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Abstract 22 

Recent molecular genetic studies have shown that the majority of genes associated with obesity 23 

are expressed in the central nervous system. Obesity has also been associated with 24 

neurobehavioural factors such as brain morphology, cognitive performance, and personality. 25 

Here, we tested whether these neurobehavioural factors were associated with the heritable 26 

variance in obesity measured by body mass index (BMI) in the Human Connectome Project 27 

(N=895 siblings). Phenotypically, cortical thickness findings supported the “right brain 28 

hypothesis” for obesity. Namely, increased BMI associated with decreased cortical thickness in 29 

right frontal lobe and increased thickness in the left frontal lobe, notably in lateral prefrontal 30 

cortex. In addition, lower thickness and volume in entorhinal-parahippocampal structures, and 31 

increased thickness in parietal-occipital structures in obese participants supported the role of 32 

visuospatial function in obesity. Brain morphometry results were supported by cognitive tests, 33 

which outlined obesity’s negative association with visuospatial function, verbal episodic 34 

memory, impulsivity, and cognitive flexibility. Personality-obesity correlations were inconsistent. 35 

We then aggregated the effects for each neurobehavioural factor for a behavioural genetics 36 

analysis and demonstrated the factors’ genetic overlap with obesity. Namely, cognitive test scores 37 

and brain morphometry had 0.25 - 0.45 genetic correlations with obesity, and the phenotypic 38 

correlations with obesity were 77-89% explained by genetic factors. Neurobehavioural factors 39 

also had some genetic overlap with each other. In summary, obesity has considerable genetic 40 

overlap with brain and cognitive measures. This supports the theory that obesity is inherited via 41 

brain function, and may inform intervention strategies. 42 

Significance Statement 43 

Obesity is a widespread heritable health condition. Evidence from psychology, cognitive 44 

neuroscience, and genetics has proposed links between obesity and the brain. The current study 45 

tested whether the heritable variance in obesity is explained by brain and behavioural factors in a 46 

large brain imaging cohort that included multiple related individuals. We found that the heritable 47 

variance in obesity had genetic correlations 0.25 - 0.45 with cognitive tests, cortical thickness, 48 

and regional brain volume. In particular, obesity was associated with frontal lobe asymmetry and 49 

differences in temporal-parietal perceptual systems. Further, we found genetic overlap between 50 
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certain brain and behavioural factors. In summary, the genetic vulnerability to obesity is 51 

expressed in the brain. This may inform intervention strategies. 52 

\body 53 
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Introduction 55 

Obesity is a widespread condition leading to increased mortality (1) and economic costs (2). 56 

Twin and family studies have shown that individual differences in obesity are largely explained 57 

by genetic variance (3). Gene enrichment patterns suggest that obesity-related genes are 58 

preferentially expressed in the brain (4). While it is unclear how these brain-expressed genes lead 59 

to obesity, several lines of research show that neural, cognitive, and personality differences have 60 

a role in vulnerability to obesity (5, 6). Here we seek to test whether these neurobehavioural 61 

factors could explain the genetic variance in obesity. 62 

In the personality literature, obesity is most often negatively associated with Conscientiousness 63 

(self-discipline and orderliness) and positively with Neuroticism (a tendency towards negative 64 

affect) (7). In the cognitive domain, tests capturing executive function, inhibition, and attentional 65 

control have a negative association with obesity (5–8). Neuroanatomically, obesity seems to have 66 

a negative association with the grey matter volume of prefrontal cortex, and to a lesser extent the 67 

volume of parietal and temporal lobes, as measured by voxel based morphometry (9). It has also 68 

been suggested that structural and functional asymmetry of the prefrontal cortex might underlie 69 

overeating and obesity (10). For genetic analysis, cortical thickness estimates of brain structure 70 

from Magnetic Resonance Imaging (MRI) have been preferred over volumetric measures (11). 71 

However, to date, reports of cortical thickness patterns associated with obesity have been 72 

inconsistent (12, 13). As a prerequisite to our goal of ascertaining the heritability of brain-based 73 

vulnerability to obesity, we sought to extend previous neurobehavioural findings in a large multi-74 

factor dataset from the Human Connectome Project (HCP). Since cortical thickness measurement 75 

is limited to cortex only, we also measured volumetric estimates of medial temporal lobe and 76 

subcortical structures, which have been implicated in appetitive control (e.g., 14). 77 

The main goal was to assess whether the outlined obesity-neurobehavioural associations are of 78 

genetic or environmental origin. Recent evidence from behavioural and molecular genetics 79 

suggests that there is considerable genetic overlap between obesity, cognitive test scores, and 80 

brain imaging findings (15–20). However, the evidence so far is not comprehensive across all 81 

neurobehavioural factors discussed. A recent paper assessed the heritability of obesity-associated 82 

regional brain volumes (21). However, the study did not analyze the heritability of the association 83 
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between brain and obesity. The latter analysis is crucial for understanding whether brain anatomy 84 

and obesity could have a genetic overlap, which would suggest that the heritability of 85 

vulnerability to obesity is expressed in the brain.  86 

In addition, we sought to estimate the genetic overlap between the different BMI-related 87 

neurobehavioural factors. On one hand, performance on cognitive tests and personality must 88 

originate from the brain (e.g., 22), and therefore personality and cognition could be expected to 89 

explain brain-morphometry associations with BMI (6). On the other hand, brain-behaviour 90 

associations are far from certain (23), and even different measurement traditions in both 91 

behaviour (personality and cognitive tests) and brain morphometry (cortical thickness or brain 92 

volume) are often conceptualized as providing independent sources of information (7, 11). 93 

Documenting the degree of genetic overlap between behavioural and brain measures would shed 94 

light on whether similar underlying processes lead to obesity’s associations with different 95 

neurobehavioural factors. 96 

Taken together, the goal of the current analysis was to use a large multifactor dataset to analyze 97 

the heritability of the associations between obesity and brain/behaviour. We further tested genetic 98 

overlap between the different neurobehavioural factors themselves.  99 

Results 100 

Background 101 

We analyzed data from 895 participants from the Human Connectome Project S900 release (24), 102 

including 111 pairs of monozygotic twins and 188 pairs of dizygotic twins and siblings. Similarly 103 

to many previous reports (3) we modelled BMI heritability with the AE model (A: additive 104 

genetics and E: unique environment), as opposed to the ACE model (C: common environment), 105 

as AE had the lowest Akaike Information Criterion (Table S10). BMI heritability was A=71% 106 

[95% CI: 61%;78%], which is close to the published meta-analytic estimate (A=75%, 3).  107 

In all analyses below, we controlled for age, gender, race, ethnicity, handedness, and evidence of 108 

drug consumption on day of testing, which mostly associated with BMI (SI Results, Figure S2). 109 

When presenting and interpreting phenotypic associations, we controlled for family structure to 110 
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avoid inflated effect sizes and standard errors (e.g., 25). The behavioural genetics analysis did not 111 

control for family structure, since this information is needed for modelling heritability. As socio-112 

economic status (SES) is intertwined with cognitive test scores (26), personality (27), and brain 113 

morphometry (28), we also present phenotypic associations controlling for SES (education and 114 

income) in the supplementary material. All in-text p-values are provided without correcting for 115 

multiple comparisons. False discovery rate (FDR) correction was applied when screening for 116 

features within cognitive, personality, and brain factors (Figures 1,2,5). 117 

Cognitive and Personality Factors 118 

BMI was negatively correlated with these tests of executive function: cognitive flexibility, fluid 119 

intelligence, inability to delay gratification, reading abilities, and working memory. Intriguingly, 120 

the strongest effects were present for non-executive tasks measuring visuospatial ability and 121 

verbal memory (Figure 1A). These tasks remained associated with BMI after controlling for SES; 122 

controlling for SES reduced the number of executive function tests involved with BMI to 123 

cognitive flexibility and inability to delay gratification (SI Figure S3A left). No personality test 124 

score correlated with BMI when FDR correction was applied (Figure 1B). 125 

Brain Morphology 126 

Cortical thickness was estimated from each T1-weighted MRI using CIVET 2.0 software (29). 127 

Parcel-based analysis identified negative associations with BMI in right inferior lateral frontal 128 

cortex, and bilateral entorhinal-parahippocampal cortex (Figures 2A & 3A). Positive associations 129 

with BMI were found with the left superior frontal cortex, left inferior lateral frontal cortex, and 130 

bilateral parietal cortex parcels. Controlling for SES did not change these results (Figure S4A 131 

left). The frontal lobe asymmetry in the BMI association (thinner on the right, thicker on the left) 132 

mostly involved the inferior lateral prefrontal areas, such as inferior frontal gyrus. 133 

Regional brain volumes were measured for estimation of brain morphology-obesity associations 134 

in brain structures not covered by the CIVET cortical thickness algorithm. Medial temporal lobe 135 

and subcortical volumes were individually segmented and measured by registering each brain to a 136 

labelled atlas using ANIMAL software (30). Volumetric results demonstrated an association 137 
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between BMI and lower volume of the entorhinal cortex bilaterally, and a positive association of 138 

left amygdala volume with BMI (Figures 2B & 3B). No subcortical region had a significant 139 

association with BMI, and results did not change when controlling for SES (Figure S4B left). 140 

Creating poly-phenotype scores 141 

We performed dimension reduction for heritability analyses to reduce measurement noise and 142 

avoid multiple testing with redundant measures. Similarly to other recent papers, (20, 27), we 143 

used the weights of each individual feature within a neurobehavioural factor (personality test, 144 

cognitive test, brain parcel) to create an aggregate BMI risk score or poly-phenotype score (PPS). 145 

This is similar to the polygenic score approach in genetics, where the small effects of several 146 

polymorphisms are aggregated to yield a total effect score (15, 19, 20, 27). We used the 147 

correlation values as weights to multiply each participant's scaled measurements, and aggregated 148 

the results into a single composite variable, the PPS. The PPS reflects the total association of 149 

each neurobehavioural factor with BMI. To avoid overfitting, we assigned each 10% of 150 

participants the PPS weights obtained from the other 90% (see SI: Data analysis for details).  151 

The associations between BMI and the PPS-s for cognition (correlation with BMI: r=0.16, 152 

p<0.001, n=798) and personality (r=0.08, p=0.017, n=888) are slightly higher than the meta-153 

analytic estimates of the pooled association between BMI and cognitive test scores (r=0.10, ref: 154 

8) and personality factors (r=0.05, ref: 8). BMI had stronger associations with the PPS-s for 155 

cortical thickness (r=0.26, p<0.001, n=591), and medial temporal brain volume (r=0.23, p<0.001, 156 

n=594). There was no association between BMI and subcortical brain volume (r=-0.05, p=0.169, 157 

n=828). To test the generalizability of the PPS approach, we used weights obtained from the full 158 

S900 release (Figures S3 right and S4 right) to test PPS-BMI correlation amongst the unseen 159 

additional participants in the S1200 release (referred to as S1200n, n=236). Cortical thickness 160 

PPS had essentially unchanged effect size when correlated with BMI in S1200n (SI Results, 161 

Figure S7). At the same time, cognitive and personality PPS-s were less stable (SI Results, Figure 162 

S7), likely because the smaller effect sizes of individual features need larger training datasets to 163 

reduce inaccuracies, or that the true PPS-BMI effect size was too small to be found just within 164 

the S1200n sample. 165 
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Heritability 166 

Bivariate heritability was similarly conducted with the AE model, since the main goal was to 167 

explain variance in BMI, for which AE was the best model. All PPS-s were found to be highly 168 

heritable, with the A component explaining 36-79% of the variance (Figure 4A, SI Table S11. 169 

Significant genetic correlations (rg) were found between BMI and cognitive test scores (rg=0.25 170 

(p=0.002), cortical thickness (rg=0.45, p<0.001), and medial temporal brain volume (rg=0.36, 171 

p<0.001) (Figure 4B, SI Table S12). The personality PPS genetic correlation with BMI was not 172 

significant (rg=0.22, p=0.052). Molecular evidence relying on linkage disequilibrium score 173 

regression has reported effects of similar magnitude between higher cognitive test scores and 174 

BMI (rg=-0.22, ref: , 15, rg=-0.18, ref: , 18). Environmental correlations (i.e. correlations 175 

between environmental variances) were small and not significant (SI Table S12). As expected 176 

from high heritability of the traits and high genetic correlations, the phenotypic BMI-PPS 177 

correlations described in the previous sections were 77-89% explained by genetic factors (Figure 178 

4C, SI Table S11). The results broadly replicated when repeating the analysis with just the top 179 

features within a PPS, suggesting that PPS based findings summarize the effects of the 180 

underlying individual features (Figure S8). We further replicated the heritability patterns in a 181 

separate analysis focused only on the additional participants from the S1200 HCP release (Figure 182 

S9). 183 

Genetic overlap between neurobehavioural factors 184 

Phenotypically, certain PPS-s had small but significant intercorrelations (Figure S10 upper 185 

triangle). After FDR correction, we were able to find two genetic correlations between PPS-s of 186 

cognition and cortical thickness (rg=0.35), as well as cognition and personality (rg=0.33, Figure 187 

S10 lower triangle). Taken together, while the neurobehavioural factors have mostly independent 188 

effects on BMI, cognitive test scores have small genetic overlap with brain structure and 189 

personality. 190 

 191 
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Discussion 192 

Cortical thickness, medial temporal lobe volume, and cognitive measures all had covariation with 193 

BMI, and their effect on BMI was almost entirely heritable. Similarly, we found genetic 194 

correlations between obesity risk scores of cognition, cortical thickness and personality. 195 

Together, our results from a large sample support the role of brain and psychological constructs 196 

in explaining genetic variance in obesity.  197 

BMI correlated with increased cortical thickness in the left prefrontal cortex and decreased 198 

thickness in the right prefrontal cortex, supporting the “right brain” hypothesis for obesity (10). 199 

The effect was most prominent in the inferior frontal gyrus (Figures 2A and 3A). Only 200 

preliminary support for the right brain hypothesis has been previously available (13). Right 201 

prefrontal cortex has been implicated in inhibitory control (22) and possibly bodily awareness 202 

(10). Many neuromodulation interventions (e.g. transcranial magnetic stimulation) aimed at 203 

increasing self-regulation capacity often target right prefrontal cortex. On the other hand, effects 204 

have also been demonstrated in studies targeting left prefrontal cortex (31).  205 

Cortical thickness results also highlighted the role of temporo-parietal perceptual structures in 206 

obesity. Namely, obesity was associated with bilaterally decreased thickness of the 207 

parahippocampal and entorhinal cortices, and with mostly right-lateralized increased thickness of 208 

parietal and occipital lobes. Volumetric results within the medial temporal lobe supported the role 209 

of entorhinal cortex and also suggested that obesity is positively associated with the volume of 210 

left amygdala. Emergence of the effects of the right parietal structures together with right 211 

prefrontal structures hint at the role of the ventral frontoparietal network, thought to be especially 212 

important for detection of behaviourally relevant visual stimuli (32). The parahippocampal and 213 

entorhinal cortex are associated with episodic memory and context mediation (33). Similarly, the 214 

hippocampus has been associated with the modulation of food cue reactivity by homeostatic and 215 

contextual information, and hippocampal dysfunction is postulated to promote weight gain in the 216 

western diet environment (34). The amygdala is implicated in emotional and appetitive responses 217 

to sensory stimuli, including food cues (35). 218 

Integrating these findings, one could envision a model where obesity is associated with a certain 219 
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cognitive profile (36). The model starts with a hyperactive visual attention system attributing 220 

heightened salience to food stimuli, implicating the ventral visual stream and amygdala. These 221 

signals are then less optimally tied into relevant context by the parahippocampal and entorhinal 222 

structures, and less well moderated (or filtered) by the prefrontal executive system. This could 223 

result in consummatory behaviour driven by the presence of appetitive food signals, which are 224 

ubiquitous in our obesogenic environment. An impaired response inhibition and salience 225 

attribution model of obesity has been suggested based on the functional neuroimaging literature. 226 

Namely, functional MRI studies have consistently identified obesity to associate with heightened 227 

salience response to food cues, coupled with reduced activation in prefrontal and executive 228 

systems involved in self-regulation and top-down attentional control (e.g., 35). A similar 229 

conclusion emerged from a recent resting state network analysis of the HCP data (37), in which 230 

obesity was associated with alterations in perceptual networks and decreased activity of default 231 

mode and central executive networks.  232 

This brain morphology-derived model has some support from cognitive tests. The role of 233 

prefrontal executive control is outlined by our finding of obesity’s negative association with 234 

scores on several executive control tasks. Surprisingly, there was no effect of motor inhibition as 235 

measured by the Flanker inhibitory task. A relation between obesity and reduced motor 236 

inhibition, while often mentioned, has been inconsistent even across meta analyses (7, 8). On the 237 

other hand, we found a relationship between decisional impulsivity, measured by delay-238 

discounting, and BMI, replicating previous literature (6, 7, 18). While controlling for education 239 

reduced the number of executive tasks associated with BMI, the overall pattern remained the 240 

same, suggesting that education level is a proxy for certain executive function abilities. 241 

Intriguingly, obesity was found to be negatively associated with spatial orientation and verbal 242 

episodic memory. These tasks tap into the key functions associated with entorhinal and 243 

parahippocampal regions implicated in our study (33). Therefore, both cognitive and brain 244 

morphology features propose that the increased salience of food stimuli could be facilitated by 245 

dysregulated context representation in obesity.  246 

Regarding personality, we were unable to find any questionnaire-specific effects, notably with 247 

respect to Neuroticism and Conscientiousness, both often thought to be associated with obesity 248 
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(5–7). There are potential explanations for this discrepancy. First, the meta-analytical association 249 

between various personality tests and BMI is small (r=0.05, ref: 7), for which we might have 250 

been underpowered after p-value correction. Second, controlling for family structure likely 251 

further reduced the effect sizes (25). Third, the personality-obesity associations tend to pertain to 252 

more specific facets and nuances than broad personality traits (38), therefore, further analysis 253 

with more detailed and eating-specific personality measures is needed in larger samples. 254 

All the associations discussed here were largely due to shared genetic variance between 255 

neurobehavioural factors and BMI. This is in accordance with recent molecular genetics evidence 256 

that 75% of obesity related genes express preferentially in the brain (4). Similarly, the genetic 257 

correlation between cognition and BMI uncovered in our sample is at the same magnitude as 258 

molecular estimates of associations between more specific cognitive measures and BMI (15, 18). 259 

The current evidence further supports the brain-gene association with obesity vulnerability.  260 

A possible explanation of the genetic correlations is pleiotropy – the existence of a common set 261 

of genes that independently influence variance in both obesity and brain function. However, our 262 

results could also support a causal relationship – that the genetic correlation is due to a persistent 263 

effect of heritable brain factors on overeating and hence BMI. For instance, we could hypothesize 264 

that the heritable obesity-related cognitive profile promotes overeating when high-calorie food is 265 

available. As high-calorie food is abundant and inexpensive, the cognitive profile could lead to 266 

repeated overeating providing an opportunity for genetic obesity-proneness to express. Such 267 

longitudinal environmental effects of a trait need not to be large, they just have to be consistent 268 

(39, see discussion in 40). Of course, a reverse scenario is also possible – obesity leads to 269 

alterations in cortical morphology due to the consequences of cardiometabolic complications, 270 

including low-grade chronic inflammation, hypertension, and vascular disease (reviewed in 9, 271 

41). However, we find this hypothesis less plausible in our study for two reasons. First, the 272 

reviews outline that the reported consequence of chronic visceral adipose tissue accumulation is 273 

typically global brain atrophy. In contrast, the current data implicate focal brain effects – vascular 274 

or inflammatory neurodegenerative effects would not explain the left-right asymmetry in the 275 

prefrontal cortex, nor the many areas of gray matter increase with BMI. Second, the same 276 

reviews suggest that global brain atrophy due to metabolic syndrome is mostly seen in older 277 

participants, whereas the current sample had a mean age of 29. Young adults often experience 278 
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“healthy or transitional obesity”, where clinical inflammation levels (42) and other 279 

cardiometabolic comorbidities have not yet developed (43). Further, a recent mendelian 280 

randomisation study suggested that low genetic potential for education (a proxy for cognitive test 281 

score, compare Figure 1A with Figure S3A left) leads to high risk for cardiovascular disease, 282 

whereas high genetic risk for cardiovascular disease (outcome of high BMI) does not lead to low 283 

education (44). A likely explanation of these findings is that even if the cardiovascular disease 284 

(and BMI) genes have effects on cognition via neurodegenerative mechanisms, these genes have 285 

an effect later in life, when people have completed their education. Taken together, the focality of 286 

the cortical thickness patterns and young age of the participants suggest that the genetic 287 

neurobehavioural factors described here lead to a higher risk of obesity. 288 

We found neurobehavioural PPS-s to have occasional phenotypic and genetic correlations with 289 

each other. Here, it is hard to argue against pleiotropy playing a role. While one could reasonably 290 

expect that at least part of the variation in cognitive performance would be shaped by brain 291 

morphometry (22), it is also the case that engaging in education leads to improvement in 292 

cognitive test scores (26) and might also lead to changes in cortical thickness (45). The small 293 

genetic overlap between cognition, cortical thickness and personality can probably be explained 294 

by common pleiotropic roots. At the same time, integrating morphometry and cognitive findings 295 

is difficult with this dataset. 296 

From a practical point of view, our work suggests that evidence from psychology and 297 

neuroscience can be used to design intervention strategies for people with higher genetic risk for 298 

obesity. One way would be modifying neurobehavioural factors, e.g. with cognitive training, to 299 

improve people’s ability resist the obesogenic environment (31, 36). Another path could be 300 

changing the immediate environment to be less obesogenic (e.g., 46) so that individual 301 

differences in neurobehavioural factors would be less likely to manifest. In any case, current 302 

evidence highlights that obesity interventions should not focus solely on diet, but also take into 303 

account that obesity is genetically intertwined with variation in neurobehavioural profiles. 304 

The current analysis has limitations. Due to the cross-sectional nature of the dataset, causality 305 

between neurobehavioural factors and obesity is only suggestive – longitudinal designs would 306 

enable better insight into the causal associations between brain morphology, psychological 307 
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measures, and BMI or weight gain. BMI is a crude proxy for actual eating behaviours or health 308 

status. In addition, there were more normal-weight than obese participants. However, the 25% 309 

obesity rate in this sample is close to the published obesity rate of the state of Missouri (31.7%) 310 

and the US (36.5%, ref: , 47). Also, we expect that BMI itself and the neurobehavioural 311 

mechanisms behind it are continuum processes, therefore all variation in the range from normal-312 

weight to obesity is likely helping to uncover underlying associations. While the measurement of 313 

cognition and personality was exhaustive, it lacked some common behavioural tasks like the 314 

stop-signal task, or common questionnaires measuring self-control, impulsivity, and eating-315 

specific behaviours that have been previously associated with body weight (5, 6). Particularly, the 316 

common eating-specific behaviours such as uncontrolled eating (48) are likely better candidates 317 

for explaining brain morphology-BMI associations as they are more directly related to the 318 

hypothesized underlying behaviour.  319 

One has to be careful in translating individual differences in cortical thickness in normal 320 

populations to underlying neural mechanisms. Diverse biological processes have been suggested 321 

to influence MRI-based cortical thickness measures, ranging from synaptic density to apparent 322 

thinning due to synaptic pruning and myelination (summarized in 49, 50). A definitive model of 323 

the underlying mechanism that links normal variations in cortical thickness to differences in brain 324 

function cannot be given, as cortical thickness has not been mapped with both MRI and histology 325 

in humans (50). Still, the associations between cortical thickness and BMI in one sample were 326 

able to predict BMI in a new separate sample, suggesting that the pattern is robust. Our 327 

conceptual interpretation of the meaning of cortical thickness patterns has support from measures 328 

of both brain structure and cognitive function.  329 

Relying on PPS-s prevented us from analyzing detailed interactions between cortical thickness 330 

and cognitive function in their genetic overlap with each other. However, given the relatively 331 

small associations between PPS-s, and the number of candidate measures that could be expected 332 

to interact with one another, we believe it would have been hard to find an association that would 333 

have survived multiple testing correction. Future, focused, hypothesis-driven studies have to 334 

further elucidate the neurobehavioural mechanisms behind obesity proneness. 335 

In summary, the current analysis provides comprehensive evidence that the obesity-related 336 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/204917doi: bioRxiv preprint 

https://doi.org/10.1101/204917
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

14 
 

differences in brain structure and cognitive tests are largely due to shared genetic factors. Genetic 337 

factors also explain occasional overlap between neurobehavioural factors. We hope that 338 

increasingly larger longitudinal data sets and dedicated studies will help to outline more specific 339 

neurobehavioural mechanisms that confer vulnerability to obesity, and provide a basis for 340 

designing informed interventions. 341 

Methods 342 

Data were provided by the Human Connectome Project (24). Certain people were excluded due 343 

to missing data or not fulfilling typical criteria. Exclusion details, demographics and family 344 

structure are summarized in SI Methods and Table S1. Software pipelines for obtaining features 345 

of cortical thickness and brain volume are described in SI Methods. Analysis scripts to reproduce 346 

results presented are available at: osf.io/htx7u.  347 

Figure S1 provides a schematic pipeline for data analysis. Details of each data analysis step are 348 

outlined in SI Methods. We describe how PPS weights are obtained through cross-validation and 349 

how the weights generalize to a separate dataset (S1200n). We further describe the main 350 

principles of twin and sibling-based heritability analysis and replication of these findings using 351 

individual features instead of PPS-s, and replication in a separate dataset (S1200n). Finally, the 352 

software and packages used are listed. 353 
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Figures 467 

 468 

Figure 1. Associations between body mass index (BMI) and (A) cognitive test scores, and (B) 469 

personality traits (B). Error bars represent 95% confidence intervals. See Table S2 for 470 

explanation of cognitive tests. Numerical values are reported in Table S3. EF=executive function; 471 

FFM=Five-Factor Model; FDR=false discovery rate; Imp=(lack of) impulsivity; Lang=language; 472 

Mem=memory; Neg=negative affect; Perc=perception; PWB=psychological well-being; 473 

Soc=social relationships; SSE=stress and self efficacy; WM=working memory. 474 
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 475 

Figure 2. Associations between body mass index (BMI) and brain morphometry. (A) cortical 476 

thickness. (B) medial temporal and subcortical regional brain volume. Error bars represent 95% 477 

confidence intervals. Numerical values are reported in SI Table S2. FDR=false discovery rate; 478 

Fro=frontal, Ins=insula; L=left; Occ=occipital; Par=parietal; R=right; Tem=temporal; 479 

MTL=medial temporal lobe; SC=subcortical. 480 
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 481 

Figure 3. Brain maps of the associations between body mass index (BMI) and (A) cortical 482 

thickness and (B) medial temporal and subcortical regional brain volume on a standard brain 483 

template in MNI space. Values are the same as in Figure 2. Colour bar applies to both sub-plots. 484 

L=left;  R=right. 485 

  486 
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 487 

 488 

Figure 4. Heritability analysis of the association between poly-phenotype scores (PPS) and body 489 

mass index (BMI). (A) Heritability of each trait. BMI has multiple estimates, since it was entered 490 

into a bivariate analysis with each PPS separately. (B) Genetic correlations between BMI and 491 

each PPS. The genetic correlations are positive, because the PPS-s are designed to positively 492 

predict BMI. (C) Heritability of the significant phenotypic correlation between BMI and PPS. 493 

Horizontal lines depict 95% confidence intervals. Cogn=PPS of cognitive tests; corr=correlation; 494 

CT=PPS of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of 495 

personality tests; SC=PPS of subcortical structure volumes. 496 

  497 
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Supplementary Information Text 522 

Methods 523 
Participants 524 
Data were provided by the Human Connectome Project (24) WU-Minn Consortium (Principal 525 

Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657, RRID:SCR_008749) 526 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 527 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University,  528 

The analyzed data were split between S900 data release (964 participants) and S1200 data release 529 

(236 additional participants). We treated the S900 as the main analysis sample and results from 530 

this sample are reported throughout the paper. At times, we used unique participants from the 531 

S1200 release for replication, referred to as S1200n. For the main analysis sample, we applied the 532 

following exclusion criteria, as these might confound brain-obesity associations: people with 533 

missing values on crucial variables, such as age, BMI, education, income, gender, race, and 534 

ethnicity (n=6), hypo/hyper thyroidism (n=4), other endocrine problems (n=16), underweight 535 

(BMI <=18, n=9), and women who had recently given birth (n=9). In addition, as we used family 536 

information to control for participants’ relatedness, we excluded participants that were half-537 

siblings to other participants (n=31). The same exclusions were applied to S1200n (n=11). 538 

The final main analysis dataset consisted of 895 participants, demographics of which are 539 

summarized in Table 1. The sample had good gender balance and variation in BMI and income. 540 

As limitations, the sample was relatively young and well educated, and BMI distribution was 541 

slightly less obese compared to current prevalence estimates for Missouri or the US as a whole 542 

(MO: 31.7%, US: 36.5%, ref: , 47). Most people were white and non-Hispanic, however other 543 

races-ethnicities were also represented. The participants were nested into 384 families, typically 544 

having 1 to 3 siblings in the dataset. For comparison, we also provide the same statistics for the 545 

S1200n sample, as well as a subset of S1200n sample in which no participant is related to the 546 

S900 sample.  547 

For the heritability analysis between each neurocognitive factor and BMI, we randomly chose 548 

one sibling pair per family, ensuring that the pair had complete data. Non-twin sibling pairs were 549 

considered equivalent to dizygotic twin pairs with respect to heritability analyses once data was 550 
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residualized for age and gender. If multiple sibling pairs within a family had complete data, we 551 

prioritized choosing monozygotic twin pairs and dizygotic twin pairs over non-twin sibling pairs. 552 

Depending on the neurocognitive factor, the heritability analysis was conducted on 46-111 pairs 553 

of monozygotic twins (median=97) and 60-202 pairs of dizygotic twins and siblings 554 

(median=176). 555 

Measures 556 
Psychological measures. 557 
Participants completed an extensive set of questionnaires and cognitive tests (see 51, 52 for an 558 

overview). In the current analysis, we included 22 questionnaires and 18 cognitive tests (see 559 

Figure 2 and Table S2 for complete list). Here we refer to the set of questionnaire results as 560 

personality variables, as personality encompasses various patterns of what people want, say, do, 561 

feel, or believe (53). Based on our previous review (6) we chose cognitive tests capturing aspects 562 

of executive function, memory, and language. 563 

Cortical thickness. 564 
All T1-weighted MRI images were processed using the CIVET pipeline (version 2.0) (29, 54, 565 

55). Processing was executed on the Canadian Brain Imaging Network (CBRAIN) High 566 

Performance Computing platform for collaborative sharing and distributed processing of large 567 

MRI datasets (56). Briefly, native T1-weighted MRI scans were corrected for non-uniformity 568 

using the N3 algorithm (57). The corrected volumes were masked and registered into stereotaxic 569 

space, and then segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) 570 

and background using a neural net classifier (58). The white matter and gray matter surfaces were 571 

extracted using the Constrained Laplacian-based Automated Segmentation with Proximities 572 

algorithm (59, 60). The resulting surfaces were resampled to a stereotaxic surface template to 573 

provide vertex based measures of cortical thickness (61). All resulting images were visually 574 

inspected for motion artefacts by experienced personnel and then subsequently processed through 575 

a stringent quality control protocol, which only 641 of the 894 participants in our initial cohort 576 

passed. In the S1200n, 144 of the 214 passed. For those participants who passed, cortical 577 

thickness was then measured in native space using the linked distance between the two surfaces 578 

across 81924 vertices and a 20mm surface smoothing kernel was applied to the data (62). The 579 

Desikan–Killiany–Tourville (DKT) atlas was used to parcellate the surface into 64 cortical 580 

regions (63). Cortical thickness was averaged over all vertices in each region of interest for each 581 
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subject (64) and the effect of mean cortical thickness was regressed to allow for regional analysis 582 

(65). After participant exclusions, data was available for 591/137 participants in the S900/S1200n 583 

samples. 584 

Volumetric estimates. 585 
Because the CIVET cortical thickness method does not cover all medial temporal and subcortical 586 

structures, we used volumetric estimates for these brain regions. For subcortical volumetric 587 

estimation, T1-weighted scans of the subjects were pre-processed through a computerized 588 

pipeline (n=899). Image denoising (66), intensity non-uniformity correction (57), and image 589 

intensity normalization into range (0-100) using histogram matching were performed. After 590 

preprocessing, all images were first linearly (using a 9-parameter rigid registration) and then 591 

nonlinearly registered to an average template (MNI ICBM152) as part of the ANIMAL software 592 

(30, 67). The subcortical structures, i.e., thalamus, putamen, caudate, and globus pallidus were 593 

segmented using ANIMAL by warping segmentations from ICBM152 back to each subject using 594 

the obtained nonlinear transformations. The medial temporal lobe structures, i.e. hippocampi, 595 

amygdala, temporal pole, and parahippocampal, entorhinal and perirhinal cortices, were 596 

segmented using an automated patch-based label-fusion technique (68). The method selects the 597 

most similar templates from a library of labelled MRI template images, and combines them with 598 

a majority voting scheme to assign the highest weighted label to every voxel to generate a 599 

discrete segmentation. Quality control was performed on the individual registered images as well 600 

as the automated structure segmentations by visual inspection, and inaccurate results were 601 

discarded. In S900, 648 participants passed the quality control for medial temporal lobe 602 

structures, ad 895 for subcortical structures. Within S1200n, of the 214 participants, 212 passed 603 

the quality control for subcortical structures, and 174 passed the quality control for medial 604 

temporal lobe. After exclusions, the S900/S1200n samples included data from n=828/204, 8 605 

parcels per subjects for the subcortical structures, and n=594/166, 12 parcels for the medial 606 

temporal lobe structures. 607 

Data Analysis 608 
Analyzing each feature 609 
A schematic pipeline of the analysis is displayed in Figure S1. Data from all neurocognitive 610 

factors were first residualized for control variables (age, ethnicity, gender, handedness, race) 611 

using linear multiple regression. When presenting phenotypic associations, we used a linear 612 
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mixed model, adding a random intercept for family (Figure S1), and also varied the involvement 613 

of income and education. As BMI was skewed (long-tail at the upper end of the scale), it was log-614 

transformed to achieve a normal-like distribution. Handedness was also log normalized. 615 

For each factor category (cognition, personality, cortical thickness, medial temporal volume, 616 

subcortical volume), factor-BMI relationships were assessed using univariate correlation between 617 

each brain parcel or test score and BMI. We initially also tried using a partial least squares (PLS) 618 

correlation approach, which is a multivariate technique suited to handling correlated predictors 619 

(69, 70). However, the PLS estimates were extremely close to univariate correlations, therefore 620 

univariate correlations were preferred for simplicity. As a result, we received an estimate of the 621 

relative contribution (weight) of each predictor within a given factor. Estimates used in this study 622 

are presented in Table S3. 623 

Creating poly-phenotype scores 624 
To summarize effects for each neurocognitive factor, we created an aggregate BMI risk score or 625 

poly-phenotype score (PPS) for each neurocognitive factor. This was inspired by the polygenic 626 

risk score approach, where the effects of single-nucleotide polymorphisms are added up to form a 627 

total genetic score (71). Specifically, we used the correlation-derived weights to multiply each 628 

participant's measured values, and aggregated the results into a single composite variable for a 629 

given factor, the PPS. A PPS would reflect the total association that a given factor has with BMI. 630 

Even though only some features within a neurobehavioural factor had significant effects on BMI, 631 

and certain features correlated with each other (see SI Tables S4-S8), both our testing (see SI 632 

Results) and recommendations by others (72) lead us to not apply p-value cutoffs, clumping, or 633 

pruning, as excluding these steps does not hurt predictive ability and improves transparency (72). 634 

PPS-s have a mean of 0 but varying standard deviation, depending on the number of features and 635 

their effect sizes (Table S9). 636 

We used cross-validation principles to avoid and test for overfitting. Namely, we divided 637 

participants into 10% folds. Each 10% fold received the correlation weights from the remaining 638 

90% of the sample. As the result, we received one PPS vector for each factor, where each 639 

participant’s score was based on out-of-sample prediction. When creating the 10% folds, we 640 

created folds for each factor separately, as each factor has a different number of available data 641 

points, ensuring that folds were as equal in size as possible. We also ensured that siblings from 642 
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the same family were in the same fold. Therefore, no data from family members were used in 643 

calculating both the correlation weights and performing out of sample predictions.  644 

To test the robustness of PPS-s, we first tested the impact of not pruning and applying p-value 645 

cutoffs. In a pruned PPS, features are omitted that a) correlate above criterion to another feature 646 

and b) have lower correlation with BMI than the other feature (73). In a PPS with p-value cut-off, 647 

features are omitted that have an above-criterion uncorrected p-value when correlated with BMI 648 

Neither pruning nor a p-value cutoff improved the predictive ability of the PPS-s (see SI Results). 649 

We further tested the predictive ability of PPS scores by applying the weights created on the full 650 

S900 release to predict BMI in the S1200n release (new participants only), which we did not 651 

touch before predicting. As 101 participants within the S1200n were related to participants in the 652 

S900, we also tested the predictive ability in the subset of S1200 that was not related to S900 653 

(n=124).  654 

Heritability analysis 655 
In the heritability analysis, a typical behavioural genetics decomposition uses relatedness 656 

assumptions between individuals to divide variance in a trait to the following components: 657 

genetic variance (A, additive and interactive effects), shared environmental variance (C, family 658 

and shared school effects), and unique environmental variance (E, unique experience and 659 

measurement error). The assumptions are: 100% of genetic variance shared between 660 

monozygotic twins, 50% of genetic variance shared between dizygotic twins and sex-and gender 661 

residualized siblings, 100% of family environment shared by all siblings, 0% unique variance 662 

shared between siblings. Such decomposition is called univariate heritability.  663 

Besides establishing univariate heritability, one can also conduct heritability analysis on the 664 

covariance between two traits. For instance, a genetic correlation is the correlation between the A 665 

components of trait 1 and trait 2. A bivariate heritability analysis decomposes the phenotypic 666 

correlation between trait 1 and trait 2 into A, C, and E components. 667 

Heritability analysis was conducted on PPS scores not residualized for family structure, as this 668 

information is used in heritability modelling. We then ran bivariate heritability analyses 669 

separately between each PPS and BMI, which provided univariate heritability estimates of the 670 
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PPS-s and BMI, genetic and environmental correlations between the univariate estimates of PPS-671 

s and BMI, and bivariate decomposition of the phenotypic correlation between each PPS and 672 

BMI. We used the AE model, since BMI was best explained by an AE model, as opposed to an 673 

ACE model, based on Akaike Information Criterion (AIC) (Table S10). Similar AIC patterns 674 

were present for bivariate models (Figure S11, Table S13). We report only standardized A 675 

estimates in the main results, as in the univariate and bivariate analysis of the AE model, E=100-676 

A. Also, no environmental correlations were significant. All standardized and unstandardized 677 

estimates are reported in the supplementary materials (Tables S11-S12). 678 

Analysis software 679 
Analysis reported in paper was conducted in Microsoft R Open 3.4.0 (74), using May 2017 680 

version of packages abind, car, caret, cowplot, corrplot, ggplot2, lme4, MuMIn, pbkrtest, plyr, 681 

psych, synthpop, tidyr, WriteXLS (75–90). Cortical thickness was plotted using Surfstat (91) in 682 

MATLAB (92). Heritability analysis was conducted using OpenMX (93), adapting scripts 683 

provided by the Colorado International Twin Workshop (94). 684 

SI Results 685 
Control variables 686 
Age, gender and race related to BMI, demonstrating the need for residualizing (Figure S2). 687 

Marginal R2 explaining only fixed effects was 0.07, and conditional R2 explaining both fixed and 688 

random effects was 0.38, highlighting the effect of family structure. When controlling for 689 

education and income, education was a significant additional predictor, with total model R2 being 690 

0.09 and conditional R2 0.37. Further, controlling for family structure in a nested model as 691 

random intercept improved model fit (AIC dropped from 7006 to 6895 / 6978 to 6885 when 692 

controlling for education and income), suggesting that family nesting needs to be taken into 693 

account. 694 

Robustness of PPS-s 695 
Similarly to genetic literature (72), we found that pruning features or applying a p-value threshold 696 

does not change the predictive ability of the PPS-s (Figures S5 & S6).  697 

To test the generalizability of the PPS approach, we used weights obtained from the full S900 698 

release (Figures S3 right and S4 right) to predict the BMI of new participants in the S1200 release 699 

(S1200n, n=236), which were not used in any of the initial assessments. As certain participants in 700 
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the S1200n release were related to participants in the S900, we also tested the PPS performance 701 

when they were excluded. As can be seen in Figure S7, cortical thickness estimates are very 702 

similar, no matter the training or testing dataset. Cognition PPS effect sizes were similar to each 703 

other, but did not reach statistical significance in the replication sample (S1200n). Personality 704 

PPS had unexpectedly high correlation with BMI in the new data. Further research is needed to 705 

determine if such effect sizes would further replicate. Medial temporal lobe PPS-s also did not 706 

replicate.  707 

Heritability replication 708 
We tested whether the PPS-based bivariate analysis patterns would replicate in the S900 dataset, 709 

but using unaggregated top individual features within the PPS-s. We chose the 5 individual 710 

features from the top predictors of cognition and cortical thickness. As shown in Figure S8, the 711 

individual tasks are comparable with the PPS-s in terms of univariate heritability, genetic 712 

correlations, and heritability of phenotypic correlation. However, with genetic correlations, the 713 

estimates are non-significant (Figure S8 B1&B2), suggesting that we are not powered to establish 714 

significance of the smaller correlations. Further, the standardized estimates for heritability of the 715 

phenotypic correlations (Figure S8 C1&C2) are noisier and the estimator often failed at 716 

estimating standardized confidence intervals. Such failures at individual feature levels highlight 717 

the value of PPS-s, which provide more stable estimates at these sample sizes. 718 

We further used participants only in the S1200n release to replicate the bivariate heritability 719 

analysis results in new data. PPS weights were obtained from the S900 release. We focused only 720 

on participants who did not have siblings in the S900 release. Granted, the power is low because 721 

of fewer complete twin pairs available (29 MZ pairs and 30 DZ pairs). The univariate estimate 722 

for BMI heritability was [A=64% [95% CI: 41%;79%]. In the bivariate analysis, we were also 723 

able to replicate the patterns seen in the main dataset (Figure S9), however the confidence 724 

intervals were often covering 0 or not estimated, likely due to small sample size. 725 

  726 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/204917doi: bioRxiv preprint 

https://doi.org/10.1101/204917
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

30 
 

Figures 727 
 728 

 729 

Fig. S1. A schematic diagram of the analysis pipeline. All steps were conducted on all 730 

neurocognitive factors separately. BMI=body mass index; CV=cross-validation; MTL=medial 731 

temporal lobe; MRI=magnet resonance image; PPS=poly-phenotype score; SC=subcortical; 732 

SES=socio-economic status (education and income). 733 
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 735 

 736 

Fig. S2. Regression weights of a multilevel linear model nested for family. Lines mark standard 737 

95% confidence intervals. Intercept is 27.37 (standard error: 2.16). For interpretability, regular 738 

BMI is unscaled here. Reference groups: Gender: male, Race: white, Ethnicity: not 739 

Hispanic/unknown. Am.=American; BC=birth control; Is.=Islander 740 
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 742 

Fig. S3. Associations between body mass index (BMI), cognitive test scores (A), and personality 743 

traits (B), either when controlling for education, income, and family structure (left), or not 744 

controlling for these variables (right). Error bars mark 95% confidence intervals. See Table S2 745 
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for explanation of cognitive test names. Numerical values are reported in Table S3. EF=executive 746 

function; FFM=Five-Factor Model; FDR=false discovery rate; Imp=(lack of) impulsivity; 747 

Lang=language; Mem=memory; Neg=negative affect; Perc=perception; PWB=psychological 748 

well-being; Soc=social relationships; SSE=stress and self efficacy; WM=working memory. 749 
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 751 

Fig. S4. Associations between body mass index (BMI), cortical thickness (A) and regional brain 752 

volume (B), either when controlling for education, income, and family structure (left), or not 753 

controlling for these variables (right). Error bars mark 95% confidence intervals. Numerical 754 
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values are reported in SI Table S3. FDR=false discovery rate; Fro=frontal, Ins=insula; L=left;  755 

Occ=occipital; Par=parietal; R=right; Tem=temporal. 756 
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 758 

Fig. S5. Low impact of pruning to the poly-phenotype scores’ (PPS) associations with BMI. PPS-759 

s were trained and tested within the Human Connectome Project’s S900 release, using cross-760 

validation. Pruning means excluding features that have a higher correlation than set criterion with 761 

another feature that associates with BMI. A pruning criterion equal to 1 means no pruning was 762 

done. Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; MTL=PPS of medial temporal 763 

lobe volume; Pers=PPS of personality tests. 764 
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 766 

Fig. S6. Low impact of excluding features by p value to the poly-phenotype scores’ (PPS) 767 

associations with BMI. PPS-s were trained and tested within the Human Connectome Project’s 768 

S900 release, using cross-validation. Features with a p value higher than criterion were excluded 769 

from the PPS. A p criterion of 1 means no exclusion was done. Cogn=PPS of cognitive tests; 770 

CT=PPS of cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of 771 

personality tests. 772 
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 774 

Fig. S7. Comparison of poly-phenotype scores’ (PPS) performance in correlating with BMI, 775 

depending on training data and test data.  776 

S900CV→S900: PPS-s within S900 release trained and tested with cross-validation to avoid bias. 777 

These PPS-s are used in heritability analysis.  778 

S900→S1200n: PPS-s trained on S900 and tested in full S1200n sample.  779 

S900→S1200n (unrelated): PPS-s trained on S900 and tested in S1200n sample not related to 780 

S900.  781 

Cogn=PPS of cognitive tests; CT=PPS of cortical thickness; CV=cross-validated; MTL=PPS of 782 

medial temporal lobe volume; Pers=PPS of personality tests; S900 – Participants in Human 783 

Connectome Project’s S900 release; S1200n – participants only in the S1200 release; SC=PPS of 784 

subcortical structure volumes. 785 
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 787 

 788 

Fig. S8. Heritability analysis of the association between poly-phenotype scores (PPS) of 789 

cognitive test scores (A1-C1) and cortical thickness (A2-C2), compared with most significant 790 

individual features of each PPS. (A) Heritability of each trait. The effect of unique environment 791 

(E) is not shown, since E=100-A. (B) Genetic correlations between BMI and each PPS or 792 

between BMI and each feature. The PPS-based genetic correlations are positive, because the 793 

PPS-s are designed to positively predict BMI. However, individual features can have negative 794 

genetic correlations. (C) Heritability of the phenotypic correlation between BMI and PPS or 795 

between BMI and each feature. Horizontal lines depict 95% confidence intervals. The estimator 796 

failed at estimating certain features. Corr=correlation; L=Left hemisphere; herit=heritability; 797 

R=right hemisphere. 798 
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 800 

Fig. S9. Heritability analysis of the association between poly-phenotype scores (PPS) and body 801 

mass index (BMI) in the S1200n sample unrelated to S900. (A) Heritability of each trait. BMI 802 

has multiple estimates, since it was entered into a bivariate analysis with each PPS separately. 803 

The effect of unique environment (E) is not shown, since E=100-A. (B) Genetic correlations 804 

between BMI and each PPS. The genetic correlations are positive, because the PPS-s are 805 

designed to positively predict BMI. None of the environmental correlations were significant and 806 

therefore not shown. (C) Heritability of the phenotypic correlation between BMI and PPS. 807 

Horizontal lines depict 95% confidence intervals. Estimates not shown for PPS-s that did not 808 

have significant phenotypic association with BMI. Cogn=PPS of cognitive tests; 809 

corr=correlation; CT=PPS of cortical thickness; herit=heritability; MTL=PPS of medial temporal 810 

lobe volume; Pers=PPS of personality tests; SC=PPS of subcortical structure volumes. 811 
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 813 

Fig. S10. Phenotypic (upper triangle) and genetic (lower triangle) correlations between poly-814 

phenotype scores (PPS-s) used for heritability analysis. Phenotypic correlations account for 815 

family structure. FDR-corrected significant correlations are highlighted with color. Correlations 816 

are multiplied by 100 for clarity. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of 817 

cortical thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; 818 

SC=PPS of subcortical structure volumes. 819 
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 821 

 822 

Fig. S11. Akaike Information Criteria (AIC) for BMI-PPS (poly-phenotype score) bivariate 823 

heritability decompositions. Cogn=PPS of cognitive tests; corr=correlation; CT=PPS of cortical 824 

thickness; MTL=PPS of medial temporal lobe volume; Pers=PPS of personality tests; SC=PPS of 825 

subcortical structure volumes. 826 
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Table S1. Descriptive statistics of samples analyzed. 828 

Variable S900 S1200n 
S1200n 
unrelated 

N 895 225 124 

Age (years) 
x�=28.83 
(SD=3.67) 

x�=28.85 
(SD=3.84) 

x�=29.31 
(SD=3.83) 

BMI (kg/m2) 
x�=27.27 
(SD=5.77) 

x�=26.51 
(SD=5.21) 

x�=26.32 
(SD=5.18) 

BMI groups 
   

Normal weight (BMI 18-24.9) 375 (41.9%) 101 (44.9%) 56 (45.2%) 

Overweight (BMI 25-29.9) 285 (31.8%) 74 (32.9%) 45 (36.3%) 

Obese (BMI 30+) 235 (26.3%) 50 (22.2%) 23 (18.5%) 

Drug test positive 
   

No 777 (86.8%) 195 (86.7%) 105 (84.7%) 

Yes 118 (13.2%) 30 (13.3%) 19 (15.3%) 

Education (years) 
x�=14.85 
(SD=1.82) 

x�=15.06 
(SD=1.72) 

x�=14.83 
(SD=1.8) 

Ethnicity: 
   

Hispanic/Latino 819 (91.5%) 198 (88%) 114 (91.9%) 

Not Hispanic/Latino/unknown 76 (8.5%) 27 (12%) 10 (8.1%) 

Families 384 151 66 

1 sibling 37 (10.4%) 19 (20%) 19 (28.8%) 

2 siblings 107 (30.1%) 49 (51.6%) 36 (54.5%) 

3 siblings 163 (45.9%) 20 (21.1%) 11 (16.7%) 

4 siblings 43 (12.1%) 6 (6.3%) 0 (0%) 
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5 siblings 5 (1.4%) 1 (1.1%) 0 (0%) 

Gender 
   

Male 413 (46.1%) 120 (53.3%) 61 (49.2%) 

Female no birth control 143 (16%) 24 (10.7%) 16 (12.9%) 

Female with birth control 339 (37.9%) 81 (36%) 47 (37.9%) 

Handedness 
x�=65.07 
(SD=45.13) 

x�=68.93 
(SD=41.03) 

x�=70.73 
(SD=36.97) 

Income 
   

<$10,000 65 (7.3%) 16 (7.1%) 9 (7.3%) 

10K-19,999 79 (8.8%) 12 (5.3%) 9 (7.3%) 

20K-29,999 116 (13%) 24 (10.7%) 15 (12.1%) 

30K-39,999 104 (11.6%) 30 (13.3%) 17 (13.7%) 

40K-49,999 98 (10.9%) 23 (10.2%) 13 (10.5%) 

50K-74,999 181 (20.2%) 46 (20.4%) 25 (20.2%) 

75K-99,999 119 (13.3%) 28 (12.4%) 14 (11.3%) 

>=100,000 133 (14.9%) 46 (20.4%) 22 (17.7%) 

Race 
   

White 664 (74.2%) 176 (78.2%) 95 (76.6%) 

Other/unknown 45 (5%) 21 (9.3%) 11 (8.9%) 

Black or African Am. 145 (16.2%) 13 (5.8%) 8 (6.5%) 

Asian/Nat. Hawaiian/Other 
Pacific Is. 

41 (4.6%) 15 (6.7%) 10 (8.1%) 

BMI=body mass index; Is=islander; Nat=native 829 
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 831 

Additional Tables S2-S11 (separate file) 832 
See first tab of file “SI_Tables_2-13.xlsx” for table of contents. 833 
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