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Abstract

The mitochondrion has recently emerged as an active player in a myriad of cellular processes. Addition-
ally, it was recently shown that more than 200 diseases are known to be linked to variants in mitochondrial
DNA or in nuclear genes interacting with mitochondria. This has reinvigorated interest in its biology and
population genetics. Mitochondrial heteroplasmy, or genotypic variation of mitochondria within an individ-
ual, is now understood to be common in humans and important in human health. However, it is still not
possible to make quantitative predictions about the inheritance of heteroplasmy and its proliferation within
the body, partly due to the lack of an appropriate model. Here, we present a population-genetic frame-
work for modeling mitochondrial heteroplasmy as a process that occurs on an ontogenetic phylogeny, with
genetic drift and mutation changing heteroplasmy frequencies during the various developmental processes
represented in the phylogeny. Using this framework, we develop a Bayesian inference method for inferring
rates of mitochondrial genetic drift and mutation at different stages of human life. Applying the method
to previously published heteroplasmy frequency data, we demonstrate a severe effective germline bottleneck
comprised of the cumulative genetic drift occurring between the divergence of germline and somatic cells in
the mother and the separation of germ layers in the offspring. Additionally, we find that the two somatic
tissues we analyze here undergo tissue-specific bottlenecks during embryogenesis, less severe than the ef-
fective germline bottleneck, and that these somatic tissues experience little additional genetic drift during
adulthood. We conclude with a discussion of possible extensions of the ontogenetic phylogeny framework
and its possible applications to other ontogenetic processes in addition to mitochondrial heteroplasmy.
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1. Introduction

As the energy providers of the cell, mitochondria play a vital role in the biology of eukaryotes. Much of
the metabolic functionality of the mitochondrion is encoded in the mitochondrial genome, which in humans is
16,569 bp in length and inherited from the mother. While it was long thought that the mitochondria within
the human body are genetic clones, it is now recognized that variation of mitochondrial DNA (mtDNA) is
common within human cells and tissues. This variation, termed mitochondrial heteroplasmy, is a normal
part of healthy human biology (Rebolledo-Jaramillo et al., 2014; Li et al., 2016, 2010), but it is also
important in human health and disease, being the primary mode of inheritance of mitochondrial disease and
playing a role in cancer and aging (reviewed in Stewart and Chinnery, 2015; Wallace and Chalkia,
2013).

Because of its importance in human health, it is crucial to understand how mitochondrial heteroplasmy
is transmitted between generations and becomes distributed within an individual. Heteroplasmy frequencies
can change drastically between mother and offspring, owing to a hypothesized bottleneck in the number of
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segregating units of mitochondrial genomes during early oogenesis (Cree et al., 2008). We note that there
is currently no consensus regarding the extent to which the effects of this bottleneck are caused by an actual
decrease in the number of mitochondrial genome copies versus co-segregation of genetically homogeneous
groups of mitochondrial DNA (Cao et al., 2007; Cree et al., 2008; Carling et al., 2011).

Nevertheless, in order to better predict the change in heteroplasmy frequencies between generations,
previous studies have sought to infer the size of the oogenic bottleneck, either through direct observation (in
mice) of the number of mitochondrial DNA genome copies (Cree et al., 2008; Cao et al., 2007), or through
indirect measurement, making statistical conclusions about the bottleneck size based on observed frequency
changes between generations (Johnston et al., 2015; Rebolledo-Jaramillo et al., 2014; Millar et al.,
2008; Hendy et al., 2009; Li et al., 2016). In mice, estimates of the bottleneck size have ranged from 200 to
more than 1000 (Cree et al., 2008; Cao et al., 2007; Johnston et al., 2015), and in a recent re-analysis of
previous data, it was claimed that the minimal bottleneck size may have only small effects on heteroplasmy
transmission dynamics, depending on the details of how oogonia proliferate (Johnston et al., 2015). In
humans, indirect estimates of the bottleneck size have ranged from 1 to 200, depending on the dataset and
the statistical methods used to estimate the bottleneck size (Marchington et al., 1997; Guo et al., 2013).

Surveys of heteroplasmy occurrence in humans have also found that heteroplasmies are often more nu-
merous and at greater frequency in older individuals, and that older mothers transmit more heteroplasmies
to their offspring (Sondheimer et al., 2011; Rebolledo-Jaramillo et al., 2014; Li et al., 2015). It
has also been observed that heteroplasmy frequencies vary from one tissue to another within an individ-
ual (Rebolledo-Jaramillo et al., 2014; Li et al., 2015). These observations underscore the fact that
heteroplasmy frequencies change not only during oogenesis in the mother, but also during embryogenesis
and throughout adult life. Ideally any indirect statistical inferences made about the bottleneck size or
other aspects of heteroplasmy frequency dynamics would account for all sources of heteroplasmy frequency
change simultaneously; such an approach would make maximal use of the information contained in observed
heteroplasmy frequencies.

Maternal inheritance and the presence of multiple copies of mtDNA per cell does not allow one to apply
existing population genetics models to mitochondrial data directly and calls for the development of novel
methodology. Here, we describe a model of heteroplasmy dynamics throughout several key stages of human
growth and reproduction. Our approach is to model heteroplasmy frequency change as a population-genetic
process of genetic drift and mutation that occurs along the branches of an ontogenetic phylogeny describing
the developmental relationships amongst sampled tissues in related individuals. Our model is similar to
typical population-phylogenetic inference models (e.g., Pickrell and Pritchard, 2012; Gautier and
Vitalis, 2013), except that it also includes features specific to ontogenetic phylogenies. We employ our
model in a Bayesian inference procedure that uses Markov chain Monte Carlo (MCMC) to sample from
posterior distributions of genetic drift and mutation rate parameters for various developmental processes.
After demonstrating the accuracy of our method with simulated data, we apply it to real heteroplasmy
frequency data and present new insights into the dynamics of heteroplasmy frequency change in humans.

2. Methods

2.1. Ontogenetic phylogenies

We model the mitochondria in tissues sampled from one or more related individuals as a group of popu-
lations related by an ontogenetic phylogeny. Along each branch of the ontogenetic phylogeny, heteroplasmy
frequencies within some ancestral tissue change due to the action of genetic drift and mutation. We assume
that the shape of the ontogenetic phylogeny is given.

Our ontogenetic phylogeny model differs in a few important ways from the typical population phylogenetic
likelihood framework. Firstly, we allow a single set of parameters to determine the dynamics on multiple
parts of the phylogeny, representing developmental processes that exert the same population-genetic forces
in different individuals in the family pedigree. Secondly, we allow genetic drift and mutation to accumulate
at a rate per year along certain branches of the ontogenetic phylogeny, rather than requiring that everyone
experience the same effects of genetic drift and mutation regardless of age. This is motivated by previous
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observations that heteroplasmies segregate and accumulate with time within somatic tissues (Li et al., 2015;
Sondheimer et al., 2011; Rebolledo-Jaramillo et al., 2014) and within the germline (Rebolledo-
Jaramillo et al., 2014; Li et al., 2016; Wachsmuth et al., 2016). Additionally, we allow single branches
in the ontogenetic phylogeny to be parameterized by multiple distinct periods of genetic drift and mutation,
so that inferences can be made about the effects of multiple ontogenetic processes that affect heteroplasmy
frequencies along the same branch of the phylogeny. Figure 1 demonstrates these features with an ontogenetic
phylogeny representing the relationships between two tissues sampled in both a mother and her offspring.

Each ontogenetic process in the phylogeny is parameterized by a genetic drift parameter and a mutation
rate. The mutation rate is θ = 2Neµ, where Ne is the effective size of the relevant cell population and µ
is the per-replication, per-base mutation rate. Genetic drift can be modeled in one of three ways. Firstly,
genetic drift may be specified by an amount of genetic drift t = g/Ne, where g is the number of generations
in a Wright-Fisher model of a population with (large) haploid effective size Ne. Secondly, genetic drift may
be modeled by a single-generation bottleneck to population size Nb, with binomial sampling of mitochondrial
genomes, followed by doubling of the population back up to a large size according to the rules of the Wright-
Fisher model of reproduction within an expanding population. Thirdly, genetic drift can be modeled as
accumulating with time at a rate λ per year, in which case after a years, the genetic drift that has accumulated
is equivalent to λaNe generations in a Wright-Fisher model with effective population size Ne.

2.2. Likelihood calculation

Given ontogenetic tree T with k ontogenetic processes, genetic drift parameters b = {b1, . . . , bk} and
mutation rates θ = {θ1, . . . , θk}, our likelihood is

LT (b,θ | D) = PT (D | b,θ), (1)

where D represents the heteroplasmy frequency data. (Below, the T subscript is left off for brevity.) Suppose
heteroplasmy frequencies were sampled from F families. Writing Dij for the heteroplasmy frequency data
at the jth heteroplasmic locus in family i, Ci for the number of heteroplasmic sites in family i, and Hi for
the event that a site is heteroplasmic in family i, our likelihood can be written

L(b,θ | D) = P(D; b,θ) =

F∏
i=1

P(Ci; b,θ)
1
α

Ci∏
j=1

P(Dij | Hi; b,θ), (2)

where P(Ci; b,θ) is the probability of Ci heteroplasmies occurring in family i and P(Dij | Hi; b,θ) is the
probability of the observed heteroplasmy data at the jth heteroplasmic locus in family i, conditional on
heteroplasmy (i.e., polymorphism) in at least one tissue. We assume that Ci is Poisson distributed with rate
G·P (Hi; b,θ), where G is the genome size and P (Hi; b,θ) is the probability that a single site is heteroplasmic
in family i.

We penalize the part of the likelihood involving the number of heteroplasmies with the parameter α
in order to make inference less sensitive to identification of heteroplasmies, which is a non-trivial problem,
especially for low-frequency heteroplasmies (Li and Stoneking, 2012; Rebolledo-Jaramillo et al., 2014).
Without such a penalty, the likelihood is too strongly influenced by the number of observed heteroplasmies,
a quantity influenced both by false positives—at a rate of up to ∼10% for low-frequency heteroplasmies
in Rebolledo-Jaramillo et al. (2014)—and by false negatives caused by conservative minimum allele
frequencies thresholds (1% in Rebolledo-Jaramillo et al., 2014). On the other hand, if the number of
heteroplasmies is completely absent from the likelihood, such that all information about drift and mutation
is taken only from the heteroplasmy frequencies, posterior distributions of mutation rates are sensitive to
outlier allele frequencies that do not fit a model of genetic drift and (infrequent) mutation as well. As a
compromise, we set the value of this likelihood penalty to α = 100, which in effect artificially reduces the
total number of sites considered in this component of the likelihood, such that if in reality 500 heteroplasmies
are observed out of a total of 100, 000 sites, the contribution to the likelihood would be the same as if 5
heteroplasmies were observed in a total of 1000 sites.
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With our likelihood (2) we implicitly ignore linkage between heteroplasmic sites within a family even
though in reality the lack of recombination means that the sites are perfectly linked. We justify this
approximation in two ways: first, there are usually few heteroplasmies co-segregating in a family (mean
2.6 in Rebolledo-Jaramillo et al. 2014, 1.0 in Li et al. 2016), and second, amongst heteroplasmies co-
segregating in a family, most segregate at low frequency, so that changes in the frequency of one heteroplasmy
do not greatly affect the frequency of another. Thus the dynamics at several heteroplasmic sites should closely
resemble those of a model in which each site truly segregates independently. This assumption is supported
by simulations of nonrecombining mitochondrial genomes (see Section 2.4 below). We further assume that
heteroplasmy frequencies are independent between families.

A site is determined to be heteroplasmic according to the filtering steps described in Rebolledo-
Jaramillo et al. (2014), which include filters for mapping quality, base quality, minimum allele frequency
(1%), coverage (> 1000×), local sequence complexity, and contamination. Rather than calculate likelihoods
based on called allele frequencies, we model binomial sampling error in the number of consensus and alterna-
tive reads sampled from a true, unknown allele frequency. Thus Dij represents the number of consensus and
alternative alleles at the jth heteroplasmic locus in family i. Conditional on heteroplasmy, the probability
of the observed read counts Dij at locus j in family i is

P(Dij | Hi; b,θ) =

∑
xij

P(Dij | xij) P(xij ; b,θ)

P(Hi; b,θ)
, (3)

where xij is the true, unknown allele frequency at locus j in family i. The sum is performed over all possible
allele frequencies in the sampled tissues. Both the numerator and the denominator can be calculated using
Felsenstein’s (1981) pruning algorithm, a dynamic programming algorithm frequently used in likelihood
calculations for phylogenetic trees. Details of how we calculated these quantities are given in Appendix A.

The pruning algorithm requires distributions of allele frequency transitions along a branch. Our approach
to calculating allele frequency transition probabilities is simple and intuitive: we precalculate transition
distributions under the discrete-generation Wright-Fisher model using numerical matrix multiplication on a
grid of generations and mutation rates. To obtain a transition distribution that was not precomputed, we
linearly interpolate between precomputed distributions. Using a haploid population size of N = 1000 in our
Wright-Fisher model calculations, we obtain a satisfactory approximation to numerically exact Wright-Fisher
transition probabilities by precomputing distributions at just 68 different generations, ranging from 1 to
10, 000, and 28 mutation rates, with θ = 2Neµ ranging from 10−12 to 50. For ontogenetic processes modeled
by a single-generation bottleneck with subsequent expansion, we precompute allele-frequency transition
distributions for 48 bottleneck sizes ranging from 2 to 500, linearly interpolating between bottleneck sizes
for distributions that are not precomputed.

Rather than use each (1001×1001) transition matrix in its entirety, we combine discrete allele frequencies
into 115 bins, with bins unevenly distributed between 0 and 1 such that low and high frequencies are more
represented than intermediate frequencies. We bin allele frequencies according to the following scheme: Let
P = {Pi,j} be a (1001× 1001) allele frequency transition matrix for a Wright-Fisher model with N = 1000,
with Pi,j being the probability of transitioning from frequency i to j. Let Q = {Qk,l} be a (115 × 115)
binned transition matrix. If (a1, . . . , am) are frequencies in bin k, and (b1, . . . , bn) are frequencies associated
in bin l, then

Qk,l =

{∑n
x=1 P(m+1)/2,bx m odd∑n
x=1

(
1
2Pm/2,bx + 1

2Pm/2+1,bx

)
m even.

The pruning algorithm also requires a distribution of allele frequencies at the root of the phylogeny.
Following Tataru et al. (2015), we use a discretized, symmetric beta distribution with additional, symmetric
probability weights at frequencies 0 and 1. The two parameters specifying this distribution are inferred jointly
with genetic drift and mutation parameters.
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2.3. Inference

We take a Bayesian approach to inference. Prior distributions are Uniform(10−6, 3) for genetic drift
parameters, measured in generations per Ne (henceforth “drift units”); the lower limit of this drift prior
distribution is set to be greater than zero in order to improve MCMC convergence. For genetic drift
parameters specified by a rate of accumulation of drift units per year, the lower (resp. upper) limit of the
(Uniform) prior distribution limits are divided by the minimum (resp. maximum) of the ages by which the
rate is multiplied. We did not allow the effects of genetic drift to decrease with age. Prior distributions on
bottleneck sizes are Uniform(2, 500), and for mutation rate parameters θ = 2Neµ, the prior distribution is
Log-Uniform(10−8, 10−1).

We employ an affine-invariant ensemble Markov Chain Monte Carlo (MCMC) procedure (Goodman
and Weare, 2010) to sample from posterior distributions, as implemented in the Python package emcee

(Foreman-Mackey et al., 2013). We assess convergence by visual inspection of the posterior traces.
Running 500 chains in the ensemble MCMC for 20000 iterations each, we find good convergence after ∼2500
iterations and thus discard the first 5000 iterations of each chain as burn-in. With ∼100 heteroplasmic loci,
a run takes 60–80 CPU hours, but due to the parallel nature of ensemble MCMC, calculations can be spread
across CPUs, so that on a twenty-core compute node, results are obtained in approximately four hours.
Reported 95% credible intervals are intervals of the highest posterior density.

As a way of evaluating the relative support for different ontogenetic models, we estimate Bayes factors
(i.e., ratios of posterior evidence integrals) for alternative ontogenetic models of the accumulation of drift
within cell lineages. For models M1 and M2, the Bayes factor is

BF (M1,M2) =

∫
p(θ)L(θ | D,M1)dθ∫
p(θ)L(θ | D,M2)dθ

, (4)

where p(·) is the prior distribution and L(· | D,Mk) is the likelihood under model k. These posterior evidence
integrals are approximated using emcee’s (Foreman-Mackey et al., 2013) implementation of an approach
using thermodynamic integration (see Goggans and Chi, 2004).

2.4. Simulation

We performed two sets of simulation to test our inference procedure. The first simulations were performed
under the model assumed by our inference procedure. As described above, this model assumes that each
locus segregates independently, allele frequency transitions occur according to the Wright-Fisher model of
genetic drift and bi-allelic mutation, and heteroplasmy frequencies in the root of the ontogenetic phylogeny
are controlled by the two parameters of a discretized, symmetric beta distribution with extra probability
weight at frequencies zero and one. These simulations were performed forward in time using a custom
Python script.

The second set of simulations tested how our assumption that loci segregate independently affects in-
ference when the data are simulated from nonrecombining genomes sampled from many different families.
These simulations were performed using a custom interface to the simulation package msprime (Kelleher
et al., 2016), which simulates genetic variation under the standard neutral coalescent model with infinite-
sites mutation. In these simulations, population sizes and branch lengths are equivalent to those under
the forward-time simulations, but at the root of the ontogenetic phylogeny, we assume that ancestral lin-
eages trace their ancestry back in time in a single panmictic population of constant size. Simulations were
performed under conditions in which the distribution of the number of heteroplasmies per family roughly
matched the distribution observed in the data.

2.5. Data

We applied our inference procedure to a publicly available dataset, containing heteroplasmy allele fre-
quencies for 98 mtDNA heteroplasmies from 39 mother-offspring duos, originally published by Rebolledo-
Jaramillo et al. (2014). In this dataset, mitochondria from blood and cheek epithelial cells were sampled
from both mother and offspring, resulting in a ontogenetic phylogeny with four leaves, each representing one
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of the four tissues sampled from a mother-offspring duo. Details of heteroplasmy discovery are described in
Rebolledo-Jaramillo et al. (2014).

To model the segregation of heteroplasmy frequencies during the ontogeny of the four tissues sampled
from each duo, we used the ontogenetic phylogeny shown in Figure 1. This ontogenetic phylogeny models
several life stages. The root of the phylogeny occurs at the divergence of the mother’s somatic and germline
tissues when she is an embryo. On the branch leading to the somatic tissues in the mother, there is a
brief period of early embryonic development before the blood and cheek epithelial cell lineages diverge at
gastrulation as members of the ectodermal (cheek epithelial) and mesodermal (blood) germ layers. After
diverging at gastrulation, each somatic tissue undergoes independent periods of genetic drift and mutation
during later embryogenesis and early growth, and finally for each tissue there are independent rates of
accumulation of genetic drift and mutation throughout adult life.

On the branch leading to the offspring tissues in the ontogenetic phylogeny in Figure 1 the first stage
represented is the period of oogenesis prior to the birth of the mother, when the oogenic bottleneck is thought
to occur. This is followed by the oocyte stage, during which we assume the mitochondria accumulate genetic
drift and mutation at some rate linearly with the age of the mother before childbirth. At fertilization, this
branch undergoes the same period of early somatic development experienced by the mother’s somatic tissues
prior to gastrulation. Finally, the two somatic tissues of the offspring diverge at gastrulation and go through
the same stages of development as the somatic tissues of the mother.

2.6. Effective oogenic bottleneck

Analyzing both simulated and real data, we find that there is limited power to infer the size of the
oogenic bottleneck. This is to be expected, given that we also model the subsequent genetic drift of the
later stages of oocyte development and in the early developing embryo; each of these three ontogenetic
processes occurs along the same branch of the ontogenetic phylogeny (Fig. 1), which causes their respective
contributions of genetic drift to be conflated with one another. We note that the genetic drift parameters
of these ontogenetic processes are not truly unidentifiable: power to distinguish genetic drift during the
early-oogenesis bottleneck from that of the later maternal germline is provided by the differing effects of
genetic drift in mothers of different ages, and power to distinguish the contribution of drift in the early
embryo is provided by the fact that this process occurs in both the mother and the offspring. Differences in
effective population size (and thus scaled mutation rates) also provide theoretical power to distinguish these
parameters, but nevertheless we find that these genetic drift parameters tend to become conflated with one
another.

As a way of counteracting this conflation, we combine the genetic drift parameters of this branch in the
ontogenetic phylogeny into an effective bottleneck size (EBS), summarizing the total genetic drift between
mother and offspring. The effective bottleneck is comprised of the oogenic bottleneck per se, the accumula-
tion of genetic drift in the oocyte prior to ovulation, and the genetic drift in the embryo between fertilization
and gastrulation. To combine genetic drift parameterized as a bottleneck with genetic drift parameterized
in drift units, we used the approximate relationship Nb ≈ 2/d, where d is genetic drift in drift units, and Nb

is the bottleneck size. This approximation is justified in Appendix B. Using this relationship, our equation
for the EBS has the form

Nbe =
2

d+ λa
, (5)

where d is the summed genetic drift from the oogenic bottleneck per se and pre-gastrulation embryogenesis,
λ is the rate of genetic drift accumulation in the oocyte, and a is the age of the mother at childbirth.
Because in our model genetic drift accumulates in the oocyte as the mother ages prior to ovulation, the
size of the effective bottleneck decreases with age. We summarize this rate of decrease by linearizing (5)
between ages 25 and 34, the first and third quartiles of maternal age at childbirth in the dataset from
Rebolledo-Jaramillo et al. (2014).
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early somatic
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Figure 1: Ontogenetic phylogeny for sampled tissues in mother-child duos from Rebolledo-Jaramillo et al. (2014). Each
color represents a different tissue or developmental process. The leaves of the tree represent the blood and cheek epithelial
tissues sampled from the mother and her child. Solid lines show processes modeled by a fixed amount of genetic drift and dashed
lines show processes in which genetic drift accumulates linearly with age. The red component, representing early oogenesis,
models a single-generation bottleneck with subsequent doubling of the population size back up to a large size. Parenthetical
descriptions in gray show the timing of notable developmental events.

2.7. Availability

Our inference procedure is released under a permissive license in a Python package called mope, avail-
able at https://github.com/ammodramus/mope or from the Python Package Index (PyPI, http://pypi.
python.org/). As we describe above, our inference procedure requires precomputed transition distribu-
tions. These can be generated by the user or downloaded from https://github.com/ammodramus/mope.
Our simulation scripts are also provided with the inference procedure.

Data from Rebolledo-Jaramillo et al. (2014) are available from that paper’s supplementary material
and from the NCBI Sequence Read Archive (www.ncbi.nlm.nih.gov/sra), accession SRP047378.

3. Results

3.1. Application to simulated data

The targets of our inference procedure are genetic drift parameters and population-size-scaled mutation
rates for each ontogenetic process in the ontogenetic phylogeny. Genetic drift may be parameterized as a
fixed amount of genetic drift (in drift units, i.e. generations / Ne), as a rate of accumulation of drift per year,
or as a haploid bottleneck size. The scaled mutation rates, θ = 2Neµ are twice the product of the haploid
effective population size Ne and the per-replication, per-base mutation rate µ. Since µ can be assumed to be
the same in every mitochondrion, the mutation rates can also be interpreted as relative effective population
sizes. Two parameters controlling the distribution of allele frequencies at the root of the phylogeny are also
inferred.

The inference procedure performed well on data simulated under the model of drift and mutation as-
sumed by the inference procedure. In a simulation of 500 independently segregating sites sampled from
two tissues in each of 100 different mothers and their offspring, under parameters producing a total of 110
heteroplasmies, the branch lengths and mutation rates were inferred without apparent bias (Fig. 2), as
were the two root distribution parameters (not shown). Posterior distributions were generally narrower for
genetic drift parameters than for scaled mutation rates, and parameters of external branches were inferred
more precisely than those of internal branches. Other parameter values produced similar results (Fig. S1).

The procedure also performed well on data generated in simulations that did not assume free recom-
bination between heteroplasmic sites (Fig. S2). In these simulations, we simulated non-recombining mi-
tochondrial genomes of 10, 000 base pairs in 30 mother-offspring duos, under parameters resulting in 104
heteroplasmies. The ∼3.7 heteroplasmies per family in these simulations is similar to the ∼2.6 observed
in the data from Rebolledo-Jaramillo et al. (2014), supporting our assumption that linkage between
heteroplasmies within families does not greatly affect inference results.
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genetic drift (log10)

mutation rate (log10 2Neμ)

early blood later blood early cheek later cheek early somatic pre-ovulation
germline

early oogenesis

(drift) (drift / year) (drift) (drift / year) (drift) (drift / year) (bot.)

Figure 2: Posterior distributions of genetic drift and mutation parameters inferred from data simulated under the model
assumed by the inference procedure. The top and bottom rows depict genetic drift and mutation rate parameters, respectively.
Gray distributions depict prior distributions, and colored distributions depict posterior distributions. Colors match the colors of
the ontogenetic processes in Figure 1. Distributions hashed with diagonal lines correspond to processes with drift parameterized
by rates of accumulation of genetic drift with age. (That is, they correspond to the dashed lines in Fig. 1.) The circles in the red
posterior distributions indicate that this process is modeled by an explicit bottleneck. All parameters are log10-transformed,
and the distributions correspond to these transformed variables. Vertical dashed lines show the simulated parameter values.
Not shown are the two parameters controlling the allele frequency distribution at the root of the phylogeny, which were inferred
with comparable accuracy.

3.2. Application to real heteroplasmy data

In the application of our method to the heteroplasmy frequency data from Rebolledo-Jaramillo
et al. (2014) (Fig. 3), we find that the posterior distribution of the size of the early oogenesis bottleneck
is broad, with a 95% credible interval (CI) spanning from 51.6 to 500.0. As we describe above (see 2.6),
this is unsurprising given that in the assumed ontogenetic phylogeny there are three independent periods of
drift and mutation along the branch containing the oogenic bottleneck, namely the early oogenic bottleneck
itself, the turnover of mitochondria in the oocyte prior to ovulation, and the period after fertilization but
before gastrulation (Fig. 1).

To counteract this conflation, we combined the genetic drift into an effective bottleneck. The posterior
distribution of the size of this effective bottleneck (i.e., the EBS) was substantially narrower than that of the
explicitly modeled bottleneck, with a median of 17.7 (8.33–30.3, 95% CI) for a mother of the mean age in
this dataset (Fig. 4A). This is somewhat smaller than the estimate of the bottleneck size of 32.3 previously
estimated from this dataset (Rebolledo-Jaramillo et al., 2014), although the 95% confidence intervals
(or credible interval, here) of that previous study and the present one do overlap.

In our model, genetic drift accumulates in the oocyte as the mother ages, and thus the size of the
effective bottleneck decreases with age of the mother at childbirth. The inferred relationship between age at
childbirth and EBS is shown in Figure 4B. At age 18, the median posterior EBS is 21.7 (11.8–33.4, 95% CI),
and at age 40, it is 15.3 (6.4–28.6). The median posterior rate of decrease of the EBS is 0.26 bottleneck units
per year, although the central 95% credible interval for this rate of decrease is broad (0.0–0.43). Given the
range of this credible interval, there is apparently limited information contained in the data about whether
or not the EBS decreases with age, or equivalently, whether genetic drift accumulates meaningfully in the
oocyte.

The median posterior rates of genetic drift accumulation in adult somatic tissues were very small, just
7.2×10−5 (2.0×10−6–3.0×10−4, 95% CI) drift units per year for blood, and 2.0×10−4 (2.0×10−6–4.8×10−4)
drift units per year for cheek. On the other hand, the inferred amounts of genetic drift occurring during
early development of the somatic tissues was greater: 0.019 (0.011–0.027, 95% CI) drift units for blood, and
0.011 (0.003–0.020) drift units for cheek, roughly equivalent to bottlenecks of size 104.8 (67.1–162.4) and
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Figure 3: Inference results for real heteroplasmy frequency data. The top row shows results for genetic drift parameters, and
the bottom row shows posterior distributions for scaled mutation rates. Distributions hashed with diagonal lines correspond
to processes with drift parameterized by rates of accumulation of genetic drift with age. (I.e., they correspond to the dashed
lines in Fig. 1.) The circles in the red posterior distributions indicate that this process is modeled by an explicit bottleneck.
All parameters are log10-transformed, and the depicted distributions correspond to these transformed variables.

177.0 (78.4–504.8), respectively.
The posterior distributions of scaled mutation rates were broad, and thus limited information about

the relative population sizes of different developmental and adult tissues is contained in the heteroplasmy
frequency data. This is unsurprising given that the problem is similar to attempting to infer population
size history from ∼100 single-nucleotide polymorphisms. A very high scaled mutation rate (2Neµ > 10−3)
is (relatively) most supported in the adult somatic tissues, possibly reflecting the observation that the
incidence of heteroplasmy increases with the age of the individual. However, the 95% credible interval of
each developmental process spans several orders of magnitude (at least 10−8 < 2Neµ < 10−5), so firm
conclusions cannot be drawn.

We assessed the fit of our model to the real heteroplasmy data by simulating data under the maximum
a posteriori (MAP) parameter values and comparing to the real data. Comparing the marginal distribution
of allele frequencies in the sampled tissues (i.e., the marginal site-frequency spectrum) from the actual data
to the MAP simulation data, we find that the marginal distribution of allele frequencies is similar between
the two datasets (Fig. 5A), as is the distribution of absolute differences between each pair of sampled tissues
(Fig. 5B).

In order to use Bayes factors (4) to compare the support for different ontogenetic phylogenies, we calcu-
lated the posterior evidence integral for the ontogenetic phylogeny in Figure 1 as well as for two additional
ontogenetic phylogenies differing in their assumptions about how genetic drift accumulates in somatic tis-
sues (Fig. S3). The first additional model (termed “fixed”, Fig. S3A), assumes that all genetic drift and
mutation particular to each somatic tissue occurs early during development and that there is no additional
drift accumulating later in life. The second, (“linear”, Fig. S3B), assumes that genetic drift and mutation
accumulate linearly with age in somatic tissues. Our original model (Fig. 1) we term “both”, since it assumes
that genetic drift both occurs in a fixed quantity during early development and accumulates later in life.

We find that the “fixed” and “both” models are much more supported than than the “linear” model,
with the approximate log-evidence values of the “fixed”, “both”, and “linear” models being −1691 ± 4,
−1694 ± 5, and −1787 ± 4, respectively. In the “both” model, in which there is both a period of genetic
drift and mutation in the somatic tissues during early development, the inferred rates of drift accumulation
are very small (7.2 × 10−5 drift units per year in blood, 2.0 × 10−4 drift units per year in cheek epithelial
cells). This suggests that there is very little additional genetic drift occurring after birth in the two somatic
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Figure 4: Posterior samples of the effective bottleneck size for mothers of different ages. (A) Posterior distribution of the
effective between-generation bottleneck size for younger, older, and median-aged mothers. The schematic of the sum represents
the calculation of the effective bottleneck size, with the colors matching the processes in Figure 1. (B) Relationship between
mother’s age at childbirth and the effective oogenic bottleneck size. The orange dashed line shows how the median effective
bottleneck size varies with age at childbirth. The solid blue lines show posterior samples from the relationship between effective
bottleneck size and age at childbirth, with each having the form of (B.4), where the genetic drift parameters in this equation
are jointly sampled from the posterior distribution. A total of n = 1000 lines sampled from the posterior are plotted. We note
that each line necessarily decreases with mother birth age due to our assumption that genetic drift accumulates at some rate
in the oocyte (see (B.4)); what varies from one line to another is the rate at which the effective bottleneck size decreases due
to this accumulation of genetic drift.

A B

Figure 5: Quantile-quantile comparison of actual heteroplasmy data from Rebolledo-Jaramillo et al. (2014) and data
simulated under maximum a posteriori parameter estimates inferred from this data. Panel (A) compares marginal distributions
of allele frequencies in each tissue, and panel (B) compares distributions of absolute differences in allele frequency between
tissues. Each dot represents a sequential percentile of the distributions being compared. Following Rebolledo-Jaramillo
et al. (2014), heteroplasmy alleles were polarized such that the minor allele in the mother (averaged across her two tissues) was
denoted as the focal allele.

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2017. ; https://doi.org/10.1101/204479doi: bioRxiv preprint 

https://doi.org/10.1101/204479
http://creativecommons.org/licenses/by-nc/4.0/


tissues considered here.

4. Discussion

Because we modeled genetic drift during multiple ontogenetic processes between embryogenesis in the
mother and the sampling of tissues in the child, our estimate of the size of the oogenic bottleneck per se
was imprecise, with a broad 95% credible interval (34.4–489.2). However, our estimates of the EBS (median
17.7, 95% CI: 8.3–30.3) are similar to other recent estimates of the oogenic bottleneck size, including an
estimate of 32.3 in a previous analysis of the data used in this study (Rebolledo-Jaramillo et al., 2014),
and a previous estimate of 9 in Li et al. (2016).

Our inference framework allows for the size of the effective oogenic bottleneck to decrease with the
age of the mother as genetic drift accumulates in the oocyte. We found a broad posterior distribution of
the rate by which the EBS decreases in the oocyte (roughly 0.00–0.43 bottleneck units per year, 95% CI),
demonstrating that with the 39 mother-child pairs and 98 heteroplasmic loci in the dataset we analyzed
(Rebolledo-Jaramillo et al., 2014), there is insufficient information obtained by our model to determine
whether genetic drift accumulates with age in the oocyte. In the future, sampling more individuals and
tissues, and with larger pedigrees, it may be possible to provide stronger statistical evidence for or against
genetic drift occurring in the oocyte; this will potentially be informative on the question of how mitophagy
and mitochondrial turnover are involved in oocyte aging, a topic of interest in the study of human fertility
(see Zhang et al., 2017).

In addition to the effective bottleneck between mother and offspring, we also quantified genetic drift
occurring during the embryonic development of the blood and cheek epithelial lineages. We found that
the embryonic genetic drift of heteroplasmy frequencies specific to these tissues was less than the effec-
tive between-generation bottleneck but still appreciable, with median posterior estimates of the effective
bottleneck sizes being 104.8 (67.1–162.4, 95% CI) and 177.0 (78.4–504.8) for blood and cheek epithelial,
respectively.

At the same time we inferred that there is little accumulation of genetic drift in adult somatic tissues.
This may seem to contradict previous observations that heteroplasmies increase in number with age (e.g.,
Rebolledo-Jaramillo et al., 2014; Li et al., 2016). If the effective population size of the somatic stem
cells supporting mitotic somatic tissues is larger than the effective population size during embryogenesis
or the maternal germ line, an accumulation of genetic drift with age would produce additional de novo
somatic heteroplasmies. On the other hand, if effective population sizes of somatic stem cells are smaller
than effective population sizes during early development, a longer period of genetic drift in adulthood would
result in fewer heteroplasmies, as genetic variation is lost due to ongoing genetic drift in a smaller population.
Here, the posterior distributions of population-scaled mutation rates are too broad to permit anything to
be concluded about the relative sizes of relevant stem cell populations.

There are several ways our inference procedure could be extended. Our model assumes selective neu-
trality, but it is possible that neutral population-genetic models do not adequately describe the dynamics
of heteroplasmy frequency change. Studies of heteroplasmy occurrence in humans have found a relative
lack of non-synonymous heteroplasmies (Ye et al., 2014; Rebolledo-Jaramillo et al., 2014), or an excess
of non-synonymous mutations at low versus high frequencies (Li et al., 2016), suggesting purifying selec-
tion. However, evidence for biased transmission of the major heteroplasmic allele over the minor allele has
been inconsistent, with one recent study finding no systematic difference in heteroplasmy allele frequency
between other offspring (Li et al., 2016), while the original publication of the data analyzed here did find
transmission to be biased towards the major allele at non-synonymous sites (Rebolledo-Jaramillo et al.,
2014). Another recent study has also found evidence for positive selection for heteroplasmies in somatic tis-
sues, observing repeated occurrence of tissue-specific and allele-specific heteroplasmies in many unrelated
individuals (Li et al., 2015).

If selection tends to act on only a single heteroplasmic variant at a given time (i.e., if clonal interference
between different heteroplasmic alleles is rare), the method we present here could potentially be adapted to
make inferences about natural selection in place of mutation. We leave this for future work and note in the
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meantime that our neutral model of genetic drift and mutation on an ontogenetic tree does seem to fit the
data reasonably well (Fig. 5).

We chose to model heteroplasmy allele frequency dynamics with the Wright-Fisher population model
from population genetics. This model is well-studied and thus facilitates interpretation, and it is general
in the sense that many different population-genetic models of reproduction closely resemble the Wright-
Fisher model when population sizes are large (Ewens, 2004). However, it is possible that the dynamics of
heteroplasmy frequency change do not meet the basic assumptions of any population-genetic model. Any
population-genetic model of heteroplasmy would assume that the germ cells or somatic stem cells giving
rise to heteroplasmies would compete with one another for reproduction or at least be chosen randomly for
transmission or reproduction. If instead, for example, there exists a cellular mechanism of quality control,
such that non-heteroplasmic eggs are given priority in ovulation and tend to be ovulated before heteroplasmic
eggs, the number of transmitted heteroplasmies would increase with mother’s age, but the dynamics would
not be completely described by any population-genetic model that assumes random mating (with or without
natural selection) and competition amongst egg cells for offspring. Other such mechanisms of heteroplasmy
propagation could be imagined. Even if standard population-genetic models cannot adequately describe
heteroplasmy frequency change, modeling heteroplasmy frequency changes on an ontogenetic phylogeny
would still be a valid approach.

Johnston et al. (2015) have recently used a detailed, mechanistic model of mitochondrial duplication,
degradation, and partitioning to study mitochondrial dynamics during oogenesis. The authors applied
their model to data on the time evolution of heteroplasmy frequency variance during oogenesis in mice,
finding that the size of the oogenic bottleneck is just one contributor to the final variance in heteroplasmy
frequencies after oogenesis is complete. This work complements the present study, in that it analyzes just
one phase of ontogeny (viz., oogenesis) and makes use of time series observations of heteroplasmy frequencies
in mice rather than heteroplasmy frequencies in multiple somatic tissues in adult humans. To use such a
mechanistic model of heteroplasmy dynamics for the present study would likely be fruitless, given the limited
information contained in the data we analyze about mitochondrial dynamics during any single developmental
stage. However, as heteroplasmy samples grow in size, this may be a useful direction for future developments.

We assume that the shape of the ontogenetic phylogeny relating the sampled tissues is known. For the
dataset from Rebolledo-Jaramillo et al. (2014), this is an appropriate assumption, since the two somatic
tissues in the mother must be most closely related to one another, just as the two somatic tissues of the
offspring must be most closely related to one another. For other datasets, differing in the number or identity
of the sampled tissues, there may be less of an a priori expectation for the shape of the ontogenetic phylogeny.
While there is a general understanding of the major divisions of tissues during development, the embryonic
origins and lineage of somatic germ cell populations are not straightforward and still being established (e.g.,
Romagnani et al., 2015; Fuentealba et al., 2015; Boisset and Robin, 2012). The current model could
easily be extended to ontogenetic phylogenies for families with two or more offspring. For families with more
than two offspring, the genealogy of the oogonia eventually giving rise to the offspring would be unknown.
This part of the phylogeny could be inferred jointly with other parameters, or, depending on the inferred
rate of genetic drift in the female germ lineage (here 1.6 × 10−3 drift units per year), it could be assumed
that no genetic drift occurs between the birth of the youngest and oldest children.

The topology of the ontogenetic phylogeny could also be made more complicated by admixture, which
is not included in our inference framework. Admixture could result from biological processes, such as
contributions to a mitotic tissue from distinct, isolated adult stem cell niches, or from physical sampling
of an organ containing multiple tissues derived from distinct developmental lineages. Conceptually, our
ontogenetic phylogeny approach could be extended to work with admixture graphs (Patterson et al.,
2012; Pickrell and Pritchard, 2012) by adapting the pruning algorithm for calculating likelihoods to
the dependence structure introduced by admixture. However, given the small size of current heteroplasmy
frequency datasets compared to large whole-genome SNP datasets, detecting admixture with f -statistics
(Patterson et al., 2012; Peter, 2016) or a more typical population phylogeny inference procedure (e.g.,
Treemix, Pickrell and Pritchard, 2012) would likely be more suitable.

The inference framework we present here should be applicable in future studies of heteroplasmy dynamics
in humans and other organisms. Our software mope is flexible with respect to the pedigree of the sampled
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individuals and thus is suitable for studies of heteroplasmy both across several generations and within
unrelated individuals. Flexibility is also given with respect to the number of tissues sampled—even studies
of just a single tissue may benefit from modeling multiple ontogenetic processes (e.g., Li et al., 2016). Our
fully Bayesian inference method provides a natural way of quantifying uncertainty, which is important in
studies of heteroplasmy as the number of polymorphic loci is often small compared to other genomic studies.
Finally, mope allows the user to choose the ontogenetic processes to place in the ontogenetic phylogeny;
in the current version allele frequency changes for each such ontogenetic process occur according to the
neutral Wright-Fisher model, but processes governed by other dynamics (e.g., selection, mutation) could be
implemented by modifying the freely available source code.

The ontogenetic phylogeny framework may also be useful in areas other than the study of mitochondrial
heteroplasmy. In particular, in the study of the dynamics of cancer evolution, heterogeneous progression in
samples of many tumors may necessitate modeling per-day rates of genetic drift and mutation (or natural
selection) rather than fixed amounts common to all tumors. Our inference procedure could also be used in
the typical population phylogenetic setting to infer the divergence history of a group of populations, but
this application is limited by the relatively small number of loci (< O(1000)) that our method can accept
due to the computational costs of likelihood evaluations with the pruning algorithm. A maximum-likelihood
implementation of our model, requiring fewer likelihood evaluations, may be applicable to genome-scale
SNP data, possibly comparing to Kim Tree (Gautier and Vitalis, 2013) and SpikeyTree (Tataru et al.,
2015).
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Appendix A. Likelihood calculation

Briefly, the pruning algorithm calculates, for each node n in the phylogeny and each frequency fj at
node n, the probability P(D(n) | x(n) = fj), where D(n) is the data at all the leaves collectively having n as
their most recent common ancestor, and x(n) is the heteroplasmy allele frequency at node n. The algorithm
proceeds up the tree, from the leaves to the root, using the fact that

P(D(n) | x(n) = fj) =
∏
c

child of n

∑
k

P(x(c) = fk | x(n) = fj) P(D(c) | x(c) = fk). (A.1)

Here and below the current genetic drift parameters b and mutation rates θ are implied. We model the
probability of the data at leaf (i.e., sampled tissue) node l as the binomial likelihood

P(D(l) | x(l) = fj) =

(
Cl

hl

)
fhlj (1− fj)Cl−hl , (A.2)

where Cl and hl are respectively the total coverage and number of alternative alleles in that tissue.
Given each P(D(r) | x(r) = fj) for root node r, the overall likelihood is

P(D(r)) =
∑
j

P(x(r) = fj) P(D(r) | x(r) = fj). (A.3)
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The probabilities P(x(r) = fj) are given by the heteroplasmy frequency distribution at the root, a discretized
symmetric beta distribution with additional weight at frequencies 0 and 1, the parameters of which are
inferred jointly with the genetic drift and mutation parameters.

The probability of heteroplasmy (cf. denominator (3)) can be calculated as

P(Hi; b,θ) = 1− P(D | all leaves 0)− P(D | all leaves 1), (A.4)

with the second two terms giving the probability of the read count data in all the sampled tissues given that
allele frequencies are all 0 or 1, respectively.

Appendix B. Calculation of the effective bottleneck size

We define the effective bottleneck between mother and offspring as the combined genetic drift occurring
during the early oogenic bottleneck, the turnover of mitochondria in the maternal germline prior to ovulation,
and the first few cell divisions after fertilization but before gastrulation. We combined the effects of genetic
drift during these processes by 1) translating all drift parameters into units of generations per effective
population size (g/Ne, “drift units”), 2) summing the drift, in these units, and 3) translating this summed
drift back into units of an instantaneous bottleneck. Since we assumed that bottlenecks occurred for just a
single generation followed by doubling back up to a large population size (here, N = 1000), we determined
that the relationship between drift dg measured in drift units and Nb, an instantaneous bottleneck size, is
close to

dg =
n∑

i=0

1

Nb2i
, (B.1)

where n = blog2(N/Nb)c is the number of generations it takes for the population size to double back up to
the original population size.

For Nb << N , this sum is well approximated by the integral

dg ≈
∫ log2(N/Nb)

− 1
2

dt

2tNb
=
N
√

2−Nb

NNb ln 2
≈
√

2

Nb ln 2
≈ 2

Nb
. (B.2)

The lower limit of integration follows from an interpretation of (B.1) as a midpoint Riemann sum, improving
accuracy. Thus we also have

Nb ≈
2

dg
. (B.3)

For a mother of age a, the effective bottleneck size is thus

Nbe =
2

2
Nb

+ aλg + ds
, (B.4)

where Nb is the early oogenesis bottleneck size, λg is the rate at which genetic drift accumulates in the
maternal germline, and ds is the amount of genetic drift occurring after fertilization but before gastrulation.

We confirmed (B.2) and (B.3) by finding, for different bottleneck sizes Nb, the amount of drift dg that
minimized the total variation distance between the allele frequency transition distributions specified by dg
and Nb:

d̂g(Nb) = argmin
dg

1

2

∑
i

|pdg (i)− qNb(i)|. (B.5)

Here pdg is the probability transition distribution for drift parameterized by dg drift units, and qNb is
the probability transition distribution for drift parameterized by bottleneck size Nb. Minimizing (B.5)
for different values of Nb shows that our approximation (B.2) closely follows the numerically translation
minimizing the total variation distance (Fig. S4).
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Figure S1: Inference results from additional simulations under the model assumed by our inference procedure. The first
two rows show posterior distributions of parameters estimated under simulations in which the internal branches are relatively
long compared to the simulations presented in the main text. These parameters were inferred from the frequencies of 103
heteroplasmies amongst 500 independently sites in 40 simulated families. The second pair of rows shows posterior distributions
for simulations in which the rates of accumulation of genetic drift in the somatic tissues is increased compared to the simulations
in the main text. In these simulations, there were 109 heteroplasmies amongst 400 independently segregating sites simulated
in 80 families. Posterior distributions are shown with colored histograms, prior distributions are shown with gray histograms,
and true parameter values are shown with dashed vertical lines. Colors match the corresponding developmental processes in
Figure 1. Distributions hashed with diagonal lines correspond to processes with drift parameterized by rates of accumulation
of genetic drift with age, and circles in the red posterior distributions indicate that this process is modeled by an explicit
bottleneck.
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Figure S2: Inference results from simulations with full recombination between heteroplasmies segregating within a single
family. The first row shows posterior distributions (color histograms), prior distributions (gray distributions) and simulated
parameter values (dashed vertical lines) for genetic drift parameters. The second row shows the same for scaled mutation rate
parameters. In order to simplify simulations, the period of genetic drift in early oogenesis was modeled as a period of genetic
drift in a fixed population size rather than as a single-generation bottleneck.
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Figure S3: Two additional ontogenetic phylogenies for which we calculated the total Bayesian evidence. The two models differ
in how they model genetic drift and mutation in the somatic tissues. The “fixed” model (Panel A) assumes that all genetic
drift and mutation in the somatic tissues occurs early in development, and the the “linear” model (Panel B) assumes that
genetic drift and mutation in somatic tissues accumulate linearly with the age of the individual. Compare these to the model
in Figure 1 (termed “both”), which assumes that genetic drift and mutation in somatic tissues occurs both in a fixed amount
during early development and in adulthood, accumulating linearly with age.
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Figure S4: Translation of genetic drift into effective bottleneck sizes. The blue line shows, for different drift durations, the
effective bottleneck size minimizing the total variation distance to the allele frequency transition distribution parameterized by
generations per effective population size. The dashed orange line shows Equation (B.3), our approximate translation between
the two parameterizations.

18

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2017. ; https://doi.org/10.1101/204479doi: bioRxiv preprint 

https://doi.org/10.1101/204479
http://creativecommons.org/licenses/by-nc/4.0/

