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Abstract

As most of the heritability of complex traits is attributed to common and low frequency
genetic variants, imputing them by combining genotyping chips and large sequenced
reference panels is the most cost-effective approach to discover the genetic basis of these
traits. Association summary statistics from genome-wide meta-analyses are available for
hundreds of traits. Updating these to ever-increasing reference panels is very
cumbersome as it requires reimputation of the genetic data, rerunning the association
scan, and meta-analysing the results. A much more efficient method is to directly
impute the summary statistics, termed as summary statistics imputation. Its
performance relative to genotype imputation and practical utility has not yet been fully
investigated. To this end, we compared the two approaches on real (genotyped and
imputed) data from 120K samples from the UK Biobank and show that, while genotype
imputation boasts a 2- to 5-fold lower root-mean-square error, summary statistics
imputation better distinguishes true associations from null ones: We observed the
largest differences in power for variants with low minor allele frequency and low
imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary
statistics imputation yielded an increase in statistical power by 15, 10 and 3%,
respectively. To test its capacity to discover novel associations, we applied summary
statistics imputation to the GIANT height meta-analysis summary statistics covering
HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the
UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants
published in an exome chip study. Our study demonstrates that summary statistics
imputation is a very efficient and cost-effective way to identify and fine-map
trait-associated loci. Moreover, the ability to impute summary statistics is important
for follow-up analyses, such as Mendelian randomisation or LD-score regression.

Author summary

Genome-wide association studies (GWASs) quantify the effect of genetic variants and
traits, such as height. Such estimates are called association summary statistics and are
typically publicly shared through publication. Typically, GWASs are carried out by
genotyping ∼ 500′000 SNVs for each individual which are then combined with
sequenced reference panels to infer untyped SNVs in each’ individuals genome. This
process of genotype imputation is resource intensive and can therefore be a limitation
when combining many GWASs. An alternative approach is to bypass the use of
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individual data and directly impute summary statistics. In our work we compare the
performance of summary statistics imputation to genotype imputation. Although we
observe a 2- to 5-fold lower RMSE for genotype imputation compared to summary
statistics imputation, summary statistics imputation better distinguishes true
associations from null results. Furthermore, we demonstrate the potential of summary
statistics imputation by presenting 34 novel height-associated loci, 19 of which were
confirmed in UK Biobank. Our study demonstrates that given current reference panels,
summary statistics imputation is a very efficient and cost-effective way to identify
common or low-frequency trait-associated loci.

Introduction 1

Genome-wide association studies (GWASs) have been successfully applied to reveal 2

genetic markers associated with hundreds of traits and diseases. The genotyping arrays 3

used in these studies only interrogate a small proportion of the genome and are 4

therefore typically unable to pinpoint the causal variant. Such arrays have been 5

designed to be cost-effective and include only a set of tag single nucleotide variants 6

(SNVs) that allow the inference of many other unmeasured markers. To date, thousands 7

of individuals have been sequenced [1, 2] to provide high resolution haplotypes for 8

genotype imputation tools such as IMPUTE and minimac [3, 4], which are able to infer 9

sequence variants with ever-increasing accuracy as the reference haplotype set grows. 10

Downstream analyses such as Mendelian randomisation [5], approximate conditional 11

analysis [6], heritability estimation [7], and enrichment analysis using high resolution 12

annotation (such as DHS) [8] often require genome-wide association results at the 13

highest possible genomic resolution. Summary statistics imputation has been proposed 14

as a solution that only requires summary statistics and the linkage disequilibrium (LD) 15

information estimated from the latest sequencing panel to directly impute up-to-date 16

meta-analysis summary statistics [9]. In a recent paper [10] we improved the most 17

recent summary statistics imputation method [11] by extending imputation to account 18

for variable sample sizes and reference panel composition. While we demonstrated in 19

our paper the benefits of new features compared to other similar methods using 20

simulated data, this study compares it directly to genotype imputation and focuses on 21

the practical advantages of summary statistics imputation using real data. In particular, 22

we evaluated two experiments: (1) we ran a GWAS on human height using data from 23

336′474 individuals from the UK Biobank and compared the performances of summary 24

statistics imputation and genotype imputation, using direct genotyping/sequencing as 25

gold standard; (2) we imputed association summary statistics from a HapMap-based 26

GWAS study [12] using the UK10K reference panel to explore new potential 27

height-associated variants which we validated using results from Marouli et al. [13] and 28

the UK Biobank height GWAS. 29

Summary statistics imputation 30

By combining summary statistics for a set of variants and the fine-scale LD structure in 31

the same region, we can estimate summary statistics of new, untyped variants at the 32

same locus. We can formally write this [9–11] using the conditional expectation of a 33

multivariate normal distribution. 34

Zu|M = c′λC
−1
λ Z (1)

In Equation (1) we aim to impute the Z-statistic of a variant u. Vector Z contains 35

the known Z-statistics of a set of m SNVs M, estimated from N samples. This set of m 36

SNVs are called tag SNVs. C contains the pairwise correlations among the tag SNVs 37
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(M), and c represents the correlations betweenM and SNV u. Both correlation entities 38

are regularised [14] using a regularisation parameter λ, yielding Cλ and cλ. In this 39

paper we use λ = (1− 2√
n

) [15]. Zu|M describes the Z-statistic of an untyped SNV u 40

given the Z-statistics of a set tag SNVs (M). 41

Since LD between SNVs is minimal beyond 250 Kb, we choose M to include all 42

measured variants within at least 250 Kb from SNV u. To speed up the computation 43

when imputing SNVs genome-wide, we apply a sliding window strategy, where SNVs 44

within a 1 Mb window are imputed simultaneously using the same set of m tag SNVs 45

within the 1 Mb window ± 250 Kb flanking regions. 46

We use an adjusted imputation quality that corrects for the effective number of tag 47

SNVs peff [16]: 48

r̂2pred,adj = 1− (1− c′λC
−1
λ cλ)

n− 1

n− peff − 1
(2)

To account for variable sample size in summary statistics of tag SNVs, we use an 49

approach to down-weight entries in the Cλ and cλ matrices for which summary 50

statistics were estimated from a GWAS sample size lower than the maximum sample 51

size in that dataset [10]. 52

For more details on our summary statistics imputation method and extensions of it, 53

see our complementary paper [10]. 54

Results 55

To assess the performance of summary statistics imputation in realistic scenarios we 56

used two different datasets. In Section “Comparison of summary statistics imputation 57

versus genotype imputation” we compare the performance of summary statistics 58

imputation to genotype imputation, using measured and imputed genotype data from 59

120′086 individuals in the UK Biobank. In Section “Summary statistics imputation of 60

the height GWAS of the GIANT consortium”, we use published association summary 61

statistics from 253′288 individuals to show that summary statistics imputation can be 62

used to identify novel associations. Both analyses are centered around the genetics of 63

human height. In the following we will often refer to two GIANT (Genetic Investigation 64

of ANthropometric Traits) publications: Wood et al. [12], an analysis of HapMap 65

variants that revealed 423 loci, and Marouli et al. [13], an exome chip based analysis 66

that revealed 120 new height-associated loci. Together, these two studies — the 67

HapMap and the exome chip study — constitute the most complete collection of genetic 68

associations with height. 69

Comparison of summary statistics imputation versus genotype 70

imputation 71

By having two types of genetic data at hand, genotype and imputed genotype data, we 72

were able to compare summary statistics of 37′467 typed SNVs resulting from (1) 73

associations calculated from original genotype data (ground truth); (2) associations 74

calculated from imputed genotype data (genotype imputation) and (3) associations 75

imputed from summary statistics calculated using genotype data. Fig 1 gives an 76

overview of how these three types of summary statistics are related and compared. For 77

our analysis, we defined 706 genomic regions in total, among which 535 contain SNVs 78

associated with height [12,13], while the remaining 171 regions were selected to be free 79

of any known height associated SNVs. 80

We examined imputation results for different SNV categories. These were grouped 81

based on (i) their association status (being correlated with the causal SNV vs. null 82

PLOS 3/26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/204560doi: bioRxiv preprint 

https://doi.org/10.1101/204560
http://creativecommons.org/licenses/by-nc/4.0/


Fig 1. Genotype vs. summary statistics imputation. From genotype data
(top-left, G) we can calculate summary statistics (top-right, SS). Summary statistics for
an unmeasured/masked SNV can be obtained via two ways: we can impute genotype
data (bottom-left, G-GTimp) using genotype imputation and then calculate summary
statistics via linear regression (bottom-middle, SS-GTimp), or by applying summary
statistics imputation on the summary statistics calculated from genotype data
(bottom-right, SS-SSimp). For the purpose of our analysis, we are only looking at
genotyped (and genotype imputed) SNVs, thus masking one SNV at the time and
imputing it using summary statistics from neighbouring SNVs

.

SNVs) with the lead SNV of each of the 535 height-associated regions (6′080 variants 83

were correlated, 31′567 were not); (ii) frequency (MAF: 84

1% < low-frequency ≤ 5% < common; 13′857 and 23′790 variants, respectively); and 85

(iii) imputation quality based on summary statistics imputation (r̂2pred,adj: 86

low ≤ 0.3 < medium ≤ 0.7 < high; 10′953, 9′385, and 17′309 variants, respectively). S1 87

Fig and S2 Fig show the distribution of SNV counts in each of these twelve subgroups. 88

We term the 6′080 SNVs correlated with a height-associated lead SNV as associated 89

SNVs. Conversely, we refer to the 31′567 SNVs that are not correlated with any 90

height-associated lead SNV as null SNVs. For both, null and associated SNV groups, 91

the largest group of analysed variants were common and well-imputed (S1 Fig). The 92

fraction of SNVs with low quality imputation increases with lower minor allele 93

frequency (S2 Fig). However, the number of rare variants (MAF< 1%) were too small 94

(2′411 variants, among these only 13 associated variants) to draw meaningful 95

conclusions and hence we limited our analysis to common and low-frequency variants. 96

We focused on two aspects of the imputation results. First, we compared how 97

summary statistics imputation and genotype imputation perform relative to the ground 98

truth (direct genotyping). For this we used four measures: the root mean squared error 99

(RMSE), bias, the linear regression slope, and the correlation. Second, we calculated 100

power and false positive rate for genotype imputation and summary statistics imputation 101

directly. 102

Genotype imputation outperforms summary statistics imputation for low 103

allele frequency 104

Fig 2 shows in green the comparison between summary statistics resulting from 105

measured genotype data (ground truth) and imputed summary statistics for 6′080 106

PLOS 4/26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/204560doi: bioRxiv preprint 

https://doi.org/10.1101/204560
http://creativecommons.org/licenses/by-nc/4.0/


height-associated variants. As expected, the performance drops as the imputation 107

quality and as the MAF decrease. For well-imputed common SNVs (the largest 108

subgroup with 4′782 variants), summary statistics imputation performs on average well 109

with a correlation and a slope close to 1 (cor = 0.998 and slope = 0.98), but it drops to 110

0.90 (cor = 0.961 and slope=0.90) for low imputation quality, low-frequency variants. 111

On the other hand, for genotype imputation (Fig 2, blue dots) all subgroups of SNVs 112

show near perfect slope and correlation. Note that imputation quality for summary 113

statistics imputation and genotype imputation differ in definition and we find that the 114

latter was consistently higher (S3 Fig and S4 Fig) and showed little variation across 115

SNVs. To be able to compare the performance between genotype imputation and 116

summary statistics imputation for the same subgroups of SNVs we used the imputation 117

quality defined by summary statistics imputation to classify SNVs. 118

For the 31′567 null SNVs we present the same metrics as for associated SNVs. We 119

analysed 13′556 low-frequency and 18′011 common variants. First, the green dots in 120

Fig 3 show summary statistics from genotype data and summary statistics imputation. 121

We find that both the correlation and slope gradually decrease with dropping 122

imputation quality and MAF. For example, the correlation is 0.91–0.96 for well-imputed, 123

0.86–0.90 for medium and 0.70–0.82 for badly-imputed SNVs. The blue dots in Fig 3 124

show the respective results for genotype imputation, which exhibits an almost perfect 125

(> 0.98) slope and correlation. 126

Effect estimate accuracy and precision 127

We then compared summary statistics imputation and genotype imputation in terms of 128

RMSE among associated variants (for the same six SNV categories), shown in the upper 129

part of Table 1. For all six subgroups, genotype imputation had a smaller RMSE than 130

summary statistics imputation. The difference between the two methods in terms of 131

RMSE increases as imputation quality decreases. For the largest SNV subgroup — 132

well-imputed and common SNVs — summary statistics imputation had a RMSE of 0.29 133

versus 0.085 for genotype imputation. In case of summary statistics imputation, the 134

RMSE is more influenced by a decrease in imputation quality than by a reduction of 135

MAF. For example, the RMSE for common variants with medium-quality imputation is 136

0.51 (a 1.79-increase), while the RMSE for low-frequency variants with high-quality 137

imputation is 0.33 (a 1.16-fold increase). However, for genotype imputation a decrease 138

in MAF or imputation quality seems to have a similar effect. For example, the RMSE 139

for well-imputed, low-frequency variants is 0.14 for genotype imputation (a 140

1.65-increase), and the RMSE for medium-imputed, common variants is 0.13 for 141

genotype imputation (a 1.57-increase) (Fig 4). For null SNVs we observe for summary 142

statistics imputation a RMSE of 0.33 for well-imputed and common SNVs up to 0.75 for 143

badly-imputed and low-frequency SNVs (lower part in Table 1). For genotype 144

imputation the RMSE ranges are much lower, between 0.10 for well-imputed and 145

common SNVs and 0.18 for badly-imputed and low-frequency SNVs. The bias is very 146

close to zero for both approaches and for null and associated SNVs, and does not 147

significantly vary with MAF or imputation quality. 148

Summary statistics imputation displays lower false positive rate 149

Finally, analogous to a ROC curve Fig 5 presents simultaneously power and false 150

positive rate (FPR) with varying significance threshold (α from 0 to 1). As before, we 151

stratified the results by MAF and imputation quality categories. We observe that for 152

common SNVs with r̂2pred,adj > 0.7 the results for genotype imputation and summary 153

statistics imputation are differing only by a little with respect to FPR and power. For 154

low-frequency and well-imputed variants, summary statistics imputation seems to offer 155
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Fig 2. Summary statistics imputation versus genotype imputation in
associated variants. The x-axis shows the Z-statistics of the genotype data (ground
truth), while the y-axis shows the Z-statistics from summary statistics imputation
(green) or genotype imputation (blue). Results are grouped according to MAF (columns)
and imputation quality (rows) categories and the numbers top-right in each window
refers to the number of SNVs represented. The identity line is indicated with a dotted
line. The estimation for correlation and slope are noted in the bottom-right corner for
summary statistics imputation and in the top-left corner for genotype imputation. Blue
dots are plotted over the green ones.

an advantage compared to genotype imputation when α is low. As we approach lower 156

imputation quality and MAF, summary statistics imputation advantage becomes more 157

and more apparent for all range of α values. In general, whenever summary statistics 158

imputation is outperforming genotype imputation, this is because lower FPR (horizontal 159

shift), and not due to increased power. This aspect is more clearly visible in S5 Fig 160

(same data, but untransformed x-axis ranging from 0 to 1). For fixed false positive rates 161

of 0.001, 0.01, 0.05, using summary statistics imputation yielded an increase in 162

statistical power by 15, 10 and 3%, respectively. 163
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Fig 3. Summary statistics imputation versus genotype imputation in null
variants. The x-axis shows the Z-statistics of the genotype data (ground truth), while
the y-axis shows the Z-statistics from summary statistics imputation (green) or genotype
imputation (blue). Results are grouped according to MAF (columns) and imputation
quality (rows) categories and the numbers top-right in each window refers to the
number of SNVs represented. The identity line is indicated with a dotted line. The
estimation for correlation and slope are noted in the bottom-right corner for summary
statistics imputation and in the top-left corner for genotype imputation. Blue dots are
plotted over the green ones.

Summary statistics imputation of the height GWAS of the 164

GIANT consortium 165

While previous studies have examined the role of (common) HapMap variants for 166

height [12,17], the impact of rare coding variants could not be investigated until 167

bespoke genotyping chips (interrogating low-frequency and rare coding variants) were 168

designed to address this question in a cost-effective manner. Such an exome chip based 169

study was conducted by the GIANT consortium in 381′000 individuals and revealed 120 170

height-associated loci, of which 83 loci were rare or low-frequency [13]. These 171

association results enabled us to compare the usefulness of imputation-based inference 172

with direct genotyping done in Wood et al. [12], since the two studies are highly 173

comparable in terms of ancestry composition and statistical analysis, evidenced by S6 174
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Fig 4. Visualising RMSE of summary statistics imputation and genotype
imputation. This figure uses boxplots to compare the absolute difference |d| (used for
calculation of RMSE) for each variant between Z-statistics of summary statistics
imputation (SSimp, green) and genotype imputation (GTimp, blue) of associated SNVs
(left column) and null SNVs (right column). Results are grouped according to MAF
(x-axis) and imputation quality (rows) categories. The numbers printed above the
boxplot represents the number of SNVs used for the |d| calculation in that MAF and

imputation quality subgroup. The corresponding RMSE =
√

1
n

∑n
i d

2
i is shown in

Table 1.

Fig confirming very high concordance between summary statistics for the subset of 2′601 175

SNVs correlated to a height-associated variant which were available in both studies. 176

Discovery and replication of 19 new loci 177

By imputing > 6M additional SNVs summary statistics using HapMap variants [12] as 178

tag SNPs we were interested in two aspects: (1) discovering new height-associated 179

candidate loci, and (2) replicating these candidate loci in the UK Biobank and the 180

GIANT exome chip look-up (Fig 6). We used the HapMap-based height study and the 181

UK10K reference panel as inputs for summary statistics imputation and used all 182

HapMap SNVs as tag SNVs. We imputed variants that were available in UK10K with a 183

MAFUK10K ≥ 0.1%, as well as all reported exome variants in Marouli et al. [13]. In 184

total we imputed 10′966′111 variants, of which 9′276′018 (84%) had an imputation 185

quality ≥ 0.3. 186

We subjected all 9′276′018 variants with an imputation quality ≥ 0.3 to a scan for 187
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Table 1. RMSE for summary statistics imputation and genotype
imputation.

SSimp GTimp
MAF r̂2pred,adj RMSE Bias RMSE Bias # SNVs

Associated 1-5% 0-0.3 0.8979 0.0610 0.2354 0.0197 57
0.3-0.7 0.7195 0.0384 0.1423 0.0076 66
0.7-1 0.3310 -0.0169 0.1408 0.0052 178

5-50% 0-0.3 0.6366 -0.0447 0.1169 -0.0018 325
0.3-0.7 0.5135 0.0015 0.1346 -0.0102 692
0.7-1 0.2859 -0.0005 0.0854 -0.0012 4762

Null 1-5% 0-0.3 0.7478 0.0020 0.1787 0.0030 7009
0.3-0.7 0.5431 -0.0049 0.1569 -0.0001 3880
0.7-1 0.4487 -0.0034 0.1470 0.0005 2667

5-50% 0-0.3 0.6133 -0.0122 0.1236 0.0007 3562
0.3-0.7 0.4788 -0.0075 0.1197 -0.0048 4747
0.7-1 0.3251 0.0038 0.0967 0.0010 9702

This table shows RMSE and bias for summary statistics imputation (SSimp) and
genotype imputation (GTimp) in each variant subgroup (based on MAF and imputation
quality) for associated SNVs (upper rectangle) and null SNVs (lower rectangle). The
rightmost column reports the number of variants in each SNV subgroup. For MAF and
r̂2pred,adj notation, the lower bound is excluded while the upper bound is included. For
example, 1− 5% is equivalent to 1 < MAF ≤ 5. RMSE differences are also displayed in
Fig 4.

novel candidate loci. A region was defined as a candidate locus if at least one imputed 188

variant was independent from any reported HapMap variant nearby (conditional 189

P -value ≤ 10−8). We identified 35 such candidate loci. Within each locus we defined 190

the imputed variant with the lowest conditional P -value as the top variant. All 35 191

variants are listed in S1 Table and locus-zoom plots are provided in S7 Fig. 192

Next, we used the UK Biobank to replicate the associations with height of these 35 193

candidate variants and subsequently grouped them into replicating (20 variants) and 194

not replicating (15 variants) (at α = 0.05/35 level). 195

An overview of the 20 replicating variants is given in Table 2. One region had 196

already been discovered in the GIANT exome chip study: rs28929474, located in gene 197

SERPINA1. Fig 7 shows this region as locus-zoom plot with summary statistics from the 198

HapMap study, summary statistics imputation, and the exome chip study. To annotate 199

these 20 novel candidate variants further, we investigated whether they are eQTLs or 200

associated with other traits. We report this in Table 3 where we list eQTLs detected by 201

GTEx [18] and Table 4 that presents a curated association-trait list by 202

Phenoscanner [19]. In the following we describe variants that replicated in UK Biobank 203

which are either eQTLs or have previously been associated with another trait. 204

We can classify the 35 candidate loci into three categories (i), (ii) and (iii) that 205

reflect the type of conditional analysis performed. Group (i) includes SNVs replicating 206

already published exome chip associations (one locus), group (ii) includes SNVs that 207

contain no reported HapMap variant nearby (three loci), and group (iii) includes SNVs 208

that contain one or more reported independent HapMap variants nearby (31 loci). 209

Replication success with UK Biobank is 1/1 in group (i), 2/3 in group (ii), 17/31 in 210

group (iii). We only term categories (ii) and (iii) as novel candidate loci, therefore 211

limiting the number of novel candidate loci to 34, with 19 replicating in UK Biobank. 212

Although group (ii) only contains loci that had no reported HapMap variants nearby, 213
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Fig 5. FPR versus power. This figure compares false positive rate (FPR) (x-axis on
log10-scale) versus power (y-axis) for genotype imputation (blue) and summary statistics
imputation (green) for different significance thresholds. This figure is a zoom into the
bottom-left area of S5 Fig and shows FPR between 0 and 0.1. Results are grouped
according to MAF (columns) and imputation quality (rows) categories.

three candidate loci (#2, #3, #21 in S1 Table) contain borderline significant HapMap 214

signals (P -value between 10−6 and 10−8 in [12]). 215

We observed that variants with higher MAF have higher chance to replicate. Among 216

the 20 candidate variants that did replicate in UK Biobank, 19 were common and one a 217

low-frequency variant (rs112635299, MAF = 2.32%). Conversely, among the 15 218

candidate variants that did not replicate in the UK Biobank, 10 are rare, three are 219

low-frequency variants, and two are common. 220

Locus #1: rs112635299 (imputed P -value 4.21× 10−14), is a proxy of rs28929474 221

(LD= 0.88), has been associated with alpha-1 globulin [20] and is associated with 222
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Fig 6. Overview of imputation and replication scheme. This illustration gives
an overview how we used > 2M GIANT HapMap summary statistics (black rectangle)
as tag SNVs to impute > 10M variants with MAF≥ 0.1% in UK10K. After adjusting
the summary statistics for conditional analysis we applied a selection process that
resulted in 35 candidate loci. To confirm these 35 loci we used summary statistics from
UK Biobank (blue) as replication as well as summary statistics from the exome chip
study, if available [13] (red). Loci that had not been discovered by the exome chip study,
were termed novel.

multiple lipid metabolites [21]. rs28929474 was identified in the GIANT exome 223

chip study to be height-associated (P = 1.39× 10−45) [13]. The P -value 224

calculated with summary statistics imputation was P = 1.06× 10−13. rs28929474 225

is a low-frequency variant (MAF= 2.3%) and replicates in the UK Biobank with 226

P = 1.66× 10−25. 227

Locus #2: rs76306191 is a common variant on chromosome 1, located in gene 228

DCST1. There was no reported HapMap variant nearby to condition on. However, 229

the absolute correlation to the HapMap variant with the lowest P -value (> 10−8) 230

in the same region was 0.8. One of the 122 variants reported by the exome chip 231

study, rs141845046, was in this region, but had an imputed P -value > 10−3. 232

rs76306191 replicated in the UK Biobank with P = 1.09× 10−7. rs76306191 is 233

an eQTL in artery (tibial) for gene ZBTB7B and in thyroid gland for gene DCST2. 234

Locus #5: rs12795957 is a variant on chromosome 11 and an eQTL for gene RAD9A 235

in artery (tibial). 236

Locus #6: rs503035 is a variant on chromosome 5. It is an eQTL for gene PITX1 in 237

testis tissue. rs62623707, one of the 122 reported exome variants, was in this 238

region, but had an imputed P -value > 10−3. 239
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Table 2. Twenty replicating candidate loci for height.

Allele MAF SSimp UK Biobank

# SNV Chr Pos R/E Gene(1) (2) P N P N Group

1 rs112635299(∗) 14 94838142 G/T - 2.33% 4.21E-14 234380 5.16E-77 336474 (i)

2 rs76306191 1 155006451 C/G DCST1 [E] 20.30% 6.51E-10 245908 2.74E-16 336474 (ii)
3 rs73029259 6 164111348 T/A - 12.77% 7.61E-09 251161 1.02E-15 336474 (ii)

4 rs67807996 1 149995265 G/A - 40.16% 1.48E-43 219605 2.75E-102 336474 (iii)
5 rs12795957 11 67242216 G/A - 5.46% 1.52E-24 193457 1.75E-76 336474 (iii)
6 rs503035 5 134353734 A/G - 30.39% 6.34E-24 248110 5.46E-39 336474 (iii)
7 rs568777 6 81809121 C/G - 26.61% 7.08E-24 252456 3.11E-35 336474 (iii)
8 rs75975831 19 17264961 G/C MYO9B [I] 22.52% 3.59E-10 233765 9.19E-22 336474 (iii)
9 rs56006730 12 103132740 G/A - 10.41% 1.80E-09 250070 1.05E-19 336474 (iii)
10 rs35374532 6 26163345 A/AT HIST1H2BD [I] 38.85% 2.97E-27 252327 8.64E-18 120086 (iii)
11 rs80171383 11 46084677 G/A PHF21A [I] 14.72% 3.53E-16 247885 2.05E-16 336474 (iii)
12 rs13108218 4 3443931 A/G HGFAC [I] 39.72% 2.15E-10 222502 5.05E-15 336474 (iii)
13 rs428925 5 173022921 G/A - 27.59% 1.34E-16 206987 4.31E-13 336474 (iii)
14 rs6085649 20 6665532 A/G - 45.61% 1.24E-09 251393 1.65E-12 336474 (iii)
15 rs78566116 6 32396146 G/T - 7.67% 2.74E-19 248592 4.18E-12 336474 (iii)
16 rs350889 19 4118481 A/G MAP2K2 [I] 24.28% 8.17E-10 207571 7.11E-12 336474 (iii)
17 rs7955819 12 20677958 T/C PDE3A [I] 23.23% 6.13E-10 250048 3.25E-08 336474 (iii)
18 rs7971674 12 1513526 A/T ERC1 [I] 14.12% 8.10E-09 240270 2.19E-07 336474 (iii)
19 rs12939056 17 7754993 G/A KDM6B [E] 43.26% 1.09E-12 245015 7.64E-07 336474 (iii)
20 rs58402222 1 46059835 T/TA NASP [I] 45.72% 7.50E-13 252901 1.79E-04 120086 (iii)

This table presents 20 regions that contain at least one imputed variant that is independent from top HapMap variants
nearby and that replicated in the UK Biobank (at α = 0.05/35 level). Each row represents one region (#), indicating the
SNV with the lowest conditional P -value. The first seven columns provide general information for each variant, followed by
the P -value and sample size from summary statistics imputation, P -value and sample size from the UK Biobank. The last
column assigns each of the 35 candidate loci to one of three groups: candidate loci (i) that were reported by [13] already, (ii)
that had no reported HapMap variant nearby and (iii) that had reported HapMap variants nearby. r̂2pred,adj of all variants
listed was greater than or equal to 0.3. We provide a more detailed table for all 35 variants (both replicating and not
replicating) in S1 Table.
(*) rs28929474, exome chip study results: P = 1.39× 10−45, N = 365′451.
(1) [I] intronic, [E] exonic, - intergenic.
(2) MAF was computed in UK10K.

Locus #15: rs78566116 is a variant on chromosome 6. rs78566116 has been 240

associated with HPV8 seropositivity in cancer [22], rheumatoid arthritis [23] and 241

ulcerative colitis [24]. 242

Locus #20: rs58402222 is an intronic variant on chromosome 1, located in gene 243

NASP. It is an eQTL for genes CCDC163P, MAST2 and TMEM69 in cells 244

(transformed fibroblasts); and for GPBP1L1 in thyroid tissue. 245

Replication of 55/111 reported GIANT exome chip variants 246

Next, we focussed on 122 novel variants of Marouli et al. [13]. For this analysis we did 247

not apply any MAF restrictions. Of these 122 variants, 11 variants were either not 248

referenced in UK10K or on chromosome X, and were therefore not imputed, limiting the 249

number of loci and variants to 111 (S3 Table). By grouping results below or above the 250

P -value threshold of α = 0.05/111 we could classify variants into the ones that 251

replicated and those that failed replication. This is summarised in Table 5 and S8 Fig, 252

which shows that 55 of the 111 variants could be retrieved, four of them with 253
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Table 3. GTEx annotation results for variants in eQTLs.

# SNV PSSimp PUKBB GTEx tissue Gene P

2 rs76306191 6.51E-10 1.09E-07 Artery Tibial ZBTB7B 3.97E-09
Thyroid DCST2 2.41E-08

5 rs12795957 1.52E-24 6.17E-41 Artery Tibial RAD9A 6.48E-10

6 rs503035 6.34E-24 8.06E-12 Testis PITX1 2.91E-07

20 rs58402222 7.50E-13 1.79E-04 Cells Transformed fibroblasts MAST2 8.84E-23
Cells Transformed fibroblasts CCDC163P 1.11E-19
Cells Transformed fibroblasts TMEM69 2.16E-08

Thyroid GPBP1L1 3.26E-11

This table shows SNVs which are significant eQTLs in GTEx [18]. We only report SNV-gene expression associations where
the summary statistics pass the significance threshold of α = 10−6. The first four columns represent the region number, SNV,
P -value from summary statistics imputation and the P -value in the UK Biobank. The four remaining columns are
information extracted from GTEx, with the tissue name, gene name, the P -value of the association between the SNV and the
gene expression, and the gene type. For each region, we only include the tissue with the lowest P -value per SNV-gene
associations. The full version of this table is available in S2 Table. # refers to the region number.

Table 4. Known trait association results for variants in Table 2.

# SNV PSSimp PUKBB Study PMID Ancestry Trait P N

1 rs112635299 4.21E-14 3.52E-25 Wood 23696881 Mixed Alpha 1 globulin 2.51E-12 5278
Kettunen J 27005778 European Glycoprotein acetyls 1.27E-10 17772

mainly a1Lacid glycoprotein
Kettunen J 27005778 European Total cholesterol in small LDL 6.59E-10 20057
Kettunen J 27005778 European M.LDL.C 4.03E-09 20060
Kettunen J 27005778 European Cholesterol esters in medium LDL 6.19E-09 17774
Kettunen J 27005778 European Total lipids in medium LDL 7.26E-09 17774
Kettunen J 27005778 European Total cholesterol in LDL 8.66E-09 20060
Kettunen J 27005778 European Total lipids in small LDL 1.56E-08 17774
Kettunen J 27005778 European Conc. of medium LDL particles 1.67E-08 17774
Kettunen J 27005778 European Conc. of small LDL particles 2.77E-07 17774
Kettunen J 27005778 European Cholesterol esters in large LDL 4.72E-07 17774
Kettunen J 27005778 European Total cholesterol in large LDL 7.36E-07 20053
Kettunen J 27005778 European Total lipids in large LDL 9.86E-07 17774

15 rs78566116 2.74E-19 9.80E-04 Chen D 21896673 Mixed HPV8 seropositivity in cancer 3.30E-16 6885
Okada Y 24390342 European Rheumatoid arthritis 3.80E-94 58284
Okada Y 24390342 Mixed Rheumatoid arthritis 2.30E-90 80799
IBDGC 26192919 European Ulcerative colitis 4.06E-08 27432

This table describes SNVs previously associated with other traits. The search was conducted with Phenoscanner [19]. We
only list SNVs for which Phenoscanner had information available regarding GWAS traits or metabolites. The first four
columns specify region, SNV-id, followed by the P -value from summary statistics imputation and the P -value from the UK
Biobank. Column five to ten contain information extracted from Phenoscanner. We report the respective summary statistics
that pass the significance threshold of α = 10−6. # refers to the region number, conc. to concentration.

MAF ≤ 5%. 254

Details to the imputation of all 111 variants are listed in S3 Table. 255

PLOS 13/26

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/204560doi: bioRxiv preprint 

https://doi.org/10.1101/204560
http://creativecommons.org/licenses/by-nc/4.0/


Table 5. 111 variants: Fraction of top variants in exome chip study
retrieved with imputation of HapMap study.

MAF
r̂2pred,adj 5− 50% 1− 5% 0− 1%

0.7-1 65% (49/75) 50% (4/8) -
0.3-0.7 67% (2/3) 0% (0/17) 0% (0/3)

0-0.3 - - 0% (0/5)

This table presents summary statistics imputation results, limited to 111 variants
identified as “novel” by [13]. We summarised the results according to their allele
frequency and imputation quality category. For each subgroup we calculated the
fraction of top exome variants that had a P -value ≤ 0.05/111 with summary statistics
imputation.

Discussion 256

In this article, we focussed on the comparison between genotype and summary statistics 257

imputation. In contrast to previous work by others and us [10,11,25], here we 258

systematically assessed the performance and limitations of summary statistics 259

imputation through real data applications for different SNV subgroups characterised by 260

allele frequency, imputation quality and association status (null/associated). In 261

addition, we demonstrated the usefulness of summary statistics imputation to discover 262

novel associated regions using existing association data. Note that in this paper we used 263

an improved version of the original summary statistics imputation [11], which uses 264

reference panel size dependent shrinking of the correlation matrix and incorporates 265

variable sample size of tag SNVs. 266

Our study design has several limitations: for replication of summary statistics from 267

European individuals we use the UK Biobank, which represents only a subset of all 268

European ancestries and is genotype-imputed (instead of sequenced), but on the other 269

hand provides a reliable resource due to its sample size. Furthermore, in UK Biobank, 270

genotype imputation done for genotyped variants can only partially be compared to 271

genotype imputation for untyped variants, as genotyped variants were used for phasing 272

(therefore genotype imputation of genotyped variants is much easier and leads 273

imputation qualities close to one, S4 Fig). Due to the small number of height-associated 274

rare variants (13) we can not draw meaningful conclusions for this group and hence 275

avoided their analysis. 276

The summary statistics imputation method itself has several limitations too. First, 277

due to the size of publicly available sequenced reference panels we can not explore the 278

performance of rare variants (MAF< 1%). Second, the imputation quality metric 279

r̂2pred,adj tends to be inaccurate in case of small reference panels. Third, the imputation 280

of summary statistics of an untyped SNV is essentially the linear combination of the 281

summary statistics of the tag SNVs (Eq. (1)). Such a model cannot capture non-linear 282

dependence between tag- and target SNVs [9], which is often the case for rare 283

variants [26,27]. In contrast, genotype imputation is able to capture such non-linear 284

relationships by estimating the underlying haplotypes (a non-linear combination of 285

tagging alleles). Furthermore, in case of genotype imputation it is sufficient that the 286

relevant haplotypes are present in the reference panel, but the overall allele frequency 287

does not need to match the GWAS allele frequency. 288
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Comparison of summary statistics imputation versus genotype 289

imputation 290

We compared summary statistics imputation and genotype imputation by using 291

individual-level data from the UK Biobank, where we evaluated the imputation results 292

for 6′080 SNVs that were correlated with a height-associated variant (associated SNVs) 293

and 31′567 that were not correlated to any height-associated SNVs on the same 294

chromosome (null SNVs). 295

In general, imputation using summary statistics imputation leads to a larger RMSE 296

than genotype imputation in all twelve SNV subgroups investigated (Fig 4). Among 297

associated SNVs, summary statistics imputation performs similar to genotype imputation 298

for well-imputed SNVs, but shows a trend for underestimation of the Z-statistics and 299

lower correlation with the true effect size for medium- and badly-imputed SNVs (Fig 2). 300

Conversely, genotype imputation has more consistent results for most of the twelve SNV 301

subgroups (Fig 2 and 3), that is reflected in a correlation close to one between 302

Z-statistics from genotype data and genotype imputation data. 303

Underestimation for null and associated SNVs 304

Ultimately, the underestimation of imputed Z-statistics with summary statistics 305

imputation leads to a lower type I error. We calculated power and FPR for both 306

methods and observe that for a given significance threshold, summary statistics 307

imputation has a lower FPR at the cost of lower power compared to genotype 308

imputation. This effect is amplified for SNV groups with lower imputation quality 309

(r̂2pred,adj < 1). For associated SNVs with r̂2pred,adj < 1 we expect an underestimation for 310

associated SNVs due to the fact that we are imputing summary statistics under the null 311

model, whereas for null SNVs with r̂2pred,adj < 1 we expect an underestimation due to 312

decreased variance of the summary statistics imputation estimation. 313

Ideally, for an unbiased estimation of causal and null SNVs, the imputed Z-statistics 314

(Eq. (1)) should be divided by r̂2. However, as the imputation quality r̂2pred,adj is noisily 315

estimated from small reference panels (discussed below) and it is not guaranteed that 316

the SNV we impute is causal, we risk to overestimate the summary statistics of 317

associated SNVs. This is the reason why refrain from doing so. 318

S9 Fig shows the P -value distribution of summary statistics imputation for null 319

SNVs with an accumulation of low −log10(P )-values for well-imputed SNVs and an 320

accumulation of high −log10(P )-values for badly-imputed SNVs. We think that two 321

factors are in play here. First, mostly due to polygenicity, the genomic lambda for 322

height is λGC = 1.94, therefore we expect even seemingly null variants to show inflation. 323

Second, for null SNVs, the sample variance of the imputed Z-statistics should be 324

proportional to the average imputation quality. We calculated for each of the null SNV 325

subgroups the ratio between the sample variance for Z-statistics from summary 326

statistics imputation and the sample variance for Z-statistics from genotype data. For 327

common null SNVs we observe a ratio that gradually decreases with imputation quality 328

(0.89 for perfectly-, 0.79 for medium- and 0.68 for badly imputed SNVs). For 329

low-frequency null variants the ratio is approximately 0.1 lower (0.82 for perfectly-, 0.70 330

for medium- and 0.52 for badly imputed SNVs). The inflation for well-imputed SNVs 331

can be explained by the genomic lambda, while for badly-imputed SNVs it is aggravated 332

by the underestimated standard error. 333
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Atypical allele frequency distribution and rare variants 334

exclusion 335

Because the number of associated SNVs with MAF < 1% was too low (13 variants) to 336

draw any meaningful conclusions, we refrained from analysing this MAF group. One 337

other reason to exclude rare variants from this analysis is, that the reference panel used 338

(UK10K) contains 3′871 individuals and therefore estimations for LD of rare variants 339

are unreliable and rare variants can (in theory) only be covered down to MAF 340

= 1/(2 · 3′871). We believe improving summary statistics imputation for rare variants 341

will require not only larger reference panels to allow estimation of LD of rare variants, 342

but also methods which would allow non-linear tagging of variants. It should be kept in 343

mind that, just like for genotype imputation, even with very large reference panels, one 344

will not be able to impute variants with extremely rare allele counts. To investigate 345

these SNVs full genome sequencing is indispensable [28]. 346

Imputation quality 347

We find that our imputation quality measure r̂2pred,adj is conservative and probably 348

underestimates the true imputation quality (S4 Fig). To calculate the imputation 349

quality r̂2pred,adj, we need — similar to imputing summary statistics in Eq. (1) — to 350

compute correlation matrices c and C estimated from a reference panel (Eq. (2)) and 351

therefore encounter similar challenges as summary statistic imputation itself due to 352

difficulties of reliable LD estimation. 353

The discrepancy in imputation quality metric between summary statistics 354

imputation and genotype imputation (S4 Fig) can be explained by the fact that: (1) 355

genotyped variants that were imputed too, were also used for phasing, (2) it is indeed 356

more difficult to impute summary statistics using summary statistics imputation, and 357

therefore the imputation quality is shifted towards zero, and (3) r̂2pred,adj is an 358

estimation that can either be erroneous due to choosing the wrong reference panel (and 359

therefore r̂2pred,adj does not represent the true imputation quality) or it can be imprecise 360

due to small sample size of the reference panel. For example, UK10K contains 3′871 361

individuals and is too small to precisely estimate these matrices (the standard error for 362

a correlation estimated from n = 3′871 is 0.016), which becomes problematic in cases of 363

low correlation. 364

Summary statistics imputation of the height GWAS of the 365

GIANT consortium 366

As a showcase of the utility of summary statistics imputation we imputed Wood et 367

al. [12] to higher genomic resolution (limited to variants with MAF ≥ 0.1% as well as 368

111 previously reported exome variants) [13], then selected imputed variants that act 369

independently from those reported in Wood et al. and replicated these with 370

independent data. 371

While Wood et al. [12] is the largest height study to date in terms of number of 372

markers (covering HapMap variants in 253′288 individuals), Marouli et al. [13] exceeds 373

their sample size by more than 100′000 individuals, but is limited to 241′419 exome 374

variants. The similarity between both GIANT studies made the exome chip study ideal 375

for replication. We chose the UK Biobank as a second replication dataset, despite its 376

limitation to individuals of British ancestry, as it covers more variants than the exome 377

chip study. 378

The ultimate goal was to find new height-associated variants. To do so, we scanned 379

through the imputed results and marked regions that had at least one variant 380

confidently imputed (r̂2pred,adj ≥ 0.3) with an association with P ≤ 10−8 and that acted 381
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independently from any reported HapMap variant nearby. This search allowed us to 382

identify 35 regions, of which one had already been identified in the recent GIANT 383

height exome chip study (rs28929474) and 19 replicated in UK Biobank (at 384

α = 0.05/35 level). Two candidate loci (#2, #3 in Table 2) that replicate in UK 385

Biobank have borderline significant HapMap signals in close proximity (P -value 386

between 10−6 and 10−8 in [12]) and were therefore not reported in the study in 2014. 387

The 15 non-replicating candidate loci were on average on a lower allele frequency 388

spectrum (ten are rare, three are low-frequency variants, and two are common). Allele 389

frequency was higher among the 20 replicating candidate variants (19 were common and 390

one a low-frequency variant). 391

Replicating GIANT exome chip imputation results 392

We then focussed on the summary statistics imputation of the the 111 reported exome 393

chip variants [13]. Knowing from our previous findings that rare variants are challenging 394

to impute due to reference panel size, we expected to retrieve a larger fraction of 395

common and low-frequency than rare variants. S8 Fig shows that we retrieved 49.5% 396

(55) of the variants when using a strict Bonferroni corrected threshold (at α = 0.05/111 397

level, Table 5). More specifically, of the 111 top variants (78 common, 25 low-frequency, 398

eight variants rare) 83 variants were imputed with high confidence (r̂2pred,adj ≥ 0.7). Of 399

these, 53 were retrieved when using the typical candidate SNV threshold (0.05/111). 400

Among variants with lower imputation quality only two common and medium-imputed 401

variants could be retrieved. As shown in Fig 2 and 5, the power of summary statistics 402

imputation decreases with lower MAF and imputation quality. 403

Conclusion 404

In summary, we have evaluated the performance of our recently improved summary 405

statistics imputation method in terms of different measures and shown that summary 406

statistics imputation is a very efficient and fast method to separate null from associated 407

SNVs. However, genotype imputation outperforms summary statistics imputation by a 408

clear margin in terms of accuracy of effect size estimation. By imputing GIANT 409

HapMap-based summary statistics we have demonstrated that summary statistics 410

imputation is a rapid and cost-effective way to discover novel trait associated loci. We 411

also highlight that the principal limitations of summary statistics imputation are rooted 412

in the LD estimation and in imputing very rare variants with sufficient confidence. 413

Materials and methods 414

Comparison of summary statistics imputation versus genotype 415

imputation 416

UK Biobank data 417

The UK Biobank [29] comprises health related information about 500′000 individuals 418

based in the United Kingdom and aged between 40-69 years in 2006-2010. For our 419

analysis we used Caucasians individuals (amongst people who self-identified as British) 420

from the first release of the genetic data (n = 120′086). For SNVs, the number of 421

individuals range between n = 3′431 and n = 120′082. Additionally to custom SNP 422

array data, UK Biobank contains imputed genotypes [30]. A subset of 820′967 variants 423

were genotyped and imputed, and 72M variants were imputed by UK Biobank, using 424

SHAPEIT2 and IMPUTE2 [30]. 425
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Imputation of height GWAS summary statistics conducted in UK Biobank 426

We imputed GWAS Z-statistics (ran on directly genotyped data) within 1 Mb-wide 427

regions, by blinding one at the time and therefore allowing the remaining SNVs to be 428

used for tagging. As tag SNVs we used all SNVs except the focal SNV within a 1.5 Mb 429

window. 430

Selection of regions and SNVs 431

We selected 706 regions in total, consisting of 535 loci containing height-associated 432

SNVs [12,13] and 171 regions not containing any height-associated (all P ≥ 10−5) SNV. 433

More specifically, within each height-associated region we only imputed SNVs that have 434

LDmax> 0.2. LDmax was defined as the largest squared correlation between a SNV and 435

all height-associated SNVs on the same chromosome. In the 171 null regions we chose 436

only those variants with LDmax≤ 0.05 with any associated marker on the same 437

chromosome. These selection criteria lead to 44′992 variants being imputed. We did not 438

analyse palindromic SNVs (A/T and C/G) (3′306 variants), SNVs with missing 439

genotypes for more than 36′024 (30%) individuals (2′317 variants), SNVs with MAF 440

< 1% (3′010 variants). These restrictions left us with 37′467 of the 44′992 imputed 441

SNVs. 442

Comparison of summary statistics imputation and genotype imputation 443

To compare the performance between summary statistics imputation and genotype 444

imputation followed by association we compared each method to the directly genotyped 445

data association as gold standard. We used RMSE, bias, correlation, and the regression 446

slope (no intercept) to evaluate these approaches against the truth. 447

More precisely, the RMSE and the Bias for a set of k = 1 . . .K SNVs is:

dk = ZSSimpk − Zk

RMSE =

√√√√ 1

K

K∑
k=1

d2k

Bias =
1

K

K∑
k=1

dk

with ZSSimpk being the Z-statistic resulting from summary statistics imputation for SNV 448

k and Zk the Z-statistic resulting from genotype data for SNV k (our gold standard). 449

Likewise, we replaced ZSSimpk with ZGTimpk , to calculate RMSE and bias for genotype 450

imputation. 451

For genotype summary statistics from associated SNVs that resulted from data with 452

partial sample size, we computed an upsampled Z-statistics, where Zu represents the 453

Z-statistics for SNV u, Nu the sample size of SNV u and Nmax the maximal sample size 454

within the study: Z∗u = Zu ·
√

Nmax

Nu
. Whenever we use Z-statistics from associated 455

genotype data we use this upsampled version Z∗. 456

Additionally, we calculated power and false positive rate (FPR) for each method. 457

For SNVs with a real association we calculated the power as the fraction of SNVs with a 458

P ≤ α, whereas for SNVs with no association we calculated FPR as the fraction of 459

SNVs with P ≤ α. We varied α between 0 and 1 and visualised FPR versus power for 460

each method. 461
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Stratifying results 462

The obtained (summary statistics) imputation results were grouped based on the 463

imputed SNVs (i) being correlated (LD > 0.3) to any height-associated SNV on the 464

same chromosome or being a null SNV (LD < 0.05); (ii) low-frequency 465

(1% < MAF ≤ 5%) or common SNV (MAF > 5%); (iii) being badly-(r̂2pred,adj ≤ 0.3), 466

medium- (0.3 < r̂2pred,adj ≤ 0.7) or well-imputed (0.7 < r̂2pred,adj ≤ 1). Height-associated 467

SNVs are exclusively from 535 regions and termed associated SNVs, while SNVs not 468

associated with height stem from 171 regions and are termed null SNVs. Throughout 469

the manuscript, LD is estimated as the squared correlation [31]. 470

Summary statistics imputation of the height GWAS of the 471

GIANT consortium 472

GIANT consortium summary statistics 473

In 2014 the GIANT consortium published meta-analysed height summary statistics 474

involving 79 cohorts, 253′288 individuals of European ancestry, and 2′550′858 autosomal 475

HapMap SNVs [12], leading to the discovery of 423 height-associated loci (697 variants). 476

Later, Marouli et al. [13] published summary statistics of the exome array meta-analysis 477

(241′419 SNVs in up to 381′625 individuals), finding 122 novel variants (located in 120 478

loci) associated with height. Of the 122 exome variants, four were not available in 479

UK10K and seven were on chromosome X, and could therefore not be imputed 480

(because [12] did not include chromosome X), leaving 111 variants. We refer to the 481

summary statistics by Wood et al. [12] as HapMap study, and to Marouli et al. [13] as 482

exome chip study. 483

Summary statistics imputation of Wood et al. 484

We imputed all non-HapMap variants that were available in UK10K, using the summary 485

statistics in [12] as tag SNVs. In general, we only imputed variants with 486

MAFUK10K ≥ 0.1% (this allows a minimal allele count of 8 ' 0.001 · 3781 · 2), except for 487

the 111 exome variants reported in [13], which we imputed regardless of their MAF. We 488

divided the genome into 2′789 core windows of 1 Mb. We imputed the summary 489

statistics of each variant using the tag SNVs within its respective window and 250 Kb 490

on each side. Fig 6 gives an overview of the datasets and methods involved. 491

Definition of a candidate locus 492

After applying summary statistics imputation we screened for SNVs with r̂2pred,adj ≥ 0.3 493

and an (imputed) P -value ≤ 10−8 and applied conditional analysis, aiming to limit the 494

results to SNVs acting independently from known HapMap findings. The significance 495

threshold of 10−8 was chosen based on the effective number of SNVs evaluated 496

(< 9′276′018). For each imputed 1 Mb window, we started the conditional analysis by 497

defining two sets of SNVs. The first set contained all imputed SNVs that had an 498

imputed P -value ≤ 10−8, ranging from position bp(1) to bp(2). The second SNV set 499

contained all reported HapMap SNVs (697 in total) within a range of bp(1) − 1 Mb and 500

bp(2) + 1 Mb. Having two SNV sets - the first set with newly detected variants, the 501

second set with reported HapMap variants - we could then condition each SNV in the 502

first set on all SNVs in the second set, using approximate conditional analysis [32] and 503

UK10K as the reference panel. Next, we declared a region as a candidate locus if at 504

least one imputed variant in that locus had a conditional P -value ≤ 10−8. Finally, we 505

performed a conditional analysis for nearby candidate loci (neighbouring windows), to 506
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avoid double counting. In each candidate locus we report the imputed variant with the 507

smallest conditional P -value as the top variant. 508

Replication of candidate loci emerging from summary statistics imputation 509

We replicate our findings using our UK Biobank height GWAS results and for SNVs 510

present on the exome chip we also use the recent height GWAS [13]. For both attempts 511

to replicate our findings, UK Biobank and the exome chip study, the significance 512

threshold for replication is α = 0.05/k, with k as the number of candidate loci. 513

For replication using UK Biobank we used summary statistics based on the latest 514

release of genetic data with n = 336′474 individuals, provided by the Neale lab [33]. For 515

SNVs that were not present in the latest release we used summary statistics from the 516

first release of genetic data (n = 120′086)). 517

Annotation of candidate loci 518

We use two databases to annotate newly discovered SNVs. First, we use GTEx [18], an 519

eQTL database with SNV-gene expression association summary statistics for 53 tissues. 520

Second, we conduct a search in Phenoscanner [19], to identify previous studies (GWAS 521

and metabolites) where the newly discovered SNVs had already appeared. For these 522

two databases we report the respective summary statistics that pass the significance 523

threshold of α = 10−6. We only extract the information for variants that were defined 524

as as novel discoveries. 525

Reference panels 526

To estimate LD structure in C and c (Eq. (1)) we used 3′781 individuals from UK10K 527

data [34,35], a reference panel of British ancestry that combines the TWINSUK and 528

ALSPAC cohorts. 529

Software 530

All analysis was performed with R-3.2.5 [36] programming language, except GWAS 531

summary statistics computation for UK Biobank genotype and genotype imputed data, 532

for which SNPTEST-5.2 [37] was used. For summary statistics imputation we used 533

SSIMP [38]. 534

Supporting information 535

S1 Fig. UK Biobank: Absolute frequencies of allele frequency and 536

imputation quality of imputed SNVs. This figure shows how many of the null and 537

associated SNVs were categorised into common, low-frequency and rare MAF 538

subgroups, and into well-imputed, medium imputed and badly imputed imputation 539

subgroups. Associated SNVs are presented in the left window, and null SNVs are 540

presented in the right window. MAF category (x-axis), # of SNVs on the y-axis, colour 541

refers to imputation quality category. 542

Link to S1 Fig. 543

S2 Fig. UK Biobank: Relative frequencies of imputation quality within 544

each allele frequency group. This figure shows the fraction of badly-, medium- and 545

well-imputed SNVs within each MAF subgroup. Null and associated SNVs were 546

categorised into common, low-frequency and rare MAF subgroup, and into 547

well-imputed, medium imputed and badly imputed imputation subgroup. Associated 548
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SNVs are presented in the left window, and null SNVs are presented in the right 549

window. MAF category (x-axis), fraction of SNVs on the y-axis, colour refers to 550

imputation quality category. Numbers within the stacked barplot refer to the number of 551

SNVs imputed in each subgroup. 552

Link to S2 Fig. 553

S3 Fig. UK Biobank: Comparison of imputation quality methods. MACH 554

r̂2 [39] (x-axis) versus IMPUTE’s info measure used by genotype imputation (y-axis). To 555

avoid clumping of dots, we used tiles varying from grey (few dots) to black (many dots). 556

The identity line is dotted. 557

Link to S3 Fig. 558

S4 Fig. UK Biobank: Comparison of imputation quality methods. 559

IMPUTE’s info measure used by genotype imputation (x-axis) vs r̂2pred,adj used by 560

summary statistics imputation (y-axis). To avoid clumping of dots, we used tiles varying 561

from grey (few dots) to black (many dots). The identity line is dotted. 562

Link to S4 Fig. 563

S5 Fig. UK Biobank: FPR versus power. This figure compares the false 564

positive rate (FPR) (x-axis) versus the power (y-axis) for genotype imputation (blue) 565

and summary statistics imputation (green) for different significance thresholds (α). The 566

coloured dots represent the left-top-most point, with the printed α next to it. Results 567

are grouped according to MAF (columns) and imputation quality (rows) categories. A 568

zoom into the area of FPR between 0 and 0.1 can be found in Fig 5. 569

Link to S5 Fig. 570

S6 Fig. GIANT: Concordance between genotyping and exome chip results 571

This graph shows the Z-statistics of the exome chip study on the x-axis versus the 572

Z-statistics of SNP-array study on the y-axis. Each dot shows one of the 2′601 variants 573

that had LDmax> 0.1 (LD with one of the top variants in the exome [13] or HapMap 574

study [12]). To make the density more visible, dots have been made transparent. The 575

solid line indicates a linear regression fit, with the slope in the top right corner 576

(including the 95%-confidence interval in brackets). The dashed line represents the ratio 577

between the two median sample sizes 0.82 =

√
NHapMap-study√
Nexome-study

=
√
251′647√
370′529

. 578

Link to S6 Fig. 579

S7 Fig. Locus-zoom plots of all 35 regions. Filename according to column 580

’filename‘ S1 Table 581

This figure shows three datasets: Results from the HapMap and the exome chip 582

study, and imputed summary statistics. The top window shows HapMap P -values as 583

orange circles and the imputed P -values (using summary statistics imputation) as solid 584

circles, with the colour representing the imputation quality (only r̂2pred,adj ≥ 0.3 shown). 585

The bottom window shows exome chip study results as solid, grey dots. Each dot 586

represents the summary statistics of one variant. The x-axis shows the position (in Mb) 587

on a ≥ 2 Mb range and the y-axis the −log10(P )-value. The horizontal line shows the 588

P -value threshold of 10−6 (dotted) and 10−8 (dashed). Top and bottom window have 589

annotated summary statistics: In the bottom window we mark dots as black if it is are 590

part of the 122 reported hits of [13]. In the top window we mark the rs-id of variants 591

that are part of the 122 reported variants of [13] in bold black, and if they are part of 592

the 697 variants of [12] in bold orange font. Variants that are black (plain) are imputed 593

variants (that had the lowest conditional P -value). Variants in orange (plain) are 594
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HapMap variants, but were not among the 697 reported hits. Each of the annotated 595

variants is marked for clarity with a bold circle in the respective colour. The genes 596

annotated in the middle window are printed in grey if the gene has a length < 5′000 bp 597

or is an unrecognised gene (RP-). 598

Link to S7 Fig. 599

S8 Fig. Summary of exome results replication 600

This graph shows for all 111 variants the −log10(p)-value of the exome chip study 601

on the x-axis and the imputed −log10(p)-value on the y-axis. The first row refers to the 602

highest imputation quality (between 0.7 and 1), with the columns as the different allele 603

frequency categories. The number of dots in each window is marked top left. The 604

vertical and horizontal dotted lines mark the significance threshold of −log10(0.05/111) 605

(dashed). The width of the x-axis is proportional to the range of the y-axis. For MAF 606

and r̂2pred,adj notation, the lower bound is excluded while the upper bound is included. 607

For example, 1− 5% is equivalent to 1 < MAF ≤ 5. Link to S8 Fig. 608

S9 Fig. UK Biobank: Distribution of P -values from summary statistics 609

imputation. These QQ-plots show the distribution of p-values resulting from summary 610

statistics imputation, for associated variants (left window), null variants (right window). 611

The colours refer to the imputation quality categories. Note that the P -value in these 612

plots are not λGC corrected. 613

Link to S9 Fig. 614

S1 Table. GIANT: Detailed results of 35 candidate loci. This table presents 615

details of the 35 candidate loci discovered with summary statistics imputation. Within 616

each candidate locus, we provide for the top variant the imputation results (.imp), 617

along with conditional analysis results (.cond), the UK Biobank replication (.ukbb, 618

whether it replicated or not (replication), and (if available) the exome chip study 619

results (.exome). filename shows the filename of the locus-zoom plot in S7 Fig. 620

SNP.cond.info presents each HapMap SNV used for conditional analysis, including its 621

MAF, LD between the HapMap SNV and the imputed SNV, and a reversed conditional 622

analysis result (HapMap variant conditioned on the imputed SNV). The column Group 623

classifies each row into candidate loci (i) that were reported by [13] already, (ii) that 624

had no reported HapMap variant nearby, (iii) that had at least one reported HapMap 625

variants nearby. P = P -value, N = sample size, r2 = imputation quality, eff = effect 626

size, EAF = effect allele frequency, MAF = minor allele frequency. If a candidate locus 627

was not available in the UK Biobank, we provide a replication for a second variant that 628

is in high LD with the primary variant, hence duplicated region numbers for some 629

candidate loci. 630

Link to S1 Table. 631

S2 Table. GTEx annotation results for variants in eQTLs 632

This table shows SNVs which are significant eQTLs in GTEx [18]. We only report 633

SNV-gene expression associations where the summary statistics pass the significance 634

threshold of α = 10−6. The first four columns represent the region number, SNV, 635

P -value from summary statistics imputation and the P -value in the UK Biobank. The 636

three remaining columns are information extracted from GTEx, with the tissue name, 637

gene name and the P -value of the association between the SNV and the gene expression. 638

For each region, we order SNV-gene-tissue associations according to their P -value. # 639

refers to the region number. Link to S2 Table. 640
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S3 Table. GIANT: Results of 122 exome variants. This table presents the 641

summary statistics imputation results (.imp) for all 122 variants shown as “novel” 642

in [13]. The right hand part of the table shows the original exome chip results for 643

comparison (.exome). P = P -value, N = sample size, r2 = imputation quality, eff = 644

effect size, EAF = effect allele frequency. 11 variants were not referenced in UK10K or 645

on chromosome X and therefore not imputed (see column ‘comment’). The position 646

corresponds to hg19. 647

Link to S3 Table. 648
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Fig 7. Replication of exome variant
rs28929474 is a missense variant on chromosome 14 in gene SERPINA1, low-frequency
(MAF=2.3%), imputed summary statistics (PSSimp = 1.06×−13), replication in the UK
Biobank (PUKBB = 6.49×−78). rs112635299 has the strongest signal in this region
(P = 4.21× 10−14), but is highly correlated to rs28929474 (LD=0.95).
This figure shows three datasets: Results from the HapMap and the exome chip study,
and imputed summary statistics. The top window shows HapMap P -values as orange
circles and the imputed P -values (using summary statistics imputation) as solid circles,
with the colour representing the imputation quality (only r̂2pred,adj ≥ 0.3 shown). The
bottom window shows exome chip study results as solid, grey dots. Each dot represents
the summary statistics of one variant. The x-axis shows the position (in Mb) on a ≥ 2
Mb range and the y-axis the −log10(P )-value. The horizontal line shows the P -value
threshold of 10−6 (dotted) and 10−8 (dashed). Top and bottom window have annotated
summary statistics: In the bottom window we mark dots as black if it is are part of the
122 reported hits of [13]. In the top window we mark the rs-id of variants that are part
of the 122 reported variants of [13] in bold black, and if they are part of the 697
variants of [12] in bold orange font. Variants that are black (plain) are imputed variants
(that had the lowest conditional P -value). Variants in orange (plain) are HapMap
variants, but were not among the 697 reported hits. Each of the annotated variants is
marked for clarity with a bold circle in the respective colour. The genes annotated in
the middle window are printed in grey if the gene has a length < 5′000 bp or is an
unrecognised gene (RP-).
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