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Abstract 

Tissues are maintained by adult stem cells that self-renew and also differentiate 
into functioning tissue cells. Homeostasis is achieved by a set of complex 
mechanisms that involve regulatory feedback loops. Similarly, tumors are 
believed to be maintained by a minority population of cancer stem cells, while the 
bulk of the tumor is made up of more differentiated cells, and there is indication 
that some of the feedback loops that operate in tissues continue to be functional 
in tumors. Mathematical models of such tissue hierarchies, including feedback 
loops, have been analyzed in a variety of different contexts. Apart from stem cells 
giving rise to differentiated cells, it has also been observed that more 
differentiated cells can de-differentiate into stem cells, both in healthy tissue and 
tumors, aspects of which have also been investigated mathematically. This paper 
analyses the effect of de-differentiation on the basic and evolutionary dynamics 
of cells in the context of tissue hierarchy models that include negative feedback 
regulation of the cell populations. The models predict that in the presence of de-
differentiation, the fixation probability of a neutral mutant is lower than in its 
absence. Therefore, if de-differentiation occurs, a mutant with identical 
parameters compared to the wild-type cell population behaves like a 
disadvantageous mutant. Similarly, the process of de-differentiation is found to 
lower the fixation probability of an advantageous mutant. These results indicate 
that the presence of de-differentiation can lower the rates of tumor initiation and 
progression in the context of the models considered here.  
 
 
 

Key words: mathematical models, stem cells, cancer, oncology, tissue 
hierarchy, evolution, fixation probability.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/204214doi: bioRxiv preprint 

https://doi.org/10.1101/204214


	 3	

1. Introduction 

Healthy tissue is characterized by a specific hierarchical structure, where adult 

stem cells are responsible for tissue maintenance and give rise to a population of 

terminally differentiated cells that perform their designated function (Weissman, 

2000). Typically, adult stem cells have self-renewal capacity, but also 

differentiate into transit amplifying cells, which in turn have limited self-renewal 

capacity and give rise to terminally differentiated cells. Data suggest that tissue 

homeostasis is maintained through the existence of specific positive and 

negative feedback loops that influence the stem cell numbers and  tissue size 

(Watt and Hogan, 2000).  

 

 Tumors arise from healthy tissues and are thought to maintain some of the 

hierarchy characteristic of healthy tissue (Jordan et al., 2006; Reya et al., 2001; 

Visvader and Lindeman, 2012). Hence, it is thought that tumors are maintained 

by so called cancer stem cells (CSC), and that the majority of the tumor is made 

up of more differentiated cancer cells that have limited ability to maintain the 

existence of the tumor. Similarly, it has been suggested that feedback loops 

which regulate healthy tissue homeostasis are maintained to a certain extent in 

tumors (Rodriguez-Brenes et al., 2011), and observed tumor growth patterns 

support this notion (Rodriguez-Brenes et al., 2013b).  While the existence of 

feedback control in tumors has not been much investigated experimentally, there 

is mounting evidence that feedback regulatory mechanisms play a role in tumor 

growth dynamics (Kurtova et al., 2015; Rodriguez-Brenes et al., 2017). It has 
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been argued that remaining feedback control mechanisms in tumors are 

responsible for the often described logistic or Gompertzian growth patterns, 

where cell populations initially grow, but subsequently stabilize around an 

apparent equilibrium for a certain period of time before progressing further 

(Rodriguez-Brenes et al., 2011).  

 

  Both healthy tissue as well as tumor cell dynamics have been studied with 

mathematical models in the context of hierarchically structured cell populations 

(Anderson and Quaranta, 2008; Enderling and Hahnfeldt, 2011; Enderling et al., 

2013; Enderling et al., 2007; Glauche et al., 2007; Komarova and van den 

Driessche, 2017; Lander et al., 2009; Lo et al., 2009; Marciniak-Czochra et al., 

2009; Michor, 2008; Rodriguez-Brenes et al., 2013a; Roeder and Loeffler, 2002; 

Roederer et al., 2006; Stiehl and Marciniak-Czochra, 2011; Sun and Komarova, 

2015; Werner et al., 2011; Werner et al., 2016; Yang et al., 2015). These 

approaches typically assume a uni-directional differentiation pathway, where 

stem cells give rise to transit amplifying cells, which in turn give rise to 

differentiated cells. Recent data, however, indicate that a degree of phenotypic 

plasticity can occur, and that more differentiated cells can de-differentiate into 

stem cells, both in tumor cells and in healthy tissue (Cabrera et al., 2015; Chaffer 

et al., 2013; Chaffer et al., 2011; Dorantes-Acosta and Pelayo, 2012; Gupta et 

al., 2011; Huels and Sansom, 2015; Kreso and Dick, 2014; Li and Laterra, 2012; 

Mani et al., 2008; Marjanovic et al., 2013; Philpott and Winton, 2014; Scheel and 

Weinberg, 2011; Tata et al., 2013). In healthy tissue, de-differentiation tends to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/204214doi: bioRxiv preprint 

https://doi.org/10.1101/204214


	 5	

be observed during the process of tissue regeneration (Desai et al., 2014; 

Stange et al., 2013; Yanger and Stanger, 2014; Yanger et al., 2013), probably 

because at homeostasis, the de-differentiation process might be suppressed 

through negative feedback resulting from the contact of more differentiated cells 

with stem cells (Tata et al., 2013). A limited number of mathematical modeling 

studies have taken into account the concept of phenotypic plasticity in the 

context of cancer (Jilkine and Gutenkunst, 2014; Kaveh et al., 2016; Leder et al., 

2010; Roeder and Loeffler, 2002; Shirayeh et al., 2016; Tonekaboni et al., 2017), 

including an investigation of de-differentiation on the evolution of mutants 

(Shirayeh et al., 2016). At the same time, however, our understanding about the 

effect of cell de-differentiation on basic tissue dynamics and cellular evolution 

remains incomplete. Here, we build on previous mathematical models that take 

into account tissue hierarchy and regulatory feedback loops to further study the 

effect of cellular de-differentiation on the dynamics and evolution of cells, both in 

healthy tissue and in tumors. We start by considering ordinary differential 

equation models to examine how de-differentiation affects the ability to maintain 

tissue homeostasis. We then consider stochastic models to investigate the effect 

of de-differentiation on the evolution of mutant cell populations.   

 

 

2. Basic model of stem-cell driven tissue dynamics 

Here, we review a basic model of stem cell-driven tissue dynamics. In the 

simplest form, this model contains two populations: the stem cells, S, and the 
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more differentiated cells, D. The latter population is assumed to capture both the 

transit amplifying and differentiated cells. This model can correspond to either 

healthy tissue cells or to tumor cell populations, depending on the scenario to 

which the model is applied. The model is given by the following set of ordinary 

differential equations (see also (Lander et al., 2009) for related models).  

α

= −

= − −

(2 1)

2 (1 )

dS rS p
dt
dD rS p D
dt

      (1) 

Stem cells are assumed to divide with a rate r. This division results in the 

generation of 2 daughter stem cells (self-renewal) with a probability p. With a 

probability 1-p, the division results in the generation of two differentiated cells. 

Therefore, division is assumed to be symmetric, which leads to either self-

renewal or differentiation with given probabilities. Finally, differentiated cells are 

assumed to die with a rate α. In this model, two outcomes are possible. If the 

self-renewal probability p<0.5, the cell populations go extinct. In contrast, if the 

self-renewal probability of cancer stem cells p>0.5, exponential growth is 

observed. An equilibrium is not possible in this model except in the case when 

p=0.5.  

 

 

3. Stabilization through feedback 

In previous modeling approaches, it has been assumed that differentiated cells 

secrete negative feedback factors that (i) reduce the rate of cell division, and (ii) 
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reduce the self-renewal probability of stem cells, based on experimental 

observations (Konstorum et al., 2016; Lander et al., 2009; Lo et al., 2009; 

Rodriguez-Brenes et al., 2011; Rodriguez-Brenes et al., 2017). In the model, this 

can be expressed by replacing the division rate and the self-renewal probability 

with the terms r = r’/(1+h1Dk1) and  p = p’/(1+h2Dk2), where r’ and p’ are the basic 

division rate and the self-renewal probability of stem cells in the absence of any 

feedback. According to these assumptions, as the overall number of stem cells 

increases, the number of differentiated cells also rises, resulting in inhibition of 

stem cell self-renewal. Instead, more stem cell divisions result in differentiation 

and hence eventually in death of the cells. In this model, persistence of the cell 

populations requires that p>0.5, in which case the system converges to the 

following stable equilibrium. 

  

S* =αe
ln 2 p−1

h1

⎛

⎝⎜
⎞

⎠⎟
k1

−1

1+ h2e
ln 2 p−1

h1

⎛

⎝⎜
⎞

⎠⎟
k2k1

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

r −1

D* = e
ln 2 p−1

h1

⎛

⎝⎜
⎞

⎠⎟
k1

−1

  

 

 

4. The simplest model with stem cell plasticity 

The above model can be extended to include the process of de-differentiation in 

the following way: 

α

= − +

= − − −

(2 1)

2 (1 ) ,

dS rS p gD
dt
dD rS p D gD
dt          

 (2) 
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Where r = r’/(1+h1Dk1) and  p = p’/(1+h2Dk2). In addition to the basic processes 

already described, differentiated cells are assumed to de-differentiate into stem 

cells with a constant rate g. For now, this model assumes that de-differentiation 

is not subject to any feedback, which will be introduced later.  

 

In this model, persistence of the cell populations is observed if 
2

p gα
α

> − . 

In contrast to the model without plasticity, persistence of cells is now possible for 

p<0.5. If the rate of de-differentiation is greater than the death rate of 

differentiated cells (g>α), the condition for the persistence of cells becomes p≥0. 

That is, the cell populations can grow even in the absence of self-renewal, 

because the generation of new stem cells from differentiated cells is sufficient to 

drive a population increase. If the condition for the persistence of the cell 

populations is fulfilled, and if the rate of dedifferentiation g<α, the system 

converges to the following stable equilibrium. 

 

  

S* = e
ln g−α+2α p

h1 α−g( )
⎛

⎝
⎜

⎞

⎠
⎟ k1

−1

α 1+ h2e
ln g−α+2α p

h1 α−g( )
⎛

⎝
⎜

⎞

⎠
⎟ k2k1

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

r −1

D* = e
ln g−α+2α p

h1 α−g( )
⎛

⎝
⎜

⎞

⎠
⎟ k1

−1

  

 

If g>α, on the other hand, no stable internal equilibrium exists, and the cell 

populations grow unbounded towards infinity. This growth is slower than 

exponential, driven by the feedback loops that continue to operate in the cell 
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population. Therefore, we note that if the de-differentiation rate is greater than 

the death rate of differentiated cells, the negative feedback loops on stem cell 

divisions become unable to prevent unbounded growth of cells, i.e. to maintain a 

degree of homeostasis. We further note that this is independent of the 

parameters that describe the strength of the negative feedback on stem cell self-

renewal, h and k. That is, if g>α, an equilibrium and homeostasis are impossible, 

no matter how strong the degree of negative feedback on self-renewal. This 

corresponds to the parameter regime in which stem cell self-renewal is not 

strictly required for cell growth, due to the replenishment of stem cells through 

de-differentiation. This becomes increasingly relevant for lower death rates of 

differentiated cells, α.  

  

 

5. Feedback on the rate of de-differentiation 

The above model assumed that differentiated cells can de-differentiate to 

become stem cells with a constant rate, i.e. this process did not include feedback 

regulation. This could be an appropriate assumption for a cancerous state. Data 

from secretory cells in mice (Tata et al., 2013), however, indicate (i) that de-

differentiation can occur in healthy tissue in vivo, and (ii) that the process of de-

differentiation might be subject to negative feedback control. Contact of a 

differentiated cell with a stem cell prevented the occurrence of de-differentiation 

(Tata et al., 2013). This negative feedback can be incorporated into our model by 

writing g = g’/(1+h3Sk3), where g’ denotes the rate of de-differentiation in the 
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absence of feedback. Negative feedback on the de-differentiation process 

enables the existence of a stable equilibrium even if the basic de-differentiation 

rate is relatively high such that g’>α. The equilibrium expressions for this 

outcome are too complex to write down here. The cell populations persist at 

equilibrium if 
2

p gα
α

> − .  

 

 

 In the following, we focus on the contribution of self-renewal and de-

differentiation processes to the rate of tissue re-generation and to the protection 

against uncontrolled growth. We compare two parameter regions: (i) In the first 

case, either stem cell self-renewal alone, or the process of de-differentiation 

alone, can maintain the tissue cell population. In terms of model parameters, this 

translates into p>0.5 and g>α. (ii) The second case assumes the opposite, where 

both self-renewal and de-differentiation are required to work in concert for tissue 

maintenance, i.e. p<0.5 and g<α.    

  

 If either self-renewal alone or de-differentiation alone can maintain the 

tissue, the rate of tissue regeneration upon damage is relatively fast (Figure 1A, 

blue lines). In addition, if one of these mechanisms fails and ceases to contribute 

to stem cell expansion, the tissue can still be maintained by the second 

mechanism due to redundancy. At the same time, however, escape from just one 

of the feedback loops that maintain homeostasis (feedback on self-renewal or 

feedback on de-differentiation) is sufficient to result in uncontrolled growth 
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(Figure 2A). For example, if the cell acquires a mutation to escape feedback on 

de-differentiation, uncontrolled growth is observed no matter how strong the 

feedback on the probability of stem cell self renewal. The reason is that de-

differentiation provides a separate pathway for amplifying the number of tumor 

stem cells, which can thus be achieved even without self-renewal. If tissue 

maintenance requires a collaboration of both self-renewal and de-differentiation, 

the rate of tissue regeneration is slower, because the total expansion capacity of 

the stem cells is reduced (Figure 1A, red lines). Further, if one of these two 

mechanisms fails, the other is unable to compensate, leading to an inability to 

maintain the tissue.  At the same time, however, simultaneous escape from both 

the feedback on self-renewal and on de-differentiation is required to achieve 

uncontrolled growth (Figure 2B). The reason is that expansion of the stem cell 

population is not possible with either stem cell self-renewal or with de-

differentiation alone. Hence, this suggests the existence of a tradeoff between 

the rate at which tissue can regenerate in response to damage (and the 

robustness of tissue maintenance), and the number of steps that are required for 

cells to grow uncontrolled.   

 

 

6. Model with transit amplifying cells 

Here, we consider a model with more biological complexity, including a 

population of transit amplifying cells (T) in addition to stem cells (S) and 

differentiated cells (D). The model is given by the following equations. 
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dS
dt

= 2 p1 −1( )r1S + 2r2T 1− p2( )q
dT
dt

= 2r1S 1− p1( ) + 2 p2 −1( )r2T

dD
dt

= 2r2T 1− p2( )(1− q)−αD

     (3) 

Stem cell division is modeled in the same way as before. Cell division occurs with 

a rate r1, and the division results in self-renewal with a probability p1 and in 

differentiation with a probability 1-p1. In the current model, however, 

differentiation results in the generation of transit amplifying (TA) cells. TA cells 

can divide with a rate r2. This division results in self-renewal with a probability p2, 

and in a differentiation event  with a rate 1-p2. It is reasonable to assume p2<0.5, 

i.e. TA cells cannot maintain the tissue by themselves.  The differentiation of TA 

cells can lead to two outcomes: with a probability 1-q, a terminally differentiated 

cell is generated. With a probability q, a de-differentiation event occurs and a 

stem cell is generated. In contrast to the previous model, the de-differentiation 

event is now coupled to cell division, since it occurs in the TA compartment. We 

assume the same types of negative feedback as before. That is, differentiated 

cells secrete factors that inhibit the rate of stem cell division and the probability of 

stem cell self-renewal. Thus, as before, we have r1 = r1’/(1+h1Dk1) and   

p1 = p1’/(1+h2Dk2). In the same way, the differentiated cells are assumed to feed 

back onto the division dynamics of transit amplifying cells, such that 

 r2 = r2’/(1+h3Dk3) and  p2 = p2’/(1+h4Dk4). In this model, the cell populations 

persist if ( )
( )

2 2
1

2

1 34(1 ) 2
2 1 2( ) 11
q p p

p
q p

− −
+

− +
>

−−⎡ ⎤⎣ ⎦
 . In this case, two types of behaviors are 
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possible. If the probability of de-differentiation during a differentiating TA division 

q<0.25, the system converges towards a stable equilibrium, which is too complex 

to write down. If, however, q>0.25, then unbounded growth is observed and 

negative feedback on stem cell self-renewal fails to contain the number of cells, 

again irrespective of the strength of the negative feedback on stem cell division 

(parameters h and k).     

 

 As before, we can incorporate negative feedback of stem cells on the de-

differentiation probability, writing q = q’/(1+h5Sk5), where q’ denotes the rate of 

de-differentiation in the absence of feedback. This stabilizes the system even if 

q>0.25 (again, equilibrium expressions are too complex to be written down). This 

again presents the opportunity to drive cell expansion via two pathways, i.e. via 

self-renewal and via de-differentiation. As in the simpler model, if the tissue 

cannot be maintained by either process alone (p1<0.5 and q<0.25), then the cells 

need to escape both feedback processes simultaneously to achieve uncontrolled 

growth. At the same time, however, the rate of cell re-population following tissue 

injury is relatively slow (Figure 1B, red lines), and break-down of only one of 

those mechanisms results in failure to maintain the tissue. If, in contrast, either 

stem cell self-renewal or de-differentiation alone can maintain the tissue, then 

escape from just one feedback mechanism leads to uncontrolled cellular growth, 

although the rate of cell re-population following tissue injury is faster (Figure 1B, 

blue lines), and there is redundancy, making tissue maintenance more robust. 

This again points towards a tradeoff between the rate of tissue repair / 
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robustness of tissue maintenance, and the potential to protect against 

uncontrolled cellular growth.    

 

 

 

7. De-differentiation and evolutionary dynamics 

Here, we investigate how the process of de-differentiation influences the 

evolutionary dynamics of mutant cell clones in the context of a resident cell 

population at equilibrium, maintained by feedback control. For simplicity, we start 

by considering model (2) with only stem and differentiated cells, and do not take 

into account feedback on de-differentiation. Two populations are modeled. The 

“wild-type” populations are denoted by S1 and D1, and the “mutant” populations 

are denoted by S2 and D2, respectively. It is assumed that differentiated cells of 

both types can secrete feedback factors that regulate the rate of cell division and 

the probability of self-renewal, and that the stem cells of both types are 

susceptible to those feedback factors, irrespective of the cell of origin. This 

introduces competition among the two cell strains mediated through negative 

feedback. To study the evolutionary dynamics of mutants, stochastic models 

have to be used, and we peformed Gillespie simulations (Gillespie, 1976) of 

model (2).   

 

  It is assumed that the mutant is neutral, i.e. that it is characterized by the 

same parameter values as the wild-type. The wild-type population will be 
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assumed to persist at equilibrium. Into this population, a single mutant stem cell, 

S2, is placed. We numerically determined the fixation probability of the mutant 

cell population. To do so, the simulation was run repeatedly, recording the 

number of realizations during which the mutant fixated, and those during which 

the mutant cell clone went extinct.  We start by setting g=0, i.e. no de-

differentiation occurs in the cell population. In this case, the fixation probability is 

given by 1/S1
*,where S1

* denotes the equilibrium number of wild-type stem cells 

(Figure 3A). This is in accord with basic evolutionary theory (Ewens, 2004; Hartl 

and Clark, 1997; Nei, 1975), where the fixation probability of one neutral mutant 

is given by the inverse of the total populations size. Because only stem cells 

contribute to cellular reproduction, the fixation probability is given by the inverse 

of the total stem cell population. Next, we assumed g>0, that is, de-differentiation 

occurs with a rate, g. Now, the fixation probability of the mutant becomes lower 

than 1/S1
*(Figure 3A). The larger the value of g, the lower the fixation probability 

becomes relative to the value of 1/S1
*(Figure 3A). In fact, the fixation probability 

can become even lower than 1/(S1
*+D1

*), i.e. lower than the inverse of the total 

population size (Figure 3A). In other words, even if de-differentiation implies that 

some of the differentiated cells also contribute to cellular reproduction, the 

fixation probability is lower than expected for a neutral mutant. Instead, the 

observed fixation probability suggests that the mutant is in fact disadvantageous, 

despite identical parameters.   
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This result can be understood intuitively in the following way. At 

equilibrium, the total increase of the wild-type stem cell population is governed by 

two processes: the self-renewal of the stem cells, and the influx from the 

differentiated cell compartment through the process of de-differentiation. When a 

single mutant stem cell is introduced into this setting, however, only one of these 

processes initially contributes to their growth: the self-renewal of the mutant stem 

cells. Since no differentiated cells initially exist, the de-differentiation process 

does not contribute to stem cell growth. Hence, at this stage of the dynamics, the 

total growth rate of the mutant stem cell population is initially lower than that of 

the wild-type stem cells. Consequently, the mutant experiences an initial 

disadvantage. As the mutant stem cells build up their differentiated cell 

compartment, this disadvantage vanishes and the mutant attains neutral 

properties. This can be observed in simulations of the ODE model (2), see Figure 

4. For initial conditions where the wild-type exists at equilibrium, and mutant stem 

cells are introduced, at first, the number of stem cells declines until the 

differentiated cell population is established, at which stage the mutant cell 

population ceases to change in abundance. Overall, this initial and temporary 

disadvantage of the mutant cell population translates into a fixation probability 

that is lower than expected for a neutral mutant. These dynamics are not specific 

to a particular parameter set, but are relevant to all parameter regions in which 

the differentiated cell population size is abundant relative to the number of stem 

cells, and in which de-differentiation contributes to sufficiently to stem cell 

dynamics.  
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Similar results are obtained if negative feedback on de-differentiation is 

assumed to occur, although the effect is smaller (Figure 3B) because the rate of 

de-differentiation is suppressed by the negative feedback. In addition, results 

remain robust in the context of model (3) that explicitly takes into account a 

population of transit amplifying cells (Figure 3 C&D).  

 

The analysis has concentrated on the fixation probability of a neutral 

mutant. The same kind of result, however, is observed for the fixation probability 

of an advantageous mutant, which is shown for model (2) without feedback on 

de-differentiation (Figure 5). It was assumed that the mutant had a larger self-

renewal probability, p’, than the wild type, which results in a selective advantage 

of the mutant in this model (for an analysis of the selective properties of different 

types of mutants in this kind of model, see (Rodriguez-Brenes et al., 2011)). 

Again, the process of de-differentiation reduces the fixation probability of the 

mutant.  

 

 

8. Discussion and Conclusion 

We used mathematical models to investigate the effect of de-differentiation on 

basic tissue dynamics as well as on the evolutionary dynamics of cells. Evidence 

is mounting that de-differentiation occurs in tumor cell populations, and also in 

healthy tissue, as detailed in the Introduction section. In tumors, it has been 
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suggested that de-differentiation is a process that can fuel tumor growth, 

progression, and treatment resistance, because it increases the growth rate of 

the tumor stem cell population, thus rendering growth more robust and increasing 

resilience against therapeutic interventions (Leder et al., 2010). Kaveh et al 

(Kaveh et al., 2016)  showed that the generation of tumor cells with increased de-

differentiation potential can contribute to their selection, thus enhancing the 

process of carcinogenesis. Interestingly, a recent paper by Shirayeh et al 

(Shirayeh et al., 2016) also studied the fixation probability of mutants assuming 

that both wild-type and mutant cells can de-differentiate, in the context of a 

Moran process model. They found that the presence of de-differentiation can 

increase the fixation probability of neutral mutants.  

 

  The models presented here, however, argue that the process of de-

differentiation has the opposite effect on the fixation probability of neutral 

mutants. That is, in the presence of de-differentiation, the fixation probability of a 

neutral mutant is lower than predicted by neutral evolutionary theory. In other 

words, in the presence of de-differentiation, a mutant with identical parameters 

compared to the wild-type acts like a disadvantageous mutant. Similarly, the 

models suggest that de-differentiation also reduces the fixation probability of 

advantageous mutants. These results indicate that the presence of de-

differentiation can slow down the emergence of mutants involved in the process 

of carcinogenesis, and can thus reduce the chance of disease development. This 

can apply to the development of mutant clones in healthy tissue, but also applies 
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to the progression of already initiated tumors, which also relies on the emergence 

of mutant clones that overcome relevant selective pressures. In fact, this effect 

might be more pronounced in tumors than in healthy tissues. According to the 

model, the reduced fixation probability of mutants is more pronounced if there is 

no feedback on the process of de-differentiation, which is likely to be the case in 

tumors but unlikely in healthy tissue. The reason for the reduced fixation 

probability in the presence of de-differentiation is that mutant clones consist 

initially mostly of stem cells, and thus do not benefit from stem cell expansion 

due to de-differentiation. This is in contrast to the established wild-type cell 

population, in which the number of stem and differentiated cells has equilibrated, 

and where de-differentiation plays an important role in the dynamics of stem 

cells.    

 

 The reason for the discrepancy between our results and those obtained by 

Shirayeh et al (Shirayeh et al., 2016) are currently not clear. We considered 

Gillespie simulations of ODEs that take into account not only tissue hierarchy but 

also negative feedback processes that regulate the rate and pattern of divisions 

and differentiations. Stem cell divisions were assumed to be symmetric, giving 

rise to two progeny stem cells with a probability p, and to two progeny 

differentiated cells with a probability 1-p. This mechanism is supported by 

experimental data from human tissues (Nicolas et al., 2007; Simons and Clevers, 

2011; Snippert et al., 2010), and this model structure has an established history 

in the literature (Konstorum et al., 2016; Lander et al., 2009; Lo et al., 2009; 
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Rodriguez-Brenes et al., 2011; Rodriguez-Brenes et al., 2013a; Rodriguez-

Brenes et al., 2013b; Rodriguez-Brenes et al., 2015; Rodriguez-Brenes et al., 

2017). We considered models with different complexity, taking into account just 

stem and differentiated cells in the simplest version, but also explicitly taking into 

account the population of transit amplifying cells in more complex models. 

Models with and without feedback on the process of de-differentiation were 

considered. The same results were observed among the different models that 

were explored here. In contrast, the model by Shirayeh et al (Shirayeh et al., 

2016) does not take into account feedback regulation, but assumed a constant 

population Moran process. Moreover, the models differ in their assumptions 

about the nature of stem cell divisions. Shirayeh et al assume both symmetric 

and asymmetric stem cell divisions, where symmetric stem cell division results in 

the generation of two progeny stem cells, and asymmetric division results in the 

generation of one progeny stem cell and one differentiated cell. Further work will 

have to determine which of the differences between the two modeling 

approaches gives rise to the different model predictions, and how this can be 

interpreted biologically.  

 

Apart from the mutant invasion dynamics, our models suggest that 

another cancer-protecting mechanism can arise from the fact that in the 

presence of de-differentiation, two separate processes contribute to tissue 

growth and maintenance: stem cell self-renewal, and stem cell generation 

through de-differentiation. If each of these processes individually is not sufficient 
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to drive uncontrolled growth in the absence of feedback, then feedback on both 

processes must be lost for disease to be initiated. Evolution of uncontrolled 

growth is thus less likely in the presence of both self-renewal and de-

differentiation compared to a situation where tissue is maintained only through 

stem cell self-renewal. This corresponds to a scenario where tissue maintenance 

is the result of division of labor between self-renewal and de-differentiation. If, 

however, the two processes are redundant, and tissue can be maintained by 

either self-renewal alone or by de-differentiation alone, then loss of homeostasis 

is more likely in the presence compared to the absence of de-differentiation. Loss 

of homeostasis due to the occurrence of cellular de-differentiation at a sufficient 

rate has also been reported mathematically by (Jilkine and Gutenkunst, 2014) in 

a different setting and modeling framework. In such a scenario, de-differentiation 

adds a second, independent, pathway towards uncontrolled growth, and a 

mutation resulting in feedback loss on either mechanism alone can drive 

uncontrolled cell growth, even if feedback on the second mechanism remains 

intact. Therefore, it will be important to quantify the rates of self-renewal and de-

differentiation in specific systems to determine whether they collaborate to 

ensure tissue maintenance, or whether they are redundant mechanisms.  
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Figure Legends 

 

Figure 1. Tissue regeneration dynamics predicted by the mathematical models, 

following depletion of all cell types. (A) Model (2) with negative feedback on de-

differentiation. The red lines show stem and differentiated cell dynamics arising 

from simulations assuming that both stem cell self-renewal and de-differentiation 

need to collaborate to maintain the tissue, i.e. p<0.5 and g’<a. The blue lines 

assume that either mechanism alone can maintain the tissue, i.e. p>0.5 and g’>a. 

Tissue depletion was modeled by setting S=1 and D0. Parameters were chosen 

as follows. r’=0.01; α=0.0025; h1=h2=0.0001;h3=0.01; k1=k2=k3=1. For red lines 

p’=0.0.35; g=0.0015. For blue lines, lines p’=0.7; g=0.0035. (B) Same, but with 

model (3), taking into account transit amplifying cells. Tissue depletion was 

modeled by setting S=1, T=0, D=0.  Parameters were chosen as follows. 

r’1=0.01; r’2=0.02; p’2=0.4; α=0.0025, h1=h2=h3=h4=0.0001; h5=0.01; 

k1=k2=k3=k4=k5=1.  For red lines p1’=0.0.35; q=0.15. For blue lines, lines p1’=0.7; 

q=0.4. 

 

Figure 2. Computer simulation of model (2) with negative feedback on de-

differentiation, assuming that at a specific time point, the feedback on the de-

differentiation process is lost. (A) This simulation assumed that either stem cell 

self-renewal alone or de-differentiation alone can drive stem cell expansion. 

Hence, loss of negative feedback on de-differentiation results in uncontrolled 
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growth of the cell populations. (B) This simulation assumes that a combination of 

self-renewal and de-differentiation is required to drive stem cell expansion. In this 

case, loss of negative feedback on de-differentiation results in an increase of the 

equilibrium population sizes, but not in uncontrolled growth.  Parameters were 

chosen as follows. (A) r’=0.01; p’=0.7; α=0.0025; g=0.0035; h1=h2=0.0001; 

h3=0.01; k1=k2=k3=1. To simulate escape from negative feedback on de-

differentiation, the simulation set h3=0. (B) Same but p’=0.35 and g=0.0015. 

 

Figure 3. Effect of de-differentiation on the fixation probability of a neutral 

mutant, determined by computer simulations. Gillespie simulations of the model 

were run. A single mutant was placed into a resident cell population at 

equilibrium, and the fraction of realizations that resulted in the fixation of the 

mutant was recorded. This was done for a case without de-differentiation (g=0 or 

q=0) and for cases with varying rates of de-differentiation (g or q). This is 

depicted by the red line in the graphs. The black dashed lines indicate reference 

values, such as 1/S, the inverse of the equilibrium number of resident stem cells 

at equilibrium, which according to evolutionary theory, should equal the fixation 

probability of a neutral mutant.  (A) model (2) without feedback on de-

differentiation; r’=0.01; p’=0.8; α=0.0025; h1=h2=0.0001, k1=k2=1.  (B) model (2) 

with feedback on de-differentiation; same parameters, and h3=0.01, k3=1.  (C) 

model (3) without feedback on de-differentiation; r’1=0.02; p’1=0.6; r’2=0.02; 

p’2=0.4, h1=h2=h3=h4=0.0001; k1=k2=k3=k4=1. (D) model (3) with feedback on de-

differentiation; same parameters, and h5=0.01, k5=1. Because the mutant was 
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assumed to be neutral, parameters were identical for the resident and mutant cell 

populations. For each parameter combination, >108 realizations of the simulation 

were run.   

  

Figure 4. Mutant dynamics predicted by the ODE model (2) without feedback on 

de-differentiation. The number of mutant stem cells initially declines until the 

differentiated cell population has built up, at which point the populations converge 

to a neutrally stable equilibrium. Parameters were chosen as follows. r’=0.01; 

p’=0.8; α=0.0025; g=0.001; h1=h2=0.0001; k1=k2=1. 

 

Figure 5. Effect of de-differentiation on the fixation probability of an 

advantageous mutant, determined by simulations of model (2) without feedback 

on de-differentiation. Details are the same as in Figure 3. Parameters were 

chosen as follows. For the resident cellpopulation, r’=0.01; p’=0.8; α=0.0025; 

h1=h2=0.0001, k1=k2=1. The advantageous mutant was characterized by the 

same parameters, except p’=0.81. For each parameter combination, >108 

realizations of the simulation were run.   
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