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Abstract

Biological interpretation of GWAS data frequently involves analyzing unsigned genomic an-
notations comprising SNPs involved in a biological process and assessing enrichment for disease
signal. However, it is often possible to generate signed annotations quantifying whether each
SNP allele promotes or hinders a biological process, e.g., binding of a transcription factor (TF).
Directional effects of such annotations on disease risk enable stronger statements about causal
mechanisms of disease than enrichments of corresponding unsigned annotations. Here we in-
troduce a new method, signed LD profile regression, for detecting such directional effects using
GWAS summary statistics, and we apply the method using 382 signed annotations reflecting
predicted TF binding. We show via theory and simulations that our method is well-powered and
is well-calibrated even when TF binding sites co-localize with other enriched regulatory elements,
which can confound unsigned enrichment methods. We apply our method to 12 molecular traits
and recover many known relationships including positive associations between gene expression
and genome-wide binding of RNA polymerase II, NF-κB, and several ETS family members,
as well as between known chromatin modifiers and their respective chromatin marks. Finally,
we apply our method to 46 diseases and complex traits (average N = 289, 617) and identify
77 significant associations at per-trait FDR < 5%, representing 12 independent signals. Our
results include a positive association between educational attainment and genome-wide binding
of BCL11A, consistent with recent work linking BCL11A hemizygosity to intellectual disabil-
ity; a negative association between lupus risk and genome-wide binding of CTCF, which has
been shown to suppress myeloid differentiation; and a positive association between Crohn’s dis-
ease (CD) risk and genome-wide binding of IRF1, an immune regulator that lies inside a CD
GWAS locus and has eQTLs that increase CD risk. Our method provides a new way to leverage
functional data to draw inferences about causal mechanisms of disease.
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Introduction
Mechanistic interpretation of GWAS data sets has become a central challenge for efforts to learn
about the biological underpinnings of disease. One successful paradigm for such efforts has been
GWAS enrichment, in which a genome annotation containing SNPs that affect some biological pro-
cess is shown to be enriched for GWAS signal.1–5 However, there are instances in which experimental
data allow us not only to identify SNPs that affect a biological process, but also to predict which SNP
alleles promote the process and which SNP alleles hinder it, thereby enabling us to assess whether
there is a systematic relationship between SNP alleles’ direction of effect on the process and their
direction of effect on a trait. Transcription factor (TF) binding, which plays a major role in human
disease,6–8 represents an important case in which such signed functional annotations are available:
because TFs have a tendency to bind to specific DNA sequences, it is possible to estimate whether
the sequence change introduced by a SNP allele will increase or decrease binding of a TF.9–15

Detecting genome-wide directional effects of TF binding on disease would constitute a signifi-
cant advance in terms of both evidence for causality and understanding of biological mechanism.
Regarding causality, this is because directional effects are not confounded by simple co-localization
in the genome (e.g., of TF binding sites with other regulatory elements), and thus provide stronger
evidence for causality than is available using unsigned enrichment methods. Regarding biological
mechanism, it is currently unknown whether disease-associated TFs affect only a few disease genes or
whether transcriptional programs comprising many target genes are responsible for TF associations;
a genome-wide directional effect implies the latter model (see Discussion).

Here we introduce a new method, signed LD profile (SLDP) regression, for quantifying the
genome-wide directional effect of a signed functional annotation on polygenic disease risk, and apply
it in conjunction with 382 annotations each reflecting predicted binding of a particular TF in a
particular cell line. Our method requires only GWAS summary statistics,16 accounts for linkage
disequilibrium and untyped causal SNPs, and is computationally efficient. We validate the method
via extensive simulations, including null simulations confounded by unsigned enrichment as might
arise from the co-localization of TF binding sites with other regulatory elements.3,9 We apply the
method to 12 molecular traits and 46 diseases and complex traits, demonstrating genome-wide
directional effects of TF binding in both settings.

Results

Overview of methods
Our method for quantifying directional effects of signed functional annotations on disease risk, signed
LD profile regression, relies on the fact that the signed marginal association of a SNP to disease
includes signed contributions from all SNPs tagged by that SNP. Given a signed functional annota-
tion with a directional linear effect on disease risk, the vector of marginal SNP effects on disease risk
will therefore be proportional (in expectation) to a vector quantifying each SNP’s aggregate tagging
of the signed annotation, which we call the signed LD profile of the annotation. Thus, our method
detects directional effects by assessing whether the vector of marginal SNP effects and the signed
LD profile are systematically correlated genome-wide.

More precisely, under a polygenic model17 in which true causal SNP effects are correlated with
a signed functional annotation, we show that

E(α̂|v) = rf

√
h2gRv (1)

where α̂ is the vector of marginal correlations between SNP alleles and a trait, v is the signed
functional annotation (re-scaled to norm 1), R is the LD matrix, h2g is the SNP-heritability of
the trait, and rf is the correlation between the vector v and the vector of true causal effects of
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each SNP, which we call the functional correlation. (The value of r2f cannot exceed the proportion
of SNP-heritability explained by SNPs with non-zero values of v.) Equation 1, together with an
estimate of h2g, allows us to estimate rf by regressing α̂ on the signed LD profile Rv of v. We
assess statistical significance by randomly flipping the signs of entries of v, with consecutive SNPs
being flipped together in large blocks (e.g., ∼ 300 blocks total), to obtain a null distribution and
corresponding P-values and false discovery rates (FDRs). To improve power, we use generalized least-
squares regression, incorporating weights to account for the fact that SNPs in linkage disequilibrium
(LD) provide redundant information due to their correlated values of α̂. We remove the major
histocompatibility complex (MHC) region from all analyses due to its unusual LD patterns. We
perform a multiple regression that includes a “signed background model” quantifying directional
effects of minor alleles in five equally sized minor allele frequency (MAF) bins, which could reflect
confounding due to genome-wide negative selection or population stratification. We note that signed
LD profile regression requires signed effect size estimates α̂ and quantifies directional effects, in
contrast to stratified LD score regression,3 which analyzes unsigned χ2 statistics and quantifies
unsigned heritability enrichment. Details of the method are described in the Online Methods section
and the Supplementary Note; we have released open-source software implementing the method (see
URLs).

We applied signed LD profile regression using a set of 382 signed annotations v, each quantifying
the predicted effects of SNP alleles on binding of a particular TF in a particular cell line. We
constructed the annotations by training a sequence-based neural network predictor of ChIP-seq
peak calls, using the Basset software,15 on the results of 382 TF binding ChIP-seq experiments from
ENCODE18 and comparing the neural network’s predictions for the major and minor allele of each
SNP in the ChIP-seq peaks. The 382 experiments spanned 75 distinct TFs and 84 distinct cell lines.
The resulting annotations were sparse, with only 0.2% of SNPs having nonzero entries on average
(see Online Methods and Table S1).

Simulations
We performed simulations with real genotypes, simulated phenotypes, and the 382 signed TF bind-
ing annotations to assess null calibration, robustness to confounding, and power. All simulations
used well-imputed genome-wide genotypes from the GERA cohort,19 corresponding to M = 2.7
million SNPs and N = 47, 360 individuals of European ancestry. We simulated traits using nor-
mally distributed causal effect sizes (with annotation-dependent mean and variance in some cases),
with h2g = 0.5. Further details of the simulations are provided in the Online Methods section.

We first performed null simulations involving a heritable trait with no unsigned enrichment or
directional relationship to any of the 382 annotations. In 1,000 independent simulations, we applied
signed LD profile regression to test each of the 382 annotations for a directional effect. The resulting
P-values were well-calibrated (see Figure 1a and Table S2). Analyses of the P-value distribution for
each annotation in turn confirmed correct calibration for these annotations (see Figure S1a).

We next performed null simulations involving a trait with unsigned enrichment but no directional
effects; these simulations were designed to mimic unsigned genomic confounding in which the binding
sites of some TF lie in or near regulatory regions that are enriched for heritability for reasons other
than binding of that TF. In 1,000 independent simulations, we randomly selected an annotation,
simulated a trait in which the annotation had a 20x unsigned enrichment3 (but no directional effect),
and applied signed LD profile regression to test the annotation for a directional effect. We again
observed well-calibrated P-values (see Figure 1b). It is notable that our method is well-calibrated
even though it has no knowledge of the unsigned genomic confounder; this contrasts with unsigned
enrichment approaches such as heritability partitioning, in which unsigned genomic confounders
must be carefully accounted for and modeled.3

We next performed null simulations to assess whether our method remains well-calibrated in
the presence of confounding due to genome-wide directional effects of minor alleles on both disease
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risk and TF binding, which could arise due to genome-wide negative selection or population strat-
ification. We simulated a trait for which 10% of heritability is explained by directional effects of
minor alleles in the bottom fifth of the MAF spectrum (roughly MAF< 5%). In 1,000 independent
simulations, we applied signed LD profile regression to test each of the 382 annotations for a direc-
tional effect. P-values were well-calibrated for the default version of the method, which conditions
on the 5-MAF-bin signed background model, but were not well-calibrated without conditioning on
this model (see Figure 1c). (We note that this represents a best-case scenario in which the back-
ground model exactly matches the confounding being simulated, up to differences in MAF between
the reference panel and the GWAS sample, and we caution that our method may not be appropriate
for annotations with much stronger correlations to minor alleles than the annotations that we an-
alyze here; see Figure S1b.) The incorrect calibration that we observe when we do not include our
signed background model could potentially be explained by genome-wide negative selection against
decreased TF binding.20 Indeed, most of our annotations show a small but highly significant bias of
minor alleles toward decreasing TF binding (see Figure S2) that is consistent with this explanation;
however, it is also possible that this is a result of our procedure for constructing the annotations,
and we do not explore it further in this work.

Finally, we performed causal simulations with true directional effects to assess the power and
establish unbiasedness of signed LD profile regression. At default parameter settings, the method
is well-powered to detect directional effects corresponding to a functional correlation of 2-6% (see
Figure 2a and Table S3), similar to values observed in analyses of real traits (see below). Notably, the
power of the method is improved dramatically by our use of generalized least-squares to account for
redundant information (see Figure 2a). Our method is also much more powerful than a naive method
that regresses the vector of GWAS summary statistics on the annotation rather than its signed LD
profile, an approach that does not model untyped causal SNPs in linkage disequilibrium with typed
SNPs (see Figure S3). The power of our method increases with sample size and SNP-heritability
(see Figure S4), and is only minimally affected by within-Europe reference panel mismatch (see
Figure S5). In all instances, our method produced either unbiased or nearly unbiased estimates of
functional correlation and related quantities (see Figure 2b and Figure S6).

Analysis of molecular traits
TF binding is known to affect gene expression and other molecular traits.21 We therefore applied
signed LD profile regression to 12 molecular traits with an average sample size of N = 149. We
first analyzed cis-eQTL data based on RNA-seq experiments in three blood cell types from the
BLUEPRINT consortium22 (see Online Methods). For each cell type, we collapsed eQTL summary
statistics across 15,023-17,081 genes into a single vector of summary statistics for aggregate expres-
sion by summing, for each SNP, the marginal effect sizes of that SNP for the expression of all nearby
genes (within 500kb). This is equivalent to analyzing one gene at a time and then performing a
meta-analysis that accounts for linkage among nearby genes; it is also roughly equivalent to analyz-
ing eQTL summary statistics for the sum of expression values of all genes, with each gene normalized
to mean zero and variance one in the population (see Online Methods and Table S4).

We tested each of the 382 TF binding annotations for a directional effect on aggregate expression
in each of the three blood cell types. We detected a total of 92 significant associations at a per-trait
FDR of 5% (see Figure 3a and Table S5a; P-values from 5× 10−6 to 1.0× 10−2). All 92 associations
were positive, implying that greater binding of these TFs leads to greater aggregate expression and
matching the known tendency of TF binding to promote rather than repress transcription for many
TFs.21

Many of the associations we detected recapitulate known aspects of transcriptional regulation.
For example, associated TF binding annotations included RNA polymerase II in many cell lines,
along with other members of the transcription pre-initiation complex (PIC) such as TATA-associated
Factor 1 (TAF1) and TATA Binding Protein (TBP). There were also associations for TFs unrelated to
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the PIC but known to have activating activity, such as the ETS family members GABPA, ELF1, and
PU.1,23 as well as the immune-related transcriptional activators IRF1 and NF-κB family member
RELA.24,25 Overall, the vast majority of the positive associations (85 out of 92) involved known
“activating” TFs, defined as TFs with activating activity but not repressing activity in UniProt26
(compared with 45% of all 382 annotations; P = 3.1× 10−7 for difference using one-sided binomial
test; see Figure 3a and Online Methods). 52 of the 92 associations replicated (same direction of
effect with nominal P < 0.05) in an independent set of whole-blood eQTL summary statistics based
on expression array experiments from the Netherlands Twin Registry (NTR),27 including all of the
examples mentioned above except IRF1 (see Figure 3b and Table S5b). Across all 382 annotations
analyzed, we observed a correlation of r = 0.67 between z-scores for signed annotation effects in the
BLUEPRINT neutrophil and NTR data sets (see Figure 3c and Table S5c).

We next conducted a similar analysis using histone QTL (H3K27me1 and H3K27ac) and methy-
lation QTL from the BLUEPRINT data set. We detected 16 significant associations at a per-trait
FDR of 5%, all of which were positive, including 13 for H3K27me1 QTL (see Figure 3d and Ta-
ble S5d; P-values from ≤ 10−6 to 4.3× 10−4), 3 for H3K27ac QTL (see Figure 3e and Table S5e;
P-values from 1.2× 10−5 to 2.1× 10−4), and 0 for methylation QTL. Many of the detected asso-
ciations recover known aspects of histone mark biology. For example, TFs associated to H3K4me1
included PU.1 and CEBPB, both of which act to increase H3K4me1 in blood cells and play strong
roles in differentiation of those cell types,28–31 and binding of MYC, which has a known role as a
chromatin modifier,32,33 including of H3K4 methylation.34 We also observed an association between
EP300 binding and H3K27ac, matching the fact that EP300 is a lysine acetyltransferase with a
well-documented role in creation and maintenance of this mark.35 Finally, while we did not find sig-
nificant associations to methylation QTL at FDR< 5%, we found 40 results at FDR< 10%, almost
all of which were negative associations between CTCF binding and methylation that are consis-
tent with the literature on the negative relationship between CTCF binding and this epigenetic
mark36–38 (see Table S5f). In our analysis of the activating marks H3K4me1 and H3K27ac, signed
LD profile regression again distinguished between activating and repressing TFs: of the 239 positive
associations and 19 negative associations at a nominal significance threshold of P < 0.05 (chosen
due to limited number of FDR< 5% associations) across all three cell types, 85% of the positive
associations corresponded to activating TFs26 (compared with 45% for all annotations; one-sided
binomial P = 7.4× 10−8 for difference); only 26% of the negative associations had this property
(one-sided binomial P = 7.0× 10−2 vs. 45%, P = 4.6× 10−5 vs. 85%).

Analysis of 46 diseases and complex traits
We applied signed LD profile regression to 46 diseases and complex traits with an average sample
size of 289,617, including 16 traits with publicly available summary statistics and 30 UK Biobank
trants for which we have publicly released summary statistics computed using BOLT-LMM39 (see
URLs and Table S6). We ran signed LD profile regression using each of our 382 TF annotations
for each of these traits. We detected 77 significant associations at a per-trait FDR of 5%, spanning
six diseases and complex traits (see Figure 4 and Table S7a). (Following standard practice, we
report per-trait FDR, but we estimated the global FDR of this procedure to be 9.4%, which is larger
than the per-trait FDR of 5%; see Online Methods). The 77 significant associations represent 12
independent signals after pruning correlated annotations (Table 1; see Online Methods). To verify
empirically that our results were not driven by directional effects of minor alleles, we re-analyzed our
data using 382 annotations defined using the same set of SNPs with non-zero effects but with the
directionality of effect determined by minor allele coding rather than predicted TF binding, for SNPs
in the bottom quintile of the MAF spectrum. This analysis yielded only 4 significant associations
at per-trait FDR< 5%. (Due to the small number of associations relative to the number of traits,
this corresponds to a global FDR of 92.9% after accounting for 46 traits.) None of these 4 minor-
allele associations overlapped with our set of 77 significant associations (see Online Methods and
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Table S7b). We also examined, for each annotation, the estimated covariance between the GWAS
summary statistics and the signed LD profile in each of 300 independent genomic blocks, finding
agreement with the genome-wide direction of association in 59% of the blocks on average across our
12 independent associations, and in 85% of the blocks with estimated covariances of large magnitude
(see Figure S7).

Many of our results are supported by orthogonal genetic and non-genetic evidence and extend
our understanding of the associated traits; we highlight three in particular. Our most significant
result is a positive association between genome-wide binding of BCL11A in LCLs and years of educa-
tion (see Figure 5a and Table S8). This result aligns with existing common and rare variant signals:
BCL11A was one of the top genes identified in a GWAS of educational attainment40 and de novo mis-
sense and loss-of-function mutations in BCL11A cause intellectual disability in a dosage-dependent
manner.41,42 (Additionally, our fine-mapping of the BCL11A GWAS locus43 identified a putatively
causal SNP in an intron of the BCL11A gene; see Table S9.) BCL11A has also been shown to be
the causal gene for a microdeletion syndrome characterized by cognitive impairment.44,45 Recent
experimental studies showing that heterozygous knock-out of Bcl11a in mice leads to microcephaly
and cognitive impairment42 have further confirmed the causal role of BCL11A in cognitive function,
with directionality consistent with our result. This association thus represents a case in which our
method provides stronger evidence for a causal association than previously available from common
variant data, and establishes that BCL11A causes intellectual disability via a genome-wide mecha-
nism involving binding throughout the genome—and presumably the modulation of a transcriptional
program relevant to brain function or development—rather than regulation of one key disease gene
(see Discussion).

We also detected a negative association between genome-wide binding of CCCTC-binding fac-
tor (CTCF) in the myeloid cell line K562 and risk of systemic lupus erythematosus (SLE) (see
Figure 5b), accompanied by similar associations for CTCF and cohesin subunit RAD21 (a CTCF
binding partner) in several other cell lines. This finding is consistent with several SLE risk loci at
which either fine-mapped causal SNPs have been found to modify CTCF binding experimentally46
and bioinformatically,47 or at which risk SNPs have been found to be in LD with SNPs modifying
CTCF binding.48,49 Additionally, CTCF has been shown experimentally to slow the rate of myeloid
differentiation50,51 and is involved in the regulation of 5-hydroxymethylcytosine (5-hmC), an epi-
genetic modification that is increased in promoters of immune-related genes in CD4+ T cells of
patients with SLE relative to controls.52 Finally, CTCF motifs are overrepresented among DNA re-
gions that are more accessible in B cells from healthy controls relative to B cells from SLE patients,53
consistent with the negative sign of the association arising from our study. We do not observe a
GWAS signal for SLE at the CTCF locus. This could be because of the small sample size of the
SLE GWAS, and/or because the CTCF gene is under strong selective constraint: its probability of
loss-of-function intolerance (pLI) is estimated by the Exome Aggregation Consortium54 to be the
maximal value of 1.00, greater than 99.9% of genes. The association between CTCF binding and
SLE therefore demonstrates the possibility of using signed LD profile regression to uncover aspects
of disease mechanism that are difficult to directly observe in GWAS due to selective pressures on
the underlying genes.

We also highlight a positive association between genome-wide binding of Interferon Regulatory
Factor 1 (IRF1) in the myeloid cell line K562 and Crohn’s disease (CD) (see Figure 5c). IRF1 is
located inside the IBD5 locus, a 250kb region associated with CD and inflammatory bowel disease
in multiple GWAS;55,56 haplotypes containing IRF1 variants have been shown to be more strongly
correlated with CD risk than haplotypes containing variants in nearby genes;57 CD risk SNPs have
been shown to co-localize with IRF1 alternative splicing QTLs;22 and IRF1 is more highly expressed
in CD gastrointestinal tissue biopsies relative to control tissue.57 In a recent large-scale fine-mapping
study,58 the causal signal at the IBD5 locus was narrowed down to a set of 8 SNPs spanning 35kb
and lying 15kb away from IRF1. However, despite this resolution, it remains unclear from the locus
alone what the causal mechanism is: the study suggested that rs2188962, which received 0.59 of the
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posterior probability of being causal, could function via an eQTL effect on SLC22A5 in immune
and gut epithelial cells, but rs2188962 is also an eQTL for IRF1 in blood,27 and we determined
that the TWAS approach59 assigns highly significant scores to both genes (p ≤ 4.0× 10−14 for IRF1
and 3.17× 10−18 for SLC22A5 ). In this context, our result therefore provides genome-wide evidence
for a genuine causal link between IRF1 and CD that, unlike the single-locus approaches, is not
susceptible to pleiotropy and allelic heterogeneity near the IRF1 gene (see Discussion). We note
that the direction of effect inferred by our method agrees with the positive sign of the TWAS
association between IRF1 and CD, as expected in the case of a causal relationship.

We provide additional discussion of our other results in the Supplementary Note.

Discussion
We have introduced a method, signed LD profile regression, for identifying genome-wide directional
effects of signed functional annotations on diseases and complex traits. We applied this method, in
conjunction with 382 annotations describing predicted effects of SNPs on TF binding, to 12 molec-
ular traits (average N = 149) and 46 diseases and complex traits (average N = 289, 617). In our
analysis of molecular traits, our method recovered classical aspects of transcriptional regulation,
including the pro-transcriptional effect of RNA polymerase and activating TFs such as NFκB, as
well as relationships between several chromatin modifiers and their respective chromatin marks; to
our knowledge, these relationships have not previously been demonstrated using eQTL data. Our
analysis of complex traits yielded 77 TF-trait associations, corresponding to 12 independent asso-
ciations. Some of our results, such as the positive association between IRF1 binding and Crohn’s
disease, provide strong causal hypotheses to explain long-standing GWAS associations; others, such
as the positive association between BCL11A binding and educational attainment, provide mechanis-
tic interpretation for a top GWAS locus for which orthogonal genetic evidence, such as rare variant
and knock-out studies, already existed; and still others, such as the negative relationship between
CTCF binding and SLE, have experimental support but had not previously been observed from
GWAS data, possibly due to strong evolutionary constraint on some TFs. We note that although
we constructed our predicted TF binding annotations using the neural-network predictor Basset,15
there exist many other effective methods for making such signed predictions.9–12,14,60

Our method differs from unsigned GWAS enrichment methods by assessing whether there is a
systematic genome-wide correlation between a signed functional annotation and the (signed) true
causal effects of SNPs on disease, rather than assessing whether a set of SNPs have large effects on
a disease without regard to the directions of those effects. A substantial advantage of this approach
is reduced susceptibility to confounding: for example, an unsigned GWAS enrichment for binding of
an immune TF could indicate a causal role for that TF in the associated disease, or could instead be
a side effect of a generic enrichment among cell-type specific regulatory elements in immune cells.3
In contrast, if alleles that increase binding of the TF tend to increase disease risk and alleles that
decrease binding of the TF tend to decrease disease risk, the set of potential confounders is smaller
because a confounding process has not only to co-localize in the genome with binding of the TF but
also to have the property that alleles that increase the process have a consistent directional effect
on binding of the TF.

When applied to TF binding, our method enables stronger statements about causality and mecha-
nism than were previously possible with genome-wide methods. Regarding causality, this is because
a consistent directional effect throughout the genome of SNPs predicted to affect binding due to
sequence change supports stronger causal statements than i) single-locus methods, which are sus-
ceptible to pleiotropy and allelic heterogeneity,59 ii) unsigned heritability enrichment methods, which
can be confounded by co-localization in the genome of TF binding sites with other enriched regula-
tory elements as described above,3 and iii) genetic correlation and Mendelian randomization (MR),
which can be confounded by reverse causality and pleiotropic effects61–63 and which scale poorly
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because they require TF ChIP-seq in many individuals for every TF/cell-type pair studied. The
reason that our method is not confounded by reverse causality is that each of our annotations is
produced in a cell population that is isogenic and therefore does not have variance in genetic liability
for any trait. In other words, our annotations provide ideal instrumental variables for the effect of
TF binding on the trait of interest because they are created not by naively correlating SNPs with
TF binding but rather by examining the effect of each SNP on local DNA sequence.

Regarding mechanism, our method sheds light on the question of whether TFs affect traits via
coordinated regulation of gene expression throughout the genome64 (a “genome-wide” model) or via
regulation of one or a small number of key disease genes65 (a “local” model). Since the associations
we find involve a consistent net direction of effect of TF binding on a trait throughout the genome,
they cannot be explained by a local model and therefore represent evidence for the existence of
transcriptional programs and their relevance to complex traits. This is of basic interest, but it
also has therapeutic relevance: if a TF causally affects a trait but the TF is not druggable due
to its nuclear localization or large DNA- and protein-binding domains,66,67 then the local model
suggests targeting a downstream gene, whereas the genome-wide model instead suggests targeting
an upstream regulator since the causal link between TF and trait is mediated through a large number
of downstream genes. (We emphasize that a significant result for our method does not imply that all
binding events of the TF in question affect disease via activation of a single transcriptional program;
rather, it implies that there exists a program that is widespread enough that we observe its effect
on disease in a large number of locations in the genome; see Figure S7.)

Our method could be used to link disease to biological processes beyond TF binding. For exam-
ple, sequence-based models can also produce signed predictions of DNase I hypersensitivity,10,11,15
histone modifications,11,15 splicing,12,68 and transcription initiation.69 Additionally, massively par-
allel assays and CRISPR screens are increasingly yielding high-resolution experimental information
about the effects of genetic variation on gene expression21,70–72 as well as cellular processes such
as growth73–75 and inflammation.76 Finally, perturbational differential expression experiments can
yield signed predictions for the relationships of genes to a variety of biological processes such as drug
response,77 immune stimuli,78 and many others.79 Though converting such data to signed functional
annotations will require care, doing so could allow us to leverage them to make detailed statements
about disease mechanism.

We note several limitations of signed LD profile regression. First, though our results are less
susceptible to confounding due to their signed nature, they are not immune to it: in particular, our
method cannot distinguish between two TFs that are close binding partners and thus share sequence
motifs. Second, although we have shown our method to be robust in a wide range of scenarios, we
cannot rule out the possibility of un-modeled directional effects of minor alleles on both trait and
TF binding as a confounder; however, our empirical analysis of real traits with minor-allele-based
signed annotations suggests that directional effects of minor alleles are very unlikely to explain our
results (see Table S7b). Third, our method is not well-powered to detect instances in which a TF
affects trait in different directions via multiple heterogeneous programs. Fourth, the effect sizes of
the associations to diseases and complex traits that we report are small in terms of the estimated
values of rf , which range from 2.4% to 8.9% (see Table S7a), although signals of this size for
predicted TF binding could be indicative of much stronger relationships, e.g., with true TF binding,
TF expression, TF phosphorylation, or TF binding in specific subsets of the genome. We further
note that the magnitude of the signals that we detect is commensurate with the very small number
of SNPs in our annotations, together with the fact that r2f is bounded by the proportion of SNP-
heritability explained by those SNPs (see Table S7c). Fifth, though we detected many significant
associations overall, there were many traits, such as schizophrenia, height, and blood cell traits, for
which we did not detect any significant associations using our TF annotations. We believe that this
limitation is partially due to the set of TF ChIP-seq annotations available through the ENCODE
project, and in particular to the bias of those experiments toward core regulatory proteins such as
RNA polymerase II and CTCF as well as their use of cell lines rather than primary tissue samples;
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we expect this to become clearer as more diverse functional data sets become available.
Despite these limitations, signed LD profile regression is a powerful new way to leverage functional

genomics data to draw causal and mechanistic conclusions from GWAS about both diseases and
underlying cellular processes.
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Online Methods

Signed LD profile regression
Model and estimands

Let M be the number of SNPs in the genome. We assume a linear model:

y|β, x ∼ N (xTβ, σ2
e) (2)

where x ∈ RM and y ∈ R are the standardized genotype vector and phenotype, respectively, of a ran-
domly chosen individual from some population, β ∈ RM is a vector of true causal effects of each SNP
on phenotype, and σ2

e represents environmental noise. Given a signed functional annotation v ∈ RM ,
we then model

β|v ∼ [µv, σ2I] (3)

where the scalar µ represents the genome-wide directional effect of v on β, σ2 represents other sources
of heritability unrelated to v, and the notation [·, ·] is used to specify the mean and covariance of
the distribution without specifying any higher moments.

Though we can estimate µ, its value depends on the units of the annotation and the heritability
of the trait. Because of this, we focus instead on the functional correlation rf , which re-scales µ to
be dimensionless and is defined as

rf := corr(xTβ, xT v) = µ

√
vTRv

h2g
(4)
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where h2g = var(xTβ) is the SNP-heritability of the phenotype and R = E(xxT ) ∈ RM×M is the
(signed) population LD matrix of the genotypes. (Note that rf can also be defined as a correlation
between β and v; this definition is approximately equivalent in expectation under our random effects
model, provided vTRv ≈ |v|2.) We additionally estimate h2v = r2fh

2
g, the total phenotypic variance

explained by the signed contribution of v to β, as well as h2v/h2g = r2f . For annotations with small
support, these quantities are expected to be small in magnitude. To see this, notice that h2v cannot
exceed the total (unsigned) phenotypic variance explained by SNPs with non-zero values of v. It
follows that r2f cannot exceed the proportion of (unsigned) SNP-heritability explained by SNPs with
non-zero values of v. For more detail on the model and estimands, see the Supplementary Note.

Main derivation

Let X ∈ RN×M be the genotype matrix in a GWAS of N individuals, with standardized columns,
and let Y ∈ RN be the phenotype vector. In the Supplementary Note, we show that under the above
model the following identity approximately holds:

α̂|v ∼
[
µRv, σ2R2 +

R

N

]
(5)

where α̂ := XTY/N is a vector whose m-th entry contains the marginal correlation of SNP m to
the phenotype and R ∈ RM×M is the population LD matrix. Equation 1 from the main text can be
derived from Equation 4 by re-scaling v so that vTRv = 1, then substituting for µ.

We call Rv the signed LD profile of v. Equation 5, together with central limit theorem consid-
erations, implies that it is nearly optimal to estimate µ by regressing α̂ on the signed LD profile
using generalized least-squares with Ω := σ2R2 +R/N as the inverse weight matrix. It can be shown
that if a) all causal SNPs are typed, b) sample size is infinite, and c) R is invertible, this method
is equivalent to estimating β via R−1α̂ and then regressing this estimate on v to obtain µ, which
is the optimal approach in that setting. Note that because we generate P-values for hypothesis
testing empirically (see below), we are guaranteed that our generalized least-squares scheme will
remain well-calibrated even if our estimate of the matrix Ω is inaccurate due to, e.g., mis-match
between the reference panel and the study population. Once we have estimated µ, we re-scale this
estimate to yield an estimate of rf and other estimands of interest. For more detail on derivations
and computational considerations, see the Supplementary Note.

Null hypothesis testing

To test the null hypothesis H0 : µ = 0 (or, equivalently, H0 : rf = 0), we split the genome into
approximately 300 blocks of approximately the same size with the block boundaries constrained
to fall on estimated recombination hotspots.80 We then define the null distribution of our statistic
as the distribution arising from independently multiplying v by an independent random sign for
each block. We perform this empirical sign-flipping many times to obtain an approximation of
the null distribution and corresponding P-values. Our use of sign-flipping ensures that any true
positives found by our method are the result of genuine first-moment effects; if in contrast we
estimated standard errors using least-squares theory or a re-sampling method such as the jackknife
or bootstrap, our method might inappropriately reject the null hypothesis only because the variance
of β is higher in parts of the genome where Rv is large in magnitude. This would make our method
susceptible to confounding due to unsigned enrichments, as might arise from the co-localization of
TF binding sites with enriched regulatory elements such as enhancer regions. Additionally, the fact
that we flip the signs of SNPs in each block together ensures that our null distribution preserves
any potential relationship of our annotation to the LD structure of the genome. In choosing how
many blocks to use for this procedure, we took into account that i) the fewer blocks we use the fewer
assumptions we make about LD structure and the faster we can compute P-values, and ii) the more
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blocks we use the higher the precision of the P-values that we can obtain. Our choice to use 300
blocks is a compromise between these two considerations.

Controlling for covariates and the signed background model

Given a signed covariate u ∈ RM , we can perform inference on the signed effect of v conditional on u
by first regressing Ru out of α̂ and out of Rv using the generalized least-squares method outlined
above, and then proceeding as usual with the residuals of α̂ and Rv. This can be done simultaneously
for multiple covariates u.

Unless stated otherwise, all analyses in this paper are done controlling in this fashion for a “signed
background model” consisting of 5 annotations u1, . . . , u5, defined by

uim = 1 {MAFm is in i-th quintile}
√

2MAFm(1−MAFm)1+αs (6)

where MAFm is the minor allele frequency of SNP m and αs is a parameter describing the MAF-
dependence of the signed effect of minor alleles on phenotype. Based on the literature on MAF-
dependence of the unsigned effects var(βm), we set αs = −0.3.81

382 TF annotations
We downloaded every ChIP-seq and DNase I hypersensitivity experiment in ENCODE and trained
the sequence-based predictor of peak presence/absence, Basset,15 to jointly predict each downloaded
track on a set of held-out genomic segments. (We included tracks other than TF binding tracks
because training predictions using all tracks slightly improved prediction accuracy for the TF binding
tracks.) After training the joint predictor, we retained the predictions for every TF binding track
for which a) the set of ChIP-seq peaks spanned at least 5,000 SNPs in our 1000G reference panel,
and b) Basset’s estimated area under the precision-recall curve was at least 0.3. This yielded a set
of 382 TF ChIP-seq experiments. For each experiment, we constructed an annotation via

vm = 1{m ∈ C}(P am − PAm) (7)

where C is the set of SNPs in the ChIP-seq peaks arising from the experiment, P am is the Basset
prediction for the 1,000 base-pair sequence around SNP m when the minor allele is placed at SNP m,
and PAm is the Basset prediction for the 1,000 base-pair sequence around SNP m when the major
allele is placed at SNP m. (We always used the minor allele as the reference allele in both our TF
binding annotations and our GWAS summary statistics.)

Simulations
All simulations were carried out using real genotypes from the GERA cohort19 (N = 47, 360). The
set of M = 2.7 million causal SNPs was defined as the set of very well imputed SNPs (INFO ≥ 0.97)
that had very low missingness (< 0.5%), non-negligible MAF (MAF ≥ 0.1%) in the GERA data set,
and were represented in our 1000G Phase 3 European reference panel.82,83

Null simulations

For the simulations in Figure 1a, we simulated 1,000 independent null phenotypes with the archi-
tecture βm

iid∼ N (0, σ2) with σ2 = h2g/M and h2g = 0.5. For each phenotype, we computed GWAS
summary statistics using plink284 (see URLs), adjusting for 3 principal components as well as GERA
chip type as covariates. For each of our 382 TF annotations, we then ran signed LD profile regression
on each of these 1,000 phenotypes, yielding a set of 382,000 P-values. For the simulations in Fig-
ure 1b, we simulated 1,000 independent traits in which each trait had an unsigned enrichment for a
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randomly chosen annotation: after choosing an annotation v, we set βm
iid∼ N (0, σ2 + τ21{vm 6= 0})

where σ2 and τ2 were set to achieve h2g = 0.5 and a 20x unsigned enrichment for the SNPs with
non-zero values of v. We then computed summary statistics as above and ran signed LD profile
regression to assess v for a genome-wide directional effect. This procedure yielded 1,000 P-values.
For the simulations in Figure 1c, we simulated 1,000 independent phenotypes with a directional
effect of minor alleles: we set βm

iid∼ N (µu1m, σ
2) where u1m is non-zero if SNP m is in the bottom

quintile of the MAF spectrum of the GERA sample and 0 otherwise, as in the signed background
model. We set µ such that 10% of heritability would be explained by this directional effect, and
then set σ2 to achieve h2g = 0.5. We then computed summary statistics as above and ran signed
LD profile regression to assess for a directional effect of each of our 382 annotations on each of the
1,000 phenotypes, yielding a set of 382,000 P-values. Finally, we repeated the same computation but
running signed LD profile regression without the 5-MAF-bin signed background model to obtain an
additional set of 382,000 P-values.

Causal simulations

For the simulations in Figure 2, we fixed a representative annotation v (binding of IRF4 in GM12878),
and simulated traits using βm

iid∼ N (µvm, σ
2), with µ set to achieve rf = {0, 0.005, 0.01, . . . , 0.05}

and σ2 set to achieve h2g = 0.5 in each case. For each value of rf , we simulated 100 independent traits,
computed summary statistics using plink2, and then ran each of the methods under consideration
using the annotation v.

Analysis of molecular traits
We downloaded BLUEPRINT consortium QTL data for gene expression, H3K4me1, H3K27ac, and
methylation in three different blood cell types with sample sizes of N = 158, 165, and 125 for
monocytes, neutrophils, and T cells, respectively22 (see Table S5 and URLs). For each of the 3 gene
expression traits, we constructed one summary statistics vector α̂ by setting

α̂m =
∑
k∈Gm

α̂(k)
m (8)

where Gm is the set of all genes within 500kb of SNP m, and α̂
(k)
m is the marginal correlation

of SNP m to the expression of gene k. Assuming a) infinite sample size, and b) zero correlation
between every SNP and any gene not cis to that SNP, this procedure is equivalent up to a scalar
to performing a GWAS of total relative expression. To see this, let y(k) denote expression of gene k
after standardization to mean zero and unit variance in the population, and let γ be the GWAS
summary statistics arising from a GWAS of total relative expression

∑
k y

(k) at infinite sample size.
By linearity, we have

γm ∝
∑
k

α(k)
m (9)

=
∑
k∈Gm

α(k)
m +

∑
k/∈Gm

α(k)
m (10)

=
∑
k∈Gm

α(k)
m (11)

= αm (12)

where αkm denotes the large-sample limit of α̂(k)
m and α denotes the large-sample limit of α̂ defined

in Equation 8.
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Applying the same procedure to the two histone marks and to methylation in addition to gene
expression yielded a total of 12 sets of summary statistics (see Table S4). We ran signed LD profile
regression using each of our 382 TF annotations for each of these 12 traits. We obtained results at
FDR< 5% using the Benjamini-Hochberg procedure85 within each of the 12 traits (see discussion of
Benjamini-Hochberg versus other alternatives below), and reported the union of significant results
across cell types for each trait.

For our replication analysis, we used expression array-based whole blood eQTL data from the
NTR,27 which we obtained by downloading the set of TWAS weights59 computed for that data set
(see URLs). We then proceeded as above.

Enrichment analysis for activating TFs

For each TF represented in our annotations, we queried the UniProt database26 to establish whether
the TF was annotated as having activating activity and, separately, whether it was annotated as
having repressing activity. We then defined as “activating” any TF with the former but not the
latter. To estimate whether the set of significant positive signed LD profile associations with gene
expression were enriched for activating TFs compared to the set of annotations as a whole, we
conducted a one-sided binomial test. To account for the correlated nature of our annotations, we
assumed independence only among distinct TFs but not among distinct cell lines for the same TF.
We used the same scheme to test for enrichment and depletion of activating TFs among the positive
and negative associations detected by signed LD profile regression in our analysis of histone marks.

Analysis of 46 diseases and complex traits
We applied signed LD profile regression to 46 diseases and complex traits with an average sample size
of 289,617, including 16 traits with publicly available summary statistics and 30 UK Biobank trants
for which we have publicly released summary statistics computed using BOLT-LMM39 (see URLs
and Table S6). We ran signed LD profile regression using each of our 382 TF annotations for each of
these traits. We obtained results at per-trait FDR< 5% using the Benjamini-Hochberg procedure.85
We chose to use the Benjamini-Hochberg procedure rather than more sophisticated procedures such
as the Storey-Tibshirani procedure86 because the latter procedure, while more powerful, is more
difficult to analyze in a multi-trait setting (see below) and controls FDR more noisily when applied
in situations with only hundreds (rather than thousands) of tests.

Estimation of global FDR for complex trait analysis
When many traits are analyzed, per-trait FDR control does not imply global FDR control. This is
because in the case of a completely null trait, the guarantee of FDR control does not imply that there
will never be any rejections but rather only that there will be a non-zero number of rejections at most
5% of the time. Therefore, if enough null traits are analyzed the set of results may be contaminated
by these spurious findings. In the case of independent tests (i.e., uncorrelated annotations) with
FDR controlled by the Benjamini-Hochberg procedure, this can be taken into account87 and the
global FDR can be approximated using the formula

q =
q`(D + T )

D + 1
(13)

where q is the estimated global FDR, q` is the per-trait FDR, D is the observed total number of
discoveries at per-trait FDR q`, and T is the number of traits. This correction is based on the
intuition that for a null trait with independent tests, the Benjamini-Hochberg procedure behaves
very similarly to a Bonferroni correction, and so the expected number of rejections per null trait is
approximately q`, and the expected number of rejections for T null traits would be approximately
q`T .
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Applying this correction to our results yields a global FDR estimate of 7.9%. However, since
our annotations are dependent, this estimate can be anti-conservative. To see this, imagine a null
trait with 100 perfectly correlated tests. The Benjamini-Hochberg procedure will give more than
zero rejections only 5% of the time, but whenever it rejects it will yield 100 rejections rather than
1. Therefore, the expected number of rejections is not 0.05 but rather 5. We heuristically corrected
for this using the intuition that under dependent tests, the expected number of false discoveries in
a null stratum is not q` but rather q` times the number of tests conducted per single “independent”
test. We estimated the number of independent tests as in the GWAS literature, by simulating 1,000
independent null traits with a heritability of 0.5, testing each trait against our 382 annotations, and
asking for what S we see at least one p-value ≤ 0.05/S in approximately 5% of the 1,000 null traits.
This procedure gave us S = 250. We then estimated the global FDR using the equation

q =
q`(D + 382T/S)

D + 1
. (14)

This yielded the reported global FDR of 9.4%.

Pruning 77 significant associations to 12 independent signals
To prune our set of 77 significant associations to a set of approximately independent results, we
used the following iterative greedy approach for each trait: we chose the pair of associations whose
annotations had the most strongly correlated signed LD profiles, removed the annotation with the
less significant p-value, and repeated until no annotations in the result set had signed LD profiles
that were correlated at R2 > 0.25. We used correlation between signed LD profiles rather than
between the annotations themselves because, since our method regresses the summary statistics on
the signed LD profile rather than the raw annotation, correlation between signed LD profiles most
accurately represents the correlation between the test statistics for the two annotations.

Analysis of diseases and complex traits with annotations corresponding to
directional effects of minor alleles
We constructed an alternate set of 382 annotations as follows. For each of the 382 ChIP-seq exper-
iments represented by a set of peaks C, we set

vm = 1{m ∈ C}u1m (15)

where u1 is the signed background annotation corresponding to SNPs in the bottom quintile of the
MAF spectrum. We then used signed LD profile regression to test for association between each of
these 382 annotations and each of our 46 traits, assessing significance as above.

Data availability
We have released all genome annotations we analyzed, as well as regression weight matrices for our
1000 genomes reference panel, at http://data.broadinstitute.org/alkesgroup/SLDP/.

Code availability
Open-source software implementing our approach is available at http://www.github.com/yakirr/
sldp.
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Tables

Trait Top TF (num) Top cell line rf p q

Years of ed. BCL11A (1) GM12878 (LCL) 2.4% 3.9× 10−5 1.5× 10−2

Crohn’s POL2* (20) GM18951 (LCL) 5.3% 4.8× 10−5 1.5× 10−2

Anorexia SP1 (1) HEPG2 (hepatocyte) -8.9% 1.1× 10−4 4.0× 10−2

HDL FOS (1) K562 (myeloid) 4.8% 1.2× 10−4 4.6× 10−2

Eczema CTCF (12) MCF7 (mammary) 2.7% 1.4× 10−4 3.4× 10−2

Crohn’s ELF1 (1) GM12878 (LCL) 4.9% 1.6× 10−4 1.5× 10−2

Crohn’s POL2 (1) U87 (glioblast) 4.4% 2.6× 10−4 1.5× 10−2

Lupus CTCF** (36) K562 (myeloid) -5.0% 3.6× 10−4 4.4× 10−2

Crohn’s TBP (1) HEPG2 (hepatocyte) 5.4% 4.9× 10−4 1.5× 10−2

Crohn’s E2F1 (1) HELAS3 (cervical epithelium) 4.3% 6.4× 10−4 2.7× 10−2

Crohn’s IRF1 (1) K562 (myeloid) 4.7% 9.8× 10−4 1.5× 10−2

Crohn’s ETS1 (1) K562 (myeloid) 6.1% 1.4× 10−3 1.5× 10−2

Table 1: Independent associations from analysis of diseases and complex traits using
signed LD profile regression. For each of 12 independent associations at per-trait FDR < 5%
after pruning correlated annotations (R2 ≥ 0.25), we report the associated trait; the TF correspond-
ing to the most significant annotation and the total number of correlated annotations that produced
a significant result; the cell line corresponding to the most significant annotation; and the esti-
mate of the functional correlation rf , the P-value, and the per-trait q-value for the most significant
annotation. Linked TFs also producing significant associations include (*) TAF1, TBP, and (**)
RAD21.
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Figures

A B C

Figure 1: Simulations assessing null calibration. We report null calibration (q-q plots
of − log10 P-values) in simulations of (a) no enrichment, (b) unsigned enrichment, and (c) directional
effects of minor alleles. The q-q plots are based on (a) 382 annotations×1, 000 simulations = 382, 000,
(b) 1, 000, and (c) two sets of 382× 1, 000 = 382, 000 P-values. A 5-MAF-bin signed background
model is included in all cases except for the red points in part (c), which are computed with no
covariates. We also report the average χ2 statistic corresponding to each set of P-values. Numerical
results are reported in Table S2.
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A B

Figure 2: Simulations assessing power, bias, and variance. (a) Power curves under simulation
scenarios comparing signed LD profile regression using generalized least-squares (i.e., weighting) to
an ordinary (i.e., unweighted) regression of the summary statistics on the signed LD profile. Error
bars indicate standard errors of power estimates. (b) Assessment of bias and variance of the signed
LD profile regression estimate of rf at realistic sample size (47, 360) and heritability (0.5), across a
range of values of the true rf . Blue box and whisker plots depict the sampling distribution of the
statistic, while the red dots indicate the estimated sample mean and the red error bars indicate the
standard error around this estimate. Numerical results are reported in Table S3.

24

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2017. ; https://doi.org/10.1101/204685doi: bioRxiv preprint 

https://doi.org/10.1101/204685
http://creativecommons.org/licenses/by-nd/4.0/


A

B

C

D

E

POL2 TAF1

TBP
TA

F7

ELF1

G
A
BPA

PU
.1

ELK1
EG

R1
ETS1

CEBPD
N
FKB

IRF1
CH

D
2

E2F1
CREB1

FO
XP2

E2F4

RBBP5
PH

F8

SP1
SIN

3A

YY1

ELF1 PU.1 CEBPB CEBPD BATF MAX MYC

PU.1 EP300

POL2 ELF1 NFKB
RUNX3

MAZ
TAL1

PU.1

Figure 3: Analysis of molecular traits using signed LD profile regression. Each segmented
bar in (a,b,d,e) represents the set of significant annotations at a per-trait FDR of 5% for the indicated
traits, with each annotation corresponding to a particular TF profiled in a particular cell line. Results
in (a,d,e) are aggregated across the 3 BLUEPRINT cell types. The stripe above each segmented
bar is colored red for UniProt activating TFs (see main text) and blue for other TFs. (c) z-scores
from the analyses of expression in the NTR data set and neutrophil expression in the BLUEPRINT
data set, respectively, for each of the 382 annotations tested; red and blue again indicate UniProt
activating TFs and other TFs, respectively. Dashed lines represent significance thresholds for 5%
FDR. Numerical results are reported in Table S5.
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Figure 4: Analysis of diseases and complex traits using signed LD profile regression. For
each disease or complex trait with at least one significant result, we plot − log10(p) against estimated
effect size for each of the 382 annotations analyzed. Points are colored by TF identity, with TFs
with no significant associations for the trait colored in gray. Larger points denote significant results.
The number of significant results for each trait is: Crohn’s, 26; Lupus, 36; Years of education, 1;
Eczema, 12; HDL, 1; Anorexia, 1. Numerical results are reported in Table S7a.
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Figure 5: Genetic and non-genetic evidence for three TF binding-complex trait asso-
ciations. For each of (a) BCL11A-years of education, (b) CTCF-lupus, (c) IRF1-Crohn’s disease
associations, we display plots of the marginal correlation α̂ of SNP to trait versus the signed LD
profile Rv of the annotation in question, with SNPs collapsed into bins of 4, 000 SNPs and a larger
bin around Rv = 0; Manhattan plots of the trait GWAS signal near the associated TF; and example
experimental evidence from the literature. For Crohn’s disease, the GWAS signal is polarized by
direction of effect on disease and points are colored by direction and magnitude of association of
each SNP to expression of IRF1. Additional experimental evidence relevant to each association is
summarized in the main text. GI: gastrointestinal. Numerical results are reported in Table S8.
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