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ABSTRACT 

Degeneracy, defined as the ability of structurally disparate elements to perform analogous 

function, has largely been assessed from the perspective of maintaining robustness of physiology 

or plasticity. How does the framework of degeneracy assimilate into an encoding system where 

the ability to change is an essential ingredient for storing new incoming information? Could 

degeneracy maintain the balance between the apparently contradictory goals of the need to 

change for encoding and the need to resist change towards maintaining homeostasis? In this 

review, we explore these fundamental questions with the mammalian hippocampus as an 

example encoding system. We systematically catalog lines of evidence, spanning multiple scales 

of analysis, that demonstrate the expression of degeneracy in hippocampal physiology and 

plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of 

encoding and homeostasis without cross-interferences. We postulate that biological complexity, 

involving interactions among the numerous parameters spanning different scales of analysis, 

could establish disparate routes towards accomplishing these conjoint goals. These disparate 

routes then provide several degrees of freedom to the encoding-homeostasis system in 

accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of 

degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding 

controversies, through the recognition that the seemingly contradictory disparate observations 

are merely alternate routes that the system might recruit towards accomplishment of its goals. 

Against the backdrop of the ubiquitous prevalence of degeneracy and its strong links to 

evolution, it is perhaps apt to add a corollary to Theodosius Dobzhansky's famous quote and 

state "nothing in physiology makes sense except in the light of degeneracy". 
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Highlights 
 
 
• Degeneracy is the ability of structurally distinct elements to yield similar function 
 
• We postulate a critical role for degeneracy in the emergence of stable encoding systems 
 
• We catalog lines of evidence for the expression of degeneracy in the hippocampus  
 
• We suggest avenues for research to explore degeneracy in stable encoding systems  
 
• Dobzhansky wrote: “nothing in biology makes sense except in the light of evolution” 
 
• A corollary: “nothing in physiology makes sense except in the light of degeneracy” 
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1.	Introduction	 	1 

The pervasive question on the relationship between structure and function spans every aspect of 2 

life, science and philosophy: from building architectures to the mind-body problem, from 3 

connectomics to genomics to proteomics, from subatomic structures to cosmic bodies and from 4 

biomechanics to climate science. Even within a limited perspective spanning only neuroscience, 5 

the question has been posed at every scale of brain organization spanning the genetic to 6 

behavioral ends of the spectrum. Efforts to address this question have resulted in extensive 7 

studies that have yielded insights about the critical roles of protein structure and localization, 8 

synaptic ultrastructure, dendritic morphology, microcircuit organization and large-scale synaptic 9 

connectivity in several neural and behavioral functions.	10 

The question on the relationship between structure and function has spawned wide-11 

ranging debates, with disparate approaches towards potential answers. At one extreme is the 12 

suggestion that structure defines function (Buzsaki, 2006): 13 

“The safest way to start speculating about the functions of a structure is to inspect 14 
its anatomical organization carefully. The dictum “structure defines function” never 15 
fails, although the architecture in itself is hardly ever sufficient to provide all the 16 
necessary clues.” 17 
 18 

Within this framework, the following is considered as a route for understanding neural systems 19 

and behavior (Buzsaki, 2006): 20 

“First, we need to know the basic “design” of its circuitry at both microscopic and 21 
macroscopic levels. Second, we must decipher the rules governing interactions 22 
among neurons and neuronal systems that give rise to overt and covert behaviors.” 23 
 24 

The other extreme is the assertion that “form follows function”, elucidated by Bert Sakmann 25 

(Sakmann, 2017), quoting Louis Sullivan: 26 
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“Whether it be the sweeping eagle in his flight, or the open apple-blossom, the 27 
toiling work-horse, the blithe swan, the branching oak, the winding stream at its 28 
base, the drifting clouds, over all the coursing sun, form ever follows function, and 29 
this is the law. Where function does not change, form does not change”. 30 
 31 

Within this framework, the approach to understanding neural structure function relations was 32 

elucidated as (Sakmann, 2017): 33 

"The approach we took, in order to discover structure-function relations that help to 34 
unravel simple design principles of cortical networks was, to first determine 35 
functions and then reconstruct the underlying morphology assuming that “form 36 
follows function”, a dictum of Louis Sullivan and also a Bauhaus design principle.” 37 
 38 

A third approach embarks on addressing the structure-function question by recognizing the 39 

existence of ubiquitous variability and combinatorial complexity in biological systems. This was 40 

elucidated in a landmark review by Edelman and Gally, who presented an approach to structure-41 

function relationship by defining degeneracy (Edelman and Gally, 2001): 42 

"Degeneracy is the ability of elements that are structurally different to perform the 43 
same function or yield the same output. Unlike redundancy, which occurs when the 44 
same function is performed by identical elements, degeneracy, which involves 45 
structurally different elements, may yield the same or different functions depending 46 
on the context in which it is expressed. It is a prominent property of gene networks, 47 
neural networks, and evolution itself. Indeed, there is mounting evidence that 48 
degeneracy is a ubiquitous property of biological systems at all levels of 49 
organization.” 50 
 51 

They approach degeneracy and the structure-function question from an evolutionary perspective, 52 

noting (Edelman and Gally, 2001): 53 

"Here, we point out that degeneracy is a ubiquitous biological property and argue 54 
that it is a feature of complexity at genetic, cellular, system, and population levels. 55 
Furthermore, it is both necessary for, and an inevitable outcome of, natural 56 
selection.” 57 
 58 

From this perspective, the supposition that a one-to-one relationship between structure and 59 

function exists is eliminated, thereby yielding more structural routes to achieving the same 60 

function. This perspective posits that biological complexity should be viewed from the 61 
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evolutionarily advantageous perspective of providing functional robustness through degeneracy. 62 

Further, the degeneracy framework provides the system with higher degrees of freedom to recruit 63 

a state-dependent solution from a large repertoire of routes that are available to achieve the same 64 

function. 65 

The advantages of biological variability (Foster et al., 1993; Gjorgjieva et al., 2016; 66 

Goldman et al., 2001; Katz, 2016; Marder, 2011; Marder and Goaillard, 2006; Marder et al., 67 

2015; Marder and Taylor, 2011; O'Leary and Marder, 2014; Prinz et al., 2004; Taylor et al., 68 

2009), degeneracy (Drion et al., 2015; Edelman and Gally, 2001; Leonardo, 2005; O'Leary et al., 69 

2013; Whitacre and Bender, 2010; Whitacre, 2010) and complexity (Carlson and Doyle, 2002; 70 

Edelman and Gally, 2001; Stelling et al., 2004; Tononi et al., 1996, 1999; Weng et al., 1999; 71 

Whitacre, 2010), especially in terms of their roles in achieving robust function, have been widely 72 

studied and recognized in several biological process, including those in simple nervous systems. 73 

However, this recognition has been very limited in the mammalian neuroscience literature, where 74 

the focus is predominantly on explicitly assigning (or implicitly assuming) unique causal 75 

mechanistic relationships between constituent components and emergent functions. Here, we 76 

focus on the mammalian hippocampus, a brain region that has been implicated in spatial 77 

cognition, learning and memory, and review several lines of evidence that point to the existence 78 

of degeneracy in hippocampal physiology and plasticity. We argue that the elucidation of 79 

degeneracy spanning multiple scales could result in resolution of several existing controversies 80 

in the field, and provide an ideal setup to design experiments to understand neuronal systems, 81 

their adaptability and their responses to pathological insults.  82 

The rest of the review is organized into four sections. In the first of these sections, we 83 

explore the foundations of degeneracy, especially from a perspective of an encoding system such 84 
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as the hippocampus, and outline distinctions between different forms of homeostasis and their 85 

interactions with encoding-induced adaptations. In the second section, we build an argument that 86 

theoretical and experimental literature, spanning multiple scales of analysis, presents abundant 87 

support for the prevalence of degeneracy in almost all aspects of hippocampal physiology and 88 

plasticity. The third section explores the important question on the feasibility of establishing one-89 

to-one structure-function relationships in systems that exhibit degeneracy through complexity. 90 

The final section concludes the review by briefly summarizing the arguments and postulates 91 

presented here on degeneracy in encoding within the degeneracy framework.  92 

2.	 Degeneracy:	 Foundations	 from	 the	 perspective	 of	 an	 encoding	93 
system	94 
 95 
Akin to the much broader span of physics from the subatomic to the cosmic scales, and very 96 

similar to studies on other biological systems, neural systems are studied at multiple scales of 97 

analysis (Fig. 1A). Although understanding neural systems within each of these scales of analysis 98 

is critical and has its own right for existence, a predominant proportion of neuro-scientific 99 

research is expended on cross-scale emergence of function through interactions among 100 

constituent components. One set of studies focus on the emergence of functions in a specified 101 

scale of analysis as a consequence of interactions among components in the immediately lower 102 

scale of analysis. An elegant example to such analysis is on the emergence of neuronal action 103 

potentials (a cellular scale function) as a consequence of interactions (Hodgkin and Huxley, 104 

1952) between sodium and delayed rectifier potassium channels (molecular scale components). 105 

Another set of studies focus on the relationships between function at a specified scale of analysis 106 

and components that are integral to a scale that is several levels apart. With specific reference to 107 

the hippocampus, assessing the molecular- or cellular-scale components (e.g., receptors, 108 
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synapses) that are causally responsible for learning and memory (a behavioral scale function that 109 

is several scales apart from the molecular/cellular scales) forms an ideal example for studies that 110 

belong in this category (Bliss and Collingridge, 1993; Kandel et al., 2014; Martin et al., 2000; 111 

Mayford et al., 2012; Neves et al., 2008a).  112 

Healthy and invigorating debates related to the philosophical and the scientific basis of 113 

such analyses, with themes ranging from broad discussions on reductionism vs. holism (Bennett 114 

and Hacker, 2003; Bickle, 2015; Jazayeri and Afraz, 2017; Krakauer et al., 2017; Panzeri et al., 115 

2017) to more focused debates on the specific cellular components that are involved in specific 116 

aspects of coding and behavior (Bliss and Collingridge, 1993; Gallistel, 2017; Kandel et al., 117 

2014; Kim and Linden, 2007; Martin et al., 2000; Mayford et al., 2012; Mozzachiodi and Byrne, 118 

2010; Neves et al., 2008a; Otchy et al., 2015; Titley et al., 2017; Zhang and Linden, 2003), have 119 

contributed to our emerging understanding of neural systems and their links to behavior. Several 120 

studies have covered the breadth and depth of these debates (Bargmann and Marder, 2013; 121 

Bennett and Hacker, 2003; Bickle, 2015; Jazayeri and Afraz, 2017; Jonas and Kording, 2017; 122 

Kandel et al., 2014; Katz, 2016; Kim and Linden, 2007; Krakauer et al., 2017; Lazebnik, 2002; 123 

Marder, 1998, 2011, 2012; Marder et al., 2014; Marder and Thirumalai, 2002; Mayford et al., 124 

2012; Panzeri et al., 2017; Tytell et al., 2011), and will not be the focus of this review. 125 

 Within the purview of degeneracy, the emergence of specific combinations of higher-126 

scale functions (within the limits of biological variability) could be achieved (Fig. 1B) through 127 

interactions among disparate parametric combinations in a lower scale (Edelman and Gally, 128 

2001; Foster et al., 1993; Gjorgjieva et al., 2016; Goldman et al., 2001; Marder, 2011; Marder 129 

and Goaillard, 2006; Marder et al., 2015; Marder and Taylor, 2011; O'Leary and Marder, 2014; 130 

Prinz et al., 2004; Rathour and Narayanan, 2012a, 2014; Srikanth and Narayanan, 2015; Stelling 131 
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et al., 2004; Taylor et al., 2009). A straightforward corollary to this is that robust homeostasis in 132 

the maintenance of specific combinations of higher-scale functions in the face of perturbations 133 

there would be achieved through very different routes involving disparate parametric 134 

combinations in a lower scale (Fig. 1C). For instance, a change in neuronal firing rate at the 135 

cellular scale owing to external perturbations involving pathological insults or behavioral 136 

experience could be compensated for by different sets of changes to synaptic or intrinsic 137 

parameters (at the molecular scale) to achieve activity homeostasis (Gjorgjieva et al., 2016; 138 

Hengen et al., 2016; Nelson and Turrigiano, 2008; Turrigiano, 2011; Turrigiano, 1999, 2008; 139 

Turrigiano and Nelson, 2004). Thus, under the degeneracy framework, different uncorrelated 140 

clusters in the lower-scale parametric space could result in similar, if not identical, functional 141 

outcomes in the higher-scale measurement space, thereby suggesting a many-to-one relationship 142 

between the lower-scale parameters and higher-scale measurements (Edelman and Gally, 2001; 143 

Jazayeri and Afraz, 2017; Krakauer et al., 2017). Prominent lines of experimental evidence in 144 

support of degeneracy in neural systems have come from demonstrations of remarkable animal-145 

to-animal variability in constituent components in providing analogous functional outcomes, 146 

and/or from results on many-to-many mappings between neural activity and behavior (Marder, 147 

2011; Marder and Goaillard, 2006; Marder and Taylor, 2011; O'Leary and Marder, 2014; Schulz 148 

et al., 2006; Schulz et al., 2007; Vogelstein et al., 2014). 149 

 150 

2.1.	Degeneracy	vs.	compensation	151 

A common misconception relating to degeneracy is that systems exhibiting degeneracy should 152 

compensate for the removal of a specific lower-scale component by recruiting other structural 153 

components there to yield the same higher-scale function. A corollary to this misconception is 154 
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that an inability to compensate for the removal of a component is interpreted as evidence for the 155 

absence of degeneracy. For instance, consider an experiment where the “usefulness” of a specific 156 

gene is being tested by assessing deficits in a specific behavior after knockout of the gene under 157 

consideration. If the knockout resulted in the behavioral deficit, degeneracy is determined to be 158 

absent and the gene considered essential. On the other hand, for the case where there was no 159 

behavioral deficit, the gene is either considered non-essential or the result is interpreted as the 160 

expression of degeneracy where other components have compensated for the knockout. 161 

There have been several warnings against such oversimplified interpretations, especially 162 

considering that biological systems are dynamic adaptive systems and not static (Edelman and 163 

Gally, 2001; Grashow et al., 2010; Marder, 2011; Marder and Goaillard, 2006; Marder and 164 

Taylor, 2011; O'Leary et al., 2014; Taylor et al., 2009; Wagner, 2005). Specifically, although the 165 

biological system adapts to the “unplanned” absence of the single gene (Edelman and Gally, 166 

2001), it is not always essential that the adaptations result in compensation of one specific 167 

behavioral readout (of the several possible readouts (Jazayeri and Afraz, 2017; Krakauer et al., 168 

2017)). Any compensation has been argued as a statistical result of the tradeoffs that are inherent 169 

to this complex, adaptive and nonlinear system that manifests degeneracy that is emergent across 170 

multiple scales of organization (Edelman and Gally, 2001; O'Leary et al., 2014). It has also been 171 

postulated that the compensatory process, and not the deletion, could have resulted in a specific 172 

deficit (O'Leary et al., 2014), especially because of the remarkable dissociation between different 173 

forms of homeostasis (see Sec. 2.2).  174 

Further, especially given the ubiquitous variability across animals in terms of constituent 175 

components that elicit analogous behavior, it is clear that the impact of deletion of one specific 176 

component would be differential. This implies that the simplistic generalizability on the presence 177 
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or absence of degeneracy based on a single parameter and a single measurement is untenable in 178 

complex adaptive systems.  Additionally, with reference to the specific example of gene deletion, 179 

it is also important to distinguish between the acute impact of a lack of a protein that is tied to the 180 

gene and the developmental knockout (and associated compensatory mechanisms) of the 181 

specified gene (Edelman and Gally, 2001; Grashow et al., 2010; Marder, 2011; Marder and 182 

Goaillard, 2006; Marder and Taylor, 2011; O'Leary et al., 2014; Taylor et al., 2009). 183 

In addition to these strong arguments against a one-to-one link between compensation 184 

and degeneracy, it is also important to consider the specifics of the expectations on the specific 185 

function that degeneracy is defined for and what functional deficit is to be compensated. Let’s 186 

consider the example of the emergence of membrane potential resonance in neurons as an 187 

example to illustrate this argument (Fig. 2). The emergence of resonance requires the expression 188 

of a resonating conductance, and the biophysical constraints on what makes a resonating 189 

conductance are well established (Cole, 1968; Das et al., 2017; Hodgkin and Huxley, 1952; 190 

Hutcheon and Yarom, 2000; Mauro, 1961; Mauro et al., 1970; Narayanan and Johnston, 2008). 191 

Hippocampal pyramidal neurons express several resonating conductances: the hyperpolarization-192 

activated cyclic nucleotide-gated (HCN) nonspecific cation channels, the M-type potassium 193 

(KM) channels and the T-type calcium (CaT) channels, of which HCN and CaT channels exhibit 194 

overlapping voltage dependencies (Das et al., 2017; Hu et al., 2009; Hu et al., 2002; Narayanan 195 

and Johnston, 2007, 2008; Pike et al., 2000; Rathour and Narayanan, 2012a). 196 

Let’s first consider an example where the function on which degeneracy is assessed is 197 

qualitatively defined as the expression of membrane potential resonance (Fig. 2A).  Whereas a 198 

passive neuron does not express resonance, the presence of the HCN and/or the CaT channels 199 

would result in the expression of resonance. This implies degeneracy in the function, where 200 
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similar functionality (in this case, the expression of resonance) is through disparate components 201 

(channel combinations). In this scenario, depending on the variable expression profiles of HCN, 202 

CaT and other modulating channels, removal of only one of them could still result in the 203 

expression of resonance in specific neurons (Das et al., 2017; Rathour et al., 2016; Rathour and 204 

Narayanan, 2012a, 2014). However, removal of both HCN and CaT channels would result in a 205 

deficit in the assessed function, where resonance ceases to express. In this scenario, the 206 

requirement or usefulness of HCN or CaT channels to the expression of resonance is easily 207 

discernable by acute blockade experiments, although it would be difficult to predict (a) synergy 208 

between different channels that are expressed towards the emergence of resonance with such 209 

one-channel-at-a-time pharmacological blockade experiments; and (b) possible compensatory 210 

mechanisms involving changes in kinetics or voltage-dependence properties of other channels, 211 

say KM channels, in a double knockout scenario (Marder, 2011; Marder and Goaillard, 2006; 212 

O'Leary et al., 2014; Rathour and Narayanan, 2012a, 2014; Taylor et al., 2009). 213 

In most encoding or homeostatic scenarios involving changes in constituent components, 214 

however, the functional outcome that is expected is a more quantitative readout of, say, firing 215 

rate or calcium concentration altered or returned to specific values. Therefore, a widely 216 

employed alternate interpretation (Foster et al., 1993; Goldman et al., 2001; Marder, 2011; 217 

Marder and Goaillard, 2006; Marder et al., 2015; Marder and Taylor, 2011; Prinz et al., 2004; 218 

Rathour and Narayanan, 2012a, 2014; Srikanth and Narayanan, 2015; Taylor et al., 2009) is 219 

where degeneracy is assessed as the ability of different structural components to elicit 220 

quantitatively similar functional measurements. With reference to our chosen example, this 221 

would translate to assessing degeneracy as the ability to achieve a specific range of values of 222 

resonance frequency with disparate combinations of parameters (Fig. 2B). If achieving a specific 223 
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range of resonance frequency was the functional goal, and not the qualitative expression of 224 

resonance, then the possibilities are numerous. A resonating conductance is indeed required for 225 

the expression of resonance (Fig. 2B), but the goal is not to understand the expression of 226 

resonance, but to maintain resonance frequency at a specific value. In the presence of a 227 

resonating conductance, this goal could be achieved through very different structural routes 228 

either by altering other channel conductances or by altering properties of the resonating 229 

conductance itself. This implies the expression of degeneracy, where disparate parametric 230 

combinations could yield quantitatively similar resonance frequencies (Rathour and Narayanan, 231 

2012a, 2014) across different models (Fig. 2C). Importantly, the order of degeneracy is rather 232 

large with the several active and passive properties, with the conductances, the voltage-233 

dependence and kinetic properties of each of the several channels included. This also provides 234 

several routes to the emergence of compensation, where different channels and different 235 

parameters could differentially contribute to the emergence of similar functional measurements 236 

(Fig. 2C). We argue that this quantitative scenario with a large order of degeneracy is closer to 237 

the requirements of a system (at any given scale of organization) from the perspective of 238 

equilibrium and sustenance. The relevance of the qualitative scenario is rather limited to 239 

experiments that probe the expression of a specific phenomenon, which are “unplanned” from 240 

the evolutionary perspective there (Edelman and Gally, 2001).  241 

Together, the question on the link between degeneracy and compensation should not be 242 

treated with simplistic ideas of linear interactions across components in a non-adapting system. 243 

The analyses should account for the specific definition of the function under consideration and 244 

the question on how degeneracy is defined. In addition, the nonlinear and synergistic interactions 245 

between different components that result in the specific function and animal-to-animal variability 246 
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in expression profiles of constituent components should be assessed as part of such analyses. 247 

Finally, the possibility that “stochastic” compensatory process could be homeostatic or 248 

pathological and importantly on whether the challenge that is being posed to the system by the 249 

experiment is “planned” from the perspective of evolutionary convergence should also be 250 

considered (Edelman and Gally, 2001; Grashow et al., 2010; Marder, 2011; Marder and Taylor, 251 

2011; O'Leary et al., 2014; Taylor et al., 2009).  252 

 253 

2.2.	Dissociation	between	different	forms	of	homeostasis	254 

It is clear from the examples presented above that the specific functional readout for which 255 

robustness or homeostasis ought to be maintained is a very critical question within the 256 

framework of degeneracy. Although degeneracy can be defined or observed with reference to 257 

any function at any scale of organization, the answer to the question on what specific functional 258 

homeostasis is absolutely essential from an evolutionary/neuroethological perspective isn’t clear. 259 

Even with reference to individual neurons, the literature has defined several forms of 260 

homeostasis (Gjorgjieva et al., 2016; Nelson and Turrigiano, 2008; Turrigiano, 2011; Turrigiano, 261 

2008; Turrigiano and Nelson, 2004), with popular measures involving neuronal firing rate 262 

(Hengen et al., 2016), cytosolic calcium (Honnuraiah and Narayanan, 2013; O'Leary et al., 2014; 263 

Siegel et al., 1994; Srikanth and Narayanan, 2015) or excitation-inhibition balance (Yizhar et al., 264 

2011). In addition, despite perpetual changes in afferent activity under in vivo conditions 265 

(Buzsaki, 2002, 2006, 2015; Srikanth and Narayanan, 2015; Tononi and Cirelli, 2006), specific 266 

neuronal subtypes maintain distinct functional signatures, say in terms of their excitability or 267 

oscillatory or frequency selectivity measurements, that are different from other neuronal 268 

subtypes even in the same brain region (Hoffman et al., 1997; Migliore and Shepherd, 2002, 269 
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2005; Narayanan and Johnston, 2007, 2008; Pike et al., 2000; Spruston, 2008; Zemankovics et 270 

al., 2010). Further, synaptic properties such as strength and release probabilities are also very 271 

discernable across different synaptic subtypes (say excitatory vs. inhibitory) even on the same 272 

postsynaptic neuron (Andrasfalvy and Magee, 2001; Andrasfalvy and Mody, 2006; Dittman et 273 

al., 2000; Koester and Johnston, 2005; Magee and Cook, 2000; Smith et al., 2003).  This 274 

suggests the existence of some form of homeostasis that maintains these intrinsic and synaptic 275 

measurements, including or apart from firing rate or calcium homeostasis or excitatory-inhibitory 276 

balance, despite behaviorally driven encoding changes or perpetual activity switches that are 277 

common in the hippocampus and other regions of the brain. Does maintenance of one of them 278 

translate to maintenance of all of them? If not, which of these different forms of homeostasis are 279 

absolutely essential for the animal from the evolutionary/neuroethological perspective? 280 

 There are several lines of clear evidence that there are remarkable dissociations between 281 

different forms of homeostasis (Srikanth and Narayanan, 2015). First, cellular- or network-scale 282 

functions could robustly emerge with disparate combinations of molecular- or cellular-scale 283 

parameters (Foster et al., 1993; Marder, 2011; Marder and Goaillard, 2006; Prinz et al., 2004; 284 

Rathour and Narayanan, 2014; Taylor et al., 2009). These observations suggest that precise 285 

homeostatic balance at a lower scale (e.g., ion channels expressed to exact conductance values) 286 

is not essential for maintaining functional homeostasis at a higher scale. Second, even in the 287 

same set of neurons/networks/animals, different measurements have different dependencies on 288 

underlying parameters, and these dependencies could be variable. For instance, in the same 289 

neuron, resonance frequency could have a larger dependence on one channel subtype with input 290 

resistance being critically regulated by another channel, with the specifics of these dependencies 291 

variable across different neurons of the same subtype (Fig. 3A). Studies have shown that 292 

different channels could have differential and variable impact on disparate measurements from 293 

the same neuron, even in a location dependent manner (Grashow et al., 2010; O'Leary et al., 294 
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2014; Rathour and Narayanan, 2014; Taylor et al., 2009). Additionally, acute blockade of one 295 

specific channel results in weakly correlated changes in different measurements in the same 296 

neuron (Rathour et al., 2016). This implies that changing individual constitutive components to 297 

maintain robust homeostasis in one of the measurements does not necessarily translate to robust 298 

homeostasis in all the other measurements.  299 

Third, for maintenance of calcium homeostasis across neurons in a network or in neurons 300 

that are subjected to perpetual switches in afferent activity, it is not essential that functional 301 

homeostasis across different intrinsic or synaptic measurements is maintained. Specifically, 302 

owing to inherent variability in different constitutive components, the channel conductance 303 

values or neuronal intrinsic properties or synaptic strengths could be very different across 304 

different neurons despite maintenance of precise calcium homeostasis in neurons or their 305 

network (Gjorgjieva et al., 2016; O'Leary et al., 2014; Srikanth and Narayanan, 2015). Finally, 306 

calcium and firing rate homeostasis have been shown to be dissociated whereby tremendous 307 

variability in channel conductance values, firing rate and pattern of firing have been observed 308 

despite efficacious maintenance of calcium homeostasis (O'Leary et al., 2013; O'Leary et al., 309 

2014; Srikanth and Narayanan, 2015). Together, these studies establish that none of the 310 

individual forms of homeostasis (in calcium concentration or in channel densities channel or in 311 

intrinsic functional characteristics including neuronal firing-rate) necessarily translate to or 312 

follow from any other among them (O'Leary et al., 2013; O'Leary et al., 2014; Rathour and 313 

Narayanan, 2012a, 2014; Srikanth and Narayanan, 2015), implying clear dissociations between 314 

different forms of homeostasis.  315 

2.3.	Baseline	vs.	plasticity	profile	homeostasis	316 

An important and necessary cynosure in the physiology of encoding systems is their ability to 317 

change in a manner that promotes adaptability to the environment. In other words, the ability to 318 

undergo plasticity is an important requirement for it to encode or learn newly available 319 
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information from the environment. Such plasticity has been shown to be ubiquitous, spanning 320 

cellular and network structures across almost all regions, and could be triggered by development 321 

(Desai et al., 2002; Desai et al., 1999; Luo and Flanagan, 2007; Schreiner and Winer, 2007; 322 

Turrigiano and Nelson, 2004; White and Fitzpatrick, 2007), by learning processes (Kandel, 2001; 323 

Kandel et al., 2014; Kim and Linden, 2007; Lamprecht and LeDoux, 2004; Narayanan and 324 

Johnston, 2012; Titley et al., 2017; Zhang and Linden, 2003) or by pathological insults (Beck 325 

and Yaari, 2008; Bernard et al., 2007; Brager and Johnston, 2014; Grant, 2012; Johnston et al., 326 

2016; Kullmann, 2002; Lee and Jan, 2012; Lehmann-Horn and Jurkat-Rott, 1999; Lerche et al., 327 

2013; Poolos and Johnston, 2012). A traditional method to study such plasticity mechanisms is to 328 

subject neuronal or synaptic structures to specific activity patterns towards understanding the 329 

rules for plasticity in specific components. Assessed through such protocols, distinct synapses 330 

show signature profiles of plasticity in terms of the strength and direction of synaptic plasticity 331 

elicited by specific activity patterns. Additionally, there are also specific sets of non-synaptic 332 

forms of plasticity (in channel densities and properties, for instance) that are concomitant to the 333 

synaptic plasticity induced by different activity patterns (Abbott and Nelson, 2000; Abbott and 334 

Regehr, 2004; Bi and Poo, 1998; Bliss and Collingridge, 1993; Bliss and Lomo, 1973; Chung et 335 

al., 2009a; Chung et al., 2009b; Cooper and Bear, 2012; Dittman et al., 2000; Dudek and Bear, 336 

1992; Fortune and Rose, 2001; Frick et al., 2004; Jorntell and Hansel, 2006; Lin et al., 2008; 337 

Losonczy et al., 2008; Lujan et al., 2009; Magee and Johnston, 1997; Markram et al., 1997; 338 

Narayanan and Johnston, 2007, 2008; Shah et al., 2010; Sjostrom et al., 2008). This implies 339 

plasticity profile homeostasis (Anirudhan and Narayanan, 2015; Mukunda and Narayanan, 340 

2017), where synapses of the same subtype respond similarly to analogous afferent activity, 341 

thereby resulting in a subtype-dependent rule for synaptic plasticity (Larsen and Sjostrom, 2015). 342 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/203943doi: bioRxiv preprint 

https://doi.org/10.1101/203943


 19 

In terms of non-synaptic plasticity, such plasticity profile homeostasis could be generalized to 343 

subtypes of cells manifesting specific forms of neuronal plasticity (in intrinsic properties, for 344 

instance). 345 

 Juxtaposed against the considerable variability in different constitutive components 346 

across neurons of the same subtype, and given the critical dissociations between different forms 347 

of homeostasis (Sec. 2.2), it is easy to deduce that the maintenance of baseline homeostasis of a 348 

given measurement (say activity or calcium) does not necessarily imply that the system will 349 

respond in a similar manner to identical perturbations (Fig. 3B). As the direction and strength of 350 

change in activity or calcium is a critical determinant of the plasticity profile (Lisman, 1989; 351 

Lisman et al., 2002; Lisman et al., 2012; Lisman, 2001; Nevian and Sakmann, 2006; Regehr, 352 

2012; Shouval et al., 2002; Sjostrom and Nelson, 2002; Sjostrom et al., 2008; Zucker, 1999; 353 

Zucker and Regehr, 2002), variable responses to incoming perturbations (physiological or 354 

pathophysiological) would translate to very distinct plasticity profiles even in synapses of the 355 

same subtype (Anirudhan and Narayanan, 2015; Mukunda and Narayanan, 2017; O'Leary et al., 356 

2013; Srikanth and Narayanan, 2015). Therefore, from the perspective of homeostasis in 357 

encoding systems such as the hippocampus, it is not just sufficient to ask if baseline homeostasis 358 

of a given measurement is maintained. It is also important to ask if the response of the system to 359 

identical perturbations is similar to enable plasticity profile homeostasis. The absence of such 360 

plasticity profile homeostasis would result in very different adaptations to identical perturbations 361 

even under baseline conditions, resulting in the absence of signature plasticity profiles being 362 

associated with specific neurons and synapses. Although there is dissociation between the 363 

maintenance of baseline vs. plasticity profile homeostasis, studies have demonstrated degeneracy 364 

in the maintenance of short- and long-term plasticity profiles. Specifically, these studies have 365 
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shown that disparate combinations of ion channel conductances and calcium-handling 366 

mechanisms could yield analogous short- or long-term plasticity profiles (Anirudhan and 367 

Narayanan, 2015; Mukunda and Narayanan, 2017). Although we dealt with plasticity profile 368 

homeostasis and its dissociation from baseline homeostasis, a related phenomenon that involves 369 

plasticity of plasticity profiles has been defined as metaplasticity (Abraham, 2008; Abraham and 370 

Bear, 1996; Abraham and Tate, 1997; Cooper and Bear, 2012; Hulme et al., 2013; Sehgal et al., 371 

2013). Lines of evidence supporting degeneracy in hippocampal metaplasticity and its roles in 372 

stable learning will be explored in Sec. 3.3. 373 

  374 

2.4.	Encoding	and	homeostasis	within	the	degeneracy	framework	375 

The function of learning systems extends beyond simple maintenance of physiological or 376 

plasticity homeostasis. The functional goal in these systems is rather contrary to maintenance of 377 

homeostasis, because encoding or learning of new information demands alteration in 378 

physiology/behavior through continual adaptation in an experience-/activity-dependent manner. 379 

This presents a paradoxical requirement where components ought to change to encode new 380 

information, without perturbing the overall homeostatic balance of the system. Thus, encoding of 381 

a new experience entails a tricky balance between change and homeostasis (James, 1890): 382 

“Plasticity, then, in the wide sense of the word, means the possession of a structure 383 
weak enough to yield to an influence, but strong enough not to yield all at once. 384 
Each relatively stable phase of equilibrium in such a structure is marked by what 385 
we may call a new set of habits.” 386 
 387 

From the degeneracy and physiology perspectives, this balance poses several tricky questions 388 

that the literature does not present definitive answers to. For instance, could learning systems 389 

accomplish this balance between encoding of new information and maintenance of homeostasis 390 

within the framework of degeneracy? In other words, could the plasticity mechanisms that define 391 
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encoding and the homeostatic mechanisms that negate the impact of perturbation together be 392 

realized through disparate combinations of constitutive components (Narayanan and Johnston, 393 

2012; Nelson and Turrigiano, 2008; Turrigiano, 2007, 2011; Turrigiano et al., 1994; Turrigiano, 394 

1999; Turrigiano and Nelson, 2000)? Would the availability of more routes to achieve encoding 395 

or homeostasis be detrimental or be advantageous towards accomplishing these goals together? 396 

Would the dissociations between different forms of homeostasis (Sec. 2.2) and between baseline 397 

vs. plasticity profile homeostasis (Sec. 2.3) translate to severe constraints on accomplishing this 398 

balance within the framework of degeneracy?  399 

Together, there are lines of evidence supporting the formulation that plasticity and 400 

homeostasis individually could be achieved through several non-unique routes through disparate 401 

combinations of constituent components (Anirudhan and Narayanan, 2015; Mukunda and 402 

Narayanan, 2017; Narayanan and Johnston, 2012; Nelson and Turrigiano, 2008; O'Leary et al., 403 

2013; Srikanth and Narayanan, 2015; Turrigiano, 2007, 2011; Turrigiano et al., 1994; 404 

Turrigiano, 1999; Turrigiano and Nelson, 2000). However, the focus on achieving the conjoined 405 

goals of effectuating changes in response to new information and maintaining robust 406 

homeostasis in the face of such changes within the framework of degeneracy have been 407 

conspicuously lacking. Such focus is especially important because of the seemingly 408 

contradictory requirements of the two processes, where one necessitates change and the other 409 

works to negate any change, resulting in the possibility where there could be detrimental cross-410 

interference working towards negating each other. Therefore, for the framework of degeneracy to 411 

be relevant in learning systems, it is important that future studies assess the twin goals of 412 

encoding and homeostasis to be synergistically conjoined rather than treat them as isolated 413 

processes that independently achieve their respective goals. Without the recognition of such 414 
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synergy between encoding and homeostatic systems, assessing the ability of these two processes 415 

to avoid cross-interference becomes intractable. 416 

 417 

2.5.	Curse-of-dimensionality	or	evolutionary	robustness	418 

Curse of dimensionality, coined by Bellman (Bellman, 1957), refers to the extreme difficulties 419 

encountered with the comprehension or solution to a problem that involves exorbitantly large 420 

numbers of input variables, their attributes and possible solutions. In biology in general, and in 421 

neuroscience in particular, the dimensions of the parametric space is typically large, making 422 

dimensions of the interactional space (the space that covers all forms of interactions spanning all 423 

these parameters) even larger.  The variability of parametric values even in systems exhibiting 424 

similar functions and the perpetual adaptation of these parameters in response to external 425 

perturbations (or even baseline turnover towards maintaining homeostasis) make it impossible to 426 

localize any biological function to a small subspace of this large interactional space. This, as a 427 

consequence of the curse of dimensionality, translates to mathematical and computational 428 

intractability of biological systems because of insufficiency of collected data towards providing 429 

an accurate answer to questions related to comprehending or assessing the system.  430 

 The framework of degeneracy on the other hand suggests that biological systems thrive 431 

on this parametric and interactional complexity because it provides the ideal substrate for 432 

arriving at disparate structural routes to robust functional similarity. Several strong qualitative 433 

and quantitative arguments, based on several lines of evidence spanning different scales of 434 

analysis across different biological systems, have been placed in favor of synergistic links 435 

between degeneracy, complexity, robustness, evolvability and adaptation. Therefore, the 436 

dimensionality of the parametric and interactional space of biological systems should not be 437 
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treated as a curse in terms of our inability to analytically track or comprehend the system, but as 438 

a fundamental and necessary feature towards achieving the contradictory yet conjoint goals (Sec. 439 

2.4) of functional robustness (Edelman and Gally, 2001; Kitano, 2007; Marder, 2011; Marder 440 

and Goaillard, 2006; Rathour et al., 2016; Rathour and Narayanan, 2012a, 2014; Sporns et al., 441 

2000; Stelling et al., 2004; Tononi and Cirelli, 2006; Tononi and Edelman, 1998; Tononi et al., 442 

1998; Wagner, 2005, 2008), evolvability (Edelman and Gally, 2001; Wagner, 2008; Whitacre 443 

and Bender, 2010; Whitacre, 2010) and adaptation (Albantakis et al., 2014; Anirudhan and 444 

Narayanan, 2015; Joshi et al., 2013; Mukunda and Narayanan, 2017). 445 

 Importantly, the recognition of the critical links between complexity, degeneracy and 446 

adaptability allows for better design of experimental and analysis techniques for assessing 447 

biological systems and their function. Not only do these techniques alleviate the pains of hand 448 

tuning in computational models (Prinz et al., 2003), but also recognize the implications for 449 

parametric variability to robust functions and the fallacies associated with misinterpretation of 450 

results from knockout animals in the face of perpetual biological compensation (Edelman and 451 

Gally, 2001; Grashow et al., 2010; Marder, 2011; Marder and Goaillard, 2006; Marder and 452 

Taylor, 2011; O'Leary et al., 2014; Taylor et al., 2009; Wagner, 2005). Some classes of 453 

techniques developed with the recognition of the strong links between variability, complexity, 454 

adaptability, degeneracy and robustness are: (a) the global sensitivity analysis technique (Sec. 455 

3.2) that employs a stochastic search algorithm spanning a large parametric space and optimizes 456 

for multiple physiological objectives (Foster et al., 1993; Goldman et al., 2001; Marder, 2011; 457 

Marder and Goaillard, 2006; Marder and Taylor, 2011; Prinz et al., 2004; Rathour and 458 

Narayanan, 2014); (b) the theoretical and experimental assessment of the links between 459 

quantitative complexity measures and robustness with reference to several physiological and 460 
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pathophysiological attributes (Albantakis et al., 2014; Edelman and Gally, 2001; Joshi et al., 461 

2013; Kitano, 2007; Sarasso et al., 2015; Sporns et al., 2000; Stelling et al., 2004; Tononi and 462 

Edelman, 1998; Tononi et al., 1998; Tononi et al., 1996, 1999; Wagner, 2005, 2008; Whitacre 463 

and Bender, 2010; Whitacre, 2010); and (c) plasticity models that have accounted for 464 

concomitant changes in multiple components (Secs. 3.6–3.7) rather than focusing on a one-to-465 

one relationship between functional plasticity and one specific component that undergoes 466 

changes (Abbott and LeMasson, 1993; Anirudhan and Narayanan, 2015; LeMasson et al., 1993; 467 

Mukunda and Narayanan, 2017; O'Leary et al., 2013; O'Leary et al., 2014; Siegel et al., 1994; 468 

Srikanth and Narayanan, 2015). These analyses have made it abundantly clear that the 469 

complexities inherent to biological systems should be considered as substrates for functional 470 

robustness through degeneracy (Edelman and Gally, 2001), rather than be viewed from the 471 

curse-of-dimensionality perspective.  472 

 473 

2.6.	Error	correction	mechanisms	474 

A critical requirement in a system that is endowed with degeneracy is an error-correcting 475 

feedback mechanism that regulates constituent components in an effort to achieve a specific 476 

function. For instance, consider the example where the goal is to achieve calcium homeostasis in 477 

a neuron. In this scenario, as the specific regulatory mechanism that is to be triggered is 478 

dependent on the current state of the neuron, or more precisely the current levels of calcium, it is 479 

important that the regulatory mechanism is geared towards correcting the error between the 480 

target function and the current state (Abbott and LeMasson, 1993; LeMasson et al., 1993; 481 

O'Leary et al., 2013; O'Leary et al., 2014; Siegel et al., 1994; Srikanth and Narayanan, 2015). 482 

This requires a closed circuit feedback loop that initiates a compensatory mechanism that is 483 
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driven by the quantitative distance between the target function and the current state. This state-484 

dependent perpetual error correction becomes especially important in a scenario where distinct 485 

regulatory mechanisms govern the different constitute components. With the specific example at 486 

hand, let’s say the error correcting feedback mechanism regulates ion channel conductances by 487 

altering their protein expression through several transcription factors (Srikanth and Narayanan, 488 

2015). In such a scenario, calcium homeostasis could be achieved by recruiting several non-489 

unique sets of these transcription factors. As each of these transcription factors could be coupled 490 

to the regulation of distinct combinations of ion channels, calcium homeostasis could be 491 

achieved through several non-unique combinations of ion channels.  492 

Within the degeneracy framework, although distinct solutions are possible with weak 493 

pairwise correlations between constitutive components, there is a strong synergistic collective 494 

dependence of these components to achieve a function (Rathour and Narayanan, 2014). 495 

Specifically, let’s consider two neurons (neurons 1 and 2) with distinct sets of non-unique 496 

parametric combinations that yielded very similar function. However, given the nonlinearities of 497 

neural systems, it would be infeasible to expect similar function from a third neuron built with 498 

one-half of the parameters taken from neuron 1 and the other half taken from neuron 2. This 499 

collective cross-dependence is an essential component of systems manifesting degeneracy and 500 

should be respected by mechanisms that regulate the constitutive components. Returning to 501 

specific example under consideration, the specific ensemble of the targeted transcription factors 502 

and channel conductances are important in terms of which solution is chosen within the 503 

degeneracy framework. This places strong requirements on the distinct regulatory mechanisms, 504 

transcription factors in this case, that they strongly interact with each other rather than acting 505 
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independent of each other (Srikanth and Narayanan, 2015) in a manner that is driven by the error 506 

that is being fed back in a state-dependent temporally precise manner.  507 

These requirements become especially important in an encoding system such as the 508 

hippocampus, whose afferent activity is perpetually variable in a behavioral state-dependent 509 

manner, requiring temporally proximal feedback for the continuous maintenance of robust 510 

function. A simple solution to account for cross-interacting regulatory mechanisms is to assume 511 

the existence of only one regulatory mechanism that governs all constitutive components (e.g., 512 

one transcription factors controls all channels and receptors on a neuron (O'Leary et al., 2014)). 513 

However, this might not always be valid or possible or feasible (Srikanth and Narayanan, 2015), 514 

especially if the complexity of system is enormous (e.g., coexistence of multiple transcription 515 

factors in the hippocampus (Alberini, 2009; Bading et al., 1993; Dolmetsch, 2003; Lein et al., 516 

2007). In these scenarios, it is important that the error-sensing and regulatory mechanisms also 517 

exhibit degeneracy and are strongly inter-coupled to each other through cross-regulatory 518 

mechanisms at that scale as well (e.g., multiple calcium sensors accompanied by a network of 519 

transcription factors coupled through feedback loops that regulate each other (Cheong et al., 520 

2011; Kotaleski and Blackwell, 2010; Losick and Desplan, 2008; Thattai and van Oudenaarden, 521 

2001; Yu et al., 2008)). In summary, the ability to achieve functional robustness through 522 

degeneracy in any scale of analysis requires continuous correction of functional deficits, without 523 

which it is impossible to adjudge the efficacious accomplishment of a desired goal through a 524 

chosen route (which is one among the many possible routes). In a system with enormous 525 

complexity, this is typically achieved through an error-correcting feedback pathway that recruits 526 

multiple cross-interacting regulatory mechanisms towards maintaining collective cross-527 
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dependence of constituent mechanisms (Rathour and Narayanan, 2014; Srikanth and Narayanan, 528 

2015). 529 

3.	Degeneracy	at	multiple	scales	in	the	hippocampus	530 

The hippocampus is a brain region that has been shown to be critically involved in spatial 531 

representation of the external environment and in several forms of learning and memory 532 

(Anderson et al., 2007; Eichenbaum, 2012; Hartley et al., 2014; Moser et al., 2008; Neves et al., 533 

2008a; Scoville and Milner, 1957). As a region that is involved in encoding of new information 534 

and one that is part of the medial temporal lobe that is critically sensitive to excitotoxic insults 535 

(Bernard et al., 2007; Dam, 1980; de Lanerolle et al., 1989; Johnston et al., 2016; Sloviter, 536 

1991), it is important that the hippocampal cells maintain some form of activity homeostasis to 537 

avoid runaway excitation.  538 

The hippocampus consists of several subtypes of neurons and glia receiving afferent 539 

information from tens of thousands of synapses and expressing distinct sets of a wide variety of 540 

ligand-gated receptors and voltage-gated ion channels, each built through complex structural 541 

interactions between a number of main and auxiliary subunits (Lai and Jan, 2006; Migliore and 542 

Shepherd, 2002; Nusser, 2009, 2012; Vacher et al., 2008; Verkhratsky and Steinhauser, 2000). 543 

The regulatory role of glial cells and their constitutive components in synaptic information 544 

processing is well established (Allen and Barres, 2005, 2009; Araque, 2008; Araque et al., 2014; 545 

Araque et al., 1999; Bazargani and Attwell, 2016; Deitmer et al., 2006; Fields and Stevens-546 

Graham, 2002; Halassa et al., 2007; Halassa and Haydon, 2010; Haydon and Carmignoto, 2006; 547 

Pannasch and Rouach, 2013; Pascual et al., 2005; Perea and Araque, 2005; Perea et al., 2009), 548 

providing additional structural substrates that could participate in the encoding and homeostasis 549 
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processes. The basic properties and regulation of these and other membrane and cytoplasmic 550 

protein structures, in conjunction with intracellular (including the ER and the trafficking 551 

apparatus) and intercellular interaction dynamics (including neuronal synaptic connectivity and 552 

the glial syncytium) and morphological characteristics, regulates the intricate balance between 553 

encoding and homeostasis within the hippocampal structure. In addition to these, hippocampal 554 

structure and function are critically reliant on the afferent and efferent connectivity patterns, the 555 

metabolic pathways that drive and interact with the local cellular structures and the several forms 556 

of state-dependent modifications to each of these components. Together, the combinatorial 557 

complexity of the constitutive components that define hippocampal function is staggeringly 558 

astronomical.  559 

A fundamental question that is of considerable interest to the research community is on 560 

how the hippocampus achieves robust function, especially in accomplishing the apparently 561 

contradictory goals of adaptive change and homeostasis (Sec. 2), in the face of such 562 

combinatorial complexity that drives its physiology and plasticity. Within the framework of 563 

degeneracy, it could be argued that the complexity is an enabler, and not an impediment, towards 564 

achieving functional robustness.  565 

Does hippocampal physiology manifest degeneracy at multiple scales, whereby similar 566 

hippocampal function could be achieved through disparate structural combinations? In this 567 

section, we view hippocampal research spanning the past several decades through the lens of 568 

degeneracy and present clear qualitative and quantitative lines of evidence arguing for the 569 

ubiquitous presence of degeneracy spanning multiple scales of hippocampal function. We review 570 

lines of evidence showing multiple routes to achieving several critical hippocampal functions, 571 

which in some cases have been considered to be lines of evidence that are in apparent 572 
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contradiction to each other, triggering expansive debates and arguments within the field. In a 573 

manner similar to (Edelman and Gally, 2001), we systematically explore the expression of 574 

degeneracy at distinct scales (starting at the molecular scale and moving incrementally to the 575 

systems/behavioral scale) of hippocampal function (Fig. 1A), with function(s) or physiological 576 

measurements assessed within the specified scale of analysis. We postulate that the recognition 577 

of the ubiquitous prevalence of degeneracy would provide an evolutionarily routed framework to 578 

unify the several apparently contradictory routes to achieving the same function as necessity, 579 

rather than luxury, towards achieving physiological robustness. 580 

 581 

3.1.	Degeneracy	in	the	properties	of	channels	and	receptors	582 

Hippocampal neurons are endowed with myriad voltage and ligand dependent ion channels, with 583 

well-defined gradients in their expression profiles and their properties (Barnard et al., 1998; 584 

Dingledine et al., 1999; Johnston and Narayanan, 2008; Magee and Cook, 2000; Migliore and 585 

Shepherd, 2002; Narayanan and Johnston, 2012; Paoletti et al., 2013; Sieghart and Sperk, 2002). 586 

The presence of these channels, with their signature characteristics and expression profiles, has 587 

been shown to play critical roles in the physiology (Das et al., 2017; Johnston et al., 1996; 588 

Johnston and Narayanan, 2008; Magee, 2000; Narayanan and Johnston, 2012), plasticity (Frick 589 

and Johnston, 2005; Johnston et al., 2003; Remy et al., 2010; Shah et al., 2010; Sjostrom et al., 590 

2008) and pathophysiology (Bernard et al., 2007; Brager and Johnston, 2014; Johnston et al., 591 

2016; Kullmann, 2002; Lee and Jan, 2012; Lerche et al., 2013) of hippocampal neurons and their 592 

networks. Therefore, it is essential that the biophysical properties and expression profiles of 593 

these channels be tightly regulated to ensure functional robustness.  594 
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The regulation of targeting, localization and properties of these channels at specific 595 

levels, however, is a problem that involves several degrees of combinatorial freedom. The 596 

reasons behind this complexity are manifold. First, most of these channels are not protein 597 

molecules derived from single genes, but are assembled from several possible pore-forming and 598 

auxiliary subunits, expressed in different stoichiometry (Catterall, 1993, 1995; Gurnett and 599 

Campbell, 1996; Hille, 2001; Isom et al., 1994). The presence or absence of a specific pore-600 

forming or auxiliary subunit, and the specific ratios of their expression are important for 601 

trafficking, localization and properties of these channels. For instance, A-type K+ channels in the 602 

hippocampus could be assembled by the main subunits from the Kv1 or Kv4 families and 603 

auxiliary subunits from the KChIP and DPP families (Amarillo et al., 2008; Birnbaum et al., 604 

2004; Jerng et al., 2004; Kim et al., 2007; Kim et al., 2005; Sun et al., 2011; Vacher and 605 

Trimmer, 2011), whereas auxiliary subunits MiRP1, KCR1 and TRIP8b have been implicated in 606 

regulating trafficking and properties of h channels assembled with main subunits from the HCN 607 

family of proteins. Additionally, the properties of h channels, in terms of their voltage-608 

dependence, their kinetics and modulation by cyclic nucleotides, are critically regulated by the 609 

specific isoforms that are expressed in conjunction with the specific stoichiometry of such 610 

expression (Biel et al., 2009; He et al., 2014; Lewis et al., 2011; Much et al., 2003; Robinson 611 

and Siegelbaum, 2003; Santoro et al., 2000; Santoro et al., 2009; Santoro et al., 2004; Ulens and 612 

Siegelbaum, 2003; Ulens and Tytgat, 2001; Zolles et al., 2009).  613 

Second, targeting and functional properties of these assembled channels (Trimmer and 614 

Rhodes, 2004; Vacher et al., 2008) could be critically modulated by different forms of post-615 

translational modification (Derkach et al., 1999; Derkach et al., 2007; Levitan, 1994; Misonou et 616 

al., 2004; Much et al., 2003; Shah et al., 2010; Sjostrom et al., 2008), by local pH (Holzer, 617 
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2009), by interaction with intracellular messengers (Armstrong and Bezanilla, 1974) and by lipid 618 

composition of the plasma membrane (Levitan and Barrantes, 2012). For instance, trafficking of 619 

A-type K+ channels is phospho-regulated in a manner that is dependent on their main and 620 

auxiliary subunits (Birnbaum et al., 2004; Hammond et al., 2008; Lin et al., 2011; Lin et al., 621 

2010; Vacher and Trimmer, 2011), and differences between proximal and distal dendritic sodium 622 

channels are partly mediated by phosphorylation states of these channels (Gasparini and Magee, 623 

2002).  624 

Third, distinct channels have been demonstrated to have structural interactions with each 625 

other, thereby cross-regulating the functional properties of each other. For instance, structural 626 

interactions between Cav3 and Kv4 channel families are known to regulate neuronal activity 627 

through efficient transfer of calcium influx from Cav3 channels to bind onto KChIPs that 628 

modulate Kv4 channel function (Anderson et al., 2010). Finally, these channels can undergo 629 

activity-dependent plasticity and neuromodulation (Biel et al., 2009; Cantrell and Catterall, 630 

2001; He et al., 2014; Hoffman and Johnston, 1999; Lee and Dan, 2012; Marder, 2012; Marder 631 

et al., 2014; Marder and Thirumalai, 2002; Robinson and Siegelbaum, 2003), which also could 632 

result in important changes to their trafficking and functional properties (Sec. 3.6).  633 

How do these channels maintain specific location-dependent levels of expression with 634 

specific properties despite this staggering complexity that results in their assemblage and specific 635 

function? From the description above, it is clear that channels achieve specific properties and 636 

localization through multiple structural routes involving several subunits, enzymes associated 637 

with post-translational modification, neuromodulators and their receptors and several signaling 638 

cascades (also see Sec. 3.4–3.6). This follows the observation that each functional property of the 639 

channel, including its localization and targeting, is regulated by multiple mechanisms, each 640 
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endowed with the ability to bidirectionally modulate the functional property. Therefore, the 641 

combinatorial complexity of regulation and the involvement of different structural routes to 642 

achieve similar function together provide ample lines of evidence for the expression of 643 

degeneracy in achieving specific function for channels and receptors expressed in the 644 

hippocampus. In answering the question on how robustness might be achieved, the argument 645 

within the framework of degeneracy would be that functional robustness in the assemblage, 646 

targeting and function of ion channels is achieved as a consequence of the underlying regulatory 647 

and interactional complexity. 648 

 649 

3.2.	Degeneracy	in	neuronal	physiological	properties		650 

The presence of various ligand and voltage dependent ion channels confers signature 651 

neurophysiological properties, such as input resistance, firing rate, frequency selectivity and 652 

integration and propagation of potentials across axonal and dendritic processes, upon different 653 

hippocampal neurons (Hutcheon and Yarom, 2000; Johnston et al., 1996; Llinas, 1988). 654 

Although there is remarkable variability in these measurements even within a single neuronal 655 

subtype (Dougherty et al., 2012; Dougherty et al., 2013; Malik et al., 2016), different neuronal 656 

subtypes within the same subregion have signature electrophysiological characteristics 657 

(Anderson P, 2007; Freund and Buzsaki, 1996; Klausberger and Somogyi, 2008; Spruston, 2008) 658 

that are maintained despite the combinatorial complexity of ion channels expressed in these 659 

neurons. Additionally, prominent relationships between intrinsic neurophysiological properties 660 

and various pathological conditions, including epilepsy and Fragile X mental disorder, have been 661 

reported across several neurological disorders (Beck and Yaari, 2008; Bernard et al., 2007; 662 

Brager and Johnston, 2014; Johnston et al., 2016; Kullmann, 2002; Lee and Jan, 2012; 663 
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Lehmann-Horn and Jurkat-Rott, 1999; Lerche et al., 2013; Poolos and Johnston, 2012). Thus, 664 

from the maintaining robust physiology and from the perspective of avoiding pathological 665 

excitability conditions, it is essential that neurons maintain their signature electrophysiological 666 

characteristics. 667 

It is now recognized across systems that there is no one-to-one relationship between 668 

neurophysiological properties and the channels that regulate them (Sec. 2.1–2.3, Fig. 2–3). It is 669 

established that several channels contribute to the emergence and regulation of a specific 670 

physiological property, and the same channel could regulate several physiological properties, 671 

resulting in a many-to-many mapping between channels and physiological properties. In addition 672 

to the example assessing degeneracy in resonance properties (Sec. 2.1–2.2, Fig. 2–3), we could 673 

also consider the example of maintaining neuronal firing rates at specific levels. Whereas fast 674 

Na+ and delayed rectifier K+ channels mediate action potential firing in hippocampal neurons, 675 

their firing rate profiles are regulated by an array of ion channels including the A-type K+, HCN, 676 

GIRK, M-type K+ and SK channels (Adelman et al., 2012; Gasparini and DiFrancesco, 1997; Gu 677 

et al., 2005; Hu et al., 2007; Kim and Johnston, 2015; Kim et al., 2005; Malik and Johnston, 678 

2017; Narayanan and Johnston, 2007; Rathour et al., 2016).  679 

These observations provide specific insights about the relationship between channels and 680 

physiological properties (Sec. 2.1–2.3; Fig. 2–3). First, there is degeneracy in the emergence of 681 

neurophysiological properties, where disparate combinations of channels could come together to 682 

elicit similar functional properties (Das et al., 2017; Drion et al., 2015; Foster et al., 1993; 683 

Goldman et al., 2001; Marder, 2011; Marder and Goaillard, 2006; Rathour et al., 2016; Rathour 684 

and Narayanan, 2012a, 2014; Taylor et al., 2009).  685 
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Second, the dependence of different physiological properties on distinct channels is 686 

variable even within the same neuronal subtype, and is a function of the variable expression 687 

profiles of these channels (Drion et al., 2015; O'Leary et al., 2014; Rathour and Narayanan, 688 

2014; Taylor et al., 2009). For instance, whereas A-type K+ channels might contribute maximally 689 

to maintaining firing rates at a specific level in one neuron, in another neuron of the same 690 

subtype it could be SK channels.  691 

Third, the dependence of different physiological properties in the same neuron on distinct 692 

channels is differential and variable, where pharmacological blockade of one channel may have a 693 

stronger effect on a specific physiological property compared to another (Rathour et al., 2016). 694 

As a consequence of these observations, there is a dissociation between robust maintenance of 695 

one physiological property and that of another (Srikanth and Narayanan, 2015). Maintenance of 696 

only a few physiological properties would not necessarily translate to maintenance of all 697 

physiologically relevant properties. All relevant physiological properties ought to be explicitly 698 

maintained for overall robustness.  699 

Fourth, hippocampal neurons are endowed with complex dendritic arborization with 700 

several well-defined functional maps expressing along their somato-dendritic arbor, making 701 

proteostasis, or protein homeostasis (Balch et al., 2008), in these neurons a complex problem 702 

(Hanus and Schuman, 2013; Narayanan and Johnston, 2012).  Despite the strong structural 703 

constraint of maintaining robustness of several tightly coupled location-dependent functional 704 

measurements, it has been demonstrated that it is not essential to maintain individual channels at 705 

specific densities or with specific properties for achieving robust functional homeostasis. Instead, 706 

several disparate combinations of channel parameters, spanning properties and densities of 707 

several channels, could robustly maintain concomitant homeostasis of multiple functions across 708 
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the dendritic arbor (Rathour and Narayanan, 2014).  It is however essential to note that dendritic 709 

morphology plays a crucial role in regulating intrinsic properties and their location-dependent 710 

characteristics, especially in electrotonically non-compact hippocampal pyramidal neurons 711 

(Dhupia et al., 2015; Golding et al., 2005; Krichmar et al., 2002; Mainen and Sejnowski, 1996; 712 

Narayanan and Chattarji, 2010; Spruston et al., 1994; Spruston et al., 1993), and could contribute 713 

to degeneracy in the emergence of single-neuron physiology.  714 

Finally, depending on the localization profiles and voltage-dependent properties of 715 

different channels they may or may not spatiotemporally interact (Migliore and Migliore, 2012; 716 

Mishra and Narayanan, 2015; Rathour and Narayanan, 2012b). For instance, owing to mostly 717 

non-overlapping voltage-dependence and localization profiles, M-type K+ and HCN channels 718 

mediate complementary somato-dendritic theta filtering in hippocampal neurons (Hu et al., 719 

2009; Narayanan and Johnston, 2007, 2008). In contrast, A-type K+ and HCN channels strongly 720 

overlap both in their voltage-dependence and localization, resulting in their ability to co-regulate 721 

the same form of resonance in hippocampal pyramidal neurons (Rathour et al., 2016; Rathour 722 

and Narayanan, 2012a, 2014) 723 

These insights are driven by experimental observations coupled with physiologically 724 

relevant computational models that allowed greater flexibility in terms of understanding 725 

mechanistic basis, importance of ion channel interactions and the degree of contribution of each 726 

channel type in regulating neuronal properties. Multi parametric multi objective stochastic search 727 

algorithms are a class of algorithms that has been employed as an extremely effective method to 728 

explore cellular-level degeneracy in a systematic and rigorous manner through global sensitivity 729 

analysis (Anirudhan and Narayanan, 2015; Drion et al., 2015; Foster et al., 1993; Goldman et al., 730 

2001; Mukunda and Narayanan, 2017; Rathour and Narayanan, 2012a, 2014; Taylor et al., 731 
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2009). These algorithms provide a quantitative route to understanding the structure of the global 732 

parametric space in any given model, without making explicit assumptions about co-variation of 733 

different parameters test the robustness of the system to parametric variability. In this technique, 734 

model neurons generated by uniform random sampling of the global parametric space are tested 735 

against experimental statistics of several measurements. Model neurons that satisfy several 736 

experimental constraints are declared as “valid models". The use of multiple measurements to 737 

establish the validity of models is essential because of afore-mentioned (Sec. 2.1–2.3) 738 

dissociation between different forms of homeostasis and the differential dependence of different 739 

measurements on distinct constitutive components (Fig. 2–3). It is well recognized in the design 740 

principle of these techniques that establishing physiological equivalence of only a partial set of 741 

measurements does not necessarily ensure that the other measurements which have not been 742 

constrained by the validation process are within the physiological ranges (Achard and De 743 

Schutter, 2006; Foster et al., 1993; Goldman et al., 2001; Hobbs and Hooper, 2008; Marder, 744 

2011; Marder and Goaillard, 2006; Marder and Taylor, 2011; Prinz et al., 2003; Prinz et al., 745 

2004; Rathour and Narayanan, 2012a, 2014; Srikanth and Narayanan, 2015; Taylor et al., 2009; 746 

Tobin et al., 2006; Weaver and Wearne, 2008). If such a stochastic search algorithm fails to yield 747 

any valid model that satisfies all the physiological objectives, the interpretation should not be 748 

that the specified model configuration is incapable of achieving all objectives. This is because 749 

the stochastic search does not entirely span the global parametric space, thereby allowing for the 750 

possibility that valid solutions could exist within the unexamined regions of this parametric 751 

space. 752 

Once the validity of a (typically small) subset of models through multiple physiological 753 

constraints is established, the approach has been employed to explore degeneracy by assessing 754 
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pair-wise and cross-dependencies across different parameters. Pairwise correlations across valid 755 

model parametric values are typically employed to explore such dependencies, where a strong 756 

correlation between any two parameters is interpreted as a pointer to potential co-regulation of 757 

biological mechanisms defining these parameters (Anirudhan and Narayanan, 2015; Foster et al., 758 

1993; Goldman et al., 2001; Mukunda and Narayanan, 2017; Rathour and Narayanan, 2012a, 759 

2014; Taylor et al., 2009). These analyses also provide insights about how critically specific 760 

parameters should be regulated to achieve the multiple objectives imposed by the validation 761 

criteria. Importantly, these algorithms provide a quantitative route to finding the relative 762 

sensitivities of different measurements to each channel that contributed to the emergence of 763 

robust functionality spanning multiple measurements. It is recognized that the dependence of 764 

measurements on individual channels would be variable given that different model neurons are 765 

endowed with considerable variability in each channel conductance. However, it is still known 766 

that the average dependence of a given measurement (say resonance frequency) is higher for one 767 

specific channel (say HCN channels), relative to the other channels expressed in the system. 768 

Different methodologies have been proposed to assess these relative contributions and have been 769 

effectively employed to understand the differential and variable dependencies of different 770 

measurements on each underlying channel (O'Leary et al., 2014; Rathour and Narayanan, 2014; 771 

Taylor et al., 2009).  772 

 Together, through a confluence of electrophysiological and computational techniques that 773 

assessed variability and homeostasis in neuronal and channel properties, the expression of 774 

degeneracy in the emergence of single neuron physiology is well established across several 775 

systems, including the mammalian hippocampus. It is clear that disparate combinations of 776 

morphological and channel parameters could robustly yield analogous single neuron physiology, 777 
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despite being constrained by multiple measurements that span the entire somato-dendritic arbor 778 

of the same neuron. 779 

  780 

3.3.	Degeneracy	in	calcium	regulation	and	in	the	induction	of	synaptic	plasticity		781 

Whereas the ability to maintain baseline physiological measurements at specific levels is 782 

important from the homeostasis perspective, the ability to alter responses (through changes in 783 

parameters) towards achieving a specific target is important from the perspective of learning or 784 

encoding. This ability to undergo long-term plasticity is absolutely critical in an encoding 785 

system. One of the most well studied forms of long-term plasticity in hippocampal neurons is 786 

plasticity in synaptic structures. There are several lines of evidence for degeneracy in the 787 

induction, expression and maintenance of long-term synaptic plasticity and the mechanisms that 788 

are associated with each of these distinct phases of synaptic plasticity. As long-term synaptic 789 

plasticity is relatively well studied, we will first outline these lines of evidence from the synaptic 790 

plasticity perspective and then switch to the implications for concomitant non-synaptic plasticity 791 

that typically accompanies synaptic plasticity. 792 

 A popular methodology to study long-term synaptic plasticity in neurons within the 793 

hippocampus and other brain structures is the use of specific induction protocols that result in 794 

synaptic plasticity. These induction protocols are activity-dependent, and are typically induced 795 

by combinations of presynaptic stimulation and/or postsynaptic current injection. There are also 796 

several chemical protocols for inducing synaptic plasticity, say through depolarization induced 797 

through elevated levels of extracellular potassium or potassium channel blockers (Hanse and 798 

Gustafsson, 1994; Huang and Malenka, 1993; Huber et al., 1995; Lin et al., 2008; Otmakhov et 799 

al., 2004; Roth-Alpermann et al., 2006). These protocols are critically tied to the specific 800 
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synaptic structures that are studied and show signature profiles across synaptic structures of 801 

similar subtypes (Abbott and Nelson, 2000). The protocols required for induction of synaptic 802 

plasticity are not unique. Several disparate protocols with very distinct combinations of 803 

presynaptic stimulation and/or postsynaptic current injection (Fig. 4) have been shown to elicit 804 

long-term potentiation (LTP) or long-term depression (LTD). The cellular mechanisms required 805 

for inducing LTP are also very different across these protocols, with differences sometimes 806 

manifesting even within a single protocol for synapses at two different locations on the same 807 

neuron. For instance, with the theta burst protocol for inducing LTP (Fig. 4A), proximal synaptic 808 

LTP requires pairing with backpropagating action potentials, but distal synapses recruit dendritic 809 

spikes and do not require backpropagating action potentials (Golding et al., 2002; Kim et al., 810 

2015; Magee and Johnston, 1997).  811 

The ability of multiple activity protocols (Fig. 4) to elicit similar levels of synaptic 812 

plasticity might be an example of multiple realizability, but it could be argued that this does not 813 

constitute an instance of degeneracy, which requires that disparate structural components elicit 814 

similar function. To address this argument, we refer to established answers for one of the 815 

fundamental questions on synaptic plasticity: What is the mechanistic basis for these induction 816 

protocols to elicit synaptic plasticity? The influx of calcium into the cytosol is considered as the 817 

first step that results in the induction of LTP or LTD (Lynch et al., 1983; Malenka et al., 1992; 818 

Mulkey and Malenka, 1992). Quantitatively, there have been suggestions for the amplitude, 819 

spread and kinetics of cytosolic calcium elevation to be specific attributes that translate to the 820 

strength and direction of plasticity (Larkman and Jack, 1995; Lisman, 1989; Lisman, 2001; 821 

Shouval et al., 2002). From this perspective, it may be argued that disparate protocols for 822 

inducing LTP (or LTD) result in similar amplitude, spread and kinetics of calcium elevation, 823 
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thereby resulting in similar strength of LTP (or LTD). With calcium elevation established as a 824 

mechanistic basis for the induction of synaptic plasticity, the question of degeneracy here should 825 

now focus on the structural basis for eliciting similar elevation in cytosolic calcium.   826 

The mechanisms that govern the strength, spread and kinetics of neuronal calcium are 827 

well studied (Augustine et al., 2003; Berridge, 1998, 2002, 2006; Berridge et al., 2000; Frick et 828 

al., 2003; Higley and Sabatini, 2012; Jaffe et al., 1992; Miyakawa et al., 1992; Rizzuto and 829 

Pozzan, 2006; Ross, 2012; Sabatini et al., 2002; Yasuda et al., 2004). Briefly, synergistic 830 

interactions between three prominent sets of mechanisms (Fig. 5) regulate cytosolic calcium 831 

levels, especially from the perspective of induction of synaptic plasticity. First, the disparate 832 

structural components through which calcium ions flow into the cytosol either from the 833 

extracellular matrix or from the endoplasmic reticulum (ER). These are typically receptors or 834 

channels expressed on the plasma membrane or the ER membrane. The second set is built of 835 

disparate mechanisms that alter postsynaptic excitability, which mediates the conversion from 836 

synaptic current to synaptic voltage responses. Changes in excitability modulate voltage-levels, 837 

which in turn alter calcium influx through voltage-sensitive synaptic receptors or voltage-gated 838 

calcium channels. Finally, the expression of calcium-handling mechanisms such as pumps, 839 

exchangers and buffers limit the spatiotemporal spread of calcium thereby maintaining 840 

specificity of signaling, apart from regulating the strength and kinetics of calcium influx. Thus 841 

there are disparate mechanisms that regulate calcium influx, and non-unique combinations of 842 

these mechanisms could yield similar strength and kinetics of calcium influx in response to 843 

different induction protocols.  844 

 Importantly, electrophysiological recordings coupled with pharmacological treatments 845 

provide strong lines of evidence that induction of synaptic plasticity could indeed be mediated 846 
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and regulated by these distinct components. Specifically, there are strong lines of evidence that 847 

the induction of bidirectional synaptic plasticity in the hippocampus is mediated by different 848 

calcium sources, with certain protocols requiring synergistic activation of multiple calcium 849 

sources (Brager and Johnston, 2007; Christie et al., 1996; Golding et al., 2002; Huber et al., 850 

1995; Nishiyama et al., 2000; Raymond, 2007). These studies show that plasticity induction is 851 

dependent on influx of calcium through NMDA receptors (Christie et al., 1996; Collingridge and 852 

Bliss, 1987; Collingridge et al., 1983; Morris et al., 1986; Mulkey and Malenka, 1992; 853 

Nishiyama et al., 2000; Tsien et al., 1996; Wang et al., 2003), voltage-gated calcium channels 854 

(Brager and Johnston, 2007; Christie et al., 1996; Christie et al., 1997; Johnston et al., 1992; 855 

Moosmang et al., 2005; Nicholson and Kullmann, 2017; Wang et al., 2003), store-operated 856 

calcium channels (Baba et al., 2003; Garcia-Alvarez et al., 2015; Majewski and Kuznicki, 2015; 857 

Majewski et al., 2016; Prakriya and Lewis, 2015) and receptors on the ER activated by 858 

metabotropic receptors on the plasma membrane (Huber et al., 2000; Nishiyama et al., 2000; 859 

Verkhratsky, 2002). Additionally, voltage-gated channels and their auxiliary subunits 860 

(Anirudhan and Narayanan, 2015; Brager et al., 2013; Chen et al., 2006; Chung et al., 2009a; 861 

Chung et al., 2009b; Johnston et al., 2003; Jung et al., 2008; Kim et al., 2007; Lin et al., 2008; 862 

Lujan et al., 2009; Malik and Johnston, 2017; Nolan et al., 2004; Sehgal et al., 2013; Shah et al., 863 

2010; Watanabe et al., 2002) have also been shown to critically regulate the strength and 864 

direction of synaptic plasticity. Thus, several structural components that mediate or modulate 865 

calcium influx into the cytosol have been demonstrated as critical regulators of the induction of 866 

synaptic plasticity, both from the qualitative perspective of expression of plasticity and the 867 

quantitative perspective of the specific levels of plasticity attained with an induction protocol. 868 

Finally, computational modeling has demonstrated that similar synaptic plasticity profiles could 869 
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be achieved through disparate combinations of channels and receptors (Anirudhan and 870 

Narayanan, 2015; Ashhad and Narayanan, 2013; Narayanan and Johnston, 2010; Shouval et al., 871 

2002) and is critically dependent on the state of the synapse (Migliore et al., 2015). In 872 

conjunction with the experimental studies reviewed above, these provide very strong lines of 873 

evidence for degeneracy in the induction of synaptic plasticity, where similar levels of calcium 874 

influx and analogous synaptic plasticity could be achieved through disparate combinations of 875 

parameters that synergistically regulate calcium influx (Fig. 4B).  876 

 877 

3.4.	Degeneracy	in	signaling	cascades	that	regulate	synaptic	plasticity	878 
 879 
What follows calcium elevation in the process of inducing synaptic plasticity? Once specific 880 

strengths and kinetics of calcium influx are achieved as a consequence of induction protocols 881 

activating the several disparate mechanisms, is the route to the expression of synaptic plasticity 882 

unique? Could multiple mechanisms be activated in response to similar elevations of cytosolic 883 

calcium towards achieving specific levels of synaptic plasticity? In other words, is there 884 

degeneracy in terms of distinct pathways involving different constitutive components that could 885 

link the induction of synaptic plasticity to its expression? 886 

The large body of literature on the signaling cascades involved in synaptic plasticity has 887 

presented several lines of evidence that there are several signaling routes, contributing 888 

synergistically or differentially, to achieving the translation from the induction of synaptic 889 

plasticity to its expression (Fig. 6). Specifically, there is evidence that there are several 890 

biochemical species that control synaptic efficacy through a complex network of 891 

spatiotemporally interacting signaling cascades (Bhalla, 2014; Bhalla and Iyengar, 1999; 892 

Derkach et al., 2007; Kennedy, 2000; Kennedy et al., 2005; Kholodenko, 2006; Kotaleski and 893 

Blackwell, 2010; Larkman and Jack, 1995; Manninen et al., 2010; Neves and Iyengar, 2009; 894 
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Neves et al., 2008b; Regehr et al., 2009; Weng et al., 1999). It is also clear that the dominance of 895 

any specific cascade that determines the strength and direction of plasticity is dependent on 896 

synaptic state (Migliore et al., 2015), the protocol employed (Kandel et al., 2014; Mayford et al., 897 

2012) and on the spatiotemporal dynamics of changes in the postsynaptic calcium concentration 898 

(Berridge, 1998; Korte and Schmitz, 2016; Lisman, 1989; Lisman, 2001; Parekh, 2008; Rizzuto 899 

and Pozzan, 2006).  900 

The biochemical signaling diversity involved in synaptic plasticity spans both the pre- 901 

and post-synaptic sides. The signaling cascades involved in the translation of induction to 902 

expression include several enzymes that mediate posttranslational modification of disparate 903 

protein substrates, protein synthesis regulators, retrograde messengers, protein trafficking 904 

regulators and mechanisms mediating structural plasticity. As a specific example, with reference 905 

to the diversity of enzymes that are involved in post-translational modifications resulting in the 906 

expression of synaptic plasticity, it has been shown that different protocols for inducing LTP in 907 

the Schaffer collateral synapses projecting to CA1 are differentially dependent on different 908 

kinases (Kandel, 2001; Kandel et al., 2014; Manninen et al., 2010; Mayford et al., 2012; 909 

Raymond, 2007; Soderling and Derkach, 2000). Example kinases are the calcium-calmodulin 910 

kinase II, CaMKII (Lisman et al., 2002; Lisman et al., 2012; Malinow et al., 1989; Ouyang et 911 

al., 1997; Ouyang et al., 1999), protein kinase A, PKA (Frey et al., 1993; Lin et al., 2008; 912 

Otmakhova et al., 2000; Rosenkranz et al., 2009; Woo et al., 2003) and mitogen associated 913 

protein kinase, MAPK (English and Sweatt, 1997; Rosenkranz et al., 2009), which could be 914 

activated with the same or different LTP protocols. For instance, the theta-burst pairing protocol 915 

activates all of CaMKII, MAPK and PKA (Fan et al., 2005; Lin et al., 2008; Rosenkranz et al., 916 

2009), with very different target substrates involving different channels and receptors (see Sec. 917 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/203943doi: bioRxiv preprint 

https://doi.org/10.1101/203943


 44 

3.6). Additionally the expression of synaptic plasticity, or the substrate for altered synaptic 918 

efficacy, could be dependent on several factors (Sec. 3.5), each of which could undergo distinct 919 

plasticity with reference to the same activity protocols (Sec. 3.6). Together, the possible 920 

combinations of mechanisms that could mediate the translation of plasticity induction protocol to 921 

plasticity expression, even for a single synaptic subtype, are numerous. There are also lines of 922 

evidence that similar strength and direction of synaptic plasticity could be achieved through the 923 

activation of disparate combinations of these mechanisms, providing evidence for the 924 

manifestation of degeneracy in the signaling cascades that mediate the transition from plasticity 925 

induction to expression. 926 

 927 

3.5.	Degeneracy	in	the	expression	of	synaptic	plasticity		928 

The above analyses establish that hippocampal neurons exhibit degeneracy with reference to the 929 

induction of synaptic plasticity and in terms of the mechanisms that mediate the transition from 930 

induction to expression. Do these mechanisms act in concert to alter a single target to effectuate 931 

the expression of synaptic plasticity? Or are there multiple targets that could be altered to 932 

achieve similar strength and direction of synaptic plasticity in a specific synapse? 933 

 From the very first study that demonstrated LTP, it has been clear that the protocols 934 

employed for inducing synaptic plasticity can recruit different structural components (Bliss and 935 

Lomo, 1973):  936 

“The results suggest that two independent mechanisms are responsible for long-937 
lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the 938 
perforant path synapses; (b) an increase in the excitability of the granule cell 939 
population.” 940 
 941 

Several studies that followed up on this landmark study have now clearly shown that there are 942 

disparate routes to achieving synaptic plasticity, even with very similar strength and the same 943 
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direction of plasticity (Fig. 7). It is now well established that the expression of synaptic plasticity 944 

could recruit mechanisms spanning pre- and post-synaptic components, including 945 

channels/receptors, morphological features and cytoplasmic constituents on either side (Fig. 7). 946 

In other words, different combinations of changes in presynaptic channels/receptors, release 947 

mechanisms and postsynaptic channels/receptors could mediate the expression of synaptic 948 

plasticity.  949 

The framework of degeneracy provides an ideal way to reconcile the thorny debates 950 

regarding pre- and post-synaptic mechanisms that could mediate synaptic plasticity. Specifically, 951 

within this framework, pre- and post-synaptic components would be considered simply as a 952 

subset (see Sec. 3.6) of the broad repertoire of mechanisms that are available to the neural system 953 

to alter towards achieving a specific level of synaptic plasticity or accomplishing an encoding 954 

task. Disparate combinations of these components could synergistically contribute to the 955 

expression of specific levels of plasticity, at times even with temporal differences in the 956 

expression of plasticity in different components. The specific combination of changes that are 957 

recruited to mediate plasticity for a chosen protocol or for a given behavioral task would then be 958 

state-dependent, critically reliant on the specific calcium sources (Sec. 3.3) and signaling 959 

cascades (Sec. 3.4) that were recruited in response to the induction protocol or a behavioral task. 960 

In addition to these neuronal components, glial cells, through several mechanisms including 961 

gliotransmission or transmitter reuptake and recycling mechanisms, have also been shown to 962 

play a critical role in synaptic plasticity (Araque et al., 2014; Ashhad and Narayanan, 2016; 963 

Halassa et al., 2007; Haydon and Carmignoto, 2006; Henneberger et al., 2010; Pannasch and 964 

Rouach, 2013; Perea and Araque, 2007; Perea et al., 2016; Zorec et al., 2012), thereby adding 965 
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another layer of parameters and another set of interactional complexity to the mechanistic basis 966 

for synaptic plasticity.  967 

This combinatorial complexity of parameters and associated interactions provide a strong 968 

foundation for degeneracy in the emergence of not just the induction and expression of long-term 969 

plasticity, but also in the emergence of short-term synaptic plasticity. Specifically, several of the 970 

components involved in the induction and expression of long-term plasticity have also been 971 

shown to play critical roles in short-term forms of plasticity such as paired pulse facilitation, and 972 

on the synaptic filters that they mediate (Atwood et al., 2014; Bouchard et al., 2003; De Pitta et 973 

al., 2011; Dittman et al., 2000; Emptage et al., 2001; Fioravante and Regehr, 2011; Fortune and 974 

Rose, 2001; Regehr, 2012; Siegelbaum, 2000; Zucker, 1989, 1999; Zucker and Regehr, 2002). 975 

These observations, in conjunction with quantitative computational models have led to the 976 

suggestion for the manifestation of degeneracy in the emergence of short-term plasticity profiles 977 

and associated synaptic filters (Mukunda and Narayanan, 2017). Specifically, it has been 978 

demonstrated that analogous synaptic filters emerge from disparate combinations of presynaptic 979 

parameters (Mukunda and Narayanan, 2017). Together, these observations provide clear lines of 980 

evidence for the manifestation of degeneracy in short- and long-term forms of synaptic plasticity 981 

in the hippocampus. 982 

 983 

3.6.	Degeneracy	in	the	induction	and	expression	of	non-synaptic	plasticity	984 
 985 
It is now widely acknowledged that plasticity protocols and learning paradigms that were once 986 

assumed to exclusively recruit or induce synaptic plasticity also induce plasticity in other 987 

components (Fig. 8), in a manner that could either be localized or global. Similar to the study of 988 

synaptic plasticity, specific activity protocols (most of which are similar, if not identical, to 989 

synaptic plasticity protocols) are employed to assess plasticity in other protein molecules and 990 
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structural changes. Plasticity in voltage-gated ion channels and other neuronal components that 991 

result in changes to neuronal intrinsic properties have been dubbed as intrinsic plasticity, and is 992 

known to occur in the hippocampus with reference to most activity-dependent protocols 993 

employed for inducing synaptic plasticity (Brager and Johnston, 2007; Chung et al., 2009a; 994 

Chung et al., 2009b; Fan et al., 2005; Frick and Johnston, 2005; Frick et al., 2004; Johnston et 995 

al., 2003; Johnston and Narayanan, 2008; Kim and Linden, 2007; Lin et al., 2008; Losonczy et 996 

al., 2008; Magee, 2000; Mozzachiodi and Byrne, 2010; Narayanan and Johnston, 2007, 2008, 997 

2012; Nelson and Turrigiano, 2008; Remy et al., 2010; Sjostrom et al., 2008; Spruston, 2008; 998 

Wang et al., 2003; Zhang and Linden, 2003). Although it is generally assumed that intrinsic 999 

plasticity refers only to global changes in intrinsic excitability, it is important to recognize that 1000 

intrinsic plasticity encompasses all intrinsic properties that are mediated by neuronal constitutive 1001 

components (Llinas, 1988; Marder, 2011; Marder et al., 1996; Marder and Goaillard, 2006), 1002 

including neuronal spectral selectivity conferred by specific sets of ion channels (Das et al., 1003 

2017; Hutcheon and Yarom, 2000) and calcium wave propagation mediated by receptors on the 1004 

endoplasmic reticulum (Ross, 2012). These distinct intrinsic properties, including excitability, 1005 

have been shown to undergo bidirectional changes in a manner that is local to specific neuronal 1006 

locations or is global spanning all locations (Brager and Johnston, 2007; Das et al., 2017; 1007 

Johnston and Narayanan, 2008; Narayanan et al., 2010; Narayanan and Johnston, 2007, 2008). 1008 

As the protocols employed for inducing non-synaptic (including intrinsic and structural) 1009 

plasticity are at most instances identical to synaptic plasticity induction protocols, the broad 1010 

mechanisms involved in the induction and in the translation of induction to expression are very 1011 

similar to those for synaptic plasticity (Fig. 8). Specifically, induction of intrinsic plasticity 1012 

requires influx of cytosolic calcium with different kinetics and strengths of calcium translating to 1013 
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distinct strengths and directions of intrinsic plasticity (Brager and Johnston, 2007; Fan et al., 1014 

2005; Huang et al., 2005; Sjostrom et al., 2008; Wang et al., 2003). The components that 1015 

mediate calcium entry for synaptic plasticity also mediate calcium entry for non-synaptic 1016 

plasticity, including NMDA receptors (Chung et al., 2009a; Chung et al., 2009b; Engert and 1017 

Bonhoeffer, 1999; Fan et al., 2005; Frick et al., 2004; Huang et al., 2005; Lin et al., 2008; 1018 

Losonczy et al., 2008; Matsuzaki et al., 2004; Nagerl et al., 2004; Narayanan and Johnston, 1019 

2007; Tonnesen et al., 2014; Wang et al., 2003), voltage-gated calcium channels (Chung et al., 1020 

2009a; Chung et al., 2009b; Lin et al., 2008; Wang et al., 2003) and receptors on the ER 1021 

(Ashhad et al., 2015; Brager and Johnston, 2007; Brager et al., 2013; Clemens and Johnston, 1022 

2014; Kim et al., 2017; Narayanan et al., 2010). This implies that the arguments (Secs. 3.3–3.4) 1023 

placed about synergistic interactions between different calcium sources and about degeneracy in 1024 

the induction of synaptic plasticity extends to the induction of non-synaptic plasticity as well 1025 

(Fig. 8).  1026 

As a direct consequence of the similarity in the protocols employed in inducing synaptic 1027 

and intrinsic plasticity, the downstream mechanisms that mediate the translation from induction 1028 

of non-synaptic plasticity to its expression are also similar (Shah et al., 2010) to those that 1029 

mediate a similar transition in synaptic plasticity (Fig. 8). Several signaling cascades that are 1030 

present on the pre- and post-synaptic sides mediate this translation, with retrograde messengers 1031 

acting as mechanisms that signal the elevation of postsynaptic calcium to the presynaptic 1032 

terminals. Specifically, the same set of enzymes and messengers that mediate synaptic plasticity 1033 

also mediate non-synaptic plasticity (Fig. 8). Examples to this equivalence include non-synaptic 1034 

forms of plasticity that are mediated by CaMKII (Fan et al., 2005; Huang et al., 2005; Lujan et 1035 

al., 2009; Matsuzaki et al., 2004; Wang and Wagner, 1999), PKA (Lin et al., 2008; Narayanan et 1036 
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al., 2010; Rosenkranz et al., 2009) and MAPK (Rosenkranz et al., 2009; Yuan et al., 2002). 1037 

However, there could be dissociation between the mechanisms that are involved in the 1038 

translation to the expression of different forms of plasticity that are consequent to the same 1039 

induction protocol, where different enzymes and messengers mediate different forms of plasticity 1040 

(Brager and Johnston, 2007; Fan et al., 2005; Lin et al., 2008; Rosenkranz et al., 2009; Wang et 1041 

al., 2003). As mentioned earlier (Sec. 3.5), the expression of plasticity in synapses could be 1042 

mediated by plasticity in voltage-gated calcium channels that are expressed in the presynaptic 1043 

terminal, mediated by retrograde messengers and presynaptic signaling cascades, or by change in 1044 

mechanisms that alter postsynaptic excitability, thus blurring the distinction between synaptic 1045 

and certain forms of non-synaptic plasticity.  1046 

Following the activation of different signaling cascades, akin to the expression of 1047 

synaptic plasticity, several molecular processes, including synthesis, trafficking and post-1048 

translational modification of the several membrane and cytosolic proteins, mediate the final step 1049 

towards the expression of distinct forms of non-synaptic plasticity (Fig. 8). The mechanisms 1050 

behind the trafficking of several ion channels have been studied (Cusdin et al., 2008; Jensen et 1051 

al., 2011; Lai and Jan, 2006; Lau and Zukin, 2007; Lujan et al., 2009; Shah et al., 2010; Vacher 1052 

et al., 2008; Wenthold et al., 2003), and it is now clear that plasticity is ubiquitous (Kim and 1053 

Linden, 2007). In addition to these changes in cytosolic and membrane proteins, it has been 1054 

shown that hippocampal spines undergo continuous structural changes, apart from 1055 

demonstrations of distinct forms of structural plasticity in spines, dendrites and axons (Attardo et 1056 

al., 2015; Chen et al., 2014; Emoto, 2011; Engert and Bonhoeffer, 1999; Ghiretti and Paradis, 1057 

2014; Grubb and Burrone, 2010a, b; Grubb et al., 2011; Ikegaya et al., 2001; Johnston et al., 1058 

2016; Luo and O'Leary, 2005; Matsuzaki et al., 2004; Nagerl et al., 2004; Tonnesen et al., 2014; 1059 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/203943doi: bioRxiv preprint 

https://doi.org/10.1101/203943


 50 

Yuste and Bonhoeffer, 2001). Finally, the dynamics associated with the various glial functions 1060 

and their interactions with neuronal and metabolic pathways could also undergo changes in 1061 

response to behavioral experiences and activity (Araque et al., 2014; Baumann and Pham-Dinh, 1062 

2001; Fields, 2010; Halassa and Haydon, 2010; Haydon and Carmignoto, 2006; Khakh and 1063 

Sofroniew, 2015; Pannasch and Rouach, 2013; Perea et al., 2016; Sierra et al., 2014; Volterra et 1064 

al., 2014). It is therefore clear that there is no escape from the conclusion that activity- or 1065 

experience- or pathology-dependent plasticity does not confine itself to a few constitutive 1066 

components, but is rather expansive and even ubiquitous (Kim and Linden, 2007). There are 1067 

considerable overlaps in the mechanisms that mediate the induction and expression of these 1068 

forms of plasticity, and many-to-one and one-to-many mappings between the induction protocol 1069 

(or behavioral experience) and achieving specific levels of plasticity in specific components (Fig. 1070 

8).  1071 

In summary, the lines of evidence provided above point to ample evidence for 1072 

degeneracy in the process of their induction and expression of different forms of plasticity and 1073 

their combinations, both in terms of their individual strengths and directions. This also implies 1074 

that the same functional changes could be achieved through distinct combinations of plasticity 1075 

mechanisms, thus pointing to a further dissociation between functional homeostasis and the 1076 

plasticity mechanisms that yielded it. In other words, functional equivalence in terms of 1077 

transition from one state to another does not necessarily translate to plasticity equivalence (where 1078 

the route taken to achieve the transition is always identical). An important class of plasticity 1079 

models has recognized the ubiquitous nature of plasticity, with models built within this 1080 

framework of plasticity degeneracy. These models account for concomitant changes in multiple 1081 

components, also accounting for disparate combinations of plasticity resulting in similar 1082 
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functional outcomes, rather than assuming plasticity equivalence in the face of functional 1083 

equivalence (Abbott and LeMasson, 1993; Anirudhan and Narayanan, 2015; LeMasson et al., 1084 

1993; Mukunda and Narayanan, 2017; O'Leary et al., 2013; O'Leary et al., 2014; Siegel et al., 1085 

1994; Srikanth and Narayanan, 2015). Future theoretical and experimental investigations into 1086 

hippocampal plasticity should therefore account for the truly ubiquitous nature of plasticity in 1087 

designing their experiments and addressing outstanding questions, rather than assuming that 1088 

plasticity is confined to one single component or the other (Bhalla, 2014; Kim and Linden, 1089 

2007). 1090 

 1091 

3.7.	Degeneracy	in	metaplasticity	and	in	maintaining	stability	of	learning		1092 

Hebbian synaptic plasticity is inherently unstable. In the absence of concomitant homeostatic 1093 

mechanisms, Hebbian plasticity would result in runaway excitation (Fig. 9). Several theories and 1094 

mechanisms have been proposed as a means to avoid this runaway excitation (Abbott, 2003; 1095 

Abraham and Robins, 2005; Korte and Schmitz, 2016; Miller and MacKay, 1994; Nelson and 1096 

Turrigiano, 2008; Turrigiano, 2007, 2011; Turrigiano, 1999, 2008, 2017; Turrigiano and Nelson, 1097 

2000; van Rossum et al., 2000; Zenke et al., 2017). A prominent theme that spans several such 1098 

stability theories is metaplasticity (Abraham, 2008; Abraham and Bear, 1996; Abraham and 1099 

Tate, 1997; Hulme et al., 2013), where the profile of plasticity concomitantly changes with the 1100 

induction of plasticity (Fig. 9A–B). An extremely useful mathematical treatise that has helped in 1101 

the understanding metaplasticity and stability, especially for synaptic plasticity profiles in the 1102 

hippocampus, is the Bienenstock-Cooper-Munro  (BCM) rule (Bienenstock et al., 1982; Cooper 1103 

and Bear, 2012; Shouval et al., 2002; Yeung et al., 2004). This is despite the observation that the 1104 

BCM framework and the synaptic plasticity framework in hippocampal synapses are not 1105 
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completely analogous to each other (Cooper et al., 2004). It should also be noted that not all 1106 

synapses follow a BCM-like synaptic plasticity profile, and therefore a stability theory dependent 1107 

on this rule is not generalizable to all synapses (Abbott and Nelson, 2000; Jorntell and Hansel, 1108 

2006). 1109 

 Although the utility of BCM-like synaptic rule in understanding stability in synaptic 1110 

learning has been invaluable, the exact mechanisms that mediate the sliding modification 1111 

threshold and the consequent metaplasticity has remained an open question. Several mechanisms 1112 

(Fig. 9C) involving changes in morphological characteristics, several receptors, ion channels and 1113 

signaling cascades have been proposed as candidates for this role (Abraham, 2008; Abraham and 1114 

Bear, 1996; Abraham et al., 2001; Abraham and Tate, 1997; Anirudhan and Narayanan, 2015; 1115 

Bear, 2003; Bear et al., 1987; Cooper and Bear, 2012; Hulme et al., 2013; Kalantzis and 1116 

Shouval, 2009; Narayanan and Johnston, 2010; Philpot et al., 2003; Philpot et al., 2001; Sehgal 1117 

et al., 2013; Triesch, 2007). As any change in mechanisms that regulate the induction or 1118 

expression of synaptic plasticity would result in a change in plasticity profiles (Sec. 3.3–3.5), it is 1119 

not surprising that mechanisms that regulate synaptic plasticity are candidate mechanisms that 1120 

mediate metaplasticity. Similar to the argument placed with reference to the mechanisms that 1121 

mediate the expression of synaptic plasticity, the framework of degeneracy provides an elegant 1122 

solution to the question on which of these is the mechanism that mediates the sliding 1123 

modification threshold within a BCM-like plasticity framework. It offers reconciliation to this 1124 

conundrum by suggesting that disparate combinations of these distinct mechanisms could result 1125 

in similar plasticity profiles (Fig. 9D–E), thereby suggesting degeneracy in the emergence of 1126 

metaplasticity and stability in synaptic learning (Anirudhan and Narayanan, 2015). Finally, it 1127 

was traditionally assumed that stability and homeostatic mechanisms are slower compared to the 1128 
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encoding mechanisms. However, there are several lines of theoretical and experimental evidence, 1129 

spanning several synaptic and intrinsic components as candidate mechanisms, for concurrent 1130 

emergence of encoding, stability and activity homeostasis. These lines of evidence also argue for 1131 

prominent advantages when encoding, homeostasis and stability mechanisms are concurrent 1132 

(Anirudhan and Narayanan, 2015; Honnuraiah and Narayanan, 2013; Ibata et al., 2008; Jedlicka 1133 

et al., 2015; Johnston and Narayanan, 2008; Narayanan and Johnston, 2007, 2010; Nelson and 1134 

Turrigiano, 2008; O'Leary et al., 2014; Triesch, 2007; Turrigiano, 2011; Turrigiano, 2008, 2017; 1135 

Zenke et al., 2017). 1136 

Within the framework of degeneracy, the goal of concomitantly achieving encoding-1137 

driven plasticity, activity homeostasis and stable learning is achieved through disparate 1138 

combinations of synaptic, intrinsic, glial and structural plasticity. With abundant experimental 1139 

evidence for plasticity in each of these different components occurring in an activity- or 1140 

experience-dependent manner (Sec. 3.6), it is important that the analyses of stable learning 1141 

broaden their focus beyond the narrow realm of stable synaptic learning. The current theories 1142 

implicitly or explicitly assume that encoding is driven by synaptic plasticity, with several 1143 

mechanisms contributing to the stability of this synaptic learning system. The metaplasticity 1144 

framework also largely focuses on plasticity of synaptic plasticity profiles, although the 1145 

mechanisms that mediate several forms of plasticity overlap with each other (Sec. 3.6). Future 1146 

frameworks should therefore analyze concomitant learning and stability as a consequence of 1147 

disparate forms of plasticity, also assessing metaplasticity of intrinsic, glial and structural 1148 

plasticity. While plasticity in synaptic structures form a component of learning and stability, 1149 

given the abundant lines of experimental evidence on ubiquitous plasticity, it is extremely critical 1150 
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that learning and stability theories broaden their horizon to encompass all forms of plasticity and 1151 

degeneracy therein.  1152 

3.8.	Degeneracy	in	the	generation	and	regulation	of	local	field	potentials	1153 

Extracellular field recordings are useful readouts of network activity in a given brain region. 1154 

Local field potentials (LFP), the low pass filtered version of field recordings have traditionally 1155 

been thought to provide information about afferent synaptic activity. LFPs recorded from within 1156 

the hippocampus exhibit signature activity patterns that are dependent on the behavioral state of 1157 

the animal. For instance, they manifest strong oscillations in the theta frequency range (4–10 Hz) 1158 

during exploratory behavior and during rapid eye moment (REM) sleep, and show characteristic 1159 

sharp-wave ripple patterns during rest and non-REM sleep. These distinct activity patterns have 1160 

been postulated to serve specific functions such as in the consolidation of memory and in neural 1161 

encoding of space (Buzsaki, 1986, 1989, 2002, 2006, 2015; Buzsaki and Moser, 2013; Colgin, 1162 

2013; English et al., 2014; Grosmark et al., 2012; Hartley et al., 2014; Lisman and Jensen, 2013; 1163 

Mizuseki and Buzsaki, 2014; Montgomery et al., 2008; Moser et al., 2008; Moser et al., 2015; 1164 

Tononi and Cirelli, 2006; Wilson and McNaughton, 1994; Ylinen et al., 1995a; Ylinen et al., 1165 

1995b).  1166 

Although these signature patterns of extracellular events manifest as repeating motifs, 1167 

there are strong lines of theoretical and experimental evidence that they emerge from very 1168 

disparate structures. For instance, theta oscillations in the hippocampus have shown to be 1169 

afferent from two reciprocally connected subcortical nuclei that act as pacemakers, the medial 1170 

septum-diagonal band of Broca and the supramammillary region. Apart from these two 1171 

subcortical nuclei, inputs from entorhinal cortex and CA3 also play an important role in the 1172 

generation of theta oscillations in the hippocampus. Furthermore, theoretical modeling and in 1173 
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vitro data also suggest that an intact hippocampus could sustain theta oscillations on its own in a 1174 

manner that is dependent on intra-hippocampal excitatory and inhibitory synaptic connections 1175 

(Buzsaki, 2002, 2006; Colgin, 2013, 2016; Goutagny et al., 2009; Kamondi et al., 1998; Traub et 1176 

al., 1989). A similar analysis, in terms of disparate underlying sources and mechanisms, holds 1177 

for gamma frequency oscillations that are observed in the hippocampus as well (Buzsaki and 1178 

Wang, 2012; Colgin, 2016; Colgin and Moser, 2010; Csicsvari et al., 2003; Wang, 2010; Wang 1179 

and Buzsaki, 1996). In addition, apart from synaptic contributions to the LFPs, it is now clear 1180 

that return transmembrane currents from sub- and supra-threshold somatodendritic ion channels 1181 

also alter the LFP in terms of their frequency content, amplitude and phase (Buzsaki et al., 2012; 1182 

Einevoll et al., 2013; Ness et al., 2016; Reimann et al., 2013; Schomburg et al., 2012; Sinha and 1183 

Narayanan, 2015; Taxidis et al., 2015). In addition, several mechanisms such ephaptic coupling, 1184 

heterogeneous extracellular resistivity, glial and axonal transmembrane mechanisms also 1185 

contribute and regulate local field potentials, resulting in a complexity that spans almost all 1186 

parameters of the local network (Anastassiou and Koch, 2015; Buzsaki et al., 2012; Einevoll et 1187 

al., 2013; Kajikawa and Schroeder, 2011; Katzner et al., 2009; Linden et al., 2011).  1188 

From the complexity involved in the generation and regulation of hippocampal LFPs, 1189 

with several brain regions and several constitutive network components contributing to their 1190 

emergence, it is easy to discern that similar LFP patterns could be achieved through non-unique 1191 

combinations of disparate components. Irrespective of whether it is the manifestation of an 1192 

oscillatory pattern in a given frequency range (Buzsaki, 2002; Buzsaki and Wang, 2012; Colgin, 1193 

2013; Colgin and Moser, 2010; Csicsvari et al., 2003), or the emergence of sharp wave ripples 1194 

(Buzsaki, 2015; English et al., 2014; Taxidis et al., 2015), or the emergence of resonance in the 1195 

LFP power spectral density (Ness et al., 2016), or achieving a given phase of single-neuron 1196 
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firing with reference to an LFP oscillation (Sinha and Narayanan, 2015), the routes are several 1197 

and involve several disparate structural components. Thus, there is evidence for degeneracy in 1198 

the mechanisms that mediate and regulate local field potentials, implying that extreme caution 1199 

should be exercised in making one-to-one relationships between constitutive components and 1200 

specific aspects of LFP recordings (Anastassiou and Koch, 2015; Buzsaki et al., 2012; Einevoll 1201 

et al., 2013; Kajikawa and Schroeder, 2011; Katzner et al., 2009; Linden et al., 2011). 1202 

 1203 

3.9.	Degeneracy	in	neural	coding	1204 

A particularly thorny debate that has spanned decades is about the codes employed by neurons in 1205 

encoding their inputs. The crux of the debate has been about whether neurons encode 1206 

information in the rate of or in the precise timing of action potential firing (Buzsaki et al., 2013; 1207 

Engel et al., 2001; Engel and Singer, 2001; Fries et al., 2007; Gallistel, 2017; Jaramillo and 1208 

Kempter, 2017; London et al., 2010; Panzeri et al., 2017; Shadlen and Newsome, 1994, 1995, 1209 

1998; Singer et al., 1997; Softky, 1994; Softky, 1995). Arguments against temporal coding have 1210 

raised questions about the ability of neurons to perform millisecond-or-submillisecond 1211 

coincidence detection that is essential for decoding a temporal code, about the relevance of 1212 

precise timing in the face of noise and variability in neuronal responses to identical stimuli and 1213 

about the ability of neuronal networks to reliably propagate synchronous firing (London et al., 1214 

2010; Panzeri et al., 2017; Shadlen and Newsome, 1994, 1998). Counterarguments have relied 1215 

on the demonstration of millisecond-or-submillisecond coincidence detection in active dendritic 1216 

structures, on the dependence of synchrony propagation on neuronal intrinsic properties and 1217 

input structure and on the existence of temporally precise cell assemblies that could mitigate the 1218 

overall background noise in decoding the precise timing of inputs (Buzsaki, 2010; Buzsaki et al., 1219 
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2013; Das and Narayanan, 2015, 2017; Diesmann et al., 1999; Engel et al., 2001; Engel and 1220 

Singer, 2001; Fries et al., 2007; Golding and Oertel, 2012; Hong et al., 2012; Pastalkova et al., 1221 

2008; Reyes, 2003; Singer et al., 1997; Softky, 1994). 1222 

 The expression of coding degeneracy in the cellular and network scales (Leonardo, 1223 

2005), in terms of the ability of disparate structural components to elicit similar input-output 1224 

characteristics, is clear from the lines of evidence presented earlier (Sec. 2.2). In addition, 1225 

employing electrophysiological recordings and computational models to assess subthreshold 1226 

resonance and spike triggered average (STA) of model neurons, it has been shown that 1227 

hippocampal pyramidal neurons are selective to different input features (including spectral 1228 

features and temporal coincidence of inputs) depending on the dendritic location of their inputs. 1229 

This location-dependent feature encoding is mediated by ion channel expression profiles, and 1230 

could be achieved through disparate combinations of different ion channel expression profiles 1231 

(Das and Narayanan, 2014, 2015, 2017; Das et al., 2017; Narayanan and Johnston, 2007, 2012; 1232 

Rathour et al., 2016; Rathour and Narayanan, 2012a, 2014). Given the well-established strong 1233 

relationship between STA and types of coding (Ratte et al., 2013), this location-dependent 1234 

scenario argues for location-dependent forms of coding. Specifically, the soma and proximal 1235 

dendrites showing class I STA (integrator) and the distal dendrites manifesting class II STA 1236 

(coincidence detector) as a consequence of the differential expression of different channels (Das 1237 

and Narayanan, 2015). Therefore, it seems reasonable to postulate that the proximal and distal 1238 

regions are respectively geared towards rate and temporal coding, with this location-dependent 1239 

differential coding strategy extending to cortical and hippocampal neurons (Branco and Hausser, 1240 

2010, 2011; Das and Narayanan, 2015). Finally, behaviorally-driven neuromodulatory inputs and 1241 

activity-dependent plasticity could markedly alter the operating mode and the class of 1242 
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excitability of compartments of a single neuron, and the type of coding employed by a neuron is 1243 

dependent not just on its operating mode but also the specific characteristics of the input. Thus, 1244 

even from the perspective of encoding strategies within a single neuron, the arguments that pitch 1245 

rate coding against temporal coding are oversimplifying the complexity of neural encoding and 1246 

decoding. Instead, there are broad lines of evidence pointing to a hybrid rate/temporal coding 1247 

system that encompasses degeneracy by achieving encoding goals through disparate 1248 

combinations of several cellular and network components in a manner that is strongly dependent 1249 

on several spatiotemporal aspects of neuronal and behavioral state (Das and Narayanan, 2014, 1250 

2015; Das et al., 2017; Diesmann et al., 1999; Lee and Dan, 2012; Marder, 2012; Marder and 1251 

Thirumalai, 2002; Ratte et al., 2013).  1252 

With reference to neural codes for features of the external environment, the coding of 1253 

spatial location of animal in the hippocampus is an ideal instance of hybrid encoding schema that 1254 

expresses degeneracy. Unlike the argument for rate vs. temporal coding that seems to drive the 1255 

narrative otherwise (Buzsaki et al., 2013; Engel et al., 2001; Engel and Singer, 2001; Fries et al., 1256 

2007; Gallistel, 2017; Jaramillo and Kempter, 2017; London et al., 2010; Panzeri et al., 2017; 1257 

Shadlen and Newsome, 1994, 1995, 1998; Singer et al., 1997; Softky, 1994; Softky, 1995; 1258 

Srivastava et al., 2017), hippocampal physiologists have concurred on the existence of 1259 

dual/hybrid encoding schema for place-specific encoding. Specifically, place cells in the 1260 

hippocampus elicit higher rates of firing when the animal enters a specific place field. In 1261 

conjunction, the phase of action potential firing of place cells with reference to the extracellular 1262 

theta rhythm also advances as a function of spatial location of the animal within the place field. 1263 

Thus, hippocampal place cells employ a dual code of firing rate and phase of firing (temporal 1264 

coding involving the precise timing of action potential firing) to represent spatial location of the 1265 
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animal (Ahmed and Mehta, 2009; Buzsaki and Moser, 2013; Derdikman and Moser, 2010; 1266 

Hartley et al., 2014; Harvey et al., 2009; Huxter et al., 2003; Lisman, 2005; Lisman and Jensen, 1267 

2013; Mehta et al., 2002; Moser et al., 2008; Moser et al., 2015; O'Keefe, 1976, 1979; O'Keefe 1268 

and Burgess, 1999, 2005; O'Keefe et al., 1998; O'Keefe and Conway, 1978; O'Keefe and Recce, 1269 

1993; Skaggs et al., 1996). In certain cases, it has been shown that the two coding schema act 1270 

independent of each other and could act as the fail-safe mechanisms for each other (Aghajan et 1271 

al., 2015; Huxter et al., 2003). 1272 

Whereas these lines of evidence make a case for employing disparate coding schemas in 1273 

encoding the same input, the case for disparate mechanisms involved in encoding and 1274 

maintaining the rate and temporal codes is also strong. Specifically, the role of afferent synaptic 1275 

drive, local inhibition, several ion channels and receptors, dendritic spikes, spatiotemporal 1276 

interactions between somatodendritic channels and receptors, and plasticity in each of these 1277 

components have all been implicated in the emergence and maintenance of these codes (Bittner 1278 

et al., 2015; Danielson et al., 2016; Geisler et al., 2010; Geisler et al., 2007; Grienberger et al., 1279 

2017; Harvey et al., 2009; Lee et al., 2012; Losonczy et al., 2010; Magee, 2001; Nakashiba et 1280 

al., 2008; Nakazawa et al., 2004; Nolan et al., 2004; Royer et al., 2012; Sheffield and Dombeck, 1281 

2015; Skaggs et al., 1996; Tsien et al., 1996; Wills et al., 2005). In addition, there are lines of 1282 

experimental evidence that suggest that subthreshold afferent synaptic inputs from several place 1283 

fields arrive onto a single place cell, and that a silent cell could be converted to a place cell for 1284 

any of these place fields by an appropriate plasticity-inducing stimulus (Bittner et al., 2015; Lee 1285 

et al., 2012), suggesting that disparate cells could achieve the same function of encoding a given 1286 

spatial location. The expression profiles of several channels and receptors control the overall 1287 

excitability of a neuron (Sec. 2.2), and there are several mechanisms that regulate the phase of 1288 
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intracellular voltage oscillations with reference to an external reference or to the overall afferent 1289 

current (Geisler et al., 2010; Geisler et al., 2007; Harvey et al., 2009; Narayanan and Johnston, 1290 

2008; Rathour et al., 2016; Rathour and Narayanan, 2012a, 2014; Sinha and Narayanan, 2015; 1291 

Skaggs et al., 1996). Together, these studies point to the possibility that similar rate and phase 1292 

spatial codes in a neuron could be achieved through disparate combinations of constituent 1293 

components, and several neurons could encode for the same place field with distinct 1294 

combinations of these mechanisms. Future studies could further explore the manifestation of 1295 

degeneracy in spatial coding in the hippocampus, focusing on the hybrid code involving rate as 1296 

well as phase encoding of input features. 1297 

 1298 

3.10.	Degeneracy	in	learning	and	memory	1299 

Behavior emerges as a consequence of coordinated activity of multiple brain regions in 1300 

conjunction with sensory and motor systems (Bennett and Hacker, 2003; Jazayeri and Afraz, 1301 

2017; Krakauer et al., 2017; Tytell et al., 2011; Vetere et al., 2017). The hippocampus has been 1302 

implicated in several forms of spatial and non-spatial learning, with strong links to episodic 1303 

memory (Anderson et al., 2007; Bird and Burgess, 2008; Bliss and Collingridge, 1993; Bunsey 1304 

and Eichenbaum, 1996; Lynch, 2004; Marr, 1971; Martin et al., 2000; Martinez and Derrick, 1305 

1996; Mayford et al., 2012; Morris, 1989; Morris et al., 1986; Morris et al., 1982; Moser et al., 1306 

2015; Nakazawa et al., 2004; Neves et al., 2008a; Rajasethupathy et al., 2015; Scoville and 1307 

Milner, 1957; Squire et al., 2004; Whitlock et al., 2006).  1308 

 The quest for the mechanistic basis for learning and memory in the hippocampus has 1309 

spanned several decades, especially since the strong links between the hippocampal lesions and 1310 

specific forms of memory were established (Scoville and Milner, 1957). This quest has spanned 1311 
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several scales of analysis, with efforts to link specific genes, receptors, channels and forms of 1312 

cellular plasticity to learning and memory. Several studies have assessed the link between 1313 

specific behavioral tasks and cellular/molecular substrates through targeted pharmacological 1314 

blockades or genetic manipulations. The existence of divergent and numerous cellular/molecular 1315 

components that impair specific learning tasks have been unveiled by these efforts, revealing 1316 

considerable complexity in the plasticity networks and systems biology of learning and memory. 1317 

As is evident from this complexity and associated animal-to-animal and cell-to-cell variability, 1318 

which involves the ensemble of mechanisms and interactions discussed above not just from 1319 

within the hippocampus but also from other brain regions, demonstrating causality with 1320 

reference to learning and memory and any one specific form of plasticity or cellular/molecular 1321 

substrate, has proven extremely challenging (Andersen et al., 2006; Bennett and Hacker, 2003; 1322 

Bhalla, 2014; Bhalla and Iyengar, 1999; Bliss and Collingridge, 1993; Collingridge and Bliss, 1323 

1987; Jazayeri and Afraz, 2017; Kandel, 2001; Kandel et al., 2014; Kim and Linden, 2007; 1324 

Kotaleski and Blackwell, 2010; Krakauer et al., 2017; Lynch, 2004; Manninen et al., 2010; 1325 

Martin et al., 2000; Martinez and Derrick, 1996; Mayford et al., 2012; Mozzachiodi and Byrne, 1326 

2010; Neves et al., 2008a; Zhang and Linden, 2003).   1327 

The complexities of the networks that are involved in learning and memory are only 1328 

compounded by the many-to-many mappings that are observed between behavioral observations 1329 

and molecular/cellular components, the joint occurrence of several forms of plasticity with the 1330 

same protocols (Sec. 3.6), the concurrent impairments in different forms of plasticity by 1331 

blockade of the same signaling cascades (Sec. 3.6), the dissociations between different learning 1332 

tasks and the compensatory mechanisms that are associated with the knockout of specific genes 1333 

(Bailey et al., 2006; Jazayeri and Afraz, 2017; Krakauer et al., 2017; Mayford et al., 2012; 1334 
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Tsokas et al., 2016). For instance, the knock out of GluA1 (also referred to as GluR1 or GluRA), 1335 

an AMPAR subunit that is important for expression of certain forms of synaptic plasticity, 1336 

impaired only some forms of synaptic plasticity and not others at the cellular scale of analysis 1337 

(Hoffman et al., 2002; Phillips et al., 2008; Zamanillo et al., 1999). Similarly, at the behavioral 1338 

level, although behavioral deficits were observed in certain learning tasks in GluA1 knockout 1339 

mice, the knock out did not alter behavior in other learning tasks (Reisel et al., 2002; Zamanillo 1340 

et al., 1999). Several examples of such dissociations are reviewed in (Mayford et al., 2012), 1341 

further emphasizing the difficulty in assigning a causal link between learning and memory and 1342 

any one specific form of plasticity or cellular/molecular substrate. 1343 

Although this parametric and interactional complexity might seem exasperating if the 1344 

goal is to pinpoint the cellular/molecular component that is involved in hippocampal-dependent 1345 

learning and memory, it is an extremely useful substrate for the effective expression of 1346 

degeneracy in achieving the goal of robust learning and memory. The ability to achieve very 1347 

similar learning indices through multiple routes involving disparate forms of plasticity in several 1348 

constitutive components tremendously increases the ability of the system to achieve robust 1349 

learning. As a consequence of the several forms of variability and state-dependence exhibited by 1350 

the learning system, in terms of the underlying components, their plasticity and combinatorial 1351 

interactions, it is possible that some of these disparate routes may not involve specific 1352 

cellular/molecular components or forms of plasticity in the process of achieving certain learning 1353 

goals. This also implies animal-to-animal and trial-to-trial variability in the mechanisms that 1354 

mediate learning, thereby calling for utmost caution in assigning one-to-one relationships 1355 

between behavioral learning and specific forms of plasticity in any single brain region (Bailey et 1356 

al., 2006; Bennett and Hacker, 2003; Jazayeri and Afraz, 2017; Krakauer et al., 2017; Mayford 1357 
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et al., 2012; O'Leary and Marder, 2014; Sieling et al., 2014; Tsokas et al., 2016; Vogelstein et 1358 

al., 2014).  1359 

4.	The	causality	conundrum	1360 

It is clear from the analyses above that theoretical and experimental evidence exist for: (a) 1361 

several disparate combinations of distinct constitutive components elicit analogous function; (b) 1362 

there are forms of animal-to-animal (channel-to-channel, neuron-to-neuron, network-to-network, 1363 

etc.) variability in terms of the contributions of specific constitutive components that mediate 1364 

similar function; and (c) the components that mediate similar function, and their relative 1365 

contributions to the emergence of this function are state-dependent, and could undergo 1366 

experience-dependent plasticity (towards maintaining robustness of that function or towards 1367 

learning-dependent alteration of function). Juxtaposed against these observations is the question 1368 

on whether it is even possible to exclusively assign causal one-to-one relationships between 1369 

function and specific constitutive components. Evidence for the existence of degeneracy, 1370 

variability and adaptability have made us acutely aware of the possibility that we could be 1371 

committing mereological fallacies (Bennett and Hacker, 2003; Varzi, 2016), whereby we assign 1372 

specific behavioral roles to parts of the animal’s brain or to plasticity therein (Bailey et al., 2006; 1373 

Jazayeri and Afraz, 2017; Krakauer et al., 2017; Mayford et al., 2012; O'Leary and Marder, 1374 

2014; Sieling et al., 2014; Tsokas et al., 2016; Vogelstein et al., 2014).  1375 

4.1. Inevitable flaws in an experimental plan to establish causality that leaps across 1376 

multiple scales 1377 

Let us chart a hypothetical experimental plan where we are interested in demonstrating that a 1378 

specific form of learning behavior is dependent on plasticity in one specific component (let’s say 1379 
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component X) in a brain region of our choice (let’s say hippocampus). We first measure in vivo 1380 

plasticity in component X along with its time course, and let us say that we find a prominent 1381 

correlation between this time course and the time course of behavioral learning. Next, we 1382 

introduce an established blocker of plasticity in component X specifically into the hippocampus, 1383 

and find that this blocks both the plasticity in component X in vivo and impairs learning. We 1384 

repeat similar experiments with (a) an established pharmacological blocker of component X 1385 

infused into the hippocampus; (b) transgenic manipulations that take out component X 1386 

completely in the hippocampus; (c) a pharmacological blocker that leaves component X intact, 1387 

but impairs its plasticity by blocking a mechanism that induces plasticity in component X; and 1388 

(d) genetic knockout of mechanisms that mediates plasticity in component X. Let’s say that 1389 

learning was impaired in all four cases, and there was no plasticity in component X in the last 1390 

two cases (in the first two cases component X was completely abolished). As a final nail in the 1391 

hypothesis to link plasticity in hippocampal component X to the specific learning behavior, we 1392 

artificially alter component X and consequently find behavioral signatures related to the learning 1393 

process. Therefore, we have shown that component X and its plasticity are necessary and 1394 

sufficient for the specific learning behavior. This experimental plan is broadly similar to that 1395 

proposed by (Stevens, 1998) to test the hypothesis that auditory synapses in the amygdala 1396 

become strengthened by LTP during behavioral training that attaches “fear” to the tone, and that 1397 

he memory of the tone as a fear-producing stimulus resides in the strength of the synapses from 1398 

the auditory thalamus (Stevens, 1998): 1399 

“How could this idea be tested? It should be that (1) blocking LTP prevents fear learning; 1400 
(2) the sensory pathways from the thalamus and cortex to the amygdala are capable of 1401 
LTP; (3) auditory fear conditioning increases the amygdala’s postsynaptic response to the 1402 
tone, and these increases are prevented by blocking LTP pharmacologically or in another 1403 
way; and (4) inducing LTP in the thalamoamygdaloid pathway attaches “fear” to 1404 
appropriate sensory stimuli.” 1405 
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 1406 
Although this experimental plan has shown that component X and its plasticity are 1407 

necessary and sufficient for the specific learning behavior, given the complexity that we have 1408 

elucidated thus far, this experimental design does not provide a causal link between component 1409 

X or its plasticity with behavior. First, we were so focused on component X that we implicitly 1410 

precluded the change of any other component either in the hippocampus or in other brain region. 1411 

Given the rich complexity in the distinct components, their plasticity and interactions among 1412 

them, it is infeasible that only component X in the hippocampus was changing in response to the 1413 

behavioral stimulus. It is now well established that several cellular components change in 1414 

response the same calcium signal or the activation of the same signaling cascade, and there are 1415 

several parallel homeostasis mechanisms that also exhibit degeneracy. This implies that altering 1416 

component X in the hippocampus without altering anything else across the brain is highly 1417 

unlikely. Therefore, if we had performed the same set of experiments on another component Y, 1418 

we might have arrived at similar conclusions (including correlated time courses). In other words, 1419 

it is important not to interpret measurement correlations as evidence for causation, and to 1420 

understand that absence of measurements in other forms of plasticity or plasticity in other brain 1421 

regions does not mean they don’t coexist with the form of plasticity that we are focused on. 1422 

Second, when we blocked plasticity in component X, given the complexities elucidated 1423 

above, it is highly unlikely that we specifically blocked plasticity in component X without 1424 

disturbing plasticity in any other measurement or without introducing metaplasticity in some 1425 

other form of plasticity (Sec. 3.6–3.7). For instance, from a cellular perspective, theta burst 1426 

pairing results in plasticity of synaptic strength and of HCN, A-type K+ and SK channels, and 1427 

pharmacologically blocking NMDAR receptors impairs plasticity not just in one of them, but in 1428 

all of them (Fan et al., 2005; Frick et al., 2004; Lin et al., 2008; Losonczy et al., 2008). Thus if 1429 
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we had observed impairment of plasticity in only one of these components, we would have 1430 

wrongly concluded that to be the only component that changes with TBP. Returning to our 1431 

experimental plan on the role of component X, there could several other secondary and 1432 

unintended effects of blocking plasticity in component X that spans the hippocampus and other 1433 

brain regions (Bhalla, 2014; Jazayeri and Afraz, 2017; Kotaleski and Blackwell, 2010; Krakauer 1434 

et al., 2017; Otchy et al., 2015). Thus, it is prudent not to dismiss absence of measurements as 1435 

absence of evidence for other components.  1436 

Third, when we performed the experiment of artificially altering component X, it is 1437 

obvious that it is highly unlikely that we achieved this without disturbing any other component in 1438 

some brain region or without introducing metaplasticity in some form of plasticity. Therefore, 1439 

the alternate interpretations of our observations (other than the “linear narrative” that concludes 1440 

“plasticity in hippocampal component X mediates learning behavior”) are innumerable given the 1441 

staggering complexity of the underlying system and the degeneracy involved in accomplishing 1442 

the learning task. Ruling out all these alternate interpretations is essential for convergence to the 1443 

linear narrative, but is rather impossible because measurements of all constitutive components in 1444 

all brain regions is currently infeasible.  From a nonlinear dynamical system perspective 1445 

(Guckenheimer and Holmes, 1983; Nayfeh and Balachandran, 1995; Strogatz, 2014), our “linear 1446 

narrative” and the associated inference are equivalent to declaring a component to be critically 1447 

important for system performance because perturbation to that one component, — which is part 1448 

of a high-dimensional, adaptive, non-linear dynamical system with strong coupling across 1449 

dimensions, — collapses the system. Additionally, especially given the expression of 1450 

degeneracy, in our artificial perturbation experiment, we showed that the system could perform a 1451 

specific behavior when we introduced a perturbation to component X. However, this observation 1452 
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does not necessarily imply that the system does employ a similar perturbation to component X to 1453 

elicit the same behavior under normal ethological conditions (Adamantidis et al., 2015). Given 1454 

the degeneracy framework, it is important to appreciate that the existence of a solution neither 1455 

implies its uniqueness nor does it ensure that the solution is employed by the physiological 1456 

system under standard ethological conditions. 1457 

4.2.	Degeneracy:	The	way	forward	1458 

It is important to distinguish between understanding functionality that emerges through 1459 

interactions between components in an adjacent scale and efforts aimed at causality that leaps 1460 

across multiple scales. It is clear that assessing interactions between constitutive components in 1461 

the emergence of function in an adjacent scale have provided invaluable insights in neuroscience. 1462 

As an example, the question on how different ionic currents at the molecular scale interact to 1463 

result in the emergence of an action potential in the cellular scale (Hodgkin and Huxley, 1952) 1464 

has revolutionized several aspects of neuroscience over the past several decades. Even within the 1465 

framework of degeneracy, the question on whether and how different combinations of disparate 1466 

combinations of parameters in a give scale could result in similar functionality in an adjacent 1467 

scale have provided deep insights into how the nervous system might be solving the robustness 1468 

problem in the face of variability (Anirudhan and Narayanan, 2015; Dhawale et al., 2017; Foster 1469 

et al., 1993; Gjorgjieva et al., 2016; Goldman et al., 2001; Katz, 2016; Marder, 2011; Marder 1470 

and Goaillard, 2006; Marder et al., 2015; Marder and Taylor, 2011; Mukunda and Narayanan, 1471 

2017; O'Leary and Marder, 2014; Prinz et al., 2004; Rathour and Narayanan, 2012a, 2014; 1472 

Taylor et al., 2009). 1473 

However, causal leaps beyond a single scale of analysis should be treated with extreme 1474 

caution. For instance, approaches assuming a unique reductionist solution for a behavioral 1475 
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observation will invariably end up in apparently contradictory conclusions about the mechanism 1476 

that mediates behavior. Prominent among the several reasons that result in these apparent 1477 

contradictions — such as adaptive compensations and animal-to-animal variability — is inherent 1478 

degeneracy, where disparate combinations of components could result in identical behavior in a 1479 

manner that is dependent on several factors, including behavioral state. The flaws that emerge in 1480 

an experimental plan to establish causality that leaps multiple scales in a nonlinear dynamical 1481 

system that expresses degeneracy are obvious from the analysis presented above. Here, it is 1482 

critical to ask the impossible question on whether we are sure that nothing else has changed in 1483 

neurons (and other cells) of the same brain region or the other, which could be 1484 

mediating/contributing to the observed behavioral changes before declaring a causal one-to-one 1485 

relationship between a molecular/cellular component and behavior.  1486 

This is especially important because there are several properties that emerge at each jump 1487 

along the multiscale axis of neuroscience (Fig. 1A), and leaps across multiple scales (like genes 1488 

to behavior) traverses several emergent properties owing to innumerable nonlinear processes that 1489 

exhibit degeneracy. This yields a system that is intractable even at the scale where the 1490 

perturbations were introduced because of the complex feedback loops spanning several scales 1491 

that mediate homeostasis and adaptation. Consequently, the outcomes of any perturbation at any 1492 

scale are critically dependent on several components across scales, the nature of interactions of 1493 

these components with the perturbation and importantly on the adaptation that is triggered by the 1494 

perturbation in all these components across scales. Therefore, extreme caution should be 1495 

exercised in assigning causal one-to-one relationship between components (or manifolds) that 1496 

are several scales apart along the multi-scale axis (Bennett and Hacker, 2003; Jazayeri and Afraz, 1497 

2017; Krakauer et al., 2017; Otchy et al., 2015).  1498 
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Together, while degeneracy is an invaluable asset to evolution, physiology and behavior 1499 

in achieving robust functions through several degrees of freedom, it makes the resultant complex 1500 

system rather intractable. This intractability makes it nearly impossible to achieve the goals of 1501 

reductionism, where the pursuit has largely been for causal one-to-one relationships that leap 1502 

across several scales. Several thorny debates in the field about apparent contradictions involving 1503 

different components mediating the same function could be put to rest if this requirement of one-1504 

to-one relationships is relaxed. Specifically, the ubiquitous expression of degeneracy spanning 1505 

multiple scales offers an ideal reconciliation to these controversies, through the recognition that 1506 

the distinct routes to achieve a functional goal are not necessarily contradictory to each other, but 1507 

are alternate routes that the system might recruit towards accomplishment of the goal. The 1508 

intense drive to make leaps across multiple scales to establish unique one-to-one relationships 1509 

should instead be replaced by a steadfast recognition for degeneracy as an essential component in 1510 

physiology, behavior and evolution. This recognition, apart from precluding one-to-one 1511 

relationships, would provide clear warnings in assigning causal relationships that leap across 1512 

multiple scales and multiple emergent properties. Importantly, this recognition would pave the 1513 

way for a strong focus on integrative and holistic treatises to neuroscience and behavior, 1514 

arguments for which have only been growing over the years (Bennett and Hacker, 2003; 1515 

Edelman and Gally, 2001; Jazayeri and Afraz, 2017; Krakauer et al., 2017; Tononi and Edelman, 1516 

1998; Tononi et al., 1998; Tononi et al., 1994; Tytell et al., 2011). Future approaches should 1517 

recognize that behavior emerges from disparate combinations of tightly cross-coupled multi-1518 

scale emergent properties, each diverging and converging at each scale of analysis through 1519 

degeneracy spanning complex parametric and interactional spaces. Large-scale databases related 1520 

to neuronal morphology, models and physiology — such as the Allen brain atlas (Sunkin et al., 1521 
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2013), ICGenealogy (Podlaski et al., 2017), Channelpedia (Ranjan et al., 2011), Neuromorpho 1522 

(Ascoli et al., 2007), ModelDB (Hines et al., 2004) and Neuroelectro (Tripathy et al., 2014) — 1523 

provide ideal tools for such analyses involving large parametric spaces, and could provide 1524 

critical insights about the role of degeneracy in the emergence of robust brain physiology and its 1525 

links to behavior. 1526 

5.	Conclusions		1527 
In this review, we systematically presented lines of evidence for the ubiquitous expression of 1528 

degeneracy spanning several scales of the mammalian hippocampus. We argued that the 1529 

framework of degeneracy in an encoding system shouldn’t be viewed from the limited 1530 

perspective of maintaining homeostasis, but should be assessed from the perspective of 1531 

achieving the twin goals of encoding information and maintaining homeostasis. Within the broad 1532 

framework of degeneracy, it is extremely important that future studies focus on the fundamental 1533 

questions on (i) how does the brain change its constituent components towards encoding new 1534 

information without jeopardizing homeostasis?; and (ii) how do homeostatic mechanisms 1535 

maintain robust function without affecting learning-induced changes in the brain? Without an 1536 

effective answer to this overall question on concomitant learning and homeostasis in the face of 1537 

staggeringly combinatorial complexity, our understanding of the nervous system in terms of its 1538 

ability to systematically adapt to the environment will remain incomplete. Although the core 1539 

conclusions on degeneracy reviewed and analyzed here would extend to other mammalian brain 1540 

regions and functions that they have been implicated in encoding processes, this extrapolation 1541 

should be preceded by careful assessment of the specifics associated with the constitutive 1542 

components and specific interactions there. Additionally, although our focus here was on 1543 

encoding, homeostasis and physiology, it is important that future studies also assess the 1544 

implications for degeneracy in the emergence of pathological conditions (Edelman and Gally, 1545 

2001; O'Leary et al., 2014). 1546 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/203943doi: bioRxiv preprint 

https://doi.org/10.1101/203943


 71 

Finally, returning to the distinction between the “structure defines function” and the 1547 

“form follows function” perspectives, it seems like the distinction also seemingly extends to the 1548 

methodology that is deemed appropriate for assessing neuronal systems. At one end, a strong 1549 

emphasis is placed on the requirement for an experimental approach (Buzsaki, 2006): 1550 

“The complexity and precision of brain wiring make an experimental approach 1551 
absolutely necessary. No amount of introspection or algorithmic modeling can help 1552 
without parallel empirical exploration.” 1553 
 1554 

At the other end, the emphasis, reflecting Richard Feymann’s quote “What I cannot create, I do 1555 

not understand”, is on in silico approaches (Sakmann, 2017): 1556 

“At present however, it seems that “What we cannot reconstruct in silico and model 1557 
we have not understood”.” 1558 
 1559 

Within the degeneracy framework, however, it is starkly evident from existing literature 1560 

reviewed here that a holistic combination of computational and experimental techniques is 1561 

indispensible towards understanding structure-function relationships and the associated 1562 

complexities (Das et al., 2017; Edelman and Gally, 2001; Foster et al., 1993; Marder, 1998, 1563 

2011; Marder and Goaillard, 2006; Marder and Taylor, 2011; Rathour et al., 2016; Rathour and 1564 

Narayanan, 2012a, b, 2014; Sporns et al., 2000; Tononi and Edelman, 1998; Tononi et al., 1998; 1565 

Tononi et al., 1994, 1996, 1999).  1566 

Emphasizing the strong links between biology and evolution, Theodosius Dobzhansky 1567 

had written “nothing in biology makes sense except in the light of evolution” (Dobzhansky, 1568 

1973). Given the ubiquitous prevalence of degeneracy and its strong links to evolution (Edelman 1569 

and Gally, 2001), it is perhaps apt to add a corollary to this quote and state “nothing in 1570 

physiology makes sense except in the light of degeneracy”. 1571 

 	1572 
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FIGURE LEGENDS 2737 
 2738 
Figure 1. Degeneracy in the emergence of a function and its robustness to external 2739 

perturbation across multiple scales of analysis. (A) Representation of multiple scales of 2740 

analysis in neuroscience. The size (large and small) of the scale of analysis is representative of 2741 

size of the constitutive components in that scale (Churchland and Sejnowski, 1992; Churchland 2742 

and Sejnowski, 1988). (B) Disparate combinations of parameters in a specified scale of analysis 2743 

could result in similar function in a larger scale of analysis. Each red circle in the smaller scale of 2744 

analysis represents a combination of parameters that results in a specified function in large 2745 

analysis scale, also represented by red circles there. The enclosing black circle in the larger scale 2746 

represents experimentally observed variability in the function that is being assessed. On the other 2747 

hand, the black circle in the smaller scale illustrates that robust functionality in the larger scale 2748 

could be achieved even with small local perturbations in the parametric space. Larger 2749 

perturbations beyond the black circle, however, would not yield robust functionality. The 2750 

presence of multiple clusters of red circles in the smaller scale represents degeneracy, where 2751 

similar functionality is achieved if parameters are within any of those multiple clusters. 2752 

(C) Disparate combinations of parameters could compensate for functional impairment caused 2753 

by external perturbation. Left, External perturbation results in the observed function in the larger 2754 

scale of analysis switching from the baseline (red circles) to a perturbed state (blue circles). 2755 

Center, In response, parameters in a smaller scale of analysis could undergo any of the several 2756 

transitions, represented by green arrows, towards achieving functional homeostasis. Red circles 2757 

represents the valid baseline parameters before perturbation, and green circles represent the state 2758 

after the homeostatic response. Right, As a consequence of this homeostatic response involving 2759 
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any of the several disparate combinations of parameters, the system returns back to its baseline 2760 

functionality (red circles). 2761 

 2762 
Figure 2. Qualitative vs. quantitative degeneracy. (A) Qualitative degeneracy, where the 2763 

functional goal on which degeneracy is assessed is the expression of resonance, which could be 2764 

achieved by the presence of one or more resonating conductances.  Depicted are voltage traces 2765 

obtained in response to a chirp current injection into neurons containing none, one or two 2766 

resonating conductances. The hyperpolarization activated cyclic-nucleotide gated (HCN) and T-2767 

type calcium (CaT) are employed as the two example resonating conductances. In a neuron that 2768 

expresses two or more resonating conductances (at sufficient densities), resonance ceases to 2769 

express only when both resonating conductances are eliminated. The impedance amplitude (left 2770 

bottom) and phase profiles (right bottom) are also shown for each color-matched chirp response. 2771 

It may be noted that resonance in the amplitude profile and lead in the phase profile are observed 2772 

when resonating conductances are expressed individually or together, and synergistically interact 2773 

when they are expressed together. (B) Quantitative degeneracy, where the functional goal on 2774 

which degeneracy is assessed is the ability to specify a target value of resonance frequency in the 2775 

neuron, when a resonating conductance is expressed. Shown are some examples of the disparate 2776 

possible routes to achieve quantitative changes to resonance frequency. One set of possibilities 2777 

involves altering the properties of the channel mediating resonance (taken to be HCN in this 2778 

example) such as its density (ΔgHCN), its gating properties (e.g., half-maximal activation voltage, 2779 

ΔV1/2) or its kinetics (e.g., activation time constant, ΔτHCN). The other set involves introducing  2780 

(e.g., T-type calcium channels, ΔgCaT or A-type potassium channels, ΔgKA) or altering (e.g., 2781 

change in leak channels Δgleak) other channels that modulate the resonance mediated by the 2782 

resonating conductance (whose removal would abolish resonance, –gHCN, unless compensated by 2783 
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the expression of another resonating conductance). (C) In different neurons, the contribution of 2784 

different channels to any measurement (shown here is resonance frequency, fR) could be 2785 

variable. The size of each sphere scales with the quantum of contribution of a given channel (one 2786 

among HCN, CaT, KA and leak) to fR in a given neuron (11 neurons are depicted). Traces 2787 

presented here and associated conclusions are drawn from previous studies (Hutcheon and 2788 

Yarom, 2000; Narayanan and Johnston, 2007, 2008; Rathour et al., 2016; Rathour and 2789 

Narayanan, 2012a). 2790 

 2791 
Figure 3. Dissociation between different forms of homeostasis. (A) In different neurons, the 2792 

contribution of different channels to different measurements (shown here are resonance 2793 

frequency, fR, and input resistance, Rin) is differential and variable. The size of each sphere scales 2794 

with the quantum of contribution of a given channel (one among HCN, CaT, KA and leak) to fR 2795 

in a given neuron (11 neurons are depicted). It may be noted that in any given neuron, it is not 2796 

necessary that the contributions of any given channel to fR and Rin need not be equal, even when 2797 

both fR and Rin are similar across all neurons. Cartoon illustrations are derived from data 2798 

presented in previous studies (Rathour et al., 2016; Rathour and Narayanan, 2012a, 2014; 2799 

Srikanth and Narayanan, 2015). (B) Although baseline homeostasis is efficaciously maintained 2800 

in five different neurons, their responses to an identical perturbation need not necessarily be 2801 

identical or even similar. The perturbation could be a plasticity-inducing stimulus driven by 2802 

behavioral experience or by pathological conditions. Cartoon illustration was derived from 2803 

analyses presented in previous studies (Anirudhan and Narayanan, 2015; O'Leary et al., 2014; 2804 

Srikanth and Narayanan, 2015). 2805 

 2806 
 2807 
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Figure 4. Disparate activity-dependent protocols have been employed for the induction of 2808 

long-term potentiation or depression in hippocampal synapses. (A–B) Disparate activity-2809 

dependent induction protocols yield long-term potentiation (A) or depression (B) in Schaffer 2810 

collateral synapses connecting CA3 pyramidal neurons to CA1 pyramidal neurons. Individual 2811 

panels depict cartoon illustrations of induction protocols employed in previous studies (Bi and 2812 

Poo, 1998; Christie et al., 1996; Dudek and Bear, 1992; Huber et al., 2000; Larson et al., 1986; 2813 

Magee and Johnston, 1997). AP: action potential; STIM: stimulation leading to postsynaptic 2814 

potentials; IPI: inter pulse interval. A subset of similar or additional protocols that have been 2815 

employed in the induction of potentiation or depression in hippocampal synapses may be found 2816 

here: (Basu et al., 2016; Bittner et al., 2015; Bittner et al., 2017; Bliss and Collingridge, 1993; 2817 

Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973; Chevaleyre et al., 2006; Christie et al., 2818 

1994; Dan and Poo, 2006; Dudek and Bear, 1992, 1993; Dudman et al., 2007; Larkman and 2819 

Jack, 1995; Lynch et al., 1983; Lynch et al., 1977; Malenka et al., 1992; Mulkey and Malenka, 2820 

1992; Raymond, 2007; Regehr et al., 2009; Staubli and Lynch, 1990; Takahashi and Magee, 2821 

2009). 2822 

 2823 
Figure 5. Disparate cellular and molecular mechanisms govern the strength and kinetics of 2824 

cytosolic calcium influx. (A) Different protocols have been employed for the induction of LTP 2825 

in hippocampal synapses. Whereas references for the first four of these protocols are provided in 2826 

Fig. 4, the last three are derived from protocols in these references (Basu et al., 2016; Bittner et 2827 

al., 2015; Bittner et al., 2017; Dudman et al., 2007; Hanse and Gustafsson, 1994; Huang and 2828 

Malenka, 1993; Huber et al., 1995; Lin et al., 2008; Otmakhov et al., 2004; Roth-Alpermann et 2829 

al., 2006; Takahashi and Magee, 2009). (B) Protocols shown in (A) typically elicit postsynaptic 2830 

calcium influx through synergistic interactions between disparate constitutive components. 2831 
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Although only postsynaptic components are depicted here, it should be noted that presynaptic 2832 

components, including excitability-, calcium- and release-regulating mechanisms, also would 2833 

control the postsynaptic calcium influx through regulation of release dynamics and short-term 2834 

plasticity. Additionally induction could also be presynaptic. (C) In different neurons, the 2835 

contribution of different components to achieve similar strength and kinetics of cytosolic calcium 2836 

influx could be variable. The size of each sphere scales with the quantum of contribution of a 2837 

given component to cytosolic calcium influx in a given neuron (11 neurons are depicted). 2838 

Cartoon representations depicted here are drawn from conclusions arrived in previous studies 2839 

(Anirudhan and Narayanan, 2015; Mukunda and Narayanan, 2017). 2840 

 2841 
Figure 6. Disparate signaling cascades with diverse downstream targets are activated 2842 

following postsynaptic calcium elevation. Depicted is a tripartite synapse that includes a 2843 

presynaptic terminal, a postsynaptic structure and a glial cell. Following the influx of calcium 2844 

through disparate sources (see Fig. 5; shown here is only NMDAR for simplicity), several pre- 2845 

and post-synaptic signaling cascades could be activated with very different downstream targets. 2846 

Retrograde messengers are responsible for intimating the presynaptic terminal about postsynaptic 2847 

calcium elevation. Illustration incorporates conclusions from previous studies (Bhalla, 2014; 2848 

Bhalla and Iyengar, 1999; Kotaleski and Blackwell, 2010; Manninen et al., 2010; Regehr, 2012; 2849 

Regehr et al., 2009).  2850 

 2851 
Figure 7. Disparate mechanisms mediate the expression of short- and long-term synaptic 2852 

plasticity. Left, Depicted is a tripartite synapse that includes a presynaptic terminal, a 2853 

postsynaptic structure and a glial cell. Right, Several pre- and post-synaptic mechanisms regulate 2854 

synaptic strength, and independent or concomitant long-term changes in any of these 2855 
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components would result in the expression synaptic plasticity. Plasticity is known to potentially 2856 

span all these components and more (Kim and Linden, 2007). 2857 

 2858 
Figure 8. Disparate forms of synaptic and non-synaptic plasticity are induced through the 2859 

activation of different signaling cascades triggered by calcium influx regulated by several 2860 

mechanisms, resulting in multiscale degeneracy in plasticity induction through expression. 2861 

Left, Synergistic interactions between several components results in cytosolic calcium influx 2862 

following plasticity induction through activity protocols or behavioral experience of pathological 2863 

insults. Center, Disparate signaling cascades with diverse downstream targets are activated 2864 

following postsynaptic calcium elevation. Right, The activation of signaling cascades and their 2865 

impact on their targets are not just limited to synaptic components, but span a large span of 2866 

neuronal and network components. Several forms of synaptic and non-synaptic plasticity express 2867 

concomitantly in response to the same protocols or perturbations (Beck and Yaari, 2008; 2868 

Johnston et al., 2016; Kim and Linden, 2007; Narayanan and Johnston, 2012). 2869 

 2870 
Figure 9. Disparate mechanisms with distinct time courses could mediate stability in 2871 

synaptic learning through metaplasticity. (A–B) Hebbian synaptic plasticity is inherently 2872 

unstable leading to runaway excitation in synaptic structure (A; orange boxes). The Bienenstock-2873 

Cooper–Munro (BCM) rule envisages the existence of a sliding threshold mechanism (B) which 2874 

provides a negative feedback loop (B; green boxes) that would preclude runaway excitation by 2875 

altering the rules for plasticity. Alteration of plasticity rules has been referred to as metaplasticity 2876 

in the literature (Abraham and Bear, 1996; Bienenstock et al., 1982; Cooper and Bear, 2012). (C) 2877 

Bidirectional metaplasticity could be mediated by any of the several mechanisms discussed in 2878 

Fig. 7–8 with reference to the expression of synaptic and non-synaptic plasticity. (D–E) Similar 2879 
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plasticity profiles (D) could be achieved through disparate combinations of constituent parameter 2880 

values (E). Cartoon illustrations are derived from conclusions drawn in previous studies 2881 

(Abraham, 2008; Abraham and Bear, 1996; Anirudhan and Narayanan, 2015; Hulme et al., 2013; 2882 

Sehgal et al., 2013). 2883 

 2884 
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