0 A(z) 1
° 0 0 0

The weighted generating function of such sequences is the top right entry of the

matrix
B 1 1—-A(z) A(z) 1
E Rl I R T8

In other words, the weighted generating function of sequences of objects from A
is 1/(1 — A(2)), consistently with proposition 2.

*

Example 12. Let us continue examples 8 and 9 where we found two transfer matrices
for sequences of objects from A or from B. The first transfer matrix is

o A B .
o 10 A(z) B(z) 1
A |0 A(z) B(2) 1
B |0 A(z) B(z) 1
. 0 0 0 0

Applying proposition 3, we see that the weighted generating function is the top
right entry of the matrix

1— A(z) — B(z) A(z) B(z) 1
1 0 1— B(z) B(z) 1
1— A(z) — B(?) 8 A(()z) 1 fgl(z) 1

The second transfer matrix is

o AUB .

o 0 A(2)+B(z) 1
AUB |0 A(z)+B(z) 1
° 0 0 0

Applying proposition 3 again, we see that the weighted generating function is also
the top right entry of the matrix

14

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

1—A(z)— B(z) A(z)+B(2) 1
0 1 1
0 0 1

Both terms are equal to 1/(1— A(z)—B(z)). This illustrates that there are different
ways to construct a sequence and its weighted generating function. This also illustrates
that some constructions are simpler than others.

1— A(z) — B(z)

*
We now introduce a simplified way to find weighted generating functions
from transfer matrices.

Proposition 4. Given a transfer matrix

H(z)T 9(2)
M(z) T(2)]|,
0 0

M, (z) =

o O O

where M(z) is a m X m matriz, H(z) and T(z) are vectors of dimension m
and (z) has dimension 1, the weighted generating function of the sequences
generated by M, (z) is

W(2) + H(z)"T (I = M(2))"! - T(2), (3)
assuming that all the eigenvalues of M(z) have modulus less than 1.

Proof. We need to compute the top-right entry of the matrix (I — M,(z))~L.
Using the matrix inversion formula with the cofactor matrix, this term is equal
to (—1)™T2C/ det(I — M, (2)), where C is the determinant

‘ —H(z)T —(2)
I-M(z) -T(2)

Developing det(I — M. (z)) along the first column and then along the last
row, we obtain det(I — M,(z)) = (—=1)™det(I — M(z)). Developping C along
the first row and then along the last column, we obtain

mm

C = (~)"y(z)det(I = M(2)) + Y Y Hi(2)(=1)"Cij(2)T(=),

i=1 j=1

where C; ; is the cofactor of I — M(z) at position (7,7). Using once more the
matrix inversion formula, we obtain
(~1)"+20

de () Y@ THE T ME)T 1),

15

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Example 13. Let us continue example 10 where we found that the transfer matrix
of sequences of objects from A or from B that end with an object from B but do not
contain two objects from B in a row is

o A B .

o 10 A(2) B(z) O
A0 A(x) B(z) 0
M= "5 10 4k o 1
° 0 0 0 0

We have seen that H(z) = (A(z), B(2))", T(z) = (0,1)7, ¥(z) = 0 and

wo= 4[4 7).

Using proposition 4, the weighted generating function of the sequences generated
by M.(z) is

0+ [A(z) B(2)] - 1 B(2)] . {0 B(2)

1
1—A(z)(1+ B(2)) [A(Z) 1—A(z) 1} T 1-AR)(1+B(R)

We will sometimes represent transfer graphs as their bodies (associated with
the matrix M (z), not with M,(z)), and specify separately ¢(z), H(z) and T'(z).
This will simplify the graphical representations, and using proposition 4 instead
of proposition 3 will simplify the computations.

Now returning to sequences of nucleotides without CG, we have 1(z) = 1

H(z) = (A(2), C(2), G(2), T(2)) T = (a2/2,p2/2,p2/2,q2/2), T(2) = (1, 1,1, 1)T,,

and
q9 P P 9
¢ pr 0 ¢
M(z)=2z/2
() / qQ p P 4g
a9 p P 4g
The inverse of I — M(z) is
(pz)? +2qz + 4 2pz pz(pz — 2) 2qz
1 —pqz? +2qz —2(1+q)z+4 2pq 2> —pqz? + 2qz
A(z) 2qz 2pz —2(14¢q)+4 2qz
2qz 2pz pz(1—pz) (pz)?=2(p+1)+4

where \(z) = 4—4z+(pz)? is the determinant of I — M (z). Now applying propo-
sition 4, the weighted generating function of sequences of nucleotides without
CG comes out as

16

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

4
T -1
1+ H(z)' - (I—-M(z) -T(Z)_4—4z+(pz)2‘ (4)

Getting to this weighted generating function was not straightforward, but
the expression is relatively simple. This is commonly the case when taking the
analytic combinatorics route: approaches that first look contrived and counter-
intuitive eventually lead to simple results.

In this section we have seen that transfer matrices allow us to find the
weighted generating functions of potentially intricate sequences of combinatorial
objects. In the next section we will see how we can compute the probabilities
of occurrence of such sequences from their weighted generating function.

2.3 Asymptotic estimates

We know from expression (2) that we can recover the total weight (i.e. the
probability) of objects of size k from the Taylor expansion of their weighted
generating function. We will often need to extract ay in expressions of the form
Sy apz* so we introduce the following symbol.

Definition 4. Let W (z) be a weighted generating function. The expression

("W (2)

is called the coefficient of z* in W and is equal to ay, assuming that W (z) =
> ne, arz”® in some neighborhood of z = 0.

The coefficient of 2* in a weighted generating function is usually a quantity
of interest. For instance, in expression (4) it is the probability that a nucleotide
sequence of size k does not contain any CG.

One of the main motivations for the analytic combinatorics approach is that
we can efficiently approximate the coeflicients of weighted generating functions.
Proposition 5 below is a simplified version of the founding theorem of the field [4].

Proposition 5. If a function W(z) is the ratio of two polynomials P(2)/Q(z),
and @ has only simple roots, then

P 1
Q'(z1) 281

where z1 is the root of QQ with smallest modulus.

"W (2) ~

(5)

Expression (5) is an asymptotic approximation: it becomes more accurate
as k increases, i.e. as we consider objects of increasing size. This is the most
fundamental property of the general analytic combinatorics strategy.

The roots of @ are called “singularities” of the function W. They are values
where the function is not defined. The roots of with multiplicity 1 (i.e. the
values for which @) vanishes but its derivative does not) are also referred to as
“simple poles” of W.

17

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Proposition 5 says that the asymptotic growth of the coefficients of the
series expansion of W(z) is dictated by the singularity of smallest modulus, also
known as the “dominant singularity”. We first state a lemma that will be useful
to demonstrate proposition 5.

Lemma 2. If |z| < a, then

1 > 2k

z
— = —. 6
1—2z/a Z ak (6)
k=0
Proof. Proceed as in example 5, replacing p by 1/a. O
We now prove proposition 5.
Proof. Let 21, 22, ..., 2z, be the complex roots of @, sorted by increasing order
of modulus. Since @ has only simple roots, there exists constants f31,..., 08,

such that the partial fraction decomposition of the rational function P(z)/Q(z)
can be written as

W(z) = P(2)/Q(2) = R(2) + Z B Ry - Z Bilm g

z—zj 1—2z/z

In the expression above, R is a polynomial that is nonzero if and ony if the
degree of P is higher than the degree of Q. Either way, the coefficient of z*
in R(z) is 0 for k higher than the degree of R, so the coefficients of R do not
contribute to [z¥]W(z) for large k. We can thus assume R(z) = 0 without loss
of generatlity. From lemma 2 we can expand each of the n terms of the sum as

. . © _k
S - ~Bilz Y 3’“

1—2/z k=0 “J

Substituting the expression above in (7), we obtain

n
k B;
MW (2) = =) (8)
— 2.
j=17J

Since z; is the root with smallest modulus, the sum above is dominated by
the term 27 k=1 as k increases, so the coefficient of z* in W (z) is asymptotically
equivalent to

b1

T k1
2]

[FIW () ~

To find the value of 81, we factorize Q(z) as (z — z1)Q1(2), which is possible
because z; is a root of (), and we write

P(z) P(2) B "B
Q(z) (z—21)Qi(2) z-= +;Z—Zj.

18

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Multiplying through by (z — 21) and setting z = 21, we obtain the expression
B1 = P(z1)/Q1(z1). Differentiating the expression Q(z) = (z — 21)Q1(z) shows
that Q'(z1) = Q1(z1), and thus that 8 = P(z1)/Q’(z1), which concludes the
proof. O

Remark 9. Ezpression (8) is not an approzimation, it is the exact value of the
coefficient of z* in W(z) = P(2)/Q(z). By keeping more than one term in the sum,
we can obtain more accurate estimates, and by keeping all the terms we obtain the
ezact value.

Remark 10. The asymptotic estimate (5) converges exponentially fast to the coeffi-
cient as k increases. To see this, divide the ezact expression (8) by its leading term
—B1/2** and obtain

n k+1 n
— 2uj=1 ﬁj/zj Bi (=1 k1
TR s ()
—B1/z =P\
Since |21| < |z;| for 2 < j < n, the error terms are O(|z1/22|F) so they decrease
exponentially fast as k increases.

Remark 11. Proposition 5 does not hold if z1 is not a simple pole. The proof can
be beneralized, but the resulting asymptotic formula is different. Proposition 10 in
section 5.2 shows the coefficient asymptotics for poles of second order.

Recall from section 2.2 that the weighted generating function of nucleotide
sequences without CG is

4
T A4z + (p2)?)

Here Q(z) = 4 — 4z + (pz)? has two distinct roots, 21 = 2(1 — /1 — p?)/p?
and zp = 2(1+ /1 — p?)/p?. Since Q'(z) = 2p*z — 4, proposition 5 yields

(KW (2) ~ — Pl) 11 < p2/2 >k+1
Qe FT T T E 1T

_ 1 1+M k+1

VI 2 :

In this case we can also obtain the exact value by using the second singularity.
The probability that a sequence of size k contains no CG is exactly equal to

19

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

k41 k+1
1 p*/2 B P*/2
1—p? 1—4/1—p? 14 4/1—p?

=

2

If all the nucleotides have the same frequency, then p = 1/2 and the proba-
bility is approximately equal to (0.9330127%+! —0.0669873%+1)/1.154701. From
k = 5, the second term of the sum is over one million times smaller than the
first term.

This example illustrates the elegance and the efficiency of the analytic com-
binatorics approach. It also shows how accurate the approximate solution can
be.

In conclusion, we summarize the analytic combinatorics strategy as follows:
(7) define simple objects associated with simple generating functions, (i) com-
bine these objects into more complex structures, (ii4) translate those combina~
tions into more complex generating functions, and (iv) extract coefficients using
approximation theorems such as proposition 5.

3 Exact seeding

3.1 Reads, error symbols and error-free intervals

From the experimental point of view, a sequencing read is the result of an assay
on some polymer of nucleic acid. The output of the assay is the decoded sequence
of monomers that compose the molecule. Three types of sequencing errors can
occur: substitutions, deletions and insertions. A substitution is a nucleotide
that is different in the molecule and in the read, a deletion is a nucleotide that
is present in the molecule but not in the read, and an insertion is a nucleotide
that is absent in the molecule but present in the read.

For our purpose, the focus is not the nucleotide sequence per se, but whether
the nucleotides are correct. Thus, we need only four symbols to describe a read:
one for each type or error, plus one for correct nucleotides. In this view, a read
is a finite sequence of letters from an alphabet of four symbols.

Errors in the read are initially unknown. In practice, the only way to detect
them is to align the read with the reference sequence in order to highlight the
differences. This operation may be difficult to perform, especially if the read
has many errors. While exposing the theory, it will sometimes seem that the
errors are known before aligning the read. Such cases will serve illustrative and
didactic purposes, but they never occur in practice.

20

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

A read can be seen as a sequence of symbols. Figure 3 shows the typical
structure of a read, together with the symbols that we will use for correct
nucleotides, substitutions, deletions, and insertions.

[200 [« SIS e s oo RRMC2][rs 0na]rs] - fcr]lco]ics| Mk [zl 1][&] Read
Deletion Insertions Substitution Substitution

Figure 3: Read as sequence of symbols. Reads consist of correct nucleotides
(white boxes), substitutions (black boxes), deletions (vertical bars) and insertions
(grey boxes).

A read can be partitioned uniquely into maximal sequences of identical sym-
bols called “intervals”. Intervals of correct nucleotides will have a particular
importance, so we introduce the somewhat simpler term “error-free interval”.

Definition 5. An error-free interval is a sequence of correct nucleotides that
cannot be extended left or right.

Instead of sequences of symbols, reads can be seen as sequences of either
error-free intervals or error symbols (see figure 4). We will use this construction
throughout section 3. As developed below, this will allow us to control the size
of the largest error-free interval.

[205 |« ISR e s o RN 23]1e]lrs] -~ [e]fice][es| Y[k 2t][«] Read
IR R
——— | Intervals

Figure 4: Read as sequence of error-free intervals or error symbols. Consec-
utive correct nucleotides can be lumped together in error-free intervals. The represen-
tation of a read as a sequence of either error-free inetervals or error symbols is unique.
The error-free intervals are highlighted in this example, together with their size.

These formal definitions will allow us to specify the weighted generating
functions of the reads of interest and then approximate their probability of
occurrence using the results of section 2.

3.2 Exact seeds

One of the most common operations is to map the sequenced reads in a refer-
ence genome, i.e. find the identity of the fragment that was sequenced. The
exact search problem can be solved efficiently, provided the right indexing data
structures are available, but sequencing errors make the task more difficult.

In most mapping algorithms, the search starts by looking for perfect matches
between a fragment of the read and a sequence from the genome. This match
is called a “seed”, and it allows to quickly eliminate most of the search space in
order to focus on a few promising candidate sequences.

This strategy greatly accelerates the mapping process, but it is not failsafe.
Because of sequencing errors, it could be that no seed is found, or worse, that a

21

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

match is found at the wrong location of the genome. Thus, error-free intervals
hold the key to the problem. If the read contains a long enough error-free
interval, it may be used as a seed. We will use a definition of “seed” that
corresponds to this intuition.

Definition 6. An exact v-seed is an error-free interval of size at least ~y.

Remark 12. In what follows, we will often refer to an “exact y-seed” as an “exact
seed” or as a “seed” when the concrete value of vy is either clear from the context or
irrelevant.

The main goal of section 3 is to construct estimators of the probability that a
read contains an exact y-seed, based on our knowledge of the typical sequencing
errors. Our strategy is to construct the weighted generating functions of reads
that do not contain any exact ~y-seed. For this, we will decompose such reads
as sequences of either error symbols or error-free intervals of size less than ~.
We will obtain their weighted generating functions from proposition 4 and use
proposition 5 to approximate their probability of occurrence.

We will find the weighted generating function of all the reads R(z), and
then the weighted generating function of reads without exact y-seed S, (z). The
probability that a read of size k has no exact y-seed will then be equal to the
total weight of reads of size k without seed, divided by the total weight of reads
of size k, i.e.

[Zk]sv(z)
HRG) ©)

To introduce the concepts progressively, we will first describe simplified mod-
els where some types of errors are disallowed, and gradually increase the com-
plexity towards a model with all error types.

3.3 Substitutions only

In the simplest model, we assume that errors can be only substitutions, and
that they occur with the same probability p for every nucleotide. We will refer
to this model as the “uniform substitutions error model”. Due to its simplicity,
we will be able to go at greater depth and obtain more advanced results with
this model (especially in section 4). Importantly, the model is not overly simple
and it has some real practical applications. For instance, it describes reasonably
well the error model of the Illumina platforms, where p is around 0.01 [13].

We will first use proposition 4 to obtain the weighted generating function
R(z) of all reads under this error model, from which we will deduce the weighted
generating function S,(z) of reads without exact y-seed. We will then use
proposition 5 to derive an approximation formula for the probability that a
read does not contain exact y-seed.

Under the uniform substitutions model, reads are sequences of either substi-
tutions or error-free intervals. They can be thought of as a walk on the graph

22

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

shown in figure 5. The symbol A stands for error-free intervals and the symbol
S stands for single substitutions. F(z) and pz indicate the weighted generating
functions of error-free intervals and substitutions, respectively. The fact that an
error-free interval cannot follow another error-free interval is a consequence of
the definition: two consecutive intervals must be merged into a larger interval.

Remark 13. In all the error models described in section 3, the error-free intervals
cannot have size 0. The reason is that a read must correspond to exactly one path in
the transfer graph and that sequences of combinatorial classes containing the empty
object € are not uniquely defined (see remark 4).

Figure 5: Transfer graph of reads with uniform substitutions. Reads are
viewed as sequences of error-free intervals (symbol Ag) or substitutions (symbol S).
F(z) and pz are the weighted generating functions of error-free intervals and individual
substitutions, respectively.

A substitution is a single nucleotide and thus has size 1. Because substitu-
tions have probability p, their weighted generating function is pz. Conversely,
the weighted generating function of correct nucleotides is qz. Error-free inter-
vals are non-empty sequences of correct nucleotides, so by proposition 2 their
weighted generating function is

qz

F(Z)=qz+(qz)2+(qz)3+~~=17qz~ (10)

The transfer matrix associated with the body of the transfer graph shown
in figure 5 is

Ag S
ME) = {F?) ﬁ]

A read can start with an error-free interval or with a substitution, so the
head vector H(z) is equal to (F(z),pz)". Similarly, a read can end with an
error free interval or with a substitution, so the tail vector T'(z) is equal to
(1,1)T. Here ¥(z) = 1, as we still need to include reads of size 0, i.e. the empty
sequence €. Applying proposition 4, the weighted generating function of reads
is R(z) = (2) + (F(2),p2)" - (I — M(2))~!-T(z), or

23

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

_ 1 [1—pz pz 1
R =141 5 [%]
where A\(z) = 1 — pz(1 + F(z)) is the determinant of I — M(z). Finishing the
computations, we obtain

14 F() 1
S 1-pz(1+F(2) 1-2

Since 1/(1 — 2z) =1+ 2z + 2% + ..., this means that for any k > 0, the total
weight of reads of size k is equal to 1. As a consequence, ratio (9) reduces to
the numerator [2*]S, ().

To find the weighted generating function of reads without exact y-seed, we
need to limit error-free intervals to a maximum size of v — 1. To do this, we can
replace F(z) in (11) by its truncation F,(z) = gz + (gz)* + ... + (gz)7~'. We
obtain

R(2) (11)

14+ F,(2) 1+qz+...4+ (qgz) 7t

Sy(2) = 1—p(1+Fy(2)) 1—-p2(l+gz+...+ (g2 1)

(12)

Remark 14. Viewing reads as sequences of either error-free intervals or substitutions
was important to obtain the weighted generating function of reads without seed: it
allowed us to just replace F(z) by Fy(z) in order to find the expression immediately.

To compute ratio (9) we now need to compute the coefficient of z* in S, (2).
As explained in section 2.3, we extract an asymptotic estimate of it using propo-
sition 5. For this, we need to find the singularities of .S, (z).

It is interesting to look in detail into the problem of finding the singularities
of S, (z). For simplicity, we start with a concrete case. The left panel of figure 6
shows the values of the denominator of S, (z) with p = 0.1 and v = 17. Sy7 has
one real root greater than 1. The remaining singularities of Sj7 are complex
and seem to be evenly spaced on a circle, as can be seen on the right panel of
figure 6. This is only a visual impression. In fact the singularities do not lie on
a perfect circle and their rotation angles are not exactly regular.

It is “fortunate” that the dominant root of Si7 is a real number because we
can use efficient numerical methods to approximate it (e.g. bisection or Newton-
Raphson method). The following proposition shows that this is no accident: the
dominant singularity of S, is always a real positive number greater than 1.

Proposition 6. For0 <p<1l,g=1—pandy>1, S, as expressed in (12)
has exactly one positive real singularity. This is the dominant singularity and
it 1s greater than 1.

Proof. Write S,(z) = P(z)/Q(z) and search the roots of the denominator
Q(z)=1—-pz(1+4gz+ ...+ (gz)771). First, we show that @ has exactly one
positive real root greater than 1. For real z > 0, pz and 1+ qz + ...+ (gz)7 !
are strictly increasing, so Q(z) is strictly decreasing. Since Q(1) = ¢ > 0 there

24

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 6: Singularities of S17. Q(z) denotes the denominator of Si7(z) from expres-
sion (12) with p = 0.1 and v = 17. Left: The values of Q(z) are represented as a bold
line for z real. Right: The values of |1/Q(z)| are represented for z complex by the
heat map on the complex plane (the numbers indicate the real and imaginary parts
of z). Darker pixels correspond to higher values. Sixteen singularities of Si7 lie close
to a circle. The remaining seventeenth is the one that appears on the left panel. It is
the dominant singularity because it is the closest to the origin.

is no root in the interval (0, 1). Since lim,_, o Q(2z) = —o0, @ vanishes for a real
number greater than 1.

Second, we show that this is the root with smallest modulus. Express the
complex roots of Q as Re?, with R > 0 and 0 < § < 27. They satisfy the
equation

01— RYeN? . 1
1—pReW-—— L€ () Rei® £ =
pre 1 — gRe® e 7 q

Multiplying through by 1—gRe®®, we obtain an equation of which we separate
the real and the imaginary parts to obtain

pRcos() — 1 = pg? R cos ((v + 1)6)
pRsin(f) = pg” R sin (v + 1)6)

Squaring and summing, we obtain the following equation

0 1
Re'? £ —.
q

p?R?* = (pg" R")? 4 2pR cos(0) — 1. (13)

Considering this an equation of R > 0, the solution is minimal when 2pR cos(f)
is maximal, 7.e. when 6 = 0. In other words, if there is a positive real root,
its modulus is the minimum among the roots. We have seen above that there
exsists exactly one, so it is the dominant singularity of .S,,. O

25

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

We now have all the tools to approximate the coefficients of S,(z) using
proposition 5 and obtain the approximate probability that a read contains no
seed.

Proposition 7. The probability that a read of size k has no seed under the
uniform substitutions model is asymptotically equivalent to

C

)
21

where z; is the only real positive root of 1 —pz(1+qz+...+(qz)?~1), and where

C= (1-g21)° . (14)

CpPa(l- (v +1-7g21)(g21))

Proof. Apply propositions 5 to S,(z) and then proposition 6, together with the
fact that for any singularity z of S, we have 1 +qz+...+ (¢z)"" ' =1/pz. O

We now illustrate proposition 7 with a concrete example explaining how the
calculations are done in practice.

Example 14. Let us approximate the probability that a read of size K = 100 has no
seed for v = 17 and for a substitution rate p = 0.1. To find the dominant singularity of
Si7, we need to solve 1—0.12x (140.92+. . .4+(0.92)'%) = 0. We rewrite the equation as
1-0.12x (1—(0.92)'7)/(1—0.92) = 0 and use bisection to solve it numerically, yielding
z1 &~ 1.0268856. Substituting this value in (14) yields C' & 1.396145, so the probability
that a read contains no seed is approximately 1,396145/1.0268856101 ~ 0.095763.
For comparison, a 99% confidence interval obtained by performing 10 billion random
simulations is 0.09575—0.09577. The computational cost of the analytic combinatorics
approach is infinitesimal compared to the random simulations, and the precision is
much higher for k£ = 100.

Overall, the analytic combinatorics estimates are close to the exact values.
Figure 7 illustrates the precision of the estimates for different values of the error
rate p and of the read size k.

3.4 Substitutions and deletions

To not jump too fast into the difficulties, we will now describe a semi-realistic
model where errors can be deletions or substitutions, but not insertions. As in
the case of uniform substitutions, we assume that every nucletoide call is false
with a probability p and true with a probability 1 —p = ¢q. Here, we also assume
that the “space” between consecutive nucleotides can contain a deletion with
probability 4.

A deletion may be adjacent to a substitution, or lie in between two correct
nucleotides. In the first case, the deletion does not interrupt any error-free
interval so it does not change the probability that the read contains a seed. For

26

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

o 8
« = BERESSe e e e e e S N S0E
o | © A/
© [}
2 2
3 o z 9
S S T O -
e s °
o a
g ~ | g S
g o 8 o
Q [
n n
2 3
o
Simulation
—— Estimate
2 g
T T T T T ° T T T T T T
60 80 100 120 140 150 160 170 180 190 200
Read size Read size

Figure 7: Example estimates for substitutions only. The analytic combinatorics
estimates of proposition 7 are benchmarked against random simulations. Shown on
both panels are the probabilities that a read of given size contains a seed, either
estimated by 10,000,000 random simulations (dots), or by proposition 7 (lines). The
curves are drawn for v = 17 and p = 0.08, p = 0.10 or p = 0.12 (from top to bottom).

this reason, we ignore deletions next to substitutions. More precisely, we assume
that they can occur, but whether they do has no importance for the problem.

Under this error model, a read can be thought of as a walk on the graph
shown in figure 8. The graph is almost the same as the one shown figure 5; the
only difference is the edge labelled §F'(z) from Ag to Ag. This edge represents
the fact that under this error model, an error-free interval can follow another
one if a deletion with weighted generating function 0 is present in between (as
illustrated for instance in figure 4).

The weighted generating function of error-free intervals F'(z) has a different
expression from that of section 3.3. When the size of an error-free interval is
1, the weighted generating function is just qz. For a size k > 1, there are
k — 1 “spaces” between the nucleotides, so the weighted generating function is
(1 — 6)¥~1(gz)*. Summing for all the possible sizes, we obtain the weighted
generating function of error-free intervals as

qz

- 1—(1-1¥8)qz (15)

F(z) =gz + (1= 0)(g2)* + (1 = 0)*(¢2)° + ...

The transfer matrix associated with the body of the transfer graph shown
in figure 8 is

Ap S
Sl)

27

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 8: Transfer graph of reads with uniform substitutions and deletions.
Reads are viewed as sequences of error-free intervals (symbol Ag) or substitutions
(symbol S). An error-free interval can follow another one if a deletion is present in
between. F'(z) and pz are the weighted generating functions of error-free intervals and
individual substitutions, respectively. §F(z) is the weighted generating function of a
deletion followed by an error-free interval.

The head and tail vectors are the same as in section 3.3, i.e H(z) = (F(2),pz) T,
T(z) = (1,1)T and ¢(z) = 1. Applying proposition 4 yields

_ 1 [1—pz pz 1
— — 1 = [.

RE) = (1= M) =1+ PG 575 | 1 S]]
where A(z) = 1 — pz — (pz(1 — 0) + §)F(z) is the determinant of I — M(z).
Finishing the computations we obtain
B 1+(1=9)F(2) 1 (16)
Cl-pz—(pz(1-8)+6)F(z) 1—2z

As in section 3.3 the result is 1/(1 —2) = 1+ 2z + 22 +. .., which means that
the total weight of reads of size k is equal to 1 for every k& > 0. This also means
that ratio (9) reduces once again to its numerator [z¥]S,(z).

To find the weighted generating function of reads without exact ~y-seed, we
need to bound the size of error-free intervals to a maximum of v — 1, i.e. to
replace F(z) by its truncation F.,(z) = gz+(1—08)(gz)?+...+(1—8)7"2(gz)" 1.
With this, the weighted generating function of reads without seed is

R(z)

_ 1+ (1—6)F,(2)
1—pz— (pz(1=08) +6)Fy(2)
Applying proposition 5 to this expression, we obtain the following approxi-
mation formula.

Sy(2)

(17)

Proposition 8. The probability that a read of size k has no seed under the
model of uniform substitutions and deletions is asymptotically equivalent to

C

)
21

28

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

where z1 1s the only real positive root of the denominator of Sy(z), i.e. the root
)

of 1 =pz— (pz(1 = 6) +6) (qz + (1 = 8)(qz)* + ...+ (1 = 6)72(qz)""1), and
oo 2(1—(1-68)(1-p)z1)” .
((p+a6)z1 —er(1 = 6)7"gz1)7) (6 + (1 — 6)pz1) (18)

a=76—(1=0)((y=1)6 —p((v = 1o +7+1))z1 — (1 - 6)’pgzi.

We illustrate proposition 8 with a concrete example explaining how the cal-
culations are done in practice.

Example 15. Let us approximate the probability that a read of size k = 100 has no
seed for v = 17, p = 0.05 and § = 0.15. To find the dominant singularity of Si7 we
solve 1 — 0.05z — (0.0425z + 0.15) (0.95z + 0.85(0.952)% + ... + 0.85'%(0.952)'%) = 0.
We write it as 1 —0.05z — (0.0425z +0.15)(0.95z — 0.85"(0.952)'7) /(1 — 0.80752) = 0
and use bisection, yielding z; ~ 1.006705. Now substituting the obtained value in (18)
gives C' = 1.096177, so the probability that a read contains no seed is approximately
1.096177/1.006705'°" ~ 0.558141. For comparison, a 99% confidence interval obtained
by performing 10 billion random simulations is 0.55813 — 0.55816.

*
o
S
|
(=)
2 A
©
@4
Z 2 8§ 4
g~ J g °
s ° S
o Q
£ g 2
g ° B o
Jo) Q o 4
(%] (2
n
24
< Sin‘_lulation
c 7 —— Estimate
n
@
T T T T T T ° T T T T T T T T
100 150 200 250 300 350 360 380 400 420 440 460 480 500
Read size Read size

Figure 9: Example estimates for substitutions and deletions. The analytic
combinatorics estimates of proposition 8 are benchmarked against random simulations.
Shown on both panels are the probabilities that a read of given size contains a seed,
either estimated by 10,000,000 random simulations (dots), or by proposition 8 (lines).
The curves are drawn for v = 17, p = 0.05 and § = 0.14, 6 = 0.15 or § = 0.16 (from
top to bottom).

Once again, the analytic combinatorics estimates are close to the exact val-
ues. Figure 9 illustrates the precision of the estimates for different values of the
deletion rate J and of the read size k.

29

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

3.5 Substitutions, deletions and insertions

Here we consider the model that we will refer to as “full error model” because
all types of errors are allowed. Introducing insertions brings two additional
difficulties. The first is that a substitution is indistinguishable from an insertion
followed by a deletion (or a deletion followed by an insertion). By convention,
we will count all these cases as substitutions. As a consequence, a deletion can
never be found next to an insertion. The second difficulty is that insertions
usually come in bursts. This is also the case of deletions, but we could neglect
it because this does not affect the size of the interval (all deletions have size 0).

To model insertion bursts, we need to assign a probability r to the first
insertion, and a probability 7 > r to all subsequent insertions of the burst.
We will still denote the probability of a substitution p and that of a correct
nucleotide g, but here p+g+r = 1. We will also assume that an insertion burst
stops with probability 1 — 7 at each position of the burst.

Under this error model, reads can be thought of as a walk on the graph
shown in figure 10. The symbols Ay, S and I stand for error-free intervals,
single substitutions and single insertions, respectively. The body of the graph is
represented separately from the head and tail vertices to avoid overloading the
figure.

The terms F(z), pz and 6F(z) are the same as in section 3.4. The terms
rz and 7z are the weighted generating functions of the first inserted nucleotide
and of all subsequent nucleotides of the insertion burst, respectively. The burst
terminates with probability 1 — 7 and is followed by an error-free interval or by
a substitution. The total weight of these two cases is p + ¢ < 1, so we need to
further scale the weighted generating functions by a factor p+¢=1—r.

The expression of the weighted generating function of error-free intervals
F(z) is the same as insection 3.4, namely

qz

Fle) =gz + (1= 0)(@2) + (1= 0)%¢2)" + o = =5y

The transfer matrix associated with the body of the transfer graph shown
in figure 10 is

Ao s I

Ao 0F(2) pz rz

M(z)= s F(z) pz rz
I t: (2) %::pz Tz

Here the head vector H(z) is equal to (F(z),pz,rz)", the tail vector T(z)
is equal to (1,1,1) T, and ¢(z) = 1. The expression of (I — M(z))~! is omitted
because it is cumbersome, but according to proposition 4 all we need is the value
of Y(2)+ H(z)" - (I — M(2))~! - T(2), which is equal to

(1-r)(1=(F—r)2) 1+ (1-08)F(z))

R(z) = 1= a(2) — b(=)F(2) ’

(19)

30

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 10: Transfer graph of reads with full error model. Reads are viewed as
sequences of error-free intervals (symbol Ay), substitutions (symbol S) or insertions
(symbol I). To not overload the figure, the body of the transfer graph is shown
on the left, and the head and tail edges are shown on the right. F(z) and pz are
the weighted generating functions of error-free intervals and individual substitutions,
respectively. 0F(z) is the weighted generating function of a deletion followed by an
error-free interval. rz and 7z are the weighted generating functions of the first and
all subsequent insertions of a burst, respectively. (1 — 7)F(z)/(1 — r) is the weighted
generating function of an error-free interval following an insertion and (1 —7)pz/(1—r)
is the weighted generating function of a substitutition following an insertion.

where a(z) and b(z) are second degree polynomials defined as

a(z)=r+ (1 —=r)p+7)z—p(F — r)zz, and (20)
b(z) =6(1—1)+ ((1 —r)p—4(p+7)+(1— f)r))z —p(1=0)(F —1r)2>.

Substituting in (19) the expressions of F(z), a(z) and b(z), the terms cancel
out and we find

1

C1-z
Again, we obtain the simple expression 1/(1 — z) = 1 + z + 2% + ... where

all the coefficients are equal to 1. This means that once again, ratio (9) reduces

to the numerator [z*]9,(z). To find the weighted generating function of reads
without exact y-seed, we replace F'(z) in expression (19) by its truncated version

R(2)

(21)

Fy(2) =qz+ (1= 6)(q2)> + (1 =0)*(q2)> + ...+ (1 = 6)"2(q2)"".

We obtain the following expression

31

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

(=D = (=) 1+ (1= F, ()
Sy (2) = L—a(z) = b(2)F, (2)

where a(z) and b(z) are defined as in (20).

Remark 15. Note that when r = 7 = 0, a(z) = pz and b(z) = pz(1 —) + 9, so
expression (22) becomes

; (22)

1= pz = (pz(1=0) +0)) 4 (2)
This is expression (17), i.e. the model described in section 3.4. When we also have
6 = 0, this expression further simplifies to

14 F(2)
Sy(2) = ———F—.
&) = T+ B)
This is expression (12), i.e. the model described in section 3.3. In other words,
the error models described previously are special cases of the full error model.

As in the previous sections, we can use proposition 5 to obtain asymptotic
approximations for the probability that the reads contain no seed.

Proposition 9. The probability that a read of size k has no seed under the full
error model is asymptotically equivalent to

C

k+1’
21

where z1 is the only real positive root of the polynomial 1 — a(z) — b(2)F,(z) =
L—a(z)=b(z)(gz+ (1=0)(gz)?+...+ (1—=0)7"2(gz)"™1), and C = ¢ /ca, with

1 - ((1 - 5)((121))7
1—(1-=9)gz

ca=0—-(F—r)z)

and

e =d(z) — (b’(m) + (1—-9)q > gz1 — (1 =9)""(gz1)"

1—(1-9)g~ 1—(1-98)g=
¢—7(1—=8)""q72 "
(=) 1—(1—98)qz '

We illustrate proposition 9 with a concrete example explaining how the cal-
culations are done in practice.

Example 16. Let us approximate the probability that a read of size k = 100 has
no seed for vy = 17, p = 0.05, § = 0.15, r = 0.05 and 7 = 0.45. With these values,
a(z) = 0.05 4 0.475z — 0.022% and b(z) = 0.1425 4 0.00375z — 0.0172%. We need
to solve 0.95 — 0.475z + 0.022% — (0.1425 4 0.00375z — 0.0172%)(0.92 + 0.85(0.92)% +
... 4+ 0.85'%(0.92)'%) = 0. We rewrite the equation as 0.95 — 0.475z + 0.02z% —
(0.1425 + 0.00375z — 0.0172%)(0.92 — 0.85'°(0.92)'%)/(1 — 0.7652) = 0 and use bi-
section to solve it numerically, yielding z; ~ 1.00295617. Using proposition 9, we

32

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

obtain C' ~ 1.042504, so the probability that a read contains no seed is approximately
1.042504/1.00295617%1 ~ 0.773749. For comparison, a 99% confidence interval ob-
tained by performing 10 billion random simulations is 0.77373 — 0.77376.

*

Once again, the analytic combinatorics estimates are close to the exact val-
ues. Figure 11 illustrates the precision of the estimates for different values of
the insertion rate r and of the read size k.

o
o 4
—
o
24
©
@4
z z 5
25 :°
[=} °© o
s a
2 o | 2
g ° 8 o
Q o O
%] n o
wn
24
< Simulation
S 7 —— Estimate
0
@
T T T T T T e T T T T
100 200 300 400 500 600 800 850 900 950 1000
Read size Read size

Figure 11: Example estimates for substitutions, deletions and insertions.
The analytic combinatorics estimates of proposition 9 are benchmarked against ran-
dom simulations. Shown on both panels are the probablities that a read of given
size contains a seed, either estimated by 10,000,000 random simulations (dots), or by
proposition 9 (lines). The curves are drawn for v = 17, p = 0.05, § = 0.15, ¥ = 0.45
and r = 0.04, r = 0.05 or r = 0.06 (from top to bottom).

3.6 Empirical error models

In the theory developed so far, we introduced different kinds of errors because
they have different probabilities and different sizes, but the nature of the error
is irrelevant. To know whether the read contains a perfect seed, only their
distribution matters.

An important consequence is that we can develop custom error models based
on empirical estimates of the error distribution. This option is not only valid for
modeling sequencing errors, but also for modeling differences occurring through
biological processes, such as mutations or macroevolution.

We introduce error-only intervals, which will encapsulate the available infor-
mation about the size of error patches. Treating deletions separately will allow
us to simplify the exposition, so we will consider that error-only intervals are
always non-empty.

33

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Definition 7. An error-only interval is a non-empty sequence of errors that
cannot be extended left or right.

We assume that every nucleotide has a constant probability ¢ of being cor-
rect. With probability p = 1—g¢, the nucleotide is incorrect and thus initiates an
error-only interval. If py is the empirical probability that the error-only interval
has size k for 1 < k < n, we can write the weighted generating function of
error-only intervals as pE(z), where E(z) = p1z + paz® + ... + pp2™.

The weighted generating function of deletions is denoted § for consistency
with the previous sections. As before, we will ignore deletions adjacent to error-
only intervals. Even if they occur, they have no consequence as they never
interrupt a potential seed.

Reads under the empirical error model can be thought of as walks on the
transfer graph shown in figure 12. An error-free interval can be followed by an
error-only interval, or by another error-free interval if a deletion is present in
between. An error-only interval can only be followed by an error-free interval.

Figure 12: Transfer graph of reads under the empirical error model. Reads are
viewed as sequences of error-free intervals (symbol Ag) or error-only intervals (symbol
A,). An error-free interval can follow another one if a deletion is present in between.
F(z) and pE(z) are the weighted generating functions of error-free intervals and error-
only intervals, respectively. 0F(z) is the weighted generating function of a deletion
followed by an error-free interval.

The head and tail vectors are (F(z),pE(z))" and (1,1), respectively; and
¥(z) = 1. The transfer matrix associated with the body of the transfer graph
shown in figure 12 is

Ag A,
)= Ao 0F(2) E(2)
M(z) i* {F(z) g 0]

Computing ¥(z) + H(z)" - (I — M(z))~! - T(2) as per proposition 4 yields

1 1 pE(2) 1
L F@ p PG 56+ pEG) {F@ 1 - 6F(z)] ' H ’

34

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

which eventually simplifies to

1 1-6§)F 1 I
1-F(2)(0 +pE(2))
As previously, the weighted generating function of error-free intervals is
F(z)=qz+(1-08)(q2)>+(1-6)*(q2)>+... = qz/(1 — (1 —6)qz). Substituting
this value in the equation above, we obtain

_ 1+ pE(z)
1— qz(l —|—pE(z)) '

Epxression (24) is in general not equal to 1/(1 — z) because E(z) is not
equal to z/(1 — pz). Since the total weight of reads of size k is not equal to 1,
we cannot simplify ratio (9) as in the previous cases. We will need to include
[2*] R(z) in our calculations, which we will approximate with proposition 5. This
implies that we have to find the root with smallest modulus of the polynomial
1—qz(1+0+ E(2)).

Remark 16. Why [2*|R(z) = 1 for some models but not for others? The combinatorial
“atoms” can be inhomogeneous, leading to a weight deficit for certain sequence sizes.

R(z) (24)

For instance, sequences of the object aa with weighted generating function 2> cannot
have odd size. Empirical error-only intervals are typically bounded whereas error-free
intervals are not. This imbalance introduces a weight deficit for some sequence sizes.

As in the previous sections, to find the weighted generating function of reads
without an exact ~-seeds, we need to replace F(z) in expression (23) by its
truncation F,(z) = gz + (1 —0)(qz)* + ...+ (1 —6)""?(gz)"~*. The terms only
partially cancel out and we obtain

(1+pE(2)) (1 - (1-8)(g2)")

Sa(2) = 1— qz(l —l—pE(z)) +(1=98)"1(gz)7 (5 +pE(z)) '

(25)

Remark 17. When R(z) and S(z) are defined by (24) and (25), ratio(9) is always
less than or equal to 1. To see this, note that expression (23) can be written as

1+ pE(2)

0 + pE(2)

From this expression, it is clear that replacing F(z) by its truncation F,(z) de-
creases the coefficient of z* (recall that all the weights are positive). This is equivalent

(1+ (1 —=08)F(2)(1+ F(z) + F(z)* +...). (26)

to [2"]R(2) > [2%]S4(2), confirming that the probability of occurrence of reads without
seed is always less than or equal to 1.

To estimate the total weight of reads without seed, we need to find the root
with smallest modulus of 1 — qz(1+pE(z)) + (1 — §)""!(q2)? (6 + pE(2)). The
solution depends on the particular expression of E(z). Even though the process
can be automated using proposition 5, every case is different and we cannot give
an explicit formula here.

35

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Example 17. Assume that empirical measurements suggest that ¢ = 0.9, 6 = 0.15
and that error-only intervals of size 1, 2 or 3 have probabilities 0.5, 0.33 and 0.17,
respectively (in this example, error-only intervals of size greater than 3 are never
observed). This implies E(z) = 0.5z 4 0.332% + 0.172°.

If we choose seeds of size v = 17, the weighted generating function of reads in
expression (24) becomes

B 1+0.1(0.52 + 0.332% + 0.172°)
1—-0.92(1+0.1(0.5z + 0.3322 + 0.172%))

The smallest root of the denominator is approximately equal to 1.008754. The
multiplicative constant of proposition 5 is approximately equal to 0.962590, so the
total weight of reads of size k is approximately equal to 0.962590/1.008754’““.

The denominator of (25) can be expressed in the form that is simpler to compute
1—(1-6)qz—qz(1—(1—6)"""(qz)" ") (6+pE(z)). The weighted generating function
of reads without seed becomes

R(z)

(140.1(0.52 + 0.332* 4+ 0.172%)) (1 — (0.7652) ")

$17(2) = T 7652 = 0.92(1 — (0.7652)16)(0.15 + 0.1(0.5z + 0.3322 + 0.1723))

The smallest root of the denominator is approximately 0.0122100. The multiplica-
tive constant of proposition 5 is approximately equal to 0.949377. So the total weight
of reads without seed is approximately equal to 0.949377/1.012098%*!.

Combining these two results, the probability that a read of size k has no seed
is the ratio of the total weights computed above. This is approximately equal to
0.9862735/1.003315% 1.

3.7 Worst case for approximations

So far, all the examples showed that the analytic combinatorics approximations
are accurate. Indeed, the main motivation for our approach is to find estimates
that converge exponentially fast to the target value. Does this mean that we
can always use the approximations in place of the true values?

To find out, we need to describe the behavior of the estimates in the worst
conditions. The approximations become more accurate as the size of the se-
quence increases, i.e. as the reads become longer. This is somewhat inconve-
nient: the read size is usually fixed by the technology or by the problem at
hand, so the user does not have easy ways to improve the accuracy. Overall, the
approximations described above just tend to be less accurate for short reads.

The second aspect is convergence speed. In proposition 5 it was shown that
the rate of convergence is dominated by the ratio between the two smallest
singularities of the weighted generating function. This means that convergence
is fastest when the dominant singularity is significantly closer to 0 than the
other singularities. Conversely, convergence is slowest when at least one other
singularity is almost as close to 0.

36

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

The worst case for the approximation is thus when the reads are small and
when the parameters are such that singularities have relatively close moduli. In
the error model of uniform substitutions, this corresponds to small values of the
error rate p.

To see this, recall that the singularities Re'® of S, (z) expressed in (12) are
bound by the equation

p?R? = (pg" R")? + 2pRcos(h) — 1. (13)

Considering this an equation of R > 0, the solution is minimal when 2pR cos(6)
is maximal, and vice versa. Thus, the two equations for the smallest and largest
solutions R and R are respectively

1—pR=pg" R, and
14+ pR = pq”ﬁ'yﬂ.

Observe that lim, 0 R = oo, otherwise 2(1 + gz + ... + (¢z)?~!) would be
bounded and the equality Q(z) =1 —pz(1 + ¢z + ...+ (¢z)?~1) = 0 could not
hold. This implies lim,_,o pR = 0 and lim,_,o pR = 0. Otherwise, if we had for
instance lim,_,o pR = £ > 0, taking the limit of the first equation above would
yield 1 — ¢ = ¢R”, inconsistent with the fact that R is unbounded.

This last fact entails R ~ R ~ ¢(p) = 1/ "/pq7. Indeed, we have R/¢(p) =
(1—pR)Y/7*1 and R/p(p) = (14 pR)Y/7*1, which both tend to 1 as p vanishes.
This means that the moduli of all the singularities get closer to each other as p
decreases. As a consequence, the speed of convergence of the approximation of
proposition 5 diminishes (but it remains exponential).

In practical terms, the situation above describes the specifications of the
Illumina technology, where errors are almost always substitutions, occurring at
a frequency around 1% on current instruments. Since the reads are often around
50 nucleotides, the analytic combinatorics estimates of the seeding probabilities
are typically less accurate than suggested in the previous sections.

Figure 13 shows the accuracy of the estimates in one of the worst cases.
The curve is clearly distinct from the simulation at the chosen scale, but the
absolute difference is never higher than approximately 0.015 (and lower for read
sizes above 40). Whether this error is acceptable depends on the problem. Very
often, the error on the measure of p is £0.01 or greater, which is a more serious
limitation on the precision than the convergence speed of the estimates. In most
practical applications, the approximation error of proposition 5 can be tolerated
even in the worst case, but it is important to bear in mind that it may not be
totally negligible for reads of size 50 or lower.

If precision is crucial, remember that the exact solution can be found by using
all the singularities of the weighted generating function S, (see remark 9). If
computational speed is an issue, the singularities and associated proportionality
constants can be precomputed for a range of values of p and ~.

37

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

o
o
o
—
wn
=2
@
2 > ©
3 3
K E
[=} o o
a5 5 8
g g °
o =
{7 [
Q [
%] 2T}
@
S
o
Simulation
—— Estimate
o o
@ - |
° T T T T © T T T T
25 30 35 40 40 45 50 55
Read size Read size

Figure 13: Example worst case for seeding with substitutions only. The
analytic combinatorics estimates of proposition 7 are benchmarked against 10,000,000
random simulations. Shown on both panels are the probabilities that a read of given
size contains a seed of size vy = 17, either estimated by random simulations (dots), or
by proposition 7. The curves are drawn for p = 0.005, p = 0.010 or p = 0.015 (from
top to bottom). The largest difference between the estimates and the simulations is
around 0.015.

3.8 Oversimplified error models

It may be tempting to replace the somewhat complex error models of sections 3.4
and 3.5 by the simpler uniform subsitutions model of section 3.3 with an equiv-
alent error rate. An intuitive approach would be to set the only parameter
g = 1 — p of this model to the value of ¢(1 — ¢) of the more complex ones,
because those represent the probability of decoding a nucleotide without error.

However, this approach is inaccurate because insertions and deletions can
have a strong influence. To show this, let us revisit example 16 with an approx-
imate substitution model instead of the full error model.

Example 18. In example 16, we computed the approximate probability that a read
of size £ = 100 contains no exact 17-seed, where p = 0.05, § = 0.15, » = 0.05 and
7 = 0.45. In such conditions, the probability of decoding a nucleotide without error
(given that it is not in an insertion burst) is (1 — p — r)(1 — §) = 0.765. Now using
a substitution model where ¢ = 0.765 and thus p = 0.235, the analytic combinatorics
estimate comes out as 1.03726/1.002591%' ~ 0.79866. This number is outside the
99% confidence 0.77373 — 0.77376 and the uniform substitution model underestimates
the probability that the read contains a seed by more than 2 percentage points in this
case.

*

The approximation error does not vanish. Actually, in the conditions of
example 18 it increases with the read size k. Figure 14 shows the same data as

38

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

figure 11, now fitted by an approximate substitution error. The error can be as
high as 5 percentage points.

o
o 4
—
o
24
©
@
2 2z
iy :
[=} °© o
s a
2 o | 2
k= o k=1
(7] [
L3 (9]
n n
wn
24
< . Simulation
oS 7 . —— Estimate
0
®
T T T T T T e T T T T
100 200 300 400 500 600 800 850 900 950 1000
Read size Read size

Figure 14: Example estimates with oversimplified error model. Shown on
both panels are the probablities that a read of given size contains a seed. The dots are
obtained by 10,000,000 random simulations of the full error model with v = 17, p =
0.05, 6 = 0.15, 7 = 0.45 and r = 0.04, » = 0.05 or r = 0.06 (from top to bottom) — they
are the same as in figure 14. The lines represent the analytic combinatorics estimates
of the oversimplified uniform substitution model computed from proposition 7 with
p = 0.2265 or p = 0.2350 or p = 0.2435 (top to bottom).

The conclusion is that the quality of the approximation collapses when using
approximate error models. One may argue that an error of 5 percentage points
may be tolerable, but the actual amount of error when using an approximate
error model is unknown in genereal. Using simplified error models is unsafe
because convergence is slow (the term “convergence” can still be used because
the probability that the read contains a seed always tends to 1 as the size
increases) and the error cannot be controlled.

Nevertheless, complexity comes at a cost. It is important to remember
that the parameters of the error model may be inaccurate, in which case the
error is also not controlled. If these parameters are hard to estimate, it may
be preferrable to use a simplified model. But in general, the amount of data
available in a sequencing run is sufficient to estimate the parameters of the error
model. In practice, the safest approach to compute seeding probabilities is to use
the full error model described in section 3.5 and estimate the four parameters
from the alignment data generated during the mapping. If § or r are small,
they may be set to 0 for simplicity, yielding the error models of section 3.4 or
section 3.3 (see remark 15).

39

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

4 Advanced seeding methods

Until now we have seen models of increasing complexity, but the transfer graphs
had a fixed layout, and the weighted generating functions were ratios of poly-
nomials of degree 7, the minimum size of the seed (with the notable exception
of the empirical error model, for which the degree is not specified a priori). In
relation to different problems, we will now explore other categories of models
where the layout of the transfer graph depends on 7, and where the degree of
the polynomials to solve will increase much faster than ~.

Because of this increased complexity, we will only consider the simplest uni-
form substitution error model. Otherwise, the strategy remains unchanged: we
will formulate combinatorial problems, view their solutions as walks on transfer
graphs, encode these graphs as transfer matrices, obtain the weighted generat-
ing functions of the solutions from proposition 4 and approximate the answers
using proposition 5.

4.1 Inexact seeds

We now consider a more challenging problem. The ongoing development of
algorithms and data structures makes it possible to search inexact seeds, i.e.
sequences that are very similar but not identical to the target. This comes at a
greater computational cost than finding exactly similar sequences. If this cost
is mitigated, it may be worth searching inexact seeds because the chances are
higher to identify the target.

The theory below is implemented within the framework of the uniform sub-
stitutions error model. Adaptations to more complex error models do not
present new theoretical challengnes, but the many cases to consider make the
models cumbersome, at the cost of concision and clarity. Let us begin with a
definition that will simplify the following discussion.

Definition 8. A single substitution interval is a non-empty sequence of
nucleotides that cannot be extended left or right, and that contains at most one
substitution and no other error. An inexact y-seed is a single substitution
interval of size v or greater.

‘We emphasize once more that our concern is the case of one substitution; the
cases with more errors, or with errors of other types are not considered. An exact
v-seed is an inexact y-seed, but the converse is not true. Figure 15 illustrates the
relationshiop between substitutions and single substitution intervals. Note that
single substitution intervals can overlap. In the models below, this is something
that we will have to account for explicitly.

We already computed the weighted generating function of reads under the
uniform substitutions model in section 3.3. Namely, in equation (11) we found
R(z) =1/(1 —2) = 1+ 2+ 22 + ... from which we concluded that the total
weight of reads of size kK > 0 is 1. We now need to find the weighted generating
function of reads that do not contain an inexact ~y-seed. For this, we introduce
a new type of combinatorial object.

40

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

0210 TR e 17 e 1o o RRD103 e s - [erlfks]fes]RREs]2][r][] Read

5 4 ‘ o ‘ 4 ‘ L-blocks

| |

A

> < > < - . » S.subst.
- intervals

Y

< >
< >

Figure 15: Inexact seeding. Substitutions (black squares) occur uniformly at ran-
dom within the read. They delimit L-blocks and single substitution intervals. L-blocks
consist of a substitution followed by an error-free interval. There is always a substi-
tution on the left of an L-block: the error-free interval at the head of the read is not
an L-block. Single substitution intervals (arrows) are the longest stretches of the read
that contain at most one sbustitution.

Definition 9. An L-block is a substitution followed by an error-free interval.

The point of this definition is that a read is an error-free interval, followed
by a sequence of L-blocks. In a read without inexact y-seeds, not all the com-
binations of L-blocks are possible. For instance, an L-block with v — 2 correct
nucleotides can only be followed by a substitution, i.e. an L-block with 0 correct
nucleotide (otherwise the concatenation of these two L-blocks forms an inexact
~ seed). A substitution with v — 3 correct nucleotides can be followed by an
L-block with 0 or 1 correct nucleotide, etc.

Figure 16: Transfer graph of reads without inexact 5-seed. Reads are viewed
as sequences of L-blocks. To not overload the figure, the body of the transfer graph is
shown on the left, and the head and tail edges are shown on the right. The labels on
the vertices represent the number of correct nucleotides in the L-blocks. The terms
£;(z) are the weighted generating functions of L-blocks with ¢ correct nucleotides for
t = 0,1,2,3. The terms f;(z) are the weighted generating functions of error-free
intervals of size i = 0,1, 2, 3.

To give a concrete example, reads without inexact 5-seed can be seen as
walks on the graph shown in figure 16. The numbers on the vertices indicates

41

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

the amount of correct nucleotides in an L-block. There cannot be an L-block
with 4 or more correct nucleotides, otherwise the read would contain an inexact
5-seed. The edges capture the relationships between consecutive L-blocks. The
weighted generating function of L-blocks with ¢ correct nucleotides is designated
by ¢;(z), for i =0,1,2,3.

The head and tail vectors are shown on the right panel of figure 16. Reads
can start with up to 3 correct nucleotides. The weighted generating function
of error-free intervals of size i is designated f;(z), for i = 0,1,2,3. Finally, any
L-block can mark the end of the read, so all of them are connected to the tail
vertex by 1, the weighted generating function of the empty oject e. We do not
need to connect the head and the tail node with such an edge, because as we
will see below, the empty sequence is already described by the transfer graph.

The weighted generating function of an L-block with i correct nucleotides is
li(2) = pz X qz X ... x qz = pz(qz)’, i.e. the weighted generating function of
a substitution followed by ¢ correct nucleotides. In a similar way, the weighted
generating function of a stretch of 7 correct nucleotides is f;(z) = gz x...x gz =
(g2)".

Because fo(z) = 1, we now see that on the graph shown in figure 16, a walk
starting from the head vertex and going to the tail vertex through the vertex
labelled 0 has weighted generating function 1. This corresponds to the empty
sequence, so there is no need to add it again to the graph, so ¢(z) = 0.

In the general case v > 0, the matrix of the body of the transfer graph shown
in figure 16 is

0 1 2 ¥—3 y—2
o pz pxgz) pz(gz)’ pz(qz)’=% pz(gz)’*]
pz pz(gz) pz(gz)? pz(gz)7~? 0
2 |pz pz(gz) pz(gz)? 0 0
v—4 |pz pzlgz) pz(qz)? ... 0 0
-3 |pz pz(gz) 0 . 0 0
v—2 Lpz 0 0 e 0 0 J

The head vector H(z) is equal to (1,qz, (¢2)2,...,(qz)"2)T, the tail vector
T(z) is equal to (1,1,...,1)7, and 9(z) = 0. The expression of the weighted
generating function of reads without inexact v-seed is omitted here. By propo-
sition 4, it can be computed as S, (z) = H(z) - (I — M(2))~' - T(2).

Example 19. Let us revisit example 14, where we approximated the probability
that a read of size k = 100 has no seed for v = 17 and for p = 0.1; but this time
we allow the seed to contain one substitution. The matrix M(z) has dimension 16
and the weighted generating function S17(z) can be written as P(z)/Q(z), where P
and @ are polynomials. Using numerical methods to find the root of @) with smallest
modulus, we obtain z1 ~ 1.079244. Likewise, we obtain —P(21)/Q’(z1) & 2.326700,
so the probability that the read does not contain an inexact seed is approximately

42

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

2.326700/1.079244'°" ~ 0.0010511. For comparison, a 99% confidence interval ob-
tained by performing 10 billion random simulations is 0.001049 — 0.001054. Recall
that in the same conditions, the chances that the read does not contains an exact seed
were approximately 9.6%.

The approximations have the typical accuracy of analytic combinatorics es-
timates. Figure 17 shows the precision of the estimates for different values of
the substitution rate p and of the read size k. Observe that the probability that
the read contains an inexact seed is substantially higher than the probability
that it contains an exact seed (compare with figure 7).

] 8
S 8 1
1 g
0 f=2]
2 ° 2 ©
3 3
K g
s 9 <]
S 5 g
g - g °
o o
Q (9]
[N b
§ - g
© o
Simulation
2 | —— Estimate § i
o o
© T T T T T o T T T T T T
60 80 100 120 140 150 160 170 180 190 200
Read size Read size

Figure 17: Example estimates for inexact seeding with substitutions only.
The analytic combinatorics estimates described in this section are benchmarked
against random simulations. Shown on both panels are the probabilities that a read
of given size contains an inexact seed, either estimated by random simulations (dots),
or by the method described above (lines). The curves are drawn for v = 17, p = 0.08,
p=0.10 or p = 0.12 (from top to bottom). 10,000,000 simulations are run on the left
panel and 100,000,000 on the right one.

Unfortunately, the expressions of the weighted generating functions given by
proposition 4 are very cumbersome, and they may take a long time to evaluate.
For instance, the degrees of P and @) for v = 17 are 135 and 136, respectively.

An option is to precompute the dominant singularities and associated mul-
tiplicative constants for a useful range of values of v (up to 30 is sufficient for
most applications) and of the parameter p (up to 0.25 is sufficient for most
applications). Once these values are stored, the estimates can be calculated
rapidly.

43

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

4.2 Type I errors

Our concern so far was whether reads contain a seed, i.e. an error-free (or
almost free) interval of sufficient size. If this is the case, the target sequence is
among the candidates and we implicitly assume that it will be identified during
the alignment stage. But we did not discuss what happens if the read does not
contain a seed.

There are two possible cases. The first is that the mapping procedure returns
no hit. The conclusion is then that the sequence does not belong to the genome,
or that it cannot be mapped. In analogy with statistical testing, we will call
this a “type II error”. The second case is that the mapping procedure returns
a hit. This cannot be a true hit because the target was discarded during the
seeding stage. We will call this a “type I error”. Type I errors are the most
difficult to detect, because nothing distinguishes them from true hits, at least
at the seeding stage.

It is important to emphasize that in this version of the mapping problem,
the sum of type I and type II error rates is the probability that the read does
not contain a seed (because we assume that there is a mapping error if and
only if the read does not contain a seed). The split between type I and type
IT errors depends on the genome, and more particularly on the configuration of
its repeated sequences. A stretch of v nucleotides matches a random genome
with probability O(4~7). However, genomes are not a succession of random
nucleotides. Large sequences are often duplicated, to the extent that the greater
part of eukaryotic genomes can be considered repetitive. In addition, repeats
are usually not exactly identical, but only similar. This means that the O(4~7)
term can be spectacularly underestimated.

A complete treatment of type I errors is presently not possible. We will
focus on a single case that will be the basis for further development. More
specifically, we will assume that the target sequence has exactly one duplicate
in the genome, differing only by uniform substitutions (we will see below how to
relax these assumptions). The problem then amounts to finding the probability
that the duplicate but not the target sequence is discovered during the seeding
step. Figure 18 shows how this can occur.

Error

/
TG A 14 Read
TG a4 14 Target
CA A A Duplicate

Figure 18: Example type I error. A read of 30 nucleotides contains a single error
at the sixteenth position. By chance, the erroneous nucleotide is identical to the
duplicate sequence at this position. This creates a match of 24 nucleotides for the
duplicate sequence, while the longest match for the target is 15 nucleotides. Thus,
using seeds of size greater than 15 would result in a type I error (even though the
duplicate has three differences with the read and the target has only one).

44

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Remark 18. With only one reference sequence, “error-free” and “matching” nu-
cleotides are the same. With more than one reference, we must take care of distin-
guishing the two, because matching nucleotides can be incorrect (they can match any
of the duplicates).

Instead of tackling this problem directly, we will set a more general frame-
work where a read can match two similar sequences denoted (+) and (—). A
read now consists of four kinds of nucleotides: those matching both sequences,
those matching the (4) sequence only, those matching the (—) sequence only,
and those matching none. The first kind will be referred to as a match and the
last three as mismatches (single or double). The following definitions will be
useful to sketch the transfer graph.

Definition 10. An R-block is a mismatch-free interval followed by a single or
a double mismatch. A (+) interval (respectively (=) interval) is a sequence of
nucleotides matching the (+) sequence (respectively (—) sequence) that cannot
be extended left or right. A (4) seed (respectively (—) seed) is a (+) interval
(respectively (—) interval) of size vy or greater.

This information is summarized in figure 19. We will use it to find a con-
struction for reads with neither (4+) nor (—) seed. We will later show how this
can be used to find the probabilities of type I errors.

[I 10 TR e 17 1o o [2o e s -+ frffce]fics | RRa]faffir [] Read
3 3 2

R-blocks
— — — —
< > < e 5 < > +/-
> < > < > < >
<t - - > <& > .
> D < > < > intervals

Figure 19: Seeding with two reference sequences. Matches are represented as
white squares, mismatches against the (+) sequence as bottom black wedges, mis-
matches against the (—) sequence as top black wedges, and double mismatches as black
squares. They delimit R-blocks, consisting of mismatch-free intervals followed by a
mismatch. The last nucleotide of an R-block is always a mismatch: the mismatch-free
interval at the tail of the read is not an R-block. (+) or (—) intervals are stretches of
the read that match either the (+) sequence (top arrow) or the (—) sequence (bottom
arrow) and that cannot be extended left or right.

Remark 19. We consider that when a subsequence is both a (+) and a (—) seed (as
the head of the read shown in figure 19 for instance), both sequences are in the list of
candidates after seeding, i.e. both are aligned.

Reads can be viewed as sequences of R-blocks followed by a mismatch-free
interval. Reads with neither (+) nor (—) seed have particuarly complex con-
straints on the arrangements of those R-blocks. For instance, an R-block of size
v (i.e. v — 1 matches followed by a mismatch) must be followed by a mismatch
if the final nucleotide is a single mismatch, but it can be followed by up to v —1
matches if this nucleotide is a double mismatch.

45

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

For the sake of clarity, we will consider a concrete example where v = 3. The
read below starts with two matches, followed by a double mismatch, followed
by a mismatch against the (—) sequence. The numbers between brackets (0, 1)
indicate the respective amount of nucleotides matching the (—) and the (+)
sequences at the end of the R-block. At that point, there are only five possiblities
for the next R-block; every other combination would create a (+) seed or a (—)
seed.

B+ B R 00

5 o (2) (0,2)

DD.(E) - o (2) (1,0
’ ™ r(z) (2,0)

Appending a double mismatch or a match followed by a double mismatch
(top case) brings the number of nucleotides matching (—) and (+) at the end of
the R-block to (0,0). The weighted generating function of this union of R-blocks
is denoted R;(z). Appending a mismatch against the (—) sequence (second case
from the top), é.e. an R-block with weighted generating function rg (z) brings
the amount of matching nucleotides to (0,2). Conversely, appending a mismatch
against the (4) sequence (third case from the top), i.e. an R-block with weighted
generating function rar (z) brings the amount of matching nucleotides to (1,0).
Finally, appending a match followed by a mismatch against the (4) sequence
(bottom case), i.e. an R-block with weighted generating function r; (z) brings
the amount of matching nucleotides to (2, 0).

By considering all the possible scenarios for other reads, we obtain the trans-
fer graph shown in figure 20. Even for such a small value of -, the graph is so
dense that the edges have been separated in two panels and encoded as symbols
in order to not overload the figure.

As in the example above, the numbers in the vertices indicate the amount
of nucleotides matching (—) and (4) at the end of the R-blocks. Since R-blocks
are terminated by a mismatch, at least one of these numbers is 0. The body
of the transfer graph is only partially represented on the left panel. The edges
pointing to the vertex (0,0) are displayed on the right panel, together with
the head and tail edges. The four kinds of edges on the left panel correspond
to different R-blocks with weighted generating functions 77 (2), ry (2), ri(2)
and 7] (z). The sign indicates which sequence is mismatched at the end of the
R-block and the index is the number of matches in the R-block.

The edges shown on the right panel for lack of space on the left panel all
point to the vertex (0,0). All the vertices are connected to this vertex because
appending an R-block terminated by a double mismatch always brings the read
to this state. The weighted generating functions Ry(z), R1(z) and Rz(z) repre-
sent such R-blocks with up to 0, 1 or 2 matches, respectively.

The remaining edges shown on the right panel are the head and tail edges. In
the initial state of the read, the amount of matching nucleotides is (0, 0), which

46

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 20: Transfer graph of reads without seed of size 3 for either (+) or
(—). Reads are viewed as sequences of R-blocks, and they can match two sequences
referred to as (+) and (—). To not overload the figure, the edges are split between
the left and right panels. The numbers in the vertices represent the respective num-
ber of nucleotides matching the (—) and (+) sequences at the end of an R-block.
Weighted generating functions 7 (z) represent R-blocks with 4 matches terminated by
a mismatch against the (+) sequence (symmetrically for the (—) sequence). Weighted
generating function R;(z) represent R-blocks with up to ¢ matches terminated by a
double mismatch. Weighted generating functions F;(z) represent mismatch-free inter-
vals of up to i matches.

is indicated by the label 1 on the edge between the head vertex and the vertex
(0,0). This is equivalent to prepending the read by the empty object €. Reads
are terminated by a sequence of matches. The weighted generating functions
Fy(z), Fi(z) and F5(z) represent mismatch-free intervals of size up to 0, 1 or 2,
respectively. The empty sequence is already present in the graph (take a path
from the head vertex to the tail vertex through (0,0) with no match appended
at the tail), and no extra sequence needs to be added, so here 1(z) = 0.

A similar logic can be applied for higher values of 7. The transfer graph
becomes too cumbersome to represent but the transfer matrix has enough reg-
ularity to be specified in full. The general transfer matrix associated with the
body of the transfer graph has dimension 2y — 1 and is defined as

47

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

0,0 1,0 1,0 0,1 1y—1
00 [Ry-a(2) 18(2) a0 () " g(2)
1,0 |Ry_2(2)
2,0 |Ry—3(%)
: : A(z) B(z)
M(z)= 1-10 | Ro(2) ;
0,1 R, 1(z)
02 |Ry—2(z)
: C(z) D(z)
0,v—1 _Ro(Z) i

1,0 2,0 v—2,0 ~—1,0
1,0 0 ri(z) ... rjy'_3(z) 7’,-;_2(2’)
20 |0 0 o (2) ()
A(Z) — .) . . ,
v—2,0 | 0 0 e 0 ra (2)
y-1,0 LO 0 e 0 0
0,1 0,2 0,7—2 0,7—1
o rg(z) () r_s(2) T 5(2)
20 |ry(z) (%) ro_s(2) 0
B(z) = : : : :
v=2,0 |rg(2) 711(2) 0 0
v-1,0 Lry (%) 0 0 0
1,0 2,0 ~—2,0 ~—1,0
01 [rg(2) i (2) rios(2) T _(2)
02 |rg(2) () ry—-3(2) 0
C(z) = : : : :
or—2 |rf(z) rf(2) 0 0
0y-1 Lrd(2) 0 0 0

48

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

0,1 0,2 0,y—2 0,y—1
0,1 0 79(2) 7”;—3(2’) ;—2(2)
0,2 0 0 r_4(2) T _5(2)

D(z)= : : . : :
0y—2 |0 0 0 ro (%)

0,y—1 LO 0 0 0

In this case the head vector H(z) is equal to (1,0,0,...,0)" and the tail vec-
tor T'(z) is equal to (Ry—1(2), Ry—2(2),..., Ro(2), Ry—2(2),..., Ro(2))". The
expression of the weighted generating function of reads with neither (+) nor
(—) seed is omitted here (it is fairly complex even for small values of). As per
proposition 4, it can be computed as H(z)" - (I — M (2))™1 - T(z).

We still need to give the exact expression of the weighted generating func-
tions appearing in the definition of M(z). Under the assumption that mis-
matches occur uniformly in the read, nucleotides of each type occur with prob-
abilities a, b, c or d, with a + b+ ¢+ d = 1, where a is the probability that the
nucleotide is a (double) match, b that it is a mismatch against (+), ¢ that it is
a mismatch against (—) and d that it is a mismatch against both. With these
notations we obtain

r(2) = (az)’cz,
r () = (az)bz,
Ri(2) = (1+az+ ...+ (az)")dz,

Fi(2) =1+az+...+ (az)".

(27)

With these definitions we could find the expression of the weighted gener-
ating function of the reads with neither (+) nor (=) seed, but we will return
to the original problem of computing the probability of a type I error. In this
context, the (4) sequence is the target and the (—) sequence is the duplicate.

We will assume that each nucleotide is decoded incorrectly with probability
p (substitutions due to sequencing errors) and that for each nucleotide, the
duplicate sequence differs from the target with probability x (divergence between
the target and the duplicate). A nucleotide is a mismatch for both sequences
if it is a read error (probability p) and if either the duplicate is identical to
the target (probability 1 — k) or if it is different from both the target and the
decoded nucleotide (probability 2+/3). The other probabilities can be computed
with similar arguments, yielding @ = (1 —p)(1 — k), b = pr/3, ¢ = (1 — p)x and
d=p(l—r/3).

The model is completely specified by p and x. With their actual values
at hand, we can use proposition 5 to obtain an asymptotic estimate of the
probability that a read has no match for the target and has no match for the
duplicate. Call this estimated probability P». Using the results of section 3.3, we
can also compute an asymptotic estimate of the probability that the read does

49

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

not contain an exact -y-seed (irrespective of potential matches to the duplicate).
Call this estimated probability P;. We can thus estimate the probability that
the read contains no exact -seed but contains a match for the duplicate as
P — P

To clarify this equality, call A the event that the read has no 7y-seed and
B the event that it contains no match of size v for either the target or the
duplicate sequence. First observe that B C A so P(AN B¢) = P(A) — P(B).
Then, B¢ is the event that the read contains an exact ~y-seed, a stretch of size
or greater matching the duplicate sequence, or both. Another way to describe
B¢ is that “some hit is found in the read”. So A N B¢ is the event that “some
hit is found, but it is not the target”, which is the definition of a type I error.
Since P(A) =~ P; and P(B) = Ps, the probability of type I errors is indeed
approximately equal to P, — Ps.

Example 20. Let us approximate the probability of type I error (with one duplicate)
for a read of size k = 100 with v = 17 and for substitution rates p = 0.10 and
% = 0.10. In example 14 we found P; = 1.396145/1.0268856'°'. To compute P,
we substitute a = 0.81,b = 0.09,¢ = 0.00333,d = 0.09667 in the expression of the
33 x 33 transfer matrix M (z) and in the expression of T'(z). We then compute the
expression H(z)" - (I — M(z))™! - T(z) and obtain a rational function P(z)/Q(z)
where P and) are polynomials of degree 288 and 289, respectively. The root of
@ with smallest modulus is the dominant singularity z; of the weighted generating
function. Using numerical approaches, we find z; & 1.0272930245. We compute the
proportionality constant of proposition 5 as —P(z1)/Q’(21) =~ 1.4032791 from which we
obtain P; ~ 1.4032791/1.0272930245'%'. The type I error rate is then approximately
equal to 0.0032906. For comparison, a 99% confidence interval obtained by performing
10 billion random simulations is 0.003288 — 0.003292.

*

Figure 21 illustrates the precision of this estimate for different values of
the substitution rate x and of the read size k. Observe that the estimates are
accurate even for such low probability of occcurrence.

Computing P, with proposition 5 requires finding a weighted generating
function P(z)/Q(z) where P and @ are polynomials with too many terms to
fit in this document. It is thus problematic to compute the approximations
efficiently. The best option is to precompute the dominant singularities and
associated multiplicative constants for a useful range of v (up to 30 is sufficient
for most applications) and of the parameters p and x (up to 0.25 is sufficient for
most applications). Once these values are stored, the estimates can be calculated
rapidly from expression (5) without having to compute any weighted generating
function.

At the start of this section, we assumed that the target has exaclty one
duplicate. Also, k is usually unknown, so are the estimates derived above useful
at all? First, it is important to stress that the seeding strategy is efficient only
when the target has few duplicates. Some sequences have more than 100,000
copies in the human genome. In such cases, the seeding process yields many
candidates that will cost time at the alignment stage, with anyway small chances

50

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

1
0.00020
1

Simulation
—— Estimate

0.0030
1

0.00015
Il

0.0020
1
0.00010
Il

Type | error rate
Type | error rate

0.0010
1
0.00005

0.0000

1 1
0.00000

|

T T T T T
40 60 80 100 110 120 130 140 150

Read size Read size

Figure 21: Example estimates of type I errors (one duplicate). The analytic
combinatorics estimates are benchmarked against random simulations. Shown on both
panels are the probabilities that a read of given size will induce a type I error, either
estimated by 10,000,000 (left) or 100,000,000 (right) random simulations (dots), or by
the method described above (lines). The curves are drawn for v = 17 and p = 0.05,
%k =0.05, K = 0.15 or k = 0.25 (from top to bottom).

of identifying the correct target. As a consequence, most mapping algorithms
bail out as soon as they gather enough evidence that the target has many
duplicates. There is thus little incentive to develop accurate estimates of type I
error rates for highly repeated sequences, and one should focus on the cases of
intermediate amount of duplicates, say around 20.

Fortunately, we can extend the theory developed above to the case of a few
duplicates. The probability that a read contains no match for the duplicate
given that it contains no match for the target is Po/P;. If the target has N
extra duplicates evolving independently with mutation rate k, the probability
that a read contains no match for any of the duplicates given that it contains
no match for the target is (P,/P;)". The probability of a type I error is thus
Py (1 — (Pg/Pl)N). For N = 1, we recover P; — Py and for large N, the value
approaches P, the probability that the read has no seed.

This approach is somewhat naive because repeated sequences do not evolve
independently of each other and N, like x is usually unknown. However, it gives
a handle on the problem as some “proxy” N and k can be estimated during the
seeding step or better, stored for every position of the genome.

An additional observation is that the case of one duplicate gives a lower
bound for the probability of type I error. When there is exactly one duplicate,
type I errors are almost impossible to detect because the mapping process iden-
tifies a single hit that is similar to the read (as if a seed were present and the
target had no duplicate). If the proportion of the genome that is repeated is
z and P* is the maximum of P; — P, relative to unknown k, then zP* is a

o1

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

reasonable lower bound on the probability of type I errors. This number is an a
priori estimate that depends only on the read size and on the sequencing error
rate. If more information about the read, or about the seeding and alignment
processes is available, then this lower bound can vary.

Example 21. Let us approximate the a priori lower bound of the type I error rate
for reads of size £k = 100 with v = 17 and for sequencing error rate p = 0.10. In
example 14 we found P, ~ 1.396145/1.0268856101, which does not depend on k. We
now need to compute the lower bound of P» as x varies. Using precomputed values,
we find the minimum is reached for x ~ 0.07 where P> ~ 1.403628/1.02732'°'. This
yields an extimate approximately equal to 0.0035. Assuming that approximately half
of the genome has at least one duplicate sequence, we cannot guarantee a type I error
rate below 0.17% with this seeding strategy.

*

The methods presented in this section are numerically accurate, but the
models may not be faithful to the biological reality. It is still challenging to
represent a genome together with the relationships between its duplicated se-
quences, and more generally to know the number of duplicates of a target se-
quence. In summary, estimates of the type I error rate are strongly dependent
on our knowledge of the repeat structure of the genome. New data structures
or algorithms to model genomic repeats will greatly benefit seeding heuristics
in the mapping problem.

4.3 MEM seeds

In the exact seeding scheme considered so far, every subsequence of the genome
that matches v consecutive nucleotides of the read is considered a candidate at
the seeding step. While assuring good chances of discovering the target, this
approach often yields “too many” useless candidates, which costs computational
time at the alignment step. An alternative scheme called MEM seeding (Maxi-
mal Exact Match) gives better empirical results. The principle is to use as seeds
only the longest local matches between the read and the genome.

Definition 11. A v-MEM (Mazimal Exact Match) is a sequence of at least 7y
nucleotides from the read, that matches a subsequence of the genome and that
cannot be extended left or right.

Remark 20. Note that error-free intervals and mismatch-free intervals are disjoint,
whereas MEMs can be overlapping (and usually are).

Since there are fewer MEM seeds than exact y-seeds, MEM seeding is more
prone to errors than exact seeding. As we will see below, an important difference
is that the combined frequencies of type I and type II errors is strictly greater
than the probability that the read contains an error-free interval of size v or
greater.

To make the problem more concrete, we will consider as in section 4.2 that
the target has exactly one duplicate sequence. In a similar way, we will start

92

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

by defining two potential matches referred to as (+) and (—). The definitions
of R-block, (+) interval and (—) interval given in section 4.2 still apply.

[1210 TR I 17 1o o il 1] v ol [[0 [RBM[22][23 (24][25] * Reac
3 3 2 5 4

R-blocks

= *“ — —3 MEms

Y

Figure 22: MEMs (with two references). The symbols are the same as in figure 19.
Matches are represented as white squares, mismatches for the (4) sequence as bottom
black wedges, mismatches for the (—) sequence as top black wedges, and double mis-
matches as black squares. They delimit R-blocks, consisting of mismatch-free intervals
followed by a mismatch. The last nucleotide of an R-block is always a mismatch: the
mismatch-free interval at the tail of the read is not an R-block. MEMs (arrows) are
stretches of the read that match any of the two sequences and that cannot be extended
left or right. MEMs matching the (4) sequence are represented at the top and MEMs
matching the (—) sequence at the bottom. In this example, the central stretch of 5
nucleotides matching the (+) sequence cannot be used as seed because it is included
in a stretch of 12 nucleotides matching the (—) sequence.

Figure 22 highlights the properties of MEMs. Notice how a match for (+)
is masked by a longer match for (—). Nucleotides from 12 to 16 match the (+)
sequence, creating a potential seed. However, it is contained in a match for the
(—) sequence from nucleotides 9 to 20. Since the match for (4) is not a MEM,
it is not used as a seed. Cases such as this can cause type I errors to occur even
when the reads contains matches of size vy or greater for the target.

Remark 21. We consider that when a MEM matches both sequences (as the head and
the tail of the read shown in figure 22 for instance), both sequences are in the list of
candidates after seeding, i.e. both are aligned.

As in section 4.2, reads are seen as sequences of R-blocks. We will first
focus on the probability that a read does not contain a v~-MEM seed for the (+)
sequence, from which we will later deduce the probabilities of type I and type 11
errors. This restriction imposes relatively complex constraints on the R-blocks.
For instance, an R-block of size v (i.e. v — 1 matches followed by a mismatch)
must be followed by a mismatch if the final nucleotide is a mismatch for the (—)
sequence, but it may be followed by up to v — 1 matches if this nucleotide is a
double mismatch, or by any number of matches if it is a mismatch for the (+)
sequence.

To give a concrete example, we will consider y-MEMs of size 3. The read
below starts with two matches, followed by a double mismatch, followed by a
mismatch for the (+) sequence. The symbols between brackets (*,0) indicate
the respective amount of nucleotides matching the (—) and the (4) sequences
at the end of the R-block. All the R-blocks terminated by a mismatch against
the (+) sequence are equivalent because the subsequent R-block cannot be part
of a MEM for the (+) sequence. So the only information we need regarding
the (—) sequence is whether the number of matching nucleotides at the end or

93

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

the R-block is greater than 0, which we represent by the * symbol. At that
point, there are infinitely many possibilities for the next R-blocks, but they can
be gathered in four distinct classes that do not create a MEM seed for the (+)
sequence.

- re 00
) (0,2)

(%,0) E T‘J(z)
[~ (2

Appending any number of matches followed by a double mismatch (top case)
brings the number of nucleotides matching (—) and (+) at the end of the R-
block to (0,0). The weighted generating function of this union of R-blocks is
denoted R.(z). Appending any number of matches followed by a mismatch
against the (4) sequence (second case from the top) maintains the amount of
matching nucleotides as (,0). The weighted generating function of this union
of R-blocks is denoted R} (z). Appending a mismatch for the (—) sequence
(third case from the top), i.e. an R-block with weighted generating function
ry (2) brings the amount of matching nucleotides to (0, 1). Finally, appending
a match followed by a mismatch for the (—) sequence (bottom case), i.e. an
R-block with weighted generating function r; (z) brings the amount of matching
nucleotides to (0,2). All other R-blocks create a MEM seed for the (+) sequence.

By considering all the possible scenarios for other reads, we obtain the trans-
fer graph shown in figure 23. The numbers in the vertices indicate the amount
of nucleotides matching (—) and (4) at the end of the R-blocks. Since R-blocks
are terminated by a mismatch, at least one of these numbers is 0. As explained
above, the * symbol stands for one or more nucleotides, as all these cases are
equivalent. The body of the transfer graph is represented on the left panel, the
head and tail edges on the right panel.

Simple R-blocks have weighted generating functions r{ (z), ry (2), r (2) or
r1 (). The sign indicates which sequence is mismatched at the end of the R-
block and the index indicates the number of matches at the start of the R-block.
Unions of R-blocks have weighted generating functions R.(z2), R} () or R} (2).
The first represents any number of matches followed by a double mismatch, the
second represents any number of matches followed by a mismatch against the
(4) sequence, the last represent up to ¢ matches followed by a mismatch against
the (+) sequence.

In the initial state of the read, the amount of matching nucleotides is (0, 0),
which is indicated by the label 1 on the edge between the head vertex and the
vertex (0,0). This is equivalent to prepending the read by the empty object
€. Reads are terminated by a sequence of matches. The weighted generating
functions Fy(z), Fo(z), F1(z) and F5(z) represent mismatch-free intervals of any
size or size up to 0, 1 or 2, respectively. Here, the empty sequence is present

o4

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 23: Transfer graph of reads without 3-MEM seed for (+). Reads are
viewed as sequences of R-blocks, and they can match two sequences referred to as
(+) and (=). To not overload the figure, the body of the graph is shown on the
left panel, the head and tail edges are showed on the right panel. The numbers in
the vertices represent the respective number of nucleotides matching the (—) and (+)
sequences at the end of an R-block (the * symbol stands for one or more nucleotides).
Weighted generating functions r; (z) represent R-blocks with ¢ matches terminated
by a mismatch against the (4) sequence. Weighted generating functions R;(z) and
R} (2) represent R-blocks with up to i matches terminated by a double mismatch or by
a mismatch against (4), respectively. Weighted generating functions F;(z) represent
mismatch-free intervals of size up to 3. In the variants R.(z), R (z) and F.(z), there
is no upper limit on the number of matching nucleotides.

in the graph (take a path from the head vertex to the tail vertex through (0, 0)
with no match appended at the tail), and no extra sequence needs to be added
so (z) = 0.

The same logic can be applied for higher values of v. The general transfer
matrix associated with the body of the transfer graph has dimension v+ 1 and
is defined as

0,0 Rv,’l(z) 7“07’ z) rf’(z) ;727(2) Rj(z)

01 |Ry—2(2) 0 7y(2) 4—3(2) RYJ:_Z(Z>

M(z) = 0.2 | Ry—3(z) O 0 ;—4(2) Ry—'3(2)
0v—1 | Ro(2) 0 0 0 R{(2)
#,0 Ri(z) ro(2) ri(2) ... 1 .(2) Ri(2)

The head vector H(z) is equal to (1,0,...,0)T and the tail vector T(z) is
equal to (Fy_1(2),...,Fi(2), Fo(2), Fx(2))T. The weighted generating function
of reads with no v~-MEM for the (+) sequence is omitted here. As per proposi-

99

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

tion 4, it can be computed as by ST (z) = H(z)" - (I — M(2))™' - T(z).

As in section 4.2, denote a the probability that the nucleotide is a double
match, b that it is a mismatch against (4), ¢ that it is a mismatch against (—)
and d that it is a mismatch for both. With these definitions, expressions (27)
still apply, and we also have

dz
R.(z)= (1 24))dz= ,
(2) = (1+az+(az)* +...)dz T—az
Ri(z)=(1 24 ez = —=
T =1+az+(a2)* +...)cz =y’
Rf(z)=(14+az+...4 (a2)")cz,
1
F(z)=1 .= .
(2) +az+ (az)” + T

Knowing the values of a, b, ¢ and d, we could compute the weighted gen-
erating function and use proposition 5 to obtain an asymptotic estimate of the
probability that a read does not contain a v~-MEM for the (4) sequence. If we
consider that the (+) sequence is the target and that the (—) sequence is the
duplicate, this is the probability that we set out to find, i.e the probability that
a read contains a -MEM seed when the target sequence has exactly one dupli-
cate. The model is completely specified by the substitution rates p and x, and
as in section 4.2 a = (1 —p)(1 — k), b=pkr/3, c= (1 —p)k and d = p(1 — K/3).
The example below shows how the computations are carried out in practice.

Example 22. Let us approximate the probability that a read does not contain a
MEM seed (where the target has one duplicate) for a read of size k = 100 with v = 17
and for p = 0.10 and « = 0.10. First, we substitute in the 18 x 18 transfer matrix
M(z) and in T'(z) the values a = 0.81,b = 0.09, ¢ = 0.00333,d = 0.09667. We then
compute the expression ST (z) = H(z)" - (I — M(z))~" - T(z) and obtain a rational
function P(z)/Q(z) where P and @ are polynomials of degree 35 and 36, respectively.
The root of @ with smallest modulus is the dominant singularity z; of the weighted
generating function. Using numerical approaches, we find z; ~ 1.0266331946. We
compute the proportionality constant of proposition 5 as —P(21)/Q’(21) ~ 1.3893346
from which we obtain the final estimate 1.3893346/1.0266331946'°! =~ 0.09769252.
For comparison, a 99% confidence interval obtained by performing 10 billion random
simulations is 0.097682 — 0.097698.

Figure 24 illustrates the precision of this estimate for different values of the
error rate p and of the read size k. The values of the parameters are chosen to
match those of figure 7 where we used exact seeds. In the conditions above, the
seeding probabilities are alomst indistinguishable. This does not mean that the
cost of using MEM seeds is always negligible. When using MEMs, the seeding
probability decreases as the number of duplicates increases (here we assume that
there is only one duplicate). In addition we are not separating type I and type
IT errors, which typically have different costs.

This raises the question of how to compute the type I error rate when using
MEM seeds. The work above provides all the elements we need to approximate

96

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

1.0

2 - 3
2 z °
2 2
LIER 2 g
(=8 o o
j=2) j=
£ £
= =
D~ >
§ S g 2
= =
w w
s o s 8
o
Simulation
—— Estimate
2 g
T T T T T ° T T T T T T
60 80 100 120 140 150 160 170 180 190 200
Read size Read size

Figure 24: Example estimates of MEM seeding probability (one duplicate).
The analytic combinatorics estimates are benchmarked against random simulations.
Shown on both panels are the probablities that a read of given size will contain a MEM
seed, either estimated by 10,000,000 random simulations (dots), or by the method
described above (lines). The curves are drawn for v = 17 and « = 0.10, p = 0.08,
p =0.10 or p = 0.12 (from top to bottom). Notice how close the values are to those
shown in figure 7 (probabilities that the read contains an exact seed with the same
parameter values).

it. Call the P53 the approximate probability that the read does not contain a
v-MEM seed. Using the results from section 4.2, we can compute an asymptotic
estimate of the probability that a read does not contain an exact y-seed and does
not contain any stretch of size v or greater matching the duplicate sequence. We
previously called this estimated probability P,. We can estimate the probability
of type I errors as P3 — Ps.

Let us clarify the last statement. Call C' the event that the read has no
v-MEM seed and B the event that it does not contain an exact y-seed and does
not contain any stretch of size y or greater matching the duplicate sequence.
First observe that B C C so P(C'NB¢) = P(C) — P(B). Then, B¢ is the event
that the read contains an exact vy-seed, a stretch of size y or greater matching
the duplicate sequence, or both. Another way to describe B¢ is that “some hit
is found in the read”. So C'N B¢ is the event that “some hit is found, but it
is not the target”, which is the definition of a type I error. Since P(C) =~ Ps
and P(B) ~ P», the probability of type I errors is indeed approximately equal
to Pg — Pg.

Remark 22. The rationale above shows that the probability of type II error with MEM
seeds is approzimately equal to the probability P> computed at section 4.2.

The example below shows how the probabilities of type I errors when using
MEM seeds are computed in practice.

o7

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Example 23. Let us approximate the probability of type I error with MEM seeds
(with one duplicate) for a read of size kK = 100 with v = 17 and for substitution rates
p=0.10 and s = 0.10. In example 20 we found P» ~ 1.4032791/1.0272930245'%! and
in example 22 we found Ps =~ 1.3893346/1.0266331946101. The type I error rate is
then approximately equal to Ps — P> &~ 0.00521934. For comparison, a 99% confidence
interval obtained by performing 10 billion random simulations is 0.0052166—0.0052203.

Figure 25 illustrates the precision of the estimates for different values of
the substitution rate x and of the read size k. The approximation is grossly
inaccurate for k = 0.05, where it is even negative for reads under 40 nucleotides.
The issue here is that the approximate coefficients of S,JYr (z) converge too slow.
To illustrate the point, for £k = 40 and x = 0.05, the analytic combinatorics
estimate P is approximately 3% too low, but this error is already 5 times the
target type I error rate.

«©
o
— o
=
© Simulation °
8 + — Estimate
° 8
o 4
- S
o
Q
T < ©
- 8 .
s 3 2 g |
) o S
[@ °©
s S
Py (S
= 8
o 8
S}
o
8 g
S Q
© o T T T T T
40 60 80 100 110 120 130 140 150
Read size Read size

Figure 25: Example estimates of MEM seeding probability (one duplicate).
The analytic combinatorics estimates are benchmarked against random simulations.
Shown on both panels are the probablities that a read of given size will yield a type
I error when using MEM seeds, either estimated by 10,000,000 (left) or 100,000,000
(right) random simulations (dots), or by approximating the coefficients of S (lines).
The curves are drawn for v = 17 and p = 0.05, k = 0.05, K = 0.15 or £ = 0.25 (from
top to bottom).

Recall that the proof of proposition 5 shows how we can obtain the exact
value of [zk}S:[(z) by making use of all the singularities of the weighted gener-
ating function (see remark 9). For a rational function W(z) = P(z)/Q(z),

W (o) =~ 3 L) (28)

k+17
j=1 Q/(Zj)ZjJr

98

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

where z1,22,...,2, are the singularities of W sorted by increasing order of
modulus.

It seems that we could improve the estimate by using more than just the
dominant singularity. But here we are on slippery ground because using more
singularities can also make the estimate less accurate. This may come as a
surprise, since the proof of proposition 5 suggests that each singularity improves
the approximation. However, the fact that the asymptotic estimate converges
faster does not mean that it is more accurate for small values of k.

Figure 26 illustrates this very vividly. It represents the same data as the
left panel of figure 25, except that the analytic combinatorics estimates are
computed with the first three terms of (28) instead of just the first. For k = 0.15
and k = 0.25 (bottom two curves), the approximations were reasonable with
only one singularity, but they became disastrous with three. In contrast, for
k = 0.05 (top curve) adding two singularities made the estimates much more
accurate.

Simulation
—— Estimate

0.005 0.010 0.015
1 1 1

Type | error rate

0.000
1

40 60 80 100

Read size

Figure 26: Higher order asymptotic approximations. The data is the same as
that represented in the left panel of figure 25, except that the analytic combinatorics
estimtates (lines) are computed from three singularities instead of one, i.e. using the
first three terms of (28).

Looking in more detail, we observe that the estimates are improved when
the singularities of S;‘ have a relatively small imaginary part, and they are
degraded when the singularities have a large imaginary part. Fortunately, these
cases are very easily distinguished because the second singularities orbit around
only two clusters, as shown in figure 27. The trend persits for all the tested
values of v up to 30; 29 is either in the real spectrum or it is a complex number
with a large imaginary part.

For some values of p and k, the coefficients of Si‘ have a two-phase decay,
whereas for others they have a simple exponential decay. Why this is the case
is unclear, but two-phase decays are better approximated using more than one

99

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

......
veoe®

0.5

0.4

Imaginary part
0.3

0.2

0.1

0.0
1

TIRCRISR
T T T T
1.0 11 12 13

Real part

Figure 27: Non-dominant singularities of S,T. The dots represent the second
singularity of S} plotted in the complex plane for 2,500 values of p and k between
0.005 and 0.25. The imaginary part of z3 is either close to 0 or close to 0.5.

singularity. If the decay is a simple exponential, the second singularity captures
some oscillations of the coefficients that are irrelevant for the problem at hand
and that are detrimental to the approximation.

In any event, this distinction between real (or near real) versus complex
zo gives a practical method to approximate the coefficients of Sj with higher
precision and from there estimate the type I error rate associated with MEM
seeds. The overall performance of this approach is illustrated in figure 28.

Extending the estimates to more than one duplicate is more challenging that
in section 4.2 because conditional independence does not hold for MEM seeds.
But we can still use the estimates above as a lower bound for the probability
of type I error. If the proportion of the genome that is repeated is and P* is
the maximum of P3 — P» relative to unknown &, then xP* is again a reasonable
lower bound on the probability of type I errors.

As in section 4.2, the methods presented here suffer from the difficulty to
know the real number of duplicates of the target. Progress on parallel research
lines will be needed in order to develop a workable theory of the relationships
between repeated sequences of a genome.

5 Average quantities

5.1 General approach

The analytic combinatorics approach allows computing the average of many
quantities of interest. In the seeding problem, one such quantity is the number
of errors for reads of different kinds. So far, weighted generating functions only

60

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

1
0.0008
I

Simulation
—— Estimate

0.006
1

0.0006
Il

0.004

Type | error rate
Type | error rate
0.0004
Il

0.002
1

0.000
1 1

0.0000 0.0002
| Il

T T T T T
40 60 80 100 110 120 130 140 150

Read size Read size

Figure 28: Example multi-singularity estimates of type I error rates. The
analytic combinatorics estimates with either one or three singularities (see text) are
benchmarked against random simulations. Shown on both panels are the probablities
that a read of given size will give a type I error when using MEM seeds, either estimated
by 10,000,000 (left) or 100,000,000 (right) random simulations (dots), or by the method
described above (lines). The curves are drawn for v = 17 and p = 0.05, k = 0.05,
k= 0.15 or k = 0.25 (from top to bottom). The simulation data points are the same
as those shown in figure 25. Three singularities are used for k = 0.05, and one for
k= 0.15 and k = 0.25.

marked the size of the reads through the variable z. We now need to introduce
another variable to mark the second quantity, which means that we will deal
with bivariate weighted generating functions. For concreteness, if aj, is the
total weight of reads of size k with n errors and without exact seed, the average
number of errors for such reads is

(;nak,n> / <i ak,,L). (29)

n=0
To compute this quantity, we introduce the variable v marking the number
of substitutions and we write

W(z,u) = i i ak,nzku”.

k=0n=0
Finding an explicit formula for W(z,u) is the focus of sections 5.2 to 5.4.
For now, observe that (29) can be expressed from W (z,u) as follows. On the
one hand, we have

W(z,1) = Z (ak7n> 2"
0

k=0 \n=

61

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

So the denominator of (29) is the coefficient of z* in W (z,1). On the other
hand, by taking the derivative of W (z,u) with respect to u, and setting u = 1,
we obtain

Wu(z,1) = W Z <Z nak_’n> 2k,

u=1 k=0 \n=0

So the numerator of (29) is the coefficient of z¥ in W,(z,1). Note that
W(z,1) and W, (z,1) are actually univariate weighted generating functions, so
we can use the methods developed earlier to obtain asymptotic estimates for
their coefficients. However, proposition 5 will not apply to approximate the
coefficients of W,,(z,1). Since all the weighted generating functions considered
here are ratios of polynomials of the form W (z,u) = P(z,u)/Q(z,u), the deriva-
tive Wy, (z,1) can be expressed as (P,(z,1)Q(z,1) — P(2,1)Qu(z,1))/Q(z,1)2.
Because of the term Q(z,1)? at the denominator, the singularities of W, (z,1)
are not simple poles.

We need to work out new asymptotic estimates. Proposition 10 below shows
how to extract the coefficients of weighted generating functions in this particular
case.

Proposition 10. If a function W (z) is the ratio of two polynomials P(2)/Q(z)?,
and Q) has only simple roots, then

k N P(z1) Plz) | P()Q"(z)) 1
[27]W (2) <(k+1)z1Q’(Z1)2 Q'(21)2 + Q'(z1)?) AT (30)

where z1 is the root of Q with smallest modulus.

As in proposition 5, we start by proving the lemma that will give the func-
tional expression of the asymptotic expansion.

Lemma 3. For |z| < a we have

0 k

1 z
T 2/ap :];(k+1)a—k. (31)
Proof.
1 0 1 o kb1
(1—2/a)? ~ %% (1—z/a> 7(12 ak ’

k=0

where the last equality is obtained by applying lemma 2 and differentiating with
respect to z. O

We now prove proposition 10.

62

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Proof. As in the proof of proposition 5, let z1, 22, . .., 2z, be the complex roots of
Q, sorted by increasing order of modulus. Since the roots of Q(z)? all have mul-
tiplicity 2, there exists constants a1, ..., a, and 51, ..., 8, such that the partial
fraction decomposition of the rational function P(z)/Q(z)? can be written as

Pz) < a B; 5/ Bi/z
UZZ;(EREr -2

Q(2)? z— 2z = 1—2/2))2 1—2z/z

As in the proof of proposition 5, we assumed without loss of generality that
the degree of P is lower than the degree of Q%. Now applying lemmas 2 and 3,
we see that the coefficient of z¥ in P(2)/Q(2)? can be expressed as

n Ry B
Z(k t 1),2’#2 a Zkil' (32)
j=1 J J

The sum above is dominated by the term with the highest exponential rate
of increase, i.e. j = 1 because z; has smallest modulus by definition. Thus, the
coefficient of z¥ in P(z)/Q(z)? is asymptotically equivalent to

oy B1

We now need to find the values of a; and ;. As z; is a root of @, there
exists a polynomial (1(z) such that

Q2) = (2= 21)Q1(2). (33)
We can thus write P(2)/Q(z)? as

Ple) S W) +zn:(I BT\

(z—21)2Q1(2)> (z—21)%2 z—2 = z2—2)% z—z

Multiplying both sides of (34) by (z — 21)? and setting z = z; shows that
a1 = P(21)/Q1(21)?. To find the value of Q1(z1) we differentiate (33) and let
2 = 21, yielding Q'(21) = Q1(21). We thus obtain a; = P(21)/Q'(21)2.

To find the value of 31, we subtract o /(z — 21)? on both sides of (34) and
obtain

P(z) = P(21)Q1(2)*/Q1 (1) _ B q B;
R e o S AT

(35)

Since P(z1) — P(21)Q1(21)?/Q1(21)? = 0, there exists a polynomial Q(2)
such that

P(2) = P(21)Q1(2)?/Q1(21)* = (2 — 21)Q2(2). (36)

63

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Multiplying (35) by z—2; and setting z = 21, we obtain 31 = Q2(21)/Q1(21)?.
To find the value of Q2(z1) we differentiate (33) two times and (36) one time,
finally obtaining 81 = P’(21)/Q’(21)? — P(21)Q"(21)/Q’(21)3, which concludes
the proof. O

Remark 23. Expression (30) is asymptotically equivalent to the simpler expression
P(Zl) 1
Q'(z1)? 2+
However, the convergence of expression (37) is slow. Indeed, dividing the ezact
expression (32) by (37) gives an error term in O(1/k). In comparison, dividing (32)

(k+1) (37)

by (30) gives an error term in O(|z1/22|*), which decreases exponentially, as in propo-
sition 5.

We are now ready to approximate the mean number of errors in reads of
different kinds, treating the distinct types of errors separately.

5.2 Substitutions

We fist find the average number of substitutions in the simple error model of
section 3.3. Applying a now familiar strategy, we write the generating function
of simple objects that we combine into more complex objects. Recall that in the
uniform substitution model, the weighted generating function of substitutions
is pz, where p is the error rate. Marking substitutions with the variable w is
as simple as replacing their weighted generating function by pzu. For every
substitution in the read, the power of u increases by 1, while the power of z still
increases by 1 for every nucleotide.

We could derive the weighted generating function by the transfer matrix
method described in section 3.3, but we can get an immediate result by using
equation (12), where we observed that the weighted generating function of reads
without exact seed can be expressed as

1+ F,(2)
1—pz(l+ Fy(2))
Here the weighted generating function of substitutions appears explicitly as
pz. We can replace it by pzu to obtain directly

(12)

1+ F,(2)
1—pzu(l+ Fy(2))
S(z,1) is simply the weighted generating function of reads without seed
derived in section 3.3, and for which we already know the coefficient asymptotics.
So we already have the denominator of (29). Now differentiating (38) with
respect to u, we obtain

1) = E 1+ F,(2) _ pz(1+ F,(2))?
Sulz1) 8u<1—pzu(1+Fv(z))>‘u_l (1= pz(1+ Fy(2)))* (39)

S(z,u) = (38)

64

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

As mentioned above, the form of the weighted generating function calls for
using proposition 10 (and not proposition 5). The dominant singularity is the
same for both the numerator and the denominator of (29), so the terms in z¥ !
cancel out. What remains is an expression of the form C1k + Cs, where C7 and
Cs are constants. In other words, the average number of substitutions in reads
without exact seed increases as an affine function of the size. We make this
result more accurate in the following proposition.

Proposition 11. Under the assumptions of the error model of section 3.3, the
average number of substitutions in reads without seed is asymptotically equivalent
to

(1-g2)(Ci(k+1) —Cy)
1= (y+1=7gz1)(gz1)7’

where k is the size of the read, where

C1=1-(¢z)7, and

C) (1-(2-@1-g2)* +29)(gz1)" + (1 + (1 = gz1)7* — 29)(g21)*)
’ 1= (v+1=7gz1)(g21)7 ’

and where z1 is the only real positive root of the polynomial 1 — pz(1 + F,(2)).

Proof. Apply proposition 10 to (39), use proposition 7 and simplify. O
8 -
(%]
5
.
£
2
5 o 4
g e
£
=]
=z
o
Simulation
—— Estimate
o
T T T T T
60 80 100 120 140
Read size

Figure 29: Estimating the average number of substitutions. The average num-
ber of substitutions in reads without ~-exact seed is shown for different read sizes,
either estimated by 10,000,000 random simulations (dots), or by analytic combina-
torics (lines). The curves are drawn for v = 17, p = 0.08, p = 0.10 or p = 0.12 (from
bottom to top).

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 29 illustrates the accuracy of the estimate. The affine relationship
between the average number of errors and the size of the read is apparent. Also,
the approximations are very close to the target values.

Remark 24. What about the average number of substitutions in reads that contain a
y-exact seed? We can compute it indirectly from the quantities that we already have
defined.

The average number of substitutions for reads of size k (regardless of whether they
contain a seed) is pk. Call Py the probability that a read of size k contains no seed
and Ey, the average number of substitutions in such reads. The quantity of interest, x
follows the relationship

Pl’kEk -+ (1 - Plyk)m = pk.

From this we see that the average number of substitutions in reads that contain a
~v-ezact seed is (pk — P1 xFr)/(1 — P1). This relationship is not affine because Py
decreases exponentially as k increases. But for long reads Pi j, vanishes so the average
is approximately linear and equal to pk.

5.3 Deletions

To count the average number of deletions, we could take the weighted generating
function of the reads without seed in the error model of section 3.4, namely

L+ (- 5)F ()
1—pz— (pz(1 = 6) +6)Fy(2)

But here it is important to remember that, equation (17) ignores the dele-
tions that occur immediately before and after substitutions, because they have
no impact on the presence of a seed. For the purpose of counting deletions, we
need to take them all into consideration, even those that do not interrupt any
error-free interval. This requires working out the proper weighted generating
function.

A read can be thought of as a walk on the graph shown in figure 30. On
this graph, deletions appear as a separate vertex (unlike in figure 8). Their
size is 0 and they occur only between nucleotides, which implies that a read
can neither start nor end with a deletion. Also, a deletion must be followed
by either a match or a substitution; it cannot be followed by a deletion. The
reason is that a deletion has size 0 regardless the number of deleted nucleotides.
In the symbolic representation of the read, either there is a deletion of any size
between two nucleotides, or there is no deletion.

Here, reads are sequences of error-free intervals withs symbol Ay and weighted
generating function F(z) or substitutions with symbol S and weighted generat-
ing function pz, or deletions with symbol D and weighted generating function
0. Two error-free intervals cannot follow each other (together they form a single
error-free interval) and two deletions cannot follow each other (together they
form a single deletion). Here we also need to account for the absence of dele-

(17)

66

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Figure 30: Transfer graph with explicit deletions. Reads are viewed as sequences
of error-free intervals (symbol Ag) or substitutions (symbol S) or deletions (symbol
D), with respective weighted generating functions F'(z), pz and 4.

tions in transitions between error-free intervals and substitutions. This is done
by weighing the corresponding transitions by a factor (1 — §).

As in the previous section, in order to count deletions with parameter v, we
replace their weigted generating function by dv. For every deletion the power
of v increases by 1 (and the power of z does not change). The transfer matrix
then becomes a function of z, marking the size of the reads, and of v, marking
the number of deletions. The final expression of the transfer matrix is

Ao s D
Ao 0 (1=90)pz ov

M(z,v)= s |(1=86)F(z) (1-08pz dvl-
D F(z) Pz 0

Recall that reads can neither start nor end by a deletion because they are
undetectable at those positions. Thus the head vector is H(z,v) = (F(2),pz,0)"
and the tail vector is T(z,v) = (1,1,0)T. The only sequence we need to add
is the empty sequence ¢, so ¥(z,v) = 1. Following proposition 4, the weighted
generating function S(z,v) is equal to ¥(z,v)+H (z,v) " -(I—=M(z,v)) T (z,v).

Following the general strategy to count average quantities, we first compute
S(z,1). Naturally, we obtain expression (17), which is the weighted generating
function of reads without exact seed. We also differentiate S(z,v) with respect
to v and let v = 1 to obtain

5y 1) D2 (L) 4 F(2)°) w0

2
(1 —pz — (pz(1 = 8) + 0) Fy(2))
As in the section 5.2, we derive the asymptotics by applying proposition 10

67

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

to (40) and by applying proposition 5 to (17). The terms zf“ cancel out when

computing the ratio as per equation (29), so the number of deletions in reads
without seed is asymptotically affine, i.e. of the form C1k + C3, where C; and
Cy are constants. In both cases, C; and C5 have cumbersome expressions, but
they are easy to compute from propositions 5 and 10.

15 20
1 1

Number of substitutions
10
Il

Simulation
— Estimate

T T T T T
60 80 100 120 140

Read size

Figure 31: Example estimates of average number of deletions. The average
number of deletions in reads without y-exact seed is shown for different read sizes,
either estimated by 10,000,000 random simulations (dots), or by analytic combinatorics
(lines). The curves are drawn for v =17, p = 0.05 and 6 = 0.14, § = 0.15 or § = 0.16
(from bottom to top).

The accuracy of the estimates is illustrated in figure 31. Once again the affine
relationship is a good fit and the approximations are close the target values.

5.4 Insertions

Finally, we compute the average amount of insertions for reads without exact
seed in the full error model of section 3.5. The simplest way to do this is to
mark insertions in the transfer matrix where they appear explicitly. For this, we
append the extra variable w to their weighted generating functions and obtain
the following transfer matrix

Ao s I

Ao OF,(2) pz rzw
M(z,w)= s F(2) pz rzw |-

I %::Fv(z) %::pz Tzw

In the expression above, we have used F,(z) instead of F(z) because we
are directly considering reads without seed. We also update the head and tail
vectors H(z,w) = (Fy(z),pz,72w) " and T(z,w) = (1,1,1)T, and we add the

68

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

empty sequence so ¥(z,w) = 1. Following proposition 4, S(z,w) = ¢¥(z,w) +
H(z,w)" - (I —M(z,w))™ - T(z,w).

Once again, we obtain the average number of insertions by computing ratio
(29) from the coefficients of S(z, 1) and of those of S,,(z,1). Computing S(z,1)
yields expression (22), i.e. the weighted generating function of reads without
exact seed. By differentiating S(z,w) and setting w = 1 we find S, (z,1) to be
equal to

rz(1—=r)(1+ (1= 8)F(2))(1—r—pz(F — 1) + c(2)F(2))
(1~ a(2) ~ b(=)F;(2))”

where a(z) and b(z) are defined as in (20), and where ¢(z) is a first degree
polynomial defined as

, (41)

co(z)=1-7F—-0(1—7r)—(1—0)F —r)pz.

As in section 5.2, we derive the asymptotics by applying proposition 10 to
(41) and by applying proposition 5 to (22). The terms zF"! cancel out when
computing the ratio as per equation (29), so the number of insertions in reads
without seed is asymptotically affine, i.e. of the form C1k + Cy, where C; and
Cy are constants. In both cases, C; and Cy have cumbersome expressions, but
they are easy to compute from propositions 5 and 10.

10
1

Number of insertions

Simulation
—— Estimate

Read size

Figure 32: Example estimates of average number of isnertions. The average
number of insertions in reads without ~-exact seed is shown for different read sizes,
either estimated by 10,000,000 random simulations (dots), or by analytic combinatorics
(lines). The curves are drawn for v = 17, p = 0.05, § = 0.15, 7 = 0.45 and r = 0.04,
r = 0.05 or 7 = 0.06 (from bottom to top).

The accuracy of the estimates is illustrated in figure 32. Once again the affine
relationship is a good fit and the approximations are close the target values.

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

It is also meaningful to compute the average number of substitutions or
deletions in the full error model. For this, one can start from the transfer
matrix, mark the quantity of interest and proceed with the general strategy
exposed in section 5.1.

To compute the average number of substitutions, we use the transfer matrix

Ao s I

Ao OF,(2) pzu rZ

M(z,u)= s F,(2) pzu rz
I %::Fﬁy(z) %::pzu Tz

To compute the average number of deletions, we use the transfer matrix

Ao s D I

Ao 0 (1-=96)pz ov rz

M _ s | (1=080)F(2) (1-0dpz dv rz
(0) % (2) pz 0 0

I t:ny(z) t:pz 0 7=z

Finally, we can also consider all errors together (deletions always counting as
a single error). For this we mark all the types of errors with the same variable,
say w. In this case, we use the tansfer matrix

Ao S D I

Ao 0 (1—-8pzw Sw rzw

M(z,w) = S (1-0)F,(2) (1—=9)pzw dvw rzw
7 D ™ (2) pzw 0 0

g e (2) =Lpzw 0 7Tzw

In all the cases, we obtain an affine relationship between the size of the read
and the average number of error of a given type.

6 Conclusion

This concludes our introductory tour of the applications of analytic combina-
torics to seeding methods. There is of course much more to say. Our purpose
here is to show how the general strategy of analytic combinatorics gives reason-
able solutions to problems that were previously difficult to address.

We have seen through multiple applications that the general strategy is to
define combinatorial “atoms” with simple weighted generating functions (e.g.
nucleotide symbols), combine these atoms into objects of increasing complexity
(e.g. error-free intervals or reads without seed), construct their weighted gen-
erating functions from simple rules (mostly through proposition 4), and finally
analyze the singularities of the weighted generating functions to approximate
the quantities of interest (through propositions 5 and 10).

70

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

When using exact seeds, inexact seeds or MEM seeds, the estimates of the
seeding probabilities are robust and relatively straightforward. The data col-
lected during the alignment can be used to estimates the parameters of the error
model to auto-tune the seeding heuristic during the run. This gives tight con-
trol over the seeding probability. More challenging is to control the type I error
rate. The main difficulty is the lack of theoretical background on the seeding
process when the target is duplicated. Significant progress on this line may not
come from analytic combinatorics, but from new data structures or algorithms
to seed such sequences more efficiently.

Seeding is not only used in mapping, but also in other alignment problems.
In this regard, the work presented above can be applied to different contexts.
That said, mapping high throughput sequencing reads is a “sweet spot” for
analytic combinatorics because the sequences are usually long enough for the
approximations to be accurate.

Finally, the concepts developed above can also be used to generate random
reads of different kinds. The analogy between reads and walks on graphs with
weighted edges allows us to generate reads by simulating a random walk. The
trick is to convert the transfer matrix into a transition matrix by using the
weights of the objects as their probabilities of occurrence.

In summary, analytic combinatorics is a powerful strategy that comes with
a rich toolbox with many applications in modern bioinformatics. I expect more
applications to see the light as new algorithms and new heuristics are developed
in the future.

Acknowledgements

I would like to thank Eduard Valera Zorita and Patrick Berger for their critical
comments and their useful suggestions about the manuscript. I acknowledge
the financial support of the Spanish Ministry of Economy and Competitiveness
(Centro de Excelencia Severo Ochoa 2013-2017, Plan Nacional BFU2012-37168),
of the CERCA Programme / Generalitat de Catalunya, and of the European
Research Council (Synergy Grant 609989).

References

[1] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403-10, October 1990.

[2] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Bio-
logical sequence analysis: probabilistic models of proteins and nucleic acids.
Cambridge university press, 1998.

[3] P. Ferragina and G. Manzini. Opportunistic data structures with appli-
cations. In Proceedings of the 41st Annual Symposium on Foundations of

71

https://doi.org/10.1101/205427

bioRxiv preprint doi: https://doi.org/10.1101/205427; this version posted October 18, 2017. The copyright holder has placed this preprint (which
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt
this material for any purpose without crediting the original authors.

Computer Science, FOCS ’00, pages 390—, Washington, DC, USA, 2000.
IEEE Computer Society.

[4] Philippe Flajolet and Andrew Odlyzko. Singularity analysis of generating
functions. SIAM Journal on discrete mathematics, 3(2):216-240, 1990.

[5] Philippe Flajolet and Robert Sedgewick. An introduction to the analysis
of algorithms, 1996.

[6] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, New York, NY, USA, 1 edition, 2009.

[7] Sara Goodwin, John D McPherson, and W Richard McCombie. Coming
of age: ten years of next-generation sequencing technologies. Nat. Rev.
Genet., 17(6):333-51, 05 2016.

[8] S Karlin and S F Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proc. Natl.
Acad. Sci. U.S.A., 87(6):2264-8, March 1990.

[9] S Karlin and S F Altschul. Applications and statistics for multiple high-
scoring segments in molecular sequences. Proc. Natl. Acad. Sci. U.S.A.,
90(12):5873-7, June 1993.

[10] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultra-
fast and memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol., 10(3):R25, 2009.

[11] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754-60, July 2009.

[12] Heng Li and Nils Homer. A survey of sequence alignment algorithms for
next-generation sequencing. Brief. Bioinformatics, 11(5):473-83, Septem-
ber 2010.

[13] Kensuke Nakamura, Taku Oshima, Takuya Morimoto, Shun Tkeda, Hiro-
fumi Yoshikawa, Yuh Shiwa, Shu Ishikawa, Margaret C Linak, Aki Hirai,
Hiroki Takahashi, Md Altaf-Ul-Amin, Naotake Ogasawara, and Shigehiko
Kanaya. Sequence-specific error profile of Illumina sequencers. Nucleic
Acids Res., 39(13):€90, July 2011.

[14] Javier Quilez, Enrique Vidal, Francois Le Dily, Francois Serra, Yas-
mina Cuartero, Ralph Stadhouders, Thomas Graf, Marc A. Marti-Renom,
Miguel Beato, and Guillaume Filion. Parallel sequencing lives, or what
makes large sequencing projects successful. bioRziv, 2017.

[15] Jason A Reuter, Damek V Spacek, and Michael P Snyder. High-throughput
sequencing technologies. Mol. Cell, 58(4):586-97, May 2015.

[16] Yanni Sun and Jeremy Buhler. Choosing the best heuristic for seeded
alignment of DNA sequences. BMC' Bioinformatics, 7:133, March 2006.

72

https://doi.org/10.1101/205427

