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Abstract 
 

Neurophysiological recordings are dominated by arhythmical activity whose spectra can be 

characterised by power-law functions, and on this basis are often referred to as reflecting scale-

free brain dynamics (1/f 𝜷). Relatively little is known regarding the neural generators and temporal 

dynamics of this arhythmical behaviour compared to rhythmical behaviour. Here we used 

Irregularly Resampled AutoSpectral Analysis (IRASA) to quantify 𝜷, in both the high (5-100 Hz, 

𝜷hf) and low frequency bands (0.1-2.5 Hz, 𝜷lf) in EEG/MEG/ECoG recordings and to separate 

arhythmical from oscillatory modes of activity, such as, alpha rhythms.  In MEG/EEG/ECoG data, 

we demonstrate that oscillatory alpha power dynamically correlates over time with 𝜷hf and 

similarly, participants with higher rhythmical alpha power have higher 𝜷hf. In a series of MEG 

investigations using the GABA reuptake inhibitor tiagabine, the glutamatergic AMPA receptor 

antagonist perampanel, the NMDA receptor antagonist ketamine and the mixed	 partial	

serotonergic	agonist	LSD we reveal systematic effects of excitation-inhibition balance on both 

𝜷hf and 𝜷lf. Additionally, strong modulations of 𝜷hf are seen in monkey ECoG data during general 

anaesthesia using propofol and ketamine. Surrogate data analysis demonstrates that arhythmical 

activity is generated by both linear and non-linear schemes, with non-linear effects emerging at 

critical boundaries. We develop and test a unifying model which can explain, the 1/f nature of 

electrophysiological spectra, their dynamic interaction with oscillatory rhythms as well as the 

sensitivity of 1/f activity to excitation-inhibition balance by considering electrophysiological 

spectra as being generated by a collection of stochastically perturbed damped oscillators having a 

distribution of relaxation rates. 
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Numerous physical systems display scale-free (also termed fractal) temporal dynamics, 

characterised by power-law (1/f 𝜷) spectral densities. Temporal signals displaying power-law 

behaviour have been observed throughout the nervous system at various spatial scales, from 

membrane potentials (El Boustani et al., 2009), single channel currents (Banerjee et al., 2006),  

and the spiking activity populations of neurons (Beggs and Plenz, 2003) through to the more 

global activities measured by electrocorticography, electroencephalography and 

magnetoencephalography (ECoG/EEG/MEG) (Dehghani et al., 2010; Freeman et al., 2003; Miller 

et al., 2009) and functional magnetic resonance imaging (He, 2011). The potential functional 

importance of power law scaling in the brain is underscored by its alteration in neuropsychiatric 

conditions (Lai et al., 2010; Maxim et al., 2005; Wei et al., 2013), ageing (Voytek et al., 2015; 

Wink et al., 2006), and its dynamic modification in task states (Barnes et al., 2009; Churchill et 

al., 2016; He, 2011; He et al., 2010; Oostenveld et al., 2011; Wink et al., 2006). Despite this, the 

physiologic mechanisms by which power-law scalings are generated is poorly understood and 

their significance remains controversial (Buzsaki, 2006; Buzsaki et al., 2012). In particular, it has 

been argued that the existence of power laws in the brain might indicate that the brain is in a state 

of self-organised criticality, where it is sensitively poised on a boundary between two qualitatively 

different dynamical states, potentially an optimal state for information transmission (Beggs and 

Timme, 2012; Beggs, 2008; Oostenveld et al., 2011).  Alternatively, with respect to 

ECoG/EEG/MEG, it has been demonstrated that the 1/f properties of underlying local field 

potentials can potentially be explained by low-pass filtering of ionic current flow at dendritic 

processes, through the incorporation of their inherent geometric and capacitive properties (Linden 

et al., 2010; Pettersen and Einevoll, 2008). Similarly, it has been shown that 1/f power spectra can 

be created by ionic current flow in a convoluted extracellular space, if the media is considered as 

a complex arrangement of resistors and capacitors (Bedard and Destexhe, 2009; Bedard et al., 

2006). 

 For decades, the dominant approach to the analysis of ECoG/EEG/MEG has been to 

consider either band-limited power changes, in the attempt to characterise brain rhythms, or 

evoked responses, while the background activity is often regarded as “1/f noise”. However, it has 

been noted that the 1/f activity forms the bulk of the content of the ECoG/EEG/MEG (Bullock et 

al., 1995; Freeman, 2004; He et al., 2010) and actually very little of the activity present in 

recordings with these modalities can mathematically be classified as rhythmical (Bullock et al., 

2003). Indeed, even when oscillations do occur, they frequently have a non-sinusoidal 

morphology (Cole and Voytek, 2017). This is at odds with the view that the ECoG/EEG/MEG 
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arises from the collective behaviour of a large set of independent oscillators, and instead is 

consistent with the idea of generators interacting in complex cross-frequency, often broadband 

patterns (Bullock et al., 1995). In our previous pharmaco-EEG/MEG studies we have observed 

that drug-induced changes of cortical power often show broadband spectral changes that cross the 

classically defined EEG frequency ranges, suggesting that underlying 1/f activity may be 

pharmacologically sensitive (Carhart-Harris et al., 2016; Kuhlmann et al., 2013; 

Muthukumaraswamy et al., 2015; Nutt et al., 2015).  

Accurate estimation of the 1/f spectral component of the measurement of the 

ECoG/EEG/MEG, and in particular the value of 𝜷, is however, non-trivial in empirical data. After 

transformation of the power spectrum to log-log coordinates 𝜷 can in theory simply be estimated 

by standard least squares regression (P = 1/f 𝜷, ≡ log(P) = -𝜷log(f)). However, as ECoG/EEG/MEG 

recordings are a compound mixture of non-stationary oscillatory rhythms, potentially with 

harmonic components, overlying the 1/f spectrum, these oscillations can substantially bias 𝜷 

estimation. Nevertheless, various investigators have provided estimates of 𝜷 with the values 

obtained varying depending on the analysis technique used and the recording modality studied 

(Dehghani et al., 2010; He et al., 2010; Miller et al., 2009; Pritchard, 1992). In general, estimates 

of 𝜷 lies in the range (0< 𝜷< 4), typically between 1 and 2 (between pink and brown noise), often 

with “knee” frequencies described, where the 1/f spectrum appears to deviate from linearity. 

Recently, Wen and Liu (Wen and Liu, 2016a, b) introduced a new method termed, Irregularly 

Resampled AutoSpectral Analysis (IRASA) which utilises non-integer/reciprocal resampling of 

a time-series to allow separate quantification of oscillatory and fractal components of the time-

series and estimation of 𝜷. In this work, we used IRASA to quantify the fractal component of the 

ECoG/EEG/MEG power spectra, focussing on 𝜷, its interaction with oscillatory rhythms and its 

sensitivity to excitation-inhibition balance in the cerebral cortex. We demonstrate that the scalings 

observed and the changes subsequently induced in them pharmacologically can be economically 

accounted for if resting brain activity is viewed as arising from the collective behaviour of a 

distribution of alpha-band relaxation processes.  

 

Materials and Methods 

 

Description of data sources 
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Data were re-analysed from resting-state recordings from four pharmaco-MEG studies involving 

the drugs tiagabine, ketamine, perampanel and LSD (Carhart-Harris et al., 2016; 

Muthukumaraswamy et al., 2016; Muthukumaraswamy et al., 2015; Nutt et al., 2015). The reader 

is referred to those papers for comprehensive descriptions of the experiments and key features are 

to be found in Table S1.  All whole-head MEG recordings were made using a CTF 275-channel 

radial gradiometer system sampled at 1200 Hz (0–300 Hz bandpass). An additional 29 reference 

channels were recorded for noise cancellation purposes and the primary sensors were analysed as 

synthetic third-order gradiometers (Vrba and Robinson, 2001). 

  Unpublished EEG data from 5 minute eyes-closed recordings were also analysed. The 

participants consisted of seventeen healthy male participants (mean age = 23). Participants were 

seated with their eyes-closed. 64 channel EEG was recorded continuously (1000 Hz sampling 

rate; 0.1 µV resolution, 250 Hz low pass filter) using Acticap Ag/AgCl active shielded electrodes 

with Brain Products MR Plus amplifiers (Brain Products GmbH, Munich, Germany). All electrode 

impedances were typically maintained below 10 kΩ. EEG was acquired using an FCz reference 

and a ground electrode located at AFz. 

 Monkey electrocorticographic data were downloaded from the publicly available 

neurotycho database (http://neurotycho.org/) (Nagasaka et al., 2011). From these data, we selected 

recordings from two monkeys, “George” and “Chibi”. Both these monkeys had data from two 

sessions of propofol anaesthesia (~5 mg/kg intravenous propofol) and another two sessions with 

ketamine anaesthesia (~5.1 mg/kg intramuscular) available for analysis. There were 

approximately 15 minutes of eye-open and closed data and 9 minutes of anaesthesia data for 

analysis.  

 

MEG pre-processing 

 

Pre-processing of data was performed using custom scripts based on the Fieldtrip toolbox 

(Oostenveld et al., 2011). Continuous MEG data were first visually inspected and those sections 

of data with gross artefacts were removed from the data. Datasets were excluded if data were not 

of acceptable quality (e.g. excessive artefact sections). Independent component analysis (ICA), as 

implemented in Fieldtrip/ EEGLAB was then performed on the remaining data sections. Visual 

inspection was used to identify components related to ocular, cardiac and muscular artefacts and 

these components were then projected out of the data. Source modelling of the data was performed 

using the Fieldtrip toolbox (Oostenveld et al., 2011). For each participant individual forward 

models were generated from their individual structural MRI scan using a “single-shell” model 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2017. ; https://doi.org/10.1101/203786doi: bioRxiv preprint 

https://doi.org/10.1101/203786
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

(Nolte, 2003). Due to computational complexity of  subsequent processing with IRASA, in order 

to reduce the data, an atlas-based beamformer approach was used (Hillebrand et al., 2012). 

Broadband virtual sensor time-series were constructed using a linearly constrained minimum 

variance beamformer with 5% regularisation (Van Veen et al., 1997) at 90 cortical and subcortical 

seed locations as specified in the automated anatomical labelling atlas (Tzourio-Mazoyer et al., 

2002). Frequency spectra were calculated and inspected for each dataset to “sanity-check” the 

source solutions. 

 

EEG pre-processing 

 

Similar to the MEG data, continuous EEG data were first visually inspected and those sections of 

data with gross artefacts were removed. Datasets were excluded if data were not of acceptable 

quality (e.g. excessive artefact sections).  Bad channels were also removed at this stage and then 

ICA used to remove artefacts.  As individual MRI scans were not available no source modelling 

on these data were performed. After artefact removal, data were average-referenced and any 

missing channels were replaced using spherical-spline interpolation (Perrin et al., 1989).  

 

ECoG pre-processing 

 

Three sections of each recording day were considered for analysis, resting eyes-open, eyes-closed 

and anaesthesia. These sections were extracted from the data using annotated event-markers. Each 

dataset contained 128 electrodes and using the provided electrode maps, 64-channel bipolar 

montages were computed to reduce any far-field artefact contamination (Fukushima et al., 2014; 

Yanagawa et al., 2013).  

 

IRASA (Irregularly Resampled AutoSpectral Analysis) computation 

 

The IRASA technique developed by Wen et al (Wen and Liu, 2016b) and applied in (Wen and 

Liu, 2016a) allows for the separation in the frequency domain of the fractal and oscillatory 

components of a time-series. In this sense it is similar to coarse-grained spectral analysis (CGSA) 

(Yamamoto Y and RL, 1993), although IRASA is superior in situations, where harmonics may 

exist in the data, or where complex interactions between the oscillatory and fractal components 

may be present. Such interactions may well be the case with neural time-series (Wen and Liu, 

2016b) as our data will demonstrate. The reader is referred to (Wen and Liu, 2016b) for a full 
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mathematical treatment of IRASA and a MATLAB implementation can be found online 

(https://engineering.purdue.edu/libi/lab/Resource.html). Nevertheless, a brief description of the 

algorithm is provided here. In the IRASA algorithm, each epoch of data to be analysed is divided 

into 15 overlapping and evenly distributed sub-epochs that each comprise 90% of the total length 

of the original epoch. For each sub-epoch of data, the power spectrum is calculated using a Fast 

Fourier Transform (FFT). Prior to FFT computation, data is tapered with a Hanning window and 

a length of FFT is used such that it is the next power of two after multiplying the sub-epoch data 

length by the largest resampling value to be used (h(max) -see later). The average spectral power 

of the sub-epochs is taken as an estimate of the total (mixed) power spectrum. The sub-epochs are 

then resampled using a range of resampling factors (h) and their reciprocals (1/h). We set h=1.1 

to 2.9 in steps of 0.05 with h≠2. The sub-epochs are upsampled for one of the reciprocal pairs, 

using cubic spline interpolation and are downsampled with a similar interpolation scheme, but 

following low-pass filtering to avoid aliasing for the other reciprocal pair. The mean of each 

upsampled sub-epoch for a given h,1/h pair is calculated, and then the median across h values is 

calculated as a representation of the fractal power for the epoch. The oscillatory power spectrum 

is then calculated as the difference between the total and fractal power spectrum. The IRASA 

process is depicted in Figure S1. It should be noted that the primary free parameter is the choice 

of resampling factors h. A larger range of h provides better suppression of residual oscillatory 

power in the fractal power spectrum, at the expense of a reduction in the highest frequency 

available for analysis. Given that all the datasets we analysed were sampled at 1000Hz or greater, 

with an h(max)=2.9, this left a maximum resolvable frequency of 250 Hz. Unless otherwise 

specified, data were divided into sections of 10s length ready prior to computation of IRASA. The 

length of the data epoch sets the lowest frequency available for analysis. For epochs of 10s 

duration sampled at 1,000Hz this is 0.03 Hz. We note that while Liu and Wen (Wen and Liu, 

2016a, b) set h =1.1 to 1.9 in steps of 0.05 we found in some of our data cases, those settings led 

to residual spectral mixing (identifiable as a bump in the log-log spectra). Hence a broader range 

for h was used here.  In order to estimate the power law exponent (b), the fractal power spectrum 

was transformed to log-log coordinates and linear regression performed.  To avoid biasing 

regression estimates towards the higher frequencies, where more sampling points exist in 

logarithmic space, frequency estimates are resampled to be evenly spaced in logarithmic 

coordinates prior to computation of the regression. 
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Statistical analyses 

 

All linear mixed-effects modelling was performed in MATLAB using the fitlme.m function and 

initially verified with SPSS®. Participants were considered as random effects and time as a fixed 

effect. Throughout, statistical comparison of models was performed against null distributions 

obtained from 5000 resamplings. The individual plotted locations from the AAL Atlas 

corresponded to: Cuneus = Cuneus_L (Index = 45), Precentral = Precental_L (Index = 1), Frontal 

= Frontal_Sup_Medial_L (Index = 23), Temporal = Temporal_Mid_L (Index = 85). 

   

Autoregressive-moving-average (ARMA) modelling of alpha-band (8-13 Hz) activity  

 

In order to obtain smoother estimates of single-trial alpha-band activity parametric ARMA 

modelling was used. Here we down-sampled data to 80 Hz and fitted an (8,3) ARMA model to 

the data using the ARMASA MATLAB toolbox (Broersen, 2002), according to: 

 

 

𝑦(𝑛) = 	−	 𝑎9𝑦(𝑛 − 𝑘)
9;<

9;=

+ 𝑏@𝑢(𝑛 − 𝑘)
9;B

9;C

				(1) 

 

where y(n) is the observed signal at time n and ak and bk are the (time-varying) autoregressive 

(AR) and moving-average (MA) parameters. 𝑢(n) represents a stationary white-noise process.   

The AR and MA orders used are derived from a physiologically plausible mean field model of the 

mammalian spontaneous electroencephalogram  (Liley et al., 2010) and accord well with 

empirical determinations of optimal autoregressive (range, 3 – 14) and moving average (range, 2 

– 5) orders obtained from resting awake eyes-closed EEG using a range of information theoretic 

criteria (Liley et al., 2010). From the AR and MA parameters autocorrelation functions (and hence 

the power spectral density) can be estimated. Further, following z transformation: 

 

𝑌 𝑧 = 	
𝑏9𝑧G99;B

9;C

𝑎9𝑧G99;<
9;=

	𝑈 𝑧 = 	
𝐵 𝑧
𝐴 𝑧 	𝑈 𝑧 						 2  

 

where solutions to A(z)= 0 will give the system poles and solutions to B(z)=0 give the system 

zeros. The poles correspond to the dominant oscillations in the signal or the peaks in the power 
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spectrum of the signal, while the zeros essentially indicate frequencies where power is nulled.  

Together this allowed several parameters to be extracted for alpha (8-13Hz) including, peak 

frequency, power at peak frequency (peak power), the integrated power in the 8-13Hz band (band 

power) and full-width at half-maximum (FWHM). A parameter estimating alpha-band “damping” 

(−𝜎@) was estimated directly from the AR parameters. The damping parameter quantifies how 

quickly the oscillation will decay over time after it has been perturbed and the boundary parameter 

where no power is present. Specifically, 𝜎@ was calculated as 𝑓N ln 𝑧 , where 𝑓N is the sampling 

frequency and 𝑧  the average modulus of all poles having a frequency between 8 and 13Hz 

 

 

Results 

 

Figure 1: Illustration of the IRASA process for MEG data analysis. a) A single example source 
dipole (red arrow) in the left calcarine cortex is recorded from multiple MEG detectors (only 
9/273 shown for illustrative purposes). A Linearly Constrained Minimum Variance (LCMV) 
beamformer is illustrated, whereby sources can be reconstructed as a linear weighting of all the 
recorded signals. Data can be analysed in either the source space following beamforming (b) or 
as recorded at sensors c).  Total power is plotted in blue and fractal power in black. Estimates 
of 𝜷hf and 𝜷lf are obtained by fitting a straight line (dashed green lines) to the fractal power 
spectrum obtained following IRASA. For the sensor space data an empty room noise recording 
is plotted in red in c) and shows a white noise spectrum (𝜷 =~0) in contrast to the brain where𝜷 
>0.5.  

 
MEG data were typically analysed in the source space (Figure 1a), which not only permits more 

powerful inferences about source locations but helps to suppress both low and high-frequency 

artefacts (Muthukumaraswamy, 2013). IRASA was then used to estimate 𝜷 from the fractal part 

of the power spectrum (Figure 1b). Similar to others, we observed knee frequencies in the data 

and hence divided the fits into a low frequency component denoted 𝜷lf (0.1-2.5 Hz) and a high 

frequency component 𝜷hf (5-100 Hz unless otherwise specified). Figure 1c) shows comparable 
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data and fits can be obtained in MEG sensors and includes an example empty room noise 

recording. Our MEG sensors generally showed a white noise profile ( >1Hz) in contrast to some 

MEG system sensors which show more of a pink profile to nearly 100 Hz (see (Hamalainen et al., 

1993) Figure 30). Below 0.1 Hz signals were around the noise floor so this was used as a lower-

bound analysis frequency. 

 
 
Correlation between rhythmical and non-rhythmical activity 
 

Figure 2: a and b) Estimates of 𝜷hf and 𝜷lf  averaged across participants for each of the 90 cortical 
locations of the AAL (automated anatomical labelling) atlas (Tzourio-Mazoyer et al., 2002)  for 
the eyes-closed resting placebo from the tiagabine experiment. Here 𝜷hf was estimated from 20-
100 Hz and 𝜷lf from 0.1-2.5Hz. c) Temporal correlations of 𝜷hf with oscillatory alpha power. 
Plotted are the t statistic values from a linear mixed model fitting all data, which was permuted 
5000 times to obtain null distributions. The false discovery rate was then used to correct the 
images for multiple comparisons (p<.05). d) Data from a selection of left cortical areas including: 
cuneus, precentral gyrus, frontal cortex, and temporal cortex are plotted. Each participant (n=15) 
is plotted with a different colour with individual data points and regression lines included. 
 

𝜷hf and 𝜷lf values obtained from resting eyes-closed data showed considerable variation across the 

cortex. For the high frequencies (𝜷hf) mean slope was 1.21 (range 0.78-1.45) while for the lower 

frequencies the mean slope was 0.76 (range = 0.56-0.98). A clear spatial pattern was evident 

(Figures 2a and 2b), such that in the higher frequencies steeper slopes are present in posterior 

areas whereas for the lower frequencies (𝜷lf) steeper slopes are present in the frontal cortex. Given 
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the spatial overlap of the higher frequencies with alpha generating areas, oscillatory alpha power 

(8-13 Hz) was extracted for each 10s epoch and correlated with 𝜷hf. This analysis (Figure 2 c and 

d) reveal the existence of striking temporal correlations, indicating a dynamic relationship 

between alpha power and the underlying fractal power in the higher frequency band. Here we 

computed 𝜷hf over the 20-100 Hz range. This result was replicated in data from three further 

studies (Figures S2, S3, S4) including both eyes-open and eyes-closed data. To confirm the broad 

applicability of the correlation between and alpha power and 𝜷hf, its existence was confirmed first 

in EEG data (Figure S5) and then in monkey ECoG data (Figure 3 - see Figure S6 for underlying 

ECoG spectra). For eyes-closed ECoG data the mean 𝜷hf was 1.96 (range 1.33-2.76) whereas for 

eyes-open data, the mean 𝜷hf was 1.85 (range 1.30-2.76). For eyes-closed data the mean 𝜷lf was 

0.57 (range -0.53-2.13) whereas for eyes-open data, mean 𝜷lf was 0.64 (range -0.22-2.05). It was 

noted that 𝜷hf values were generally highest and 𝜷lf lowest in occipital areas, implying less overall 

linearity in the scaling of the spectrum in these areas.  A variety of pre-processing approaches 

were used for the different recording modalities, suggesting that the observed correlations are 

highly robust. We conducted multiple numerical simulations to confirm this effect was not an 

artefact of the IRASA analysis procedure itself by producing artificial 1/f data with embedded 

alpha oscillations at a range of signal-to-noise levels, 𝜷hf values and variances (see Figures S7, 

S8). 

Given the temporal correlation that exists within participants we examined whether across 

participants a similar correlation exists. Inter-participant correlations were found such that those 

participants who exhibit high alpha power have higher 𝜷hf values (Figures S9, S10, S11, S12, 

S13). Given the dynamical temporal relationships between 𝜷hf and alpha power, we investigated, 

but did not find, evidence of lag-lead effects using 1s data windows stepped forward in 100 ms 

bins (Figure S14). Correlations between 𝜷lf and alpha power were explored, but we found little 

evidence for such a relationship (Figure S15).  
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Figure 3: Temporal correlations of 𝜷hf (20-100 Hz) with oscillatory alpha power (8-13 Hz for 
ECoG data from two monkeys, Chibi a) and George b). Data analysed were from two resting 
eyes-closed recordings made on separate days. The left hand panels show electrode positions for 
each monkey, who each had 128 electrodes implanted in the left hemisphere (white circles). These 
were analysed as 64 bipolar electrode pairs (red circles). The upper scatter plots display estimates 
of alpha power versus 𝜷hf for each 10s epoch of data with each bipolar electrode plotted as a 
separate colour. The lower scatter plots show the Pearson correlation coefficient (r) for each 
electrode with bootstrapped confidence intervals (5000 repeats) for each correlation provided. 
The dashed line represents the FDR corrected significance threshold for that session. Electrodes 
have been broadly allocated to each of the four lobes. 
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Excitation-inhibition balance determines non-rhythmical activity 

Figure 4: IRASA analysis of resting pharmaco-MEG data from four studies using a) tiagabine, b) 
perampanel, c) ketamine and d) LSD. The left hand sets of spectra show the total power spectrum 
from 90 cortical locations of the AAL atlas for drug and placebo in log-log coordinates, while the 
centre spectra show just the fractal part of the power spectra in log-log coordinates. The right 
hand spectra show the residual oscillatory activity with only the x axis in log space. Note the LSD 
axis was truncated at 1Hz to allow better visualisation of the alpha peak frequency shift. The brain 
plots show statistical comparison of fitted 𝜷hf (5-100 Hz) and 𝜷lf (0.1-2.5 Hz) fitted to the fractal 
power spectrum. Red colours indicate an increase in 𝜷 and blue colours a decrease, between drug 
and placebo condition. Data shown are from t tests compared with a null distribution via 
permutation testing (5000 permutations) at each location, corrected for multiple comparisons 
using the false discovery rate (p<.05). Note: a) is scaled to t=±10 whereas b), c) and d) are scaled 
to t=±5.  

 

The potential for 𝜷hf and 𝜷lf values to be modified by pharmacological intervention was 

investigated in four pharmaco-MEG studies involving the GABA reuptake inhibitor tiagabine, the 

non-selective NMDA receptor antagonist ketamine, the selective non-competitive AMPA 

antagonist perampanel and the neuromodulator and serotonergic hallucinogen LSD. All drugs 

were given at relatively low doses, which mostly caused sedation, apart from LSD which caused 

Total	Power Fractal	Power Change	 in	!hf Change	 in	!lfOscillatory	Power

c)	Ketamine	(~-NMDA)

d)	LSD	(~+5HT2A)

a)	Tiagabine (+GABA)

b)	Perampanel (-AMPA)
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hallucinations (Carhart-Harris et al., 2016). Significant modification of 𝜷hf and 𝜷lf values were 

seen for tiagabine, perampanel, ketamine and LSD (Figure 4). For tiagabine, concurrent increases 

of 𝜷hf (placebo mean=1.21, range=0.78-1.45; tiagabine mean=1.66, range=1.29-1.91) and 

decreases in 𝜷lf values (placebo mean =0.76, range 0.56-0.99; tiagabine mean = 0.43, range 0.09-

0.72) are evident across the cortex. With tiagabine, large increases in oscillatory rhythms in the 

delta, theta and lower alpha bands can also be seen.  For perampanel, modest local increases of 

𝜷hf (placebo mean=1.22, range=0.87-1.46; perampanel mean=1.25, range=0.88-1.51) and local 

decreases in 𝜷lf values (placebo mean =0.72, range 0.61-0.84; perampanel mean = 0.67, range 

0.59-0.85) can be seen. With perampanel, increases in oscillatory delta, and alpha band activity 

can be seen with a slight slowing of peak alpha frequency.  Conversely, for ketamine, decreases 

in 𝜷hf (placebo mean=1.14, range=0.83-1.35; ketamine mean=1.03, range=0.75-1.23) and 

increases in 𝜷lf values (placebo mean=0.77, range=0.66-0.94; ketamine mean=0.87 range= 0.78-

0.99) are evident. Although not significant across the cortex, this trend appeared in every brain 

area but did not always pass correction for multiple comparisons. Reductions in delta and alpha 

oscillatory activities can also be seen with ketamine. In terms of 𝜷hf and 𝜷lf, similar to ketamine, 

LSD showed decreases in 𝜷hf (placebo mean=1.25, range=0.94-1.45; LSD mean=0.92, 

range=0.51-1.10) and increases in 𝜷lf values (placebo mean=0.74, range=0.66-0.94; LSD 

mean=0.95, range=0.86-1.05) across the cortex. In the oscillatory domain, a decrease in power, 

but acceleration of alpha oscillatory frequency can be seen (Walter, 1957). 

Traditionally, quantitative EEG analysis, particularly in pharmaco-EEG is used to describe 

the absolute and relative power in each of pre-defined frequency bands. However, quantification 

of spectral power with IRASA allows subdivision into both fractal and oscillatory activity. For 

each of the MEG studies, a typical quantitative MEG/EEG analysis was performed (see Figures 

S16, S17 S18, S19). We note that the division of the spectrum into fractal and oscillatory modes 

can reveal new insights into pharmacologically-induced spectral patterns, which are more 

physiologically interpretable than relative EEG power. 

Given the effects seen in pharmaco-MEG data, we investigated whether similar effects 

exist in monkey ECoG data – here during anaesthesia induced by propofol and ketamine (Figure 

5). Strong changes in 𝜷	 estimates	 were seen during these sessions, however, there was 

significantly more regional variation than with the pharmaco-MEG data. The most consistent 

effects were in the propofol 𝜷hf parameter estimates which showed anterior increases and posterior 

decreases. Clearly, averaging 𝜷	estimates	across brain regions was not appropriate for these data. 

Considerable differences were also seen between the two monkeys. However, the results across 
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the two sessions for each monkey were highly consistent for propofol (𝜷hf for Chibi R2=0.98; 𝜷hf 

for George R2=0.97; 𝜷lf for Chibi R2=0.73; 𝜷lf for George R2=0.60) and relatively so for ketamine 

(𝜷hf for Chibi R2=0.95; 𝜷hf for George R2=0.62; 𝜷lf for Chibi R2=0.45; 𝜷lf for George R2=0.39). 

 

Figure 5: IRASA analysis of ECoG data for a total of four sessions from two monkeys (George 
and Chibi). The four sessions consisted of two sessions with propofol and two sessions with 
ketamine. Each column provides estimates of 𝜷hf or 𝜷lf. Estimates are z scores for estimates of the 
change in 𝜷 from anaesthesia compared to preceding eyes-closed data. For convenience of 
visualisation where t>10, t=10 or where t<-10, t=-10 in plots. The dashed line indicates the FDR 
threshold for the z score in each session. Individual p value estimates were obtained by 
comparison with a null distribution obtained from 5000 resamplings. Background colours provide 
the cortical areas with channel maps found in Figure 3. 
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Autoregressive modelling of excitation-inhibition balance modifications 

 
Initial attempts to correlate 𝜷hf with alpha peak frequency and spectral width showed no 

relationships. However, this may have been caused by noisy parameter estimation due to using 

nonparametric (Fourier) spectral estimation. More accurate estimates of alpha full width at half 

maximum (FWHM) and peak frequency were made using fixed-order autoregressive moving 

average (ARMA) modelling (Figure 6 and S20).  These showed that alpha-frequency FWHM is 

strongly inversely correlated to alpha power and hence also to 𝜷hf. The FWHM for alpha activity 

from the ARMA analysis was typically around 2 Hz.  Further, because the FWHM of a spectral 

resonance in a white-noise driven damped linear oscillatory system is known to be proportional 

to the temporal damping of the resonance, we also calculated the damping (−𝜎@, see middle panel 

Figure 7 and Methods) of the alpha band oscillatory modes (poles) identified by our fixed-order 

ARMA analysis. We found that alpha band power, total band power and 𝜷hf were inversely 

correlated with damping (Figure 6a-b). We further investigated the relationships between 𝜷hf, 

alpha damping, and alpha power in each of the four pharmaco-MEG intervention experiments 

(Figure 6c-f). In general, it can be seen in both drug and placebo states 𝜷hf is correlated with alpha 

power, and alpha power is dependent on the degree of damping. A variety of drug-induced 

parameter estimations can be seen. Tiagabine (Figure 6c) increases	𝜷hf and increases damping, 

whereas LSD (Figure 6d) decreases 𝜷hf with little change in damping. Conversely, ketamine 

(Figure 6e) decreased 𝜷hf but increased damping while perampanel (Figure 6f) caused a small 

increase in	𝜷hf with a small decrease in damping. See Table S3 for more details. 
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Figure 6: Results of ARMA analysis (see also Figure S16) for all participants for the tiagabine 
(a) and LSD (b) experiments. A single brain location rich in oscillatory alpha (left cuneus) was 
selected for analysis. From the ARMA analysis, a number of parameters were quantified for the 
alpha-band (8-13 Hz), including peak frequency, power at peak frequency (peak power), the 
integrated power in the 8-13 Hz band (band power) and FWHM. A parameter estimating alpha-
band damping was estimated directly from the AR parameters. The damping parameter quantifies 
how quickly an oscillation will decay over time after it has been perturbed. Correlations were 
performed for each of these parameters and also 𝜷hf using a mixed-model regression, recomputed 
5000 times to obtain a null distribution for comparison. The results demonstrate that 𝜷hf is 
positively correlated to metrics of alpha power and inversely correlated to FWHM and damping. 
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b)	ARMA	analysis	 – LSD	(placebo	 data)
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As one might predict, damping and FWHM are inversely correlated to power metrics. c-f). The 
relationship between alpha power (here computed by IRASA/FFT), alpha damping and 𝜷hf using 
posterior channels from Figure 4 that showed large	pharmacologically	 induced	𝜷hf changes. 
Fixed effect statistics are presented with mean parameter estimates indicated with dashed lines. 
Statistical comparisons across conditions can be found in Table S2. 
 
 
A mechanistic model of 1/f electrophysiological activity based on damped oscillators  
 
Given the observed relationships between 𝜷hf, alpha pole damping and power this suggests a 

mechanistic explanation of electrophysiological spectra based on a collection of relaxation 

processes. Because it is often empirically difficult to establish that spontaneous ECoG/EEG/MEG 

results from an identifiable non-linear process it is often sufficient to describe its dynamical 

behaviour in terms of a noise driven linear system having a number of characteristic oscillatory 

modes. One of the simplest such possible characterisations involves assuming the existence of 

two damped oscillations – one having a frequency close to zero and another having a frequency 

of alpha (fS).  In this case the resulting power spectrum is equal to the sum of two Lorentzians, 

each of which is parameterised by the damping and frequency of the respective oscillatory modes.  

This simple model can be further generalised to the case in which there are multiple alpha modes 

having a distribution of dampings. We note from (Milotti, 2002) that for a relaxation process 

having a frequency fα and a distribution of dampings (p(σ)) the spectral density is given by: 

 

𝑆U 𝑓 = 𝑘	
𝑝 𝜎

𝑓 − 𝑓U W + 𝜎W

σl

σh

𝑑𝜎	(3)	

 
where 𝑘 > 0 is a constant that takes into account the recording arrangement and the electrical 

properties of the skull, scalp and meninges. To enable exact integration for the subsequent 

analytical calculation of a derivative with respect to frequency (see Model fitting of 

electrophysiological spectra in Methods) we assume a trapezoidal distribution for p(σ): 

 

𝑝 𝜎 = 	𝑚𝜎 +	
1 − 𝑚(𝜎@W − 𝜎^W)/2

𝜎@ − 𝜎^
		(4)	

															= 	𝑚𝜎 +	
1

𝜎@ − 𝜎^
−	
𝑚(𝜎@ + 𝜎^)

2 		(5)	

 
 
where 𝑚 ≤ 2(𝜎^ − 𝜎@)GW is the slope over the range [σh, σl].   From Equations 3-5 it can be seen 

that the EEG spectral shape can be controlled by four parameters, alpha peak frequency fα, the 
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damping probability distribution limits (σ l and σ h) and m (when m=0 the distribution reverts to a 

uniform distribution). In real data, ARMA analysis allows both σ l and 𝑓U to be explicitly measured 

where σ l is the most weakly damped pole (see Figure 7a). m and σ h are obtained by constrained 

fitting. In order to fit our model, Equation 3 was integrated to reveal an estimate of the power 

spectrum: 

 

𝑆U 𝑓 = 	𝑘
𝑚
2 ln

𝑓 − 𝑓U W + 𝜎@W

𝑓 − 𝑓U W + 𝜎^W

+
1 −𝑚(𝜎@W − 𝜎^W)/2
(𝜎@ − 𝜎^)(𝑓 − 𝑓U)

	 tanG=
𝜎@

(𝑓 − 𝑓U)
− tanG=

𝜎^
(𝑓 − 𝑓U)

	(6)	 

 

To estimate m and 𝜎^ we define the log-log frequency scaling of 𝑆U 𝑓 , 𝛽^g, as the slope of 

log=C 𝑆U 10h  evaluated at the logarithm of the midpoint frequency over which 𝛽^g  was 

empirically estimated, i.e. 

 

𝛽^g 𝜎@, 𝜎^,𝑚 = −
𝑑	 log=C 𝑆U 𝑓 = 10h; 𝜎@, 𝜎^,𝑚

𝑑𝐹 h;	lmnop(qr=CC)/W
	(7) 

 

where the dependence on 𝜎@, 𝜎^,𝑚 is made explicit. On the basis that the most weakly damped 

alpha modes, 𝜎@,  can be estimated directly from the ARMA analysis and under the simplest 

assumption that the distribution of dampings are uniform (i.e. 𝑚 = 0) solutions to 

𝛽^g 𝜎@, 𝜎^,𝑚 = 0 = 𝛽^g will enable us to uniquely estimate 𝜎^ (see Table S3).  In the case that 

no solution can be found for 𝑚 = 0 a non-uniform distribution of dampings was assumed.  

However, this results in an under-determined problem and thus additional constraints were applied 

in order to find a solution. The constraint we choose to apply is one that minimises the 

Kolmogorov-Smirnov distance between a prior uniform placebo distribution, as estimates of 

𝜎^can be found for all placebo conditions for 𝑚 = 0, and a resulting posterior distribution for a 

drug condition that arises as a solution to 𝛽^g 𝜎@, 𝜎^,𝑚 ≠ 0 = 𝛽^g.   

 

From Equation (6) we note that 

𝑆U 𝑓U = lim
g→gv

𝑆U 𝑓 = 𝑘
𝑚
2 ln

𝜎@W

𝜎^W
+
1 −𝑚(𝜎@W − 𝜎^W)/2

𝜎@𝜎^
	(8) 
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which for 𝑚 = 0 reduces to 𝑆U 𝑓U = 𝑘/(𝜎@𝜎^), thus allowing the possibility of also estimating 

𝜎^ from empirical estimates of 𝑆U 𝑓U  for known values of 𝑘, given that 𝜎@ can be estimated from 

the ARMA analysis of Equation (4). However, because 𝑘 is in general not known we prefer to 

note that log=C 𝑆U 𝑓U ∝ 𝛽^g 𝜎@, 𝜎^,𝑚  (see Figure S24) thus accounting for the empirical 

relationships identified between alpha power and 𝛽^g of Figure 6. Based on these equations we 

are able to account for the mechanistic generation of (1/f) electrophysiological spectral data for 

both eyes open and closed data as well as during pharmacological manipulation of the spectra by 

tiagabine, ketamine, LSD and perampanel (see Methods, Figure 7b and Table S3).   
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Figure 7a). A model of electrophysiological spectra. In the middle figure a set of individual 
oscillatory modes are specified in terms of their co-ordinates in the complex s-plane (red crosses), 
where the impulse responses associated with a number of these oscillatory modes have also been 
shown.  More generally these oscillatory modes are called poles, and in terms of the underlying 
linear system correspond to the eigenvalues of one or more linear evolution matrices.  Non-
oscillatory modes are represented by a single pole whereas oscillatory modes require a pole and 
its complex conjugate.  By assuming that this linear system so specified is moment to moment 
randomly perturbed, the resulting power spectrum will be the sum of the frequency responses 
associated with each of the poles.  This is illustrated in the left-hand figure for a model resting 
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spectrum.  The spectral peaks at 𝑓 = 0 and 𝑓 = 𝑓U correspond to the values of the two imaginary 
co-ordinates for the respective poles in the middle figure, whereas the power scaling for 𝑓 > 𝑓U 
reflects the distribution of dampings (lower subfigure of the middle figure) associated with the 
poles of frequency 𝑓U.  Parametric time series methods can be used to empirically characterise 
the linear system illustrated in the middle figure and are able to provide additional information 
regarding dynamical structure not easily attained using non-parametric Fourier Transform 
methods. Auto Regressive-Moving Average (ARMA) time-series models are able to provide 
economical characterisations of weakly stochastic systems such as the MEG/EEG and allow 
estimation of σ l and 𝑓U. Because AMRA analysis depends on the discrete sampling, at a rate 𝑓N, 
of a continuous time series the resulting parameterisation of the identified oscillatory modes is in 
terms of co-ordinates in the z-plane (right-hand figure). In this case frequency corresponds to the 
polar angle of the complex pole and damping to the negative of the natural logarithm of its radius. 
b) On the basis of empirically calculated changes in 𝛽^g and alpha band damping (−𝜎@) various 
pharmacological agents are concluded to differentially affect the distribution of decay rates 
associated with alpha band relaxation processes. Perampanel (solid blue line) action is 
associated with the augmentation of the most-weakly damped alpha band relaxation processes.  
In contrast both ketamine (dashed blue line) and tiagabine (dashed red line) attenuate these 
weakly damped processes, but have opposite effects on heavily damped modes. LSD (solid red 
line) modifies the distribution slope (m) and accordingly is associated with an increase in the 
proportion of heavily damped alpha modes.  The location of the bars on the imaginary axis reflects 
the empirically measured peak frequency of alpha (𝑓U) relative to the resting spectrum. 
 
 

Nonlinearity Testing 

 

To test whether the generation of 𝜷hf relies on underlying nonlinear mechanisms we subjected a 

subset of the recorded data to nonlinearity testing using surrogate data generated using the iterated 

amplitude fast Fourier transform method (IAFFT). These analyses (Figure 8, Table S4) revealed 

that approximately 39% (1060/2740) of the placebo 𝜷hf estimates tested could be attributed to 

non-linearity at 𝛼 = 0.05, with these estimates tending to fall at the more extreme values of 𝜷hf. 

Nonlinearity was not observed in 𝜷hf estimates from synthetically produced data (pink noise with 

embedded oscillations (see Figure S21 and S22 for an outline of the method used). Across drugs 

we found that LSD significantly decreased the number of epochs that were nonlinear whereas 

perampanel increased the number of epochs that were nonlinear, while ketamine and tiagabine 

had no effect (see Table S4). 
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Figure 8: Results of surrogate data (nonlinearity) testing for a subset of the data (fifteen 
participants from placebo recordings from the tiagabine experiment – left cuneus. 1000 surrogate 
versions of each epoch were generated for each epoch using the IAFFT method (Schreiber and 
Schmitz, 1996) and 𝜷hf calculated for both the original data and the surrogates. Location of 
obtained estimates are represented as a probability on the surrogate distribution. Those obtained 
estimates falling outside the 95 % (both tails) distribution are considered nonlinear. Counts of 
nonlinearity are provided for each participant with the overall count being 153/399 (38%) of 
epochs. We observed a clear effect where the nonlinear epochs appeared to lie more at the extreme 
values of 𝜷hf. To quantify this effect, Spearman’s rho is provided on each plot. 
 

Discussion 
 

In these analyses we revealed for the first time striking dynamic correlations between oscillatory 

alpha power and scale-free 𝜷hf activity in ECoG/EEG/MEG in both humans and monkeys. 

Contrary to prevailing views (He, 2014) we find that scale-free arrhythmic brain electromagnetic 

activity can be robustly explained without the need to invoke mechanistically uncertain processes 
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such as self-organized criticality and fractal temporal dynamics.  Analysis using theoretically 

motivated, but empirically plausible, fixed-order ARMA models revealed that 𝜷hf was 

significantly inversely correlated with the damping of linear oscillatory modes in the alpha band 

during resting conditions (Figure 4).  The existence of this inverse correlation suggests a clear 

explanation for the relationship between alpha power and 𝜷hf. In the simplest situation, consider 

a simple damped harmonic oscillator in which the damping, and thus the FWHM and power, of 

the single oscillatory mode can be modified.  Reductions in the damping of this system will lead 

to higher amplitude oscillations in the time domain and a narrowing of the spectral resonance in 

the frequency domain.  The narrowing of this spectral resonance will be associated with a steeper 

fall off in power for higher frequencies.   Therefore, the observed changes in alpha power can 

potentially be understood as the result of alterations in the damping of a single oscillatory mode 

having a resonant frequency within the alpha band. In our model, by a simple expansion of this to 

a more physiologically realistic probability distribution of damped oscillatory poles, a rich array 

of spectral behaviour can be explained. On this basis we are able to formally derive a relationship 

(see Methods) between 𝜷hf and the damping of alpha oscillatory activity and show that they are 

negatively correlated (Figure 6). The model we propose is sufficient to explain normal resting 

data as well as data from four interventional studies which showed various combinations of 

oscillatory alpha power and 𝜷hf changes. It may be that further expansion of this model is required 

when other rhythms are included such as (coupled) beta/theta rhythms. This could be 

accommodated by allowing more oscillatory modes and/or more complex damping probability 

distributions. However, for the data under consideration the current model was sufficient to 

explain all the data while allowing exact solutions. 

  Our interpretation is supported by the results of a number of relatively recent mean field 

modelling approaches aimed at understanding the rhythmogenesis of the resting mammalian 

electroencephalogram and in particular the alpha rhythm (Liley et al., 2002; Robinson et al., 

2002).  Such models are formulated in terms of the feedforward and feedback interactions of 

cortical excitatory and inhibitory neuronal populations and are parameterised in such a way that 

the effects of alterations in the strength and time course of synaptic connectivity on the emergent 

dynamical activity can be systematically investigated.  While these models are typically 

constituted in terms of coupled non-linear partial differential equations, under certain conditions 

they admit near linear solutions.  For example, the model of Liley et al. (Liley et al., 2002) suggests 

that the resting mammalian EEG can explained by the superposition of two noise driven damped 

linear resonances – one near 0 Hz and the other in the alpha band – with the damping of these 
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resonances being determined by the strength and characteristic time course of synaptic excitation 

and inhibition.  Our clear empirical observation of a knee frequency between 𝜷lf and 𝜷hf, as well 

as the ability drugs affecting neurotransmission to modify 𝜷hf, is consistent with such an 

interpretation.  For small values of the damping, a state of near-criticality is predicted such that 

there is the possibility that small changes in input (external or internal) to the cortical neuronal 

populations may push the system over a critical boundary such that spatiotemporally organised 

non-linear activity emerges.  The identified non-linearity of data epochs exhibiting extremal 

values of 𝜷hf (Figure 8) deviating from the mean 𝜷hf is broadly consistent with such a supposition.  

Nevertheless, we have not explicitly considered the role that non-linear processes play in the 

generation of the observed power law spectral behaviour.  Further, we assumed that the relaxation 

processes arise solely from the decay of a perturbed linear system.  We have not investigated the 

possibility that non-linear relaxation processes, such as the decay of a limit cycle oscillation within 

its basin of attraction, might also contribute to our empirical estimates and their subsequent 

pharmacological modification, as such decay would also be expected to contribute to the spectral 

broadening of the fundamental limit cycle oscillation frequency.  Clearly such a situation, which 

falls outside of the scope of this current communication, needs to be studied. 

Previously it has been shown that estimates of 𝜷 are increased in older adults (Voytek et 

al., 2015) and decreased in patients with schizophrenia (Peterson et al., 2017). Hitherto, such 

differences between population groups could potentially be explained away by potential 

physiological differences in tissue filtering properties of the extracellular media, which can 

modify 𝜷	estimates	(Bedard and Destexhe, 2009; Bedard et al., 2006). However, tissue filtering 

alone cannot explain our results where we see modifications that occur within participants, both 

dynamically and following pharmacological interventions. As such, our work suggests an 

alternate interpretation for the modification of 𝜷 estimates seen in special population groups. That 

is, 𝜷 differences may reflect modifications of cortical excitation-inhibition balance on alpha pole 

damping. For ageing, most likely this could be attributed to decline in the GABA system with age. 

Several studies have noted reduced GABA concentration in humans (Porges et al., 2017), and 

monkey (He et al., 2016) measured with MRS, as well as reduced oscillatory gamma-frequency 

in humans (Porges et al., 2017), which is thought to depend on GABAergic mechanisms. 

Functionally-related decreased proportions of GABA interneurons have been observed in cat 

visual cortex (Hua et al., 2008) and indeed GABA agonists can restore visual function in ageing 

monkeys (Leventhal et al., 2003). 
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In these results we found generalised decreases in 𝜷hf and increases of 𝜷lf with ketamine 

in humans, whereas while the ECoG data in monkeys showed strong effects on these parameters, 

these were more variable in terms of spatial location, direction and across animal. Notably, the 

human data was collected at subanaesthetic doses (0.3 mg/kg) whereas the anaesthesia data is 

obtained at doses ~5 mg/kg. While ketamine is primarily considered an NMDA antagonist, it has 

a mixed pharmacology at clinically relevant concentrations, including  but not limited to, actively 

inhibiting hyperpolarisation-activated cyclic nucleotide (HCN) channels, facilitating delta and mu 

opioid activity as well increasing release of dopamine and noradrenaline  (see (Sleigh et al., 

2014)). These mixed activities become increasingly relevant at increasing concentrations, for 

example, the EC50 of ketamine for NMDA channels is 1-5 µM and slightly higher for HCN 

channels (8-16 μM) (Chen et al., 2009). HCN channels, which mediate a depolarising inward 

current in response to hyperpolarisation, might be particularly relevant, given that HCN knockout 

mice show twofold less sensitivity to the hypnotic actions of ketamine (Chen et al., 2009). 

Similarly, propofol also causes inhibition (Chen et al., 2009) of HCN with decreased propofol 

sensitivity observed in HCN knockout mice. Moreover, neural field modelling of the EEG 

suggests that much of the effects of ketamine and propofol on EEG rhythmicity can be accounted 

for by their activity at HCN channels rather than primary NMDA/GABAergic effects (Bojak et 

al., 2013). By contrast, perampanel and tiagabine have much more selective pharmacological 

effects on excitation and inhibition respectively. 

Some of our analyses to date, like much of the extant literature, have largely considered 

alpha rhythms as a somewhat stationary process, however, clearly this is not the case. In 

electrophysiological recordings, alpha rhythms emerge as bursts of varying amplitude, duration 

at irregular intervals. Given the clear relationships between alpha power, damping and scale-free 

activity, we are currently pursuing a more detailed examination of these dynamics. Similarly, 

since transient evoked responses exist in similar low-frequency bands it would be worth 

investigating their covariation (if any) with scale-free activity.  As mentioned, previous work has 

demonstrated that scale-free, 1/f activity can be modified by task states (He, 2011; He et al., 2010) 

and can be altered in special populations suggesting functional relevance (Peterson et al., 2017; 

Voytek et al., 2015). Our data, demonstrate clear dynamical interactions between broadband scale-

free activity and the more frequently studied oscillatory phenomena - interactions which are at 

odds with idea that electrophysiological activity is generated by many independent oscillators 

with different frequencies. Further, our explanatory model suggests that 1/f generation can be 

more simply explained by considering electrophysiological activity as a stochastic distribution of 
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non-stationary damped oscillators. As such, the power law nature of macroscopic-scale 

electrophysiological spectra can be explained by relatively well understood physical phenomena 

and more complex explanations such as self-organised criticality need not be invoked. Given the 

macroscopic scale of our electrophysiological measurements we are unable to conclude whether 

individual relaxation oscillations are generated by circumscribed populations of cortical neurons.  

In the case that they are not, the recorded collective behaviour may instead reflect the 

superposition of correlated neuronal activity in multiple co-existing networks in a manner 

consistent with fluctuations in a population of Hebbian cell assemblies. 
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