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Abstract

In many basal metazoans both somatic and reproductive functions are performed by cellular derivatives
of a single multipotent stem cell population. Reproduction can drain these stem cell pools, imposing a
physiological cost with subsequent negative effects on somatic maintenance functions. In the
freshwater cnidarian Hydra oligactis both asexual (budding) and sexual reproductive modes
(production of resting eggs) are present, and both of these are dependent on a common pool of
interstitial stem cells. Resting eggs tolerate abiotic conditions which neither the parental animals, nor
asexual offspring can survive (e.g. freezing). Therefore, when facing unfavorable conditions and
increased mortality risk, hydra polyps are expected to show higher differentiation of interstitial stem
cells into germ cells (i.e. sexual reproduction), compared to other cell types needed for self-
maintenance or asexual reproduction. Here, by comparing sexually and asexually reproducing
individuals to non-reproductives, we studied the physiological costs of reproduction (size of interstitial
stem cell pools, their somatic derivatives and regeneration rate, which is dependent on these cell types)
in H. oligactis polyps from a free-living Hungarian population prior to the onset of winter. Sexual
individuals (but not asexuals) were characterized by significantly smaller interstitial stem cell pools,
fewer somatic derivatives (nematoblasts involved in food capture) and lower regeneration ability
compared to non-reproductives. We also found a negative correlation between germ cell counts and
stem cell numbers in males (but not in females). These results show that the physiological costs of
reproduction are higher for sexual individuals. They also suggest that increased differentiation of stem
cells into gametes might limit investment into somatic functions in hydra polyps. Exhaustion of cellular
resources (stem cells) could be a major mechanism behind the extreme post-reproductive senescence
observed in this species.

Keywords: cost of reproduction, gametic crisis, Hydra, interstitial cells, life history trade-offs.


https://doi.org/10.1101/203646
http://creativecommons.org/licenses/by-nc-nd/4.0/

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

bioRxiv preprint doi: https://doi.org/10.1101/203646; this version posted October 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Sexual reproduction is ubiquitous in the natural world. Sex has clear evolutionary benefits over asexual
reproduction (such as producing recombinant genotypes that have higher fitness under changing
conditions), but it also entails costs (such as the cost of producing males; Maynard Smith 1978).
Asexual reproduction does not entail these costs and can be evolutionarily favoured under special
conditions (Crow 1994). Both sexual and asexual reproduction have a common cost: that of investing
resources into offspring at the expense of self-maintenance of the parent (the physiological cost of
reproduction; Calow 1979; Harshman & Zera 2007; Flatt & Heyland 2011). In animals, commonly
studied costs of reproduction are the drain of specific macronutrients (e.g. amino acids, proteins or
carbohydrates; (Zera and Zhao, 2006; Cotter et al., 2011)), micronutrients (e.g. dietary antioxidants;
(Alonso-Alvarez et al., 2008; Catoni et al., 2008)) or metabolic reserves (e.g. body fat; Ellers, 1995).
However, any factor in limited supply that is required by multiple life functions can mediate trade-offs
between reproduction and somatic maintenance.

In animals with high tissue plasticity — like sponges, cnidarians and flatworms — stem cells
might represent such a limiting factor. While in adult vertebrates stem cells have only limited plasticity
(Weissman, 2000), in some invertebrates the adult body contains populations of highly flexible multi-
or pluripotent stem cells (e.g. archeocytes in sponges, interstitial cells in some cnidarians, neoblasts in
flatworms) which are responsible for the maintenance of a wide range of functions through their
derivatives (Extavour and Akam, 2003; Juliano et al., 2010; Gold and Jacobs, 2013; Kumano, 2015).
The strong role of these stem cells in self-maintenance is clearly seen in hydrozoans where, for
instance, interstitial cells give rise to nerve cells, nematocytes (stinging cells usable once to capture
food) and gland cells involved in digestion (Bode, 1996; Bosch, 2009; David, 2012; Plickert et al.,
2012). The availability of these cells (i.e. cellular resources) is thought to determine growth rate and the
magnitude of regenerative responses in sponges, corals and hydrozoans (Tardent, 1963; Lang da
Silveira and Van’t Hof, 1977; Simpson, 1984; Rinkevich, 1996; Henry and Hart, 2005) and
experimental elimination of stem cells in the freshwater cnidarian Hydra impairs several life functions
related to the descendant cell types (Diehl and Burnett, 1964; Marcum and Campbell, 1978; Marcum
and Campbell, 1978; Sugiyama and Wanek, 1993). On the other hand, multipotent interstitial cells are
also strongly involved in reproduction: they are incorporated into asexual offspring during fission,
fragmentation or budding (Simpson 1984; Bode 1996), produce resting bodies (gemmules and
reduction bodies in sponges; Simpson 1984), and give rise to germ cells (Simpson 1984; Bosch &
David 1987; Newark et al. 2008) or germline stem cells (a less potent stem cell lineage which can
differentiate into gametes but not somatic cells; Nishimiya-Fujisawa and Kobayashi, 2012; Sato et al.,
2006).

The common involvement of a single pool of multipotent progenitors in both somatic and
reproductive functions, in theory, implies that increased investment into reproduction (either sexual or
asexual) necessarily reduces differentiation of stem cells into somatic derivatives, thereby contributing
to the physiological cost of reproduction (Rinkevich, 1996; Henry & Hart 2005). However, if the
expected reproductive value of sexual and asexual offspring is not equal, then reproductive investment
into these offspring types should also differ. Such a difference in reproductive value between offspring
types could arise e.g. if expected survival rate of sexual and asexual offspring is not identical. Indeed,
differential investment into sexual and asexual reproduction is commonly seen in several animal groups
(e.g. ascidians: Yund et al. 1997; aphids: Nespolo et al. 2009; Daphnia: Innes & Singleton 2008;
freshwater hydra: Kaliszewicz and Lipinska 2011). However, much less is known about the
physiological consequences of this differential allocation.

The freshwater cnidarian Hydra oligactis is a species with a mostly temperate/arctic distribution
in the Northern Hemisphere. H. oligactis polyps reproduce asexually throughout the year, but switch to
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sexual reproduction during the autumn (Schuchert, 2010). The most commonly invoked explanation for
this switch in reproductive mode is to produce the resting eggs that can survive the winter (Reisa 1973).
Based on laboratory experiments, sexual reproduction is followed by a senescence-like degeneration
and increased mortality of polyps (Brien, 1953; Yoshida et al., 2006; Tomczyk et al., 2015; Tokolyi et
al., in press; Schenkelaars et al., 2017). Post-reproductive degeneration is accompanied by marked
changes in the cellular composition of hydra polyps: intersitital cell populations are strongly reduced
while reproductive cells increase in number (Tardent, 1974; Yoshida et al., 2006). Because of these
changes, post-reproductive senescence in hydra is hypothesized to be the consequence of "gametic
crisis”, in which stem cell populations become exhausted due to excessive differentiation into
reproductive cells, limiting their involvement in somatic functions (Brien, 1966; Tardent, 1968;
Tardent, 1974; Bosch, 2009).

In this study, we investigated cellular composition and regeneration rate in H. oligactis polyps
differing in reproductive modes (sexual, asexual and non-reproductive individuals), sampled from their
natural environment during the autumn sexual period. Firstly, the role of cellular resources in mediating
the trade-off between reproduction and self-maintenance is poorly understood in natural populations of
any taxon. To date, the role of the stem cell pool in this trade-off is suspected mostly based on the
negative linkage between traits depending on stem cells (like suppressed regeneration during
reproduction (Campbell, 1967)), and the actual depletion of stem cells after initiation of sexual
reproduction - representing a more direct role and limitation of these cells - has been reported only in a
handful of cases (Littlefield, 1985; Yoshida et al., 2006; Gold and Jacobs, 2013). Post-reproductive
senescence and stem-cell depletion has been described in H. oligactis in the laboratory (Yoshida et al.,
2006), but little is known about this phenomenon under natural conditions. Furthermore, previous
studies worked with a few laboratory strains of H. oligactis and it is unclear weather variation in
reproductive strategies are associated with patterns of stem cell loss and changes in regeneration ability,
as would be predicted from life history theory.

We hypothesized that reproductive value of sexual offspring should be higher because these can
survive the winter, while asexual offspring cannot. As a consequence, sexual individuals should invest
more into reproduction, which would result in higher overall physiological cost of reproduction.
Supporting the mediator role of the stem cell pool, this would manifest itself in lower availability of
stem cells, their somatic derivatives and somatic functions depending on stem cells as well.
Accordingly, we predicted lower number of stem cells, fewer nematoblasts (indicating reduced
differentiation into somatic functions) and lower ability to regenerate in sexual individuals compared to
asexuals or non-reproductives. Furthermore, we also predicted that, if differentiation of stem cells into
reproductive function is traded off with somatic maintenance, then the number of reproductive cells
should be negatively related to interstitial stem cells and their somatic derivatives.

Materials & methods

Collection of animals and culture conditions

Experimental animals were collected from an oxbow lake near Tiszadorogma in Eastern Hungary
(47.6712N, 20.8641E). To determine the reproductive status of the animals in the lake and hence to
detect the start of the autumn reproductive period we visited the site on 2™ and 16™ October 2016 and
collected N = 168 (N = Number of collected animals) and N = 136 hydra polyps, respectively. Further
collections were performed four times in 2016: 26" October (N = 127), 2™ November (N = 332), 15"
November (N = 121) and 6" December (N = 51). Animals collected on the first two dates were not used
in regeneration experiments or for quantification of cellular composition, only for the detection of
sexual reproduction period. We collected animals from several sites along the shoreline of the lake to
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reduce the chance of obtaining genetically identical clones produced by asexual budding. Hydras were
picked up from submerged vegetation, placed in Eppendorf tubes and brought to the laboratory in a
cool box on the same day. In the laboratory, we recorded mode of reproduction according to three
categories: (1) no reproduction (polyps without buds or gonads, N=272), (2) asexual reproduction
(polyps with at least one bud, N=204), or (3) sexual reproduction (polyps with differentiated or
developing gonads; this latter was defined as a thick, opaque swelling around the gastric region of the
body column, N=155). Sexual individuals were further divided into three categories: males (polyps
with differentiated testes, N=25), females (polyps with differentiated eggs, N=34), and sexual
individuals in which sex could not be determined (N=96). This latter category included immature males
and females with developing testes or eggs, and post-reproductives showing the morphological
characteristics of sexual reproduction, but without clearly defined reproductive organs, since these
categories are not unambiguously distinguishable. Animals were clearly referable to only one category
of reproduction modes (we found just two asexual animals showing the morphological sign of sexual
reproduction; these were coded as sexual individuals because gonadogenesis was clearly initiated).

Head regeneration measurements

About half of the collected animals (altogether 338) were randomly assigned to head regeneration
measurements, which were initiated one day after each of the four collections. Animals were
decapitated below the tentacles, which means that the removed part contained the oral tip (i.e. the
hypostome), the tentacles and a short part of the trunk (~10% of the body length). During regeneration
we kept the animals individually in 24-well plates in ~ 3ml standard hydra medium (1.0 mM CaCl,, 0.1

mM MgCl,, 0.03 mM KNO,, 0.5 mM NaHCO, 0.08 mM MgSO,; Zhang et al., 2002). We placed the

plates with hydras in a Memmert ICP 700 climate chamber and kept them on constant photoperiod (16
h dark/ 8 h light cycle) and temperature in accordance with natural habitat temperature measurements
on the four consecutive dates (12 °C, 9 °C, 5 °C, 4 °C, measured approximately 20 cm below the water
surface on the day of collection). Hydras completely regenerate their head after 48-72 h on 18°C
(Ambrosone et al., 2012), but at lower temperature cell cycle and cell division is slower (Begasse et al.,
2015), thus regeneration takes longer (Lillie and Knowlton, 1897). For this reason, we recorded
regeneration 4 days after decapitation by a binary code system, based on the presence or absence of
newly emerged tentacles.

The hypostome and tentacles amputated for the head regeneration experiments were used for
species determination. H. oligactis can be distinguished from other Hydra species occurring at this site
based on nematocyte morphology, which can be observed under a light microscope.

Cell number measurement

One day after collection, we randomly selected a subset (altogether 155 animals) from the remainder of
the animals for cell number measurement. These were macerated according to the standard procedure
described by David (1973), and then cells were spread on a microscopic slide. Sample size for the cell
number measurement was determined by time constraints: we only used samples for which macerations
could be prepared on the next day after collection, such that cellular composition measured by us is as
close as possible to the condition of animals at the time of sampling. Cellular composition was
quantified within a few days after maceration. For each sample we recorded the number of epithelial
cells, interstitial stem cells (large single interstitial cells or nests of two interstitial cells were recorded
together to obtain an estimate of the frequency of stem cells; (Bosch and David, 1987), nematoblast
nests (total number of nests of 1, 2, 3-4, 5-8 or >8 cells) and reproductive cells (sperm/sperm precursor
nests in males and nurse cells in females). Reproductive cells at later stages of development are
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distinguishable from interstitial cells based on morphological criteria, as follows. In males, interstitial
cell nests commited to sperm development increase in number and size and flagella start to develop on
the sperm precursors (Littlefield, 1985). We used the presence of flagella as a morphological criterion
to identify sperm cells/sperm precursors and counted the number of sperm/sperm precursor nests (i.e.
groups of sperm precursors) with flagella to obtain a semiquantitative estimate of germ cell numbers in
males (in this estimate all sperm precursor nests were pooled irrespective of the number of cells in
them; this was necessary because the large number of individual germ cells in some nests made exact
counting of cell numbers impractical). In females, interstitial cells commited to germ cell
differentiation first increase in size and develop into nurse cells, which can be distinguished from
interstitial cells by their larger cytoplasm volume (Zihler, 1972). Cells were identified as nurse cells
when the diameter of the nucleus was equal or less than half of the cell diameter, indicating relatively
large cytoplasm volume. This corresponds to Stage B oogonia in Zihler's (1972) notation. Only a small
subset of these nurse cell develop into oocytes, but these incorporate neighbouring nurse cells through
phagocytosis (Miller et al., 2000). Hence all nurse cells contribute to reproduction and therefore we
counted all of them.

In all samples we systematically traversed slides until at least one hundred epithelial cells were
recorded, and noted any other cell types alongside these epithelial cells. The median number of
cells/cell nests recorded per sample (including the epithelial cells) was 208 (range: 107-3048).

The head region of the animals assigned to investigation of cellular composition was removed
in the same way as in the head regeneration experiments and used for species determination. All sexual
individuals involved in cell number measurements were categorized as males or females, based on the
presence of mature gonads and / or sperm cells / nurse cells in macerates.

Statistical analysis

The effect of reproductive mode on head regeneration was analyzed using Generalized Linear Mixed
Models (GLMM) with binomial distribution. Our model contained regeneration (presence or absence)
as dependent variable and reproduction mode as predictor. We included collection date as a fixed effect,
to control for seasonal and temperature differences. We included collection site as a random effect to
control for the possibility that animals from the same sampling point might be more similar to each
other than to individuals from other sites because of shared environment or because some of them
might be asexual descendants of a single individual. Binomial GLMMs were implemented in a
Bayesian framework, employing the MCMCglmm R package (Hadfield, 2010; R Core Team, 2017). A
Bayesian approach was required because our data suffered from complete separation (some
experimental groups contained only non-regenerating animals). This problem can be circumvented in a
Bayesian setting by setting a weak prior on fixed effects in MCMCglmm. We ran this model two times
for our data sets then averaged the two results.

For testing the effect of reproductive mode on nematoblast and interstitial cell number, we used
Poisson GLMM also implemented in a Bayesian framework. We included epithelial cell number as a
fixed effect, because the number of epithelial cells was not exactly identical (sometimes we counted
slightly more than one hundred); by controlling for epithelial cell number we take into account
variation in stem cell numbers arising from slightly unequal sampling. We also included collection date
as a fixed effect and collection site as a random effect for the reasons mentioned above. For analyzing
the relation between sperm/nurse cell number and interstitial or nematoblast cell number (all cell type
numbers were normalized to epithelial cell number), we performed Spearman rank correlation. All
analyzes were performed in the R Statistical Environment (R Core Team, 2017).
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Results

Reproductive phenology

None of the individuals collected on 2™ October showed signs of sexual development. A single male
bearing mature testes was observed on 16" October. The proportion of sexual individuals on
subsequent dates was 20.5%, 29.8%, 22.3% and 5.9% on 26™ October, 2" November, 15" November
and 6" December, respectively (Fig. 1). The proportion of asexual animals was 18.1%, 30.1%, 46.3%
and 49%, on the respective dates (Fig. 1).

A N=127 N=332 N=121 N=51
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Fig. 1. Proportion of individuals in different reproduction mode categories on four collection dates.
Total sample sizes are shown above the bars (A). Reproductive mode categories were: non-
reproductive (polyps without buds or gonads), asexual (polyps with at least one bud) and sexual
(polyps with differentiated eggs (females), testes (males) or developing gonads (sex undetermined)).
(B) Photograph of a wild-collected male polyp showing signs of post-reproductive degeneration
(depleted testes and strongly reduced tentacles), collected on 02 Now.
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Head regeneration

Regeneration abilities differed between reproduction mode categories (Fig. 2). Compared to non-
reproductive animals (56.85% regenerated heads within 4 days), the proportion of animals regenerating
heads was significantly lower in males (0%; posterior mean = -5.431, lower 95% CI = -8.855, upper
95% CI = -2.157, p<0.001), females (0%; posterior mean = -4.667, lower 95% CI = -8.545, upper 95%
CI = -1.542, p<0.001) and animals with undetermined sex (23.21%; posterior mean= -2.341, lower
95% CI= -3.353, upper 95% CI= -1.351, p<0.001). In asexual hydras, head regeneration did not differ
significantly from non-reproductive individuals (30.61%; posterior mean = 0.568, lower 95% CI =
-1.447, upper 95% CI = 0.252, p = 0.179). Collection date as a fix effect had significant effect on
regeneration rate: compared to the first collection, regeneration rate was significantly lower in all dates
(results not shown).

: Fig. 2. Head regeneration (presence or absence of
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Yes . . . .

O No differing in reproductive mode (A). Non-

reproductive (B), male (C) and female (D) polyp
after decapitation illustrating the markedly

SR B D e reduced head regeneration ability of sexual

| % individuals. See Fig. 1. for reproductive mode

2 08 | categories. ~Photographs were taken after
3 / finalization of regeneration experiments (8 days
-.§ ge | / post-amputation).
S /
5 04 - .
T
o
Q
o 02 ]
o

0.0

Non-reproductive
Asexual

Sex undetermined
Male

Female

Mode of reproduction

| mm | mm | mm



https://doi.org/10.1101/203646
http://creativecommons.org/licenses/by-nc-nd/4.0/

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

bioRxiv preprint doi: https://doi.org/10.1101/203646; this version posted October 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Nematoblast and interstitial cell number and mode of reproduction

Mode of reproduction had a significant effect on both nematoblast cell number and interstitial cell
number (Fig.3). Compared to non-reproductive animals, interstitial cell number did not differ in
asexually reproducing individuals (posterior mean = 0.195, lower 95% CI = -0.331, upper 95% CI =
0.752, p = 0.494), but it was lower in males (posterior mean= -0.923, lower 95% CI = -1.602, upper
95% CI = -0.23, p=0.008) and females (posterior mean = -1.254, lower 95% CI = -1.753, upper 95% CI
= -0.792, p < 0.001). Nematoblast cell number was significantly lower in males (posterior mean =
-1.196, lower 95% CI = -1.937, upper 95% CI = -0.416, p < 0.001) and females (posterior mean =
-1.929, lower 95% CI = -2.488, upper 95% CI = -1.383, p < 0.001), but it was marginally significantly
higher in asexual animals (posterior mean = 0.578, lower 95% CI = -0.023 upper 95% CI = 1.144, p =
0.055), compared to non-reproductives.

Fig. 3. Nematoblast number (A) and interstitial stem
cell number (B) of individuals in different
reproductive mode categories. All sexual individuals
were categorized as males or females based on the
presence of mature gonads and / or sperm cells /
nurse cells in macerates.
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Gamete and interstitial cell number

There was a significant negative correlation between number of sperm precursor nests and interstitial
cell number (Spearman correlation, p=-0.764, p<0.001, N=22), as well as number of sperm precursor
nests and nematoblast cell number in males (Spearman correlation, p = -0.852, p<0.001, N=22) (Fig.
4). We found a significant positive correlation between nurse cell number and interstitial cell number in
females (Spearman correlation, p = 0.424, p=0.002, N=51), but there was no correlation between their
nurse cell number and nematoblast number (Spearman correlation, p = 0.028, p=0.844, N=51) (Fig. 4).
There was a significant positive correlation between nematoblast and interstitial cell counts in both
males (Spearman correlation, p= 0.578, p=0.008, N=22) and females (Spearman correlation, p = 0.448,
p=0.001, N=51).
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and D). All cell numbers were normalized to epithelial cell number.
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Discussion

In this study we described regeneration rate and cellular composition of H. oligactis polyps differing in
reproductive strategies. We found that sexual (but not asexual) reproduction is associated with reduced
regeneration ability and decreased number of interstitial stem cells and nematoblasts involved in food
capture. This observation indicates that sexual reproduction is associated with increased physiological
cost. Our results lend support to the hypothesis that life history decisions in Hydra might be mediated
by a competition for a limited stem cell pool involved in multiple life functions (Rinkevich, 1996).

In animals with high tissue plasticity, the activity of multipotent stem cells is required for
multiple life functions. Reduced availability of stem cells has been suggested to be involved in the
determination of Tubularia hydrant lifespan (Tardent, 1963), and also thought to be responsible for
post-reproductive degeneration in H. oligactis (Brien, 1966; Tardent, 1968; Tardent, 1974; Bosch,
2009). Increased commitment of stem cells into germ cells likely reduce the differentiation of stem
cells into somatic cells (a process termed "gametic crisis"; (Brien, 1966; Bosch, 2009), possibly
causing a decline in survival of H. oligactis (Yoshida et al., 2006). Our observation that interstitial cells
and nematoblasts were reduced, while germ cell numbers increased during sexual reproduction in
animals from a natural population are in accordance with findings obtained under laboratory
circumstances in this species (Yoshida et al., 2006). Although other Hydra species do not seem to show
similar patterns of senescence, there is evidence that similar exhaustion might occur in Aurelia polyps
that have been stimulated to strobilate (generate sexual medusa) many times (Gold and Jacobs, 2013).

In parallel to the decline in stem cell pools, regeneration rate was also reduced in sexual polyps.
Regeneration is a somatic function that likely depends on the availability of cellular resources (stem
cells). Stem cells are crucial in all types of regeneration either because they proliferate to produce cells
that will be involved in regeneration or because they migrate to the wound site to re-form lost body
parts (Sanchez Alvarado, 2000; Bely and Nyberg, 2010; Sugimoto et al., 2011). Any physiological
process that reduces the availability of stem cells can therefore, in theory, limit regeneration
(Kramarsky-Winter and Loya, 2000; Henry and Hart, 2005). Indeed, reduced availability of cellular
resources has been invoked previously to explain the reduction in regenerative responses in response to
subsequent amputations (Gross, 1925; Kanajew, 1926; Tardent and Tardent, 1956; Tardent, 1963) and
the suppression of regeneration after sexual reproduction (Campbell, 1967 or vice versa: Rinkevich and
Loyla, 1989).

The trade-off between differentiation into somatic and reproductive functions is further
underscored by our observation that interstitial stem cell numbers and nematoblast numbers were
negatively related to germ cell counts in males. Such a negative relationship could arise because
individuals with a higher reproductive investment (larger germ cell counts) have fewer remaining
interstitial cells / nematoblasts. Interestingly, we observed no relationship between reproductive cell
numbers and interstitial cell / nematoblast counts in females. This could mean that the trade-off
between germ cells and somatic cell types is different in females and males. However, it might also
have been caused by differences in the way reproductive investment is estimated from reproductive cell
counts. Specifically, in females nurse cells become incorporated into developing eggs, and during egg
maturation fewer and fewer nurse cell will be located separately (Zihler, 1972; Miller et al., 2000). As a
consequence, females would show a progressive reduction in both nurse cell numbers and depletion of
interstitial stem cells / nematoblasts during egg maturation if stem cells differentiate into nurse cells
and these become incorporated into eggs. This could explain the relatively high number of females in
which nurse cells, interstitial cells and nematoblasts were all depleted (Fig. 4).

In spite of the strongly reduced stem cell numbers in sexually reproducing polyps (which
suggest that interstitial cells are converted to germ cells during gonadogenesis), the exact explanation
for interstitial cell depletion during sexual reproduction in H. oligactis is still not clear. Current models
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of germ cell specification suggest that there are two interstitial stem cell lineages in Hydra, which are
morphologically indistinguishable (reviewed in Nishimiya-Fujisawa and Kobayashi, 2012).
Multipotent stem cells (MPSCs) give rise to somatic cells, like nerve cells, gland cells and
nematocytes, while germline stem cells (GSCs) are unable to produce somatic cells but differentiate
into nurse cells and sperm. GSCs derive from MPSCs (Nishimiya-Fujisawa and Kobayashi, 2012),
hence MPSCs are able to produce both somatic and reproductive cells. This is supported by
observations that (1) H. oligactis polyps in which GSCs were experimentally ablated are still able to
quickly develop germ cells when exposed to cold temperature (Littlefield et al., 1985) and (2) cloning
individual interstitial cells in another Hydra species (H. magnipapillata) can give rise to both somatic
and germline cells (Bosch and David, 1987). Because of the complexity of interstitial stem cell lineages
in hydra, the gaps in knowledge of their dynamics and the indistinguishability of the two major stem
cell types, it is possible that only a subset of the cells identified in this study as interstitial cells
(MPSCs) take directly part in the somatic-reproductive trade-off. However, since these MPSCs can
differentiate into GSCs (or directly into germ cells), the trade-off in stem cell differentiation between
somatic and reproductive functions remains the same. Future studies of stem cell differentiation during
gonadogenesis and hydra germline stem cells would help to elucidate the exact mechanisms behind
stem cell depletion during gametogenesis observed in this species.

While sexual reproduction was associated with reduced somatic cell types and regeneration
ability, we did not observe such a reduction in asexual individuals. Interestingly, this pattern mirrors the
phylogenetic distribution of reproductive mode and regeneration ability in several invertebrate groups:
regenerative capacities are lower in sexual species in segmented worms (Zattara and Bely, 2016) and
flatworms (Peter et al. 2001), compared to asexual ones. The higher stem cell pools and regenerative
potential of asexual polyps clearly indicates that this type of reproduction does not impose such a high
physiological cost on the parent polyp as sexual reproduction does. Indeed, asexual buds in Hydra are
thought to be produced from excess cells arising from an actively dividing stem cell population (Bosch,
2009; Gold & Jacobs, 2013), in which case they are less likely to drain from the limited resources of
the parent. However, since asexual buds are prone to freezing just as the parent animal, they are likely
to have a lower reproductive value during autumn than resting eggs. Hence, asexuals in this population
appear to follow a strategy of producing offspring with low reproductive value at a low cost, as
opposed to sexuals, which produce offspring of high reproductive value at a high physiological cost.
This latter strategy might be considered a case of terminal investment (Williams, 1966; Clutton-Brock,
1984).

In addition to describing patterns of reproductive mode, stem cells and regeneration in H.
oligactis, we also provide data on the natural phenology of sexual reproduction for this species. While
gametogenesis in H. oligactis is known to occur during the autumn and to last until early winter, the
ecology of H. oligactis has been investigated by only a handful of studies so far (Welch and Loomis,
1924; Miller, 1936; Bryden, 1952; Ribi et al., 1985) Sexual reproduction is thought to occur in this
species when adult survival is expected to be low due the cold temperature and high risk of freezing
(Reisa, 1973). However, previous studies have shown that, in general, only a subset of the population
reproduces sexually at any time; moreover, sexually reproducing animals are not found in some years
(Miller, 1936; Bryden, 1952; Ribi et al., 1985). In this Hungarian population, the proportion of sexually
reproducing individuals was also lower than that of agonadic individuals (Fig. 1). Interestingly, the
proportion of asexual animals showed an increasing tendency towards the onset of winter (even though
the temperature was decreasing), possibly because sexual individuals were disappearing or reverted
back to asexual reproduction (which is known to occur in individuals collected from this population
under laboratory conditions; (T6kolyi et al., in press). Together with the observations that (1) initiation
of sexual reproduction in H. oligactis strongly depends on the rate of the temperature drop
(Kaliszewicz, 2015) and (2) some H. oligactis strains seem to have a lower propensity to initiate sexual
reproduction (To6kolyi et al., in press), these results suggest that sexual reproduction in H. oligactis is a
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conditional and polymorphic strategy or maybe a form of bet-hedging (a stochastic switching between
phenotypic states — a way of adaptation to fluctuating environment, e.g. (Cohen, 1966)), possibly
determined by specific environmental conditions of the natural habitat (e.g. the risk of freezing).
Overall, our results suggest that sexual reproduction imposes a high physiological cost on
Hydra oligactis polyps. The reduced regeneration abilities and depletion of stem cells in sexually
reproducing animals compared to non-reproductives might imply that current sexual reproduction is an
irreversibly induced reproduction strategy, and gamete production is prioritized over the maintenance
of somatic functions and future survival during autumn. The highly divergent life history decisions of
H. oligactis provide a great model system to study aging and non-senescent life history tactics and its
physiology within a single species. In addition, in order to clarify the role of limiting cellular factors,
further studies focusing on common cellular pools required by life history traits are much needed.
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