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Abstract 11 

There is substantial interest in uncovering the genetic bases of the traits underlying adaptive 12 

responses in tree species, as this information is central to understanding how evolution 13 

proceeds in such systems and will aid conservation and industrial endeavors. Here, we 14 

synthesize evidence for local adaptation in trees by summarizing 129 common garden 15 

experiments across 20 genera of tree species that describe levels of heritability, differentiation 16 

of quantitative genetic variation (QST), and/or QST-FST comparisons. Given the abundant 17 

evidence for local adaptation, we discuss theoretical expectations for adaptive genetic 18 

architectures and contextualize progress in trees by synthesizing 52 genotype-phenotype 19 

association studies across ten genera. Our survey suggests that most tree traits generally 20 

exhibit considerably high heritability (ℎ" = 0.367, 𝐻" = 0.430), that underlying genetic variation is 21 

often structured across populations (𝑄%& = 0.243) and is significantly greater than FST in 69% of 22 

comparisons across the literature. Despite widespread evidence for local adaptation acting on 23 

abundant, heritable genetic variation, we find that single-locus associations explain only a small 24 

proportion of the phenotypic variation, often with small estimated per-locus effects (𝑟" = 0.039). 25 

Together, these results suggest differential selection across populations often acts on tree 26 

phenotypes underlain by polygenic architectures consisting of numerous small to moderate 27 

effect loci. We close by addressing hurdles and promising alternatives to fully describing the 28 

underlying genetic architecture of quantitative traits in trees, remark upon the current state of 29 

tree genomics, and identify future directions for this field.  30 
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Introduction 67 

Trees are plants with an arborescent habit, which is loosely defined as a tall-statured 68 

growth form usually producing wood (reviewed by Petit & Hampe 2006). Approximately 15% to 69 

25% of the land plant taxa are classified as being trees (Oldfield et al. 1998; Grandtner 2005; 70 

Scotland & Wortley 2004), with forested ecosystems accounting for approximately 30% of 71 

terrestrial vegetation (Costanza et al. 1997) and providing habitat for terrestrial biodiversity. 72 

Indeed, trees play important ecological roles in diverse communities across the globe, such as 73 

vertical structural habitat for various taxa, seeds for wildlife forage, forest cover to understory 74 

species, the production of oxygen, carbon sequestration, air and water filtration, as well as the 75 

reduction of erosion, protracting snowmelt, and desertification. Of these, biological roles are 76 

ultimately defined by a set of life history characteristics common to most tree species (Petit & 77 

Hampe 2006), despite the polyphyly of the arborescent habit across the phylogeny of land 78 

plants. These include predominantly outcrossing mating systems with high levels of gene flow 79 

and fecundities, as well as long lifespans and generation times (Loehle 1987; Mitton & Williams 80 

2006; Savolainen et al. 2007).  As a result, tree species typically have large effective population 81 

sizes, moderate to high levels of genetic diversity, and frequent occurrences of locally adapted 82 

ecotypes (see refs in Savolainen et al. 2007; Alberto et al. 2013; Sork et al. 2013; Boshier et al. 83 

2015; Prunier et al. 2015; Holliday et al. 2017). Across species, however, rates of morphological 84 

(Stacy et al. 2017) and molecular (Smith 2008, Leitch & Leitch 2012; Buschiazzo et al. 2012; 85 

Pavy et al. 2012; Luo et al. 2015) evolution tend to be slow. Additionally, genome size varies 86 

enormously across species of trees, ranging from 0.4Gbp to 31Gbp (reviewed in Neale et al. 87 

2017). Recent sequencing efforts in gymnosperms, which dominate the large genome size end 88 

of this spectrum, reveal that much of tree genome size variation is due to transposable element 89 

dynamics and gene family evolution (Leitch & Leitch 2012; Morse et al. 2009; Nystedt et al. 90 

2013; Prunier et al. 2015; Neale et al. 2017) where duplication events of select gene families 91 
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may contribute to the ability of trees to colonize marginalized habitats (Leitch & Leitch 2012; 92 

Prunier et al. 2015; Neale et al. 2017).  93 

In trees, the general presence of large geographical ranges and extensive gene flow 94 

across these ranges also provides an ideal setting to disentangle neutral from selective 95 

evolutionary processes (Neale & Kremer 2011). Indeed, their longevity and wide and 96 

heterogeneous geographical distributions lend trees suitable for addressing several key 97 

evolutionary questions about the importance of historical climatic fluctuations, and local 98 

adaptation involving shifts in allele frequencies (Lotterhos & Whitlock 2014; Savolainen et al. 99 

2007, 2013; Platt et al. 2015).  As we detail in subsequent sections, evidence consistent with 100 

local adaptation in trees is ubiquitous, even across fine spatial scales where it had been 101 

hypothesized that gene flow may overcome selection of locally favored alleles (e.g., Mitton et al. 102 

1989, 1998; Budde et al. 2014; Csilléry et al. 2014; Vizcaíno-Palomar et al. 2014; Eckert et al. 103 

2015; Holliday et al. 2016; Roschanksi et al. 2016; Lind et al. 2017).  104 

Quantitative phenotypes are often used as a proxy for total lifetime fitness, which is 105 

composed of two broad components: survival and reproduction. Since most quantitative traits 106 

are related to some component of the total lifetime fitness, they are often used to assess 107 

potential for local adaptation. For many plant taxa, selection pressures are expected to be 108 

strongest for variation in survival during the juvenile stages of development (Donohue et al. 109 

2010), particularly for those taxa with high reproductive output, as is the case for many tree 110 

species. As such, juvenile stages in plants have been found to contribute substantially to total 111 

lifetime fitness (Postma & Agren 2016). Phenotypic traits associated with juvenile survival have 112 

thus received the majority of genetic research focus across tree species, particularly due to the 113 

long-lived nature of tree species. Such studies have led to intriguing insights gained through a 114 

long history of common garden experimentation (Langlet 1971; Morgenstern 1996). For 115 

example, traits such as growth (e.g. height and diameter), form (e.g. specific gravity, 116 

straightness), phenology (e.g. bud flush, bud set), juvenile performance (e.g. germination rate, 117 
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seed traits) and physiology (e.g. cold hardiness, water-use efficiency) have all been shown to be 118 

under moderate to high genetic control (reviewed in Cornelius 1994, Howe et al. 2003, Alberto 119 

et al. 2013; this review). Variation for these traits is also often partitioned among populations 120 

(McKay & Latta 2002, Howe 2003, Alberto et al. 2013, Savolainen et al. 2007; Boshier et al. 121 

2015; this review), despite the vast majority of neutral variation remaining within populations 122 

(Howe et al. 2003; Neale & Savolainen 2004). With few exceptions (e.g., major gene resistance 123 

in the white pine-blister rust pathosystem; Kinloch et al. 1970; Liu et al. 2017), variation for 124 

these traits forms a continuum across individuals, thus implying that the underlying genetic 125 

architecture of these traits is composed of a large number of small to moderate effect loci (i.e., a 126 

polygenic architecture; concept reviewed in Savolainen et al. 2007, 2013; Gagnaire & Gaggiotti 127 

2016; Hoban et al. 2016). There is some uncertainty, however, concerning the properties of the 128 

effect size distributions comprising polygenic architectures (sensu Fisher 1930, Kimura 1983, 129 

and Orr 1998), the relative importance of various forms of gene actions (e.g., dominance, 130 

epistasis) in producing trait variation (Crow 2010, Hansen 2013), how these interact to affect the 131 

evolution of polygenic architectures in natural populations (Hansen 2006), and how these 132 

factors will ultimately influence evolutionary processes and outcomes in forest trees (Savolainen 133 

et al. 2007; Sork et al. 2013; Prunier et al. 2015). Considerable strides, made in the past 134 

through genotype-phenotype-environment studies (sensu Sork et al. 2013), have contributed to 135 

intriguing insight into the genomic basis of local adaptation for tree species. However, given the 136 

large genome size of many tree species, such methods have been criticized as lacking in power 137 

and sufficient coverage needed to detect small effect loci, which is further exacerbated by rapid 138 

decay of linkage disequilibrium (LD) in most forest trees (Mackay 2009; Savolainen et al. 2007). 139 

Despite these limitations, association studies have been moderately successful in linking 140 

genotypes and phenotypes, including providing information for making inferences about local 141 

adaptation.  142 

In this review, we highlight the extensive evidence for local adaptation in undomesticated 143 
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trees by reviewing transplant designs often used in investigations of quantitative genetic 144 

differentiation. Using an extensive literature survey across both gymnosperm and angiosperm 145 

species, we provide an overview of these transplant methods, give examples of each, and 146 

quantify the distribution of narrow sense heritability and QST estimates across various trait 147 

categories. We further use this survey to establish patterns of comparative quantitative and 148 

neutral genetic differentiation (i.e., QST-FST tests). Before we transition into discussing common 149 

methods used to uncover loci underlying adaptation, we establish expectations for the genetic 150 

architecture of polygenic, fitness-related traits by reviewing the theory available to date. We then 151 

provide an extensive review of genotype-phenotype associations in trees and provide the 152 

distribution of the percent phenotypic variance explained by empirically associated loci. Using 153 

this distribution, we remark on the progress towards uncovering the loci underlying local 154 

adaptation in tree species. Given this synthesis, we highlight exemplary genomic resources 155 

available in trees to fill knowledge gaps, identify promising avenues of future research, identify 156 

key benchmarks and necessary steps towards truly integrating studies of trees into the genomic 157 

era, and address our primary question, “Are we out of the woods yet?”. 158 

Identifying genetically based phenotypic and heritable variation 159 

Trees have evolved numerous adaptations as a result of their vast ecological breadth. 160 

As such, it has long been the goal of forest scientists, engaged with industrial and academic 161 

pursuits alike, to understand the traits important to viability and persistence within and across 162 

tree species. Among the most frequent designs used by forest scientists, common gardens and 163 

reciprocal transplants have aimed at describing genetically based differentiation of measured 164 

phenotypes among various source populations of varying sizes and across various geographic 165 

scales. Across these designs, investigators seek to better understand the phenotypes relevant 166 

to local adaptation and the selective pressures influencing these phenotypes. The exact design 167 

chosen, however, is generally based on the questions driving the research endeavor and often 168 
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by the availability of resources (Morgenstern 1996; Blanquart et al. 2013; de Villemereuil et al. 169 

2015). In this section, we briefly review these designs, identify relevant questions and 170 

inferences, highlight some of the important practical applications of these techniques, and 171 

discuss examples of past investigations in various tree species. 172 

There is a rich history of forest scientists using the common garden approach dating 173 

back hundreds of years (Langlet 1971; Mátyás 1996; Savolainen et al. 2007). In a broad sense, 174 

a common garden design is used to test for differentiation among genetically distinct groups in a 175 

homogeneous environment. These groups can be clonal replicates or sibships (families) derived 176 

from species or hybrids sampled from various populations, provenances, varieties, cultivars, or 177 

agricultural accessions (Cheplick 2015). When individuals from various origins are grown 178 

together under the same conditions, the observed phenotypic differentiation is expected to 179 

reflect underlying genetic variation, especially when maternal effects are assumed or shown to 180 

be absent. Common garden and provenance trial designs can also establish evidence that the 181 

phenotypes under study are heritable, a prerequisite for an adaptive response to selective 182 

agents (Box 1), and that populations exhibit quantitative genetic differentiation (i.e., QST; Spitz 183 

1993). When driven by questions related to differentiation alone, a single common garden 184 

approach can be used to describe levels of quantitative genetic variation within and among 185 

genetically distinct groups. In these cases, no environmental variables are manipulated, and 186 

thus, unequivocal evidence for trait divergence among groups, and the contributing factors 187 

influencing this divergence (e.g., neutral or selective processes), is often limited because 188 

conclusions must be based on post hoc inferences about source environments for the materials 189 

established in the common garden. Even so, single common garden approaches can be a 190 

powerful tool to demonstrate evidence congruent with local adaptation. For instance, the white 191 

carob tree (Prosopis alba Griseb., Leguminosae) growing in Argentina is an ideal multipurpose 192 

tree that has potential for use in reforestation and afforestation applications in the region. 193 

However, this genus is known to invade other regions, encroach on farmland and waterways, 194 
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and has a thorny growth habit that can injure and cause sepsis in livestock. To better 195 

understand how forestry applications can balance the benefits of production and forest 196 

protection, Bessega et al. (2015) used a single common garden representing eight provenances 197 

of P. alba to compare estimates of neutral genetic patterns to the quantitative genetic variation 198 

of life history traits related to economic importance, leaf morphological traits posited to be 199 

influential to heat-tolerance and physiological response, and spine length, a trait of silvicultural 200 

significance. They found that for most traits the underlying genetic variation was differentiated 201 

across populations (QST ≈ 0.000-0.362, average over all traits = 0.139). Additionally, for most 202 

traits, source environments were correlated with measured trait variation in the common garden, 203 

suggesting that the observed differentiation was driven by temperature, precipitation, wind 204 

speed, and sunshine fraction, with signals of divergent selection corroborated across QST-FST 205 

comparisons and tests for selection (e.g., S test, sensu Ovaskainen et al., 2011). Bessega et al. 206 

(2015) concluded that the signal of non-neutral differentiation was indicative of divergent 207 

phenotypic optima across populations, and that this variation could be used to direct future 208 

breeding programs across the region. 209 

When there is evidence that environmental differences among source populations may 210 

be driving adaptive divergence, strong environmental candidates can be manipulated (artificially 211 

or via site selection) in a multiple common garden design to further investigate hypotheses of 212 

differentiation and adaptation. For instance, the sweet chestnut (Castanea sativa Mill., 213 

Fagaceae), also known for its edible fruit, is distributed across much of Minor Asia and southern 214 

Europe and is an ecologically important component of many Mediterranean systems. Castanea 215 

sativa exhibits ecological, physiological, morphological, and genetic variability as the range 216 

overlays a climatic transition from xeric Mediterranean conditions to wetter Euro-Siberian 217 

environments (see refs in Lauteri et al., 2004). Previous common garden experiments carried 218 

out by Lauteri and colleagues have indicated that populations across this transition are further 219 
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differentiated by water use efficiency (the ratio of plant carbon gain to water loss) and carbon 220 

isotope discrimination, ∆. To further explore variability of drought-related traits, Lauteri et al. 221 

(2004) used an ex situ multiple common garden design using two water and temperature 222 

treatments in individual climatic chambers to assess differentiation among six populations 223 

across Spain, Italy, and Greece. They found treatment and population x treatment effects were 224 

significant, suggesting variation in drought adaptation across populations. Additionally, 225 

populations originating from dry sites generally exhibited higher values of ∆, which was also 226 

composed of significant additive genetic variation (h2 = 0.15-0.52), and suggests that genetic 227 

and physiological mechanisms of drought adaptation confer a capacity to colonize a wide 228 

arrange of environmental conditions, while strong negative relationships between ∆	and growth-229 

related traits is suggestive of strong evolutionary constraints at juvenile stages.  230 

While ex situ common gardens approaches (e.g., Lauteri et al. 2004) can provide strong 231 

evidence of adaptive divergence among source populations, and in some cases corroborate 232 

putative drivers of observed differentiation, these studies can often exclude key environmental 233 

factors, possibly leading to confounding signals of adaptation (Kawecki & Ebert 2004). When in 234 

situ experimentation is feasible, site selection can be used to test for environmental drivers of 235 

local adaptation. For example, Evans et al. (2016) investigated traits related to growth and 236 

phenology in juvenile narrowleaf cottonwood (Populus angustifolia James, Salicaceae) by 237 

planting families from nine populations across the native range into three common gardens, one 238 

at both the northern and southern range extents and one within the central interior of the range. 239 

Phenotypic traits exhibited strong genetic control (H2 bud flush initiation: 0.11-0.53, bud flush 240 

duration: 0.06-0.37, bud set: 0.04-0.73, height: 0.03-0.43, and diameter: 0.20-0.32) and were 241 

differentiated across populations (QST bud flush initiation: 0.21-0.64, bud flush duration: 0.26-242 

0.57, bud set: 0.70-0.89, height: 0.48-0.90, and diameter: 0.44-0.63). Using QST-FST 243 

comparisons and clinal analyses alongside the quantitative genetic analyses, Evans et al. 244 
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(2016) concluded that climate cues played a major role in structuring adaptive variation across 245 

the range of P. angustifolia, and that future industrial and conservation applications should 246 

utilize this information to inform source environments for optimal outcomes. 247 

As both in situ and ex situ common garden trials can include multiple environmental 248 

influences in their design, reciprocally transplanting to all source environments is not necessarily 249 

a requirement to decompose genetic variation underlying adaptive traits or to provide evidence 250 

for, or the drivers of, differentiation among populations. Thus, these designs may preclude 251 

inferences regarding local adaptation sensu stricto. To produce such evidence, source 252 

populations can be planted in a (full- or incomplete-factorial) reciprocal transplant design and 253 

allow for traits related to fitness to be assessed across native (‘home’) and non-native (‘away’) 254 

environments. If a population is locally adapted, individuals exposed to their native 255 

environments should show increased growth, survival, and reproduction relative to non-native 256 

genotypes (Kawecki & Ebert 2004; Leimu & Fischer 2008; Hereford 2009; Savolainen et al. 257 

2013). For example, with the goal of delineating conservation units based on molecular and 258 

quantitative trait differentiation, Rodríguez-Quilón et al. (2016) used four reciprocally-259 

transplanted common gardens to assess height and survival of samples from 35 natural 260 

populations of maritime pine (Pinus pinaster Aiton, Pinaceae). For both traits, QST was 261 

consistently larger than FST across the four sites, a pattern suggestive of divergent selection. Six 262 

distinct gene pools based on evolutionary history of neutral markers were identified, and 263 

because high quantitative differentiation (QST) was found within these pools, hierarchical 264 

analyses were used to further identify ten adaptive population groups for use in conservation 265 

and breeding approaches.   266 

Available evidence suggests that many populations of tree species have substantial 267 

heritable genetic variation, and that the quantitative traits under study often show signals of 268 

divergent selection across both broad and fine spatial scales. But how broadly can we apply this 269 

statement? Are there overall patterns of heritability and quantitative genetic structure across 270 
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tree species? Because estimates of heritability and QST are often only applicable to a specific 271 

set of populations, for a specific set of environments, at any specific point in time, a large 272 

sample of these estimates is therefore necessary to synthesize the current literature with regard 273 

to patterns across taxa. To accomplish this aim, we synthesized estimates from 129 published 274 

studies with estimates of narrow sense heritability (n = 114) and/or estimates of quantitative 275 

genetic differentiation (QST; n = 37). However, we excluded papers that have been cited for 276 

estimates of QST or heritability that were calculated post hoc from variance components (i.e., we 277 

only recorded estimates that were explicitly reported in the original publication). We also 278 

exclude from our presentation any estimates of heritability that were greater than 1.0. While 279 

some of the articles report individual-tree heritabilities, we focus on estimates of family 280 

heritability. For comparison, we further grouped measured traits into 14 broad categories: cold 281 

hardiness, disease resistance, drought hardiness, form, growth, herbivore and insect resistance, 282 

leaf and needle properties, phenology, plant secondary metabolites, reproduction, resource 283 

allocation, seed and early germination properties, survival, and wood properties. Because 284 

sample size can influence the estimation of both heritability and QST, for each trait category we 285 

used a weighted average where weights were equal to the number of families used to estimate 286 

variance components and thus h2 and QST. 287 

In 1994, Cornelius presented a summary of narrow sense heritability estimates across 288 

various form, growth, and wood property traits for Pinus, Eucalyptus, as well as other conifers 289 

and broadleaf tree species. For many of the distributions underlying their survey, heritability 290 

estimates were generally within the range of 0.10-0.30. In comparison, our survey of 1878 291 

estimates revealed relatively elevated estimates for these trait groupings (Supplemental Table 292 

S1; Supplemental File F1). In general, the average h2 was within the range of 0.20-0.50, with 293 

seed and seedling properties (covering various germination, seed weight, and cotyledon 294 

properties) near 0.73 (Figure 1) with tendencies towards values below 0.5 for most traits (Figure 295 

S1). Except for disease resistance, herbivore and insect resistance, leaf and needle properties, 296 
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and plant secondary metabolites, there were more estimates from gymnosperms than from 297 

angiosperms, which were generally contributed from species of Pinus than from either Populus 298 

or Eucalyptus (Supplemental Table S1). Grouping heritability estimates across all trait 299 

categories and species, there was no indication of a decrease in heritability across age groups 300 

(Figure S2). There was also a general lack of a trend when heritabilities were compared within 301 

trait groups, except for cold hardiness, and perhaps either form or leaf and needle properties 302 

(Figure S3). While the (lack of) trends are likely better suited for analysis within individual traits 303 

for a given population within a species, as opposed to our groupings here, these patterns 304 

provide insight into interspecific patterns. Additionally, our survey of heritability estimates reveal 305 

substantial additive genetic variation across traits that have both ecological and economic 306 

importance suggesting abundant sources upon which selection can act in future natural and 307 

breeding endeavors. 308 

 In general, most of QST estimates from our survey was from gymnosperm species, 309 

except for form, herbivore and insect resistance, leaf and needle properties, phenology, plant 310 

secondary metabolites, and wood properties, where estimates from angiosperms were greatest 311 

(Supplemental Table S2; Supplemental File F1). The mean weighted QST across traits groups 312 

from our survey was generally between 0.10-0.28, except for drought hardiness (0.06) and 313 

disease resistance (0.04), with median values from the unweighted distribution generally falling 314 

below the weighted average for each trait group (Figure 2). This suggests that over various 315 

geographic distances, population histories, and species, there is a general pattern of substantial 316 

genetic variation among populations underlying measured traits. Given our synthesis of QST 317 

estimates in trees, we were curious of the evidence for adaptive divergence among populations 318 

(QST > FST). Of the 37 papers reporting QST estimates in our review, 23 compared QST with FST 319 

or GST estimated from the same populations under study (however, we excluded studies that 320 

used FST measurements taken from the literature, e.g., Bower & Aitken 2008). Of these, 18 321 

studies compared QST and FST in a statistical framework while the remaining five studies 322 
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compared QST and FST numerically. Across numerical and statistical comparisons combined, 323 

67% (254 of 381 traits) exhibited higher QST than FST, with 69% (170 of 246 traits) exhibiting 324 

significantly higher QST than FST. Although we did not tally instances where QST was reported to 325 

be less than FST (statistically or otherwise), there were some instances in which this was the 326 

case. For instance, Lamy et al. (2011) found such patterns when quantifying population genetic 327 

differentiation of cavitation resistance across the species range of maritime pine (Pinus pinaster 328 

Aiton, Pinaceae), while Mahalovich et al. (2011) also found that QST < FST for traits related to 329 

white pine-blister rust resistance in inoculated seedlings of whitebark pine (Pinus albicaulis 330 

Engelm., Pinaceae). While various explanations for such patterns were outlined by Lamy et al. 331 

(2011), canalization was argued as the most likely process driving the observed patterns, while 332 

Mahahlovich et al. (2011) offered similar arguments for selection favoring the same genotype in 333 

different environments. 334 

Despite neutral genetic differentiation partitioned primarily within populations, adaptive 335 

genetic variation seems to be structured to a greater degree across populations, more often 336 

than not, for the various fitness-related traits reviewed here. Such a pattern is indeed consistent 337 

with local adaptation, assuming that (among other considerations such as the recency of 338 

selection) mutation rates are considerably lower than migration rates in these populations 339 

(Whitlock 1999; Hendry 2002; Leinonen et al 2013). In any case, given an extensive literature 340 

supporting the local adaptation hypothesis in trees, our results appear consistent with these 341 

patterns of selective forces acting on abundant, heritable genetic variation across populations, 342 

even in the face of gene flow (discussed further in the next section).  343 

Expectations for the loci underlying quantitative traits 344 

The homogenous environments of the common garden and reciprocal transplant 345 

designs are ideally suited to test hypotheses of local adaptation in trees (Sork et al. 2013). 346 

However, uncovering the genetic basis and contributory influence of specific loci underlying 347 
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these adaptive traits is a sizable endeavor on its own, and the success of such pursuits will be 348 

determined, in part, by the genetic architecture (i.e., the number, effect size, type, and 349 

interaction of loci) that underlies the trait in question, which is generally not known a priori 350 

(Stinchcombe & Hoekstra 2008; Rellstab et al. 2013; Savolainen et al. 2013; Hoban et al. 2016; 351 

Burghardt et al. 2017; Wadgymar et al. 2017). Much of our early understanding of the 352 

architectures of complex traits came shortly after Nilsson-Ehle (1909) and East (1910) 353 

independently demonstrated evidence for multiple-factor inheritance, where Fisher (1918) laid 354 

the groundwork for quantitative genetics by incorporating the additive properties of variance to 355 

partition phenotypic variation into components tractable to a model of Mendelian inheritance. It 356 

was this work, and that of Fisher’s geometric model (1930), which founded the basis for 357 

attributing continuous variation of phenotypes to a polygenic model of many underlying heritable 358 

components of mainly small effect. From this model, Fisher (1930) concluded that mutations of 359 

small effect were the main drivers of adaptation, suggesting large-effect substitutions to 360 

contribute little to adaptation due to negative pleiotropic effects constraining effect size. 361 

Therefore, the fate of a given locus would be conditioned on its average, marginal effect on 362 

fitness calculated across the species, with non-additive deviations from this linear model of 363 

inconsequential influence. This micro-mutationist view, to a large extent, remained the dominant 364 

thought for nearly half a century (Orr 2005). It was then that Kimura (1983) established that for 365 

an allele to contribute to adaptation, it would need to survive the stochastic nature of drift. Thus, 366 

new mutations of low frequency and effect were less likely to contribute substantially to adaptive 367 

evolution, and considering the adaptive contribution probability of large and small effect loci, 368 

Kimura concluded that mutations of moderate effect would be the most plausible. Years later, 369 

Orr (1998) showed that over the entire bout of selection via an adaptive walk, the distribution of 370 

fixed substitutions resembles an exponential distribution, with effect size decreasing with the 371 

proximity to the phenotypic optimum (i.e., decreasing in an approximate geometric sequence). 372 

In addition, the distribution of fitness effects of beneficial mutations is also expected to be 373 
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exponential (Orr 2003; for more discussion on this aspect, see also Orr 2006; Eyre-Walker & 374 

Keightley 2007; Martin & Lenormand 2008, Kopp & Hermisson 2009b; Keightly & Eyre-Walker 375 

2010, Dittmar et al. 2016, and references therein). Despite major advances in theory and 376 

technology, there still remains substantial uncertainty regarding the exact number of loci 377 

underlying many adaptive traits, the effect size distribution of these loci, and how the number of 378 

underlying loci and effect distribution may change under various evolutionary regimes (Orr 379 

2001; Slate 2005; Hansen 2006; Mackay et al. 2009). In this section, we describe how various 380 

factors can contribute to the (perhaps, effective) number of causative loci, and the distribution of 381 

effects underlying continuously distributed adaptive traits, beginning first with aspects of the 382 

architecture itself (gene action), and concluding with explanations of how various processes 383 

(e.g., selection) play an influential role in the evolution of underlying genetic architectures. We 384 

then compare these expectations with results from genotype-phenotype associations in trees. 385 

While we discuss these examples in isolation, we highlight the fact that the underlying biological 386 

processes are often not independent. 387 

Gene action 388 

The classical genotype-phenotype map is largely one of additive effects, and is 389 

represented by a statistical regression of the phenotype on genetic content, as developed by 390 

Fisher (1918) and extended by others (e.g., Cockerham 1954; Kempthorne 1954). Indeed, 391 

much of the work done in trees has relied on such additive effects to describe heritable and 392 

quantitative genetic variation (see previous section). In this model, the phenotypic variance is 393 

partitioned into orthogonal (i.e., independent) contributions from the genetic variance (VG), 394 

environmental variance (VE), and the variance due to interaction between genotype and 395 

environment (VGxE; see Box 1). Further, VG is also the sum of orthogonal variance components, 396 

each term representing a different form of gene action. The additive term designates the 397 

associated variance contribution of independent alleles, with the dominance term designating 398 
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the non-additive contribution to variance of interactions among alleles at the same locus, and 399 

the epistatic term designating the contribution to variance of non-additive interactions among 400 

alleles at different loci (which can take one of many forms such as additive by additive, additive 401 

by dominance, etc.; Lynch & Walsh 1998). As a result, non-additive gene action is minimized as 402 

non-linear contributions to the overall phenotype (Moreno 1994; Whitlock et al. 1995) that 403 

contributes little to the distinction of the different forms of dominance and epistasis (Cheverud & 404 

Routman 1995; Hansen & Wagner 2001; Hermisson et al. 2003; Hansen 2006; Mackay 2014) 405 

nor towards the inference of aspects of the underlying genetic architecture in general (Nelson et 406 

al. 2013; Huang & Mackay 2016).  407 

These statistical conveniences afforded by Fisher and others led to the notion that such 408 

non-additive effects were transient (i.e., are due to LD, which will decay with the relaxation of 409 

selection), or that trends of statistical epistasis were representative of functional epistasis in 410 

general, and therefore epistasis was unimportant to evolutionary dynamics (e.g., Bulmer 1980; 411 

Crow 2008, 2010; Hill et al. 2008). While minimized in a statistical regression, this does not 412 

necessarily mean that epistasis and dominance will not have a profound impact on the genetic 413 

architecture, or towards a given population or species’ long-term evolutionary trajectory, even if 414 

statistical epistatic variance is minimal (Goodnight 1988; Chevrud & Routman 1995; Hansen & 415 

Wagner 2001; Hansen 2013; Nelson et al. 2013; Griswold 2015; Paixão & Barton 2016). 416 

Indeed, parameterizing a model in which the type I sums of squares is determined by non-417 

additive parameters, as opposed to additive variance in the conventional regression model, the 418 

majority of genetic variation is still captured by the primary effect in the model regardless of the 419 

underlying architecture (Huang & Mackay 2016). Given the prevalence of evidence for non-420 

additive contributions (e.g., Phillips 2008; de Visser et al. 2011; see also refs in Hansen 2013), it 421 

is likely that non-additive effects will play a role in evolutionary outcomes. Indeed, Carter et al. 422 

(2005) show that, relative to a purely additive trait (or with non-directional epistasis) under 423 

directional selection, positive and negative epistasis can respectfully increase or decrease the 424 
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additive genetic variance, and thus increase or decrease the rate of phenotypic response to 425 

selection (see also Le Rouzic & Álvarez-Castro 2016). As Jones et al. (2014) show, for a two-426 

trait phenotype controlled by pleiotropic and epistatic effects, epistasis in the presence of 427 

selection can also affect the mutational architecture of complex traits, where the average allelic 428 

effect evolves to be negatively correlated with the average epistatic coefficient, the strength of 429 

which is greater in larger population sizes. Yet, as described by Barton et al. (2016), and further 430 

discussed by Barton (2017) and Paixão & Barton (2016), the infinitesimal model can be 431 

generalized to include epistatic effects, particularly when the number of underlying loci is large 432 

and selection on individual loci is weak. In the case of non-systematic, weak pairwise epistasis, 433 

and without mutation or environmental noise, the infinitesimal model holds to a good 434 

approximation (Barton et al. 2016). In the case of sparse epistasis with selection and a large 435 

number of loci, the change in the mean trait over 100 generations is greater than that under a 436 

purely additive architecture, and the decrease in additive genetic variance exceeds, to an 437 

extent, that of the neutral case after about 30 generations (which is exacerbated with simpler 438 

architectures), with a reduction of the frequency of segregating alleles with positive effect on the 439 

trait (Barton et al. 2016; Barton 2017). Despite an ongoing debate within the literature (Wright 440 

1932; Whitlock 1995; Crow 2008, 2010; Gibson 2012; Zuk et al. 2012; Hansen 2013; Hemani et 441 

al. 2013; Nelson et al. 2013; Mäki-Tanila & Hill 2014; Ávila et al. 2014; Paixão & Barton 2016), 442 

and given that there seems to be no general prevalence of either positive or negative epistatic 443 

interactions (Mackay 2014), the infinitesimal model is likely to continue to contribute to our 444 

understanding of the evolution of complex traits, as exemplified in its application towards 445 

breeding applications (Turelli & Barton 1994) and specifically those successfully applied to trees 446 

(Savolainen et al. 2007; Thavamanikumar et al. 2013; Isik et al. 2015). Ultimately, the success 447 

of such models will be conditioned on the context, as well as the distinction between 448 

physiological and statistical epistasis. Here, (higher order) non-additive contributions to 449 

phenotypic variance will likely have minimal deviations from the limit of the infinitesimal model in 450 
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the short-term, particularly if epistasis is primarily due to independent, low-order interactions, 451 

and should thus be applied with this in mind. As such, while short-term evolutionary processes 452 

are likely to hold in this limit, identifying the non-additive loci which underlie the trait, and their 453 

respective gene action, may still need further inquiry. Indeed, it is often argued that epistasis is 454 

too often neglected in studies of complex traits (e.g., Carlborg & Haley 2004), possibly due to 455 

the large sample sizes required to detect significant interactions, and lack of statistical power 456 

incurred due to multiple hypothesis testing (Mackay 2014). Given the recent reduced cost of 457 

sequencing technology and availability of novel computational and laboratory tools, future 458 

studies incorporating investigations of epistasis and dominance (where appropriate and 459 

feasible) would contribute to our understanding of genetic architectures and quantitative trait 460 

evolution and breeding applications in trees (e.g., Tan et al. 2017, Vitezica et al. 2017). Even so, 461 

the additive model is still a powerful tool to describe the loci underlying adaptive traits. 462 

Pleiotropy is another considerable factor influencing the expectations of the genetic 463 

architecture of quantitative traits, its evolution or evolvability, and indeed the genotype-464 

phenotype map (Hansen 2003; Orr 2006; Chevin et al. 2010b; Tenallion 2014). While multiple 465 

definitions exist across the literature (see Paaby & Rockman 2013), pleiotropy is generally 466 

identified as a single locus influencing multiple phenotypic traits. Other than linkage 467 

disequilibrium, pleiotropy is the fundamental cause of genetic covariance among phenotypes 468 

(Lande 1980). Given that the number of independent traits under selection is likely limited 469 

(Barton 1990), pleiotropy likely plays a substantial role in evolutionary dynamics. It is expected 470 

that as the number of traits, n, influenced by a locus increases, the probability of a beneficial 471 

mutation will decrease with the effect size of a mutation; where the effect size, r, relative to the 472 

distance to the phenotypic optimum, , must be (much) less than d in order to be 473 

beneficial (Fisher 1930; the so-called ‘cost of complexity’: Orr 2000). Yet, empirical data seem to 474 

contradict this hypothetical cost, as the effect size of mutations often do not scale with pleiotropy 475 

in this way, and instead increase with the dimensionality of targeted traits (Wagner et al. 2008; 476 
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Wang et al. 2010). Additionally, universal pleiotropy, where all mutations affect all phenotypes, 477 

and where there is no net directionality of mutations (i.e., mutational isotropy; both aspects as in 478 

Fisher 1930), has also been challenged by findings which suggest that only a fraction of 479 

phenotypic traits are affected by pleiotropic loci (Wagner et al. 2008; Wang et al. 2010). 480 

Relaxation of such assumptions from Fisher’s geometric model have shown that the total 481 

number of traits affected by pleiotropy has a relatively decreased effect on the rate of evolution 482 

in more general models (e.g., Martin & Lenormand 2006; see also Simons et al. 2017, and 483 

references in Wagner & Zhang 2011 and Tenaillon 2014). It seems that if model organisms 484 

(e.g., Pickrell et al. 2016, Smith 2016) are taken as a bellwether for expectations in trees, 485 

pleiotropy is likely a contributing factor for many quantitative traits. Thus, the fraction of 486 

beneficial mutations is likely limited when the number of traits influenced is large, suggesting 487 

that the cost of complexity (or, more precisely, pleiotropy) may be generally robust (Welch & 488 

Waxman 2003), particularly when a population is close to its phenotypic optimum where 489 

selection acts against dimensionality of pleiotropic effects (Zhang 2012). Thus, the degree of 490 

pleiotropy for underlying loci, distance from phenotypic optima, and covariance among traits 491 

under selection can have profound effects on evolutionary outcomes. This is particularly true for 492 

the evolvability of architectures and distribution of effect sizes, which further depends on the 493 

variational autonomy of the traits affected by pleiotropy and the modularity of mutations, the 494 

former of which is ultimately determined by the direction and size of effect among a set of 495 

pleiotropic loci across a set of characters (see Arnold 1992; Wagner & Altenberg 1996; Hansen 496 

2003, 2006; Wagner et al. 2007; Chevin et al. 2010b; Wagner & Zhang 2011; MacPherson et al. 497 

2015).  498 

In many investigations of local adaptation, the primary interest is in trait evolution and 499 

thus the underlying genetic components. As such, environmental effects and interactions are 500 

not often pursued, or perhaps even detected (Yoder & Tiffin 2017), particularly in studies of a 501 

single common garden or environment, and are instead treated in much the same way as 502 
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epistatic interactions discussed above. Nonetheless, genotypic effects can evolve through 503 

genotype-by-environment interactions with a changing environment just as is the case for the 504 

evolution of non-additive interactions with a changing genetic background (Hansen 2006). 505 

Indeed, it is likely that consistent fluctuations in the environment would select for 506 

environmentally-perceptive responses, which seems to be the case across many tree species 507 

(Li et al. 2017). The contribution to the effect size distribution from GxE interactions will be a 508 

function of the variation in selection across the environments experienced by the interacting 509 

allele or alleles as well as the level of gene flow between environments and fitness differences 510 

among various genetic backgrounds, but to our knowledge such information (to the extent of 511 

that for e.g., selective sweeps) is lacking within the literature. 512 

Negative selection 513 

Negative selection acts against deleterious mutations that arise within populations. It is 514 

one, but not the only, mechanism that underlies stabilizing selection, defined at the level of the 515 

phenotype where deviations from an optimal value are selected against. Optima in this 516 

framework can be thought of either globally (i.e., across all individuals) or locally (i.e., individuals 517 

at a certain site or within a certain population), where the latter can have varying optima across 518 

populations. The nature of the optima (i.e., being local or global) affects the detectable trait 519 

architecture. For example, trait architecture should be composed of rare alleles with a negative 520 

relationship between effect size and allele frequency (cf. Eyre-Walker 2010 and references 521 

therein), where this relationship can also be confounded with degree of dominance and gene 522 

expression network connectivity (Huber et al. 2017), under models of a single global optimum. 523 

From a population genetic perspective, the ubiquity of negative selection is encapsulated in the 524 

name background selection, which has extensive reviews about its presence in natural systems 525 

(Charlesworth 2013), its importance for the neutral and nearly neutral theories of molecular 526 

evolution (Ohta 1992, 1996), and its contribution to observable patterns of hitchhiking (Stephan 527 
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2010). Important for the study of polygenic adaptation and its architecture, however, is that loci 528 

identified using GWAS may also include segregating deleterious variation (as argued and hinted 529 

at in Eckert et al. 2013b; cf. Yang et al. 2017; Gazal et al. 2017) as this creates trait variance, 530 

with little known about their prevalence (including differential prevalence across traits), 531 

differentiation in frequencies across populations (but see Holliday et al. 2016), and effects on 532 

downstream inferences about divergent selection pressures across populations. It is sets of 533 

GWAS loci, though, that are currently analyzed for signatures of local adaptation via spatially 534 

divergent (i.e., locally positive) natural selection (e.g., Berg & Coop 2014). 535 

Recent exemplary work with expression networks in Populus tremula L. (Salicaceae; 536 

Mähler et al. 2017) and the herbaceous Capsella grandiflora Boiss. (Brassicaceae; Josephs et 537 

al. 2015, 2017a) have revealed intriguing insight into the effects of negative selection on the 538 

architecture of complex traits in plants, as well as the relationship between network connectivity 539 

and the strength of negative selection. In P. tremula, genes with expression levels that were 540 

significantly associated with sequence variation were found more often in the periphery of the 541 

co-expression network (lower network connectivity) than within network module cores (higher 542 

connectivity), while expression-associated SNPs were negatively correlated with network 543 

connectivity and effect size, a pattern also found between connectivity and expression variance, 544 

and minor allele frequency and QTL effect size (Mähler et al. 2017). Genes associated with 545 

sequence variation had less skewed site-frequency spectra (i.e., the frequency distribution of 546 

allelic variants) and lower estimates of nonsynonymous to synonymous divergence (dN/dS) than 547 

genes not associated to sequence variation, together suggesting that genes within the periphery 548 

of co-expression networks are likely under less selective constraint than those genes with high 549 

network connectivity which likely experience greater intensities of purifying selection. These 550 

genes thus tend to have more segregating variation and may be those most likely to be 551 

detected with current sample sizes utilized in GWAS, which has implications for estimation of 552 

trait architecture and its ‘degree’ of polygenicity. Even so, while there is prevalent evidence of 553 
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negative selection in trees (e.g., Krutovsky & Neale 2005, Palmé et al. 2009, Eckert et al. 554 

2013a,b), more inquiry is needed. 555 

Positive selection 556 

The temporal and spatial heterogeneity of selection can impact the evolution of genomic 557 

architectures underlying adaptation. These impacts are often thought of on a spectrum of trade-558 

offs, with one end being antagonistic pleiotropy where allelic effects vary between positive and 559 

negative on fitness across populations, and conditional neutrality where allelic effects on fitness 560 

are positive in one or more populations and nearly zero in others (Anderson et al. 2012, 561 

Savolainen et al. 2013). For instance, alleles incorporated into a population after a shift in 562 

environmental influence can increase from low to high frequency via positive selection. The 563 

existence of such a beneficial allele can manifest in several ways: from new mutations, 564 

introgression through gene flow, or molecular reorganization through novel recombination, 565 

inversion, transposition, copy number variation, or insertion-deletion events. If there is strong 566 

selection acting on this allele (Nes >> 1), it will sweep to high frequency creating a signature of 567 

reduced polymorphism at neutral sites physically linked to the allele (‘genetic hitchhiking’, 568 

Maynard Haigh & Smith 1974) resulting in a hard ‘selective sweep’ (Berry et al. 1991). However, 569 

in structured populations with limited gene flow, this process can take significantly longer to 570 

reach fixation, resulting in incomplete sweeps (Whitlock 2003). Additionally, Pavlidis et al. 571 

(2012) found that, in congruence with Chevin & Hospital (2008), a multilocus genotype often 572 

prevents the trajectories of individual alleles from sweeping to fixation, with an increasing 573 

number of loci leading to decreasing probability of fixation, and as a result, an altered selective 574 

signature at such loci (see also Jain & Stephan 2017). As such, hard selective sweeps in a 575 

polygenic architecture are expected to be rare (but not completely absent) under most 576 

circumstances, particularly when the shift in environment causes a relatively small deviation 577 

from the phenotypic optimum. Thus, hard sweeps most likely apply to loci with relatively large 578 
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effect above a calculated, context-dependent threshold value (Orr 2005; de Vladar & Barton 579 

2014; Stephan 2015; see specifically Jain & Stephan 2015, 2017).  580 

While early literature (Maynard & Smith 1974; Kaplan et al. 1989) focused on the rapid 581 

sweep of an allele incorporated into a population after an environmental shift, research within 582 

the last few decades have focused on ‘soft sweeps’ resulting from neutral or deleterious 583 

mutations that are present in the standing genetic variation prior to the change in the selective 584 

environment, wherein the selection coefficient changes with the environmental shift such that 585 

the allele(s) become evolutionarily advantageous (Innan & Kim 2004, Przeworski et al. 2005, 586 

Berg & Coop 2015; Schrider & Kern 2017; reviewed in Hermisson & Pennings 2005, Barret & 587 

Schluter 2008, Messer & Petrov 2013, and Hermisson & Pennings 2017; see also Jensen 588 

2014). These allele(s) could manifest via a single low-frequency variant, multiple variants 589 

caused by parallel recurrent mutation/reorganization on multiple haplotypes, or multiple unique 590 

alleles that arise independently within, perhaps multiple, populations. In such cases where 591 

selection acts via soft sweeps, the rate of evolution at the phenotypic level is expected to 592 

exceed those of hard sweeps because the alleles under selection have escaped the stochastic 593 

nature of drift to a greater degree and are segregating within multiple individuals and genetic 594 

backgrounds within the population (Innan & Kim 2004). The extent to which soft sweeps alter 595 

the effect size distributions underlying the genetic architecture is likely dependent upon both the 596 

strength of selection and effect size before and after the environmental change (Messer & 597 

Petrov 2013; Matuszewski et al. 2015; Jain & Stephan 2017), while the frequency before 598 

selection influences the likelihood of subsequent detection (Innan & Kim 2004). Additionally, if 599 

multiple mutations are segregating during the sweep, the probability of fixation for any given 600 

locus also decreases (Pennings & Hermisson 2006a, 2006b; Chevin & Hospital 2008; Ralph & 601 

Coop 2010). For many species of trees, which often experience high gene flow and strong 602 

diversifying selection across populations, adaptive divergence for polygenic traits is expected to 603 

result more often from soft sweeps than hard sweeps, affecting phenotypes by subtle allele 604 
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frequency changes across populations, such that allele frequency differences of individual loci 605 

across populations for neutral and selective sites will often be nearly indistinguishable (Latta 606 

1998, 2003; Barton 1999; Kremer & Le Corre 2012; Le Corre & Kremer 2012; Stephan 2015; 607 

Yeaman 2015; Jain & Stephan 2015, 2017). Indeed, the large effective population sizes found 608 

in most tree species would permit large effective mutation rates (or reorganization events) 609 

necessary for a soft selective sweep from multiple unique variants, particularly when the 610 

phenotype is underlain by a large mutational target (i.e., many loci). Even so, and as highlighted 611 

by Stephan (2015) and Bailey & Bataillon (2016), the extent to which scientists can detect the 612 

influence of demographic processes on soft versus hard sweeps, and vice versa, remains 613 

challenging (Jensen et al. 2005; Chevin & Hospital 2008; Hancock et al. 2010; Pritchard et al. 614 

2010; Schrider et al. 2015, 2016; Schrider & Kern 2016; Hermisson & Pennings 2017).  615 

While discrete directional selection events are likely to be a common evolutionary 616 

influence across taxa, fluctuating or sustained directional selection (i.e., moving optima) are also 617 

likely to be contributory factors influencing the genetic architecture of quantitative traits 618 

(reviewed in Kopp & Matuszewski 2013; see also McCandlish & Stoltzfus 2014). For a 619 

sustained moving optimum, the effect size distribution of beneficial alleles is expected to be 620 

dependent upon the effect distribution of standing or de novo mutations as well as the strength 621 

of selection: if the rate of change is dramatic, adaptation from new mutations is expected to 622 

occur through intermediate to large-effect loci (Kopp & Hermisson 2009a; Matuszewski et al. 623 

2014) or from small-effect loci when adaptation occurs via standing variation (particularly when 624 

epistasis is considered, Matuszewski et al. 2015). Under lesser rates of environmental change, 625 

adaptation is expected to proceed through mainly alleles of small-effect (Collins et al. 2007; 626 

Kopp & Hermisson 2009a, 2009b) where intermediate effects will dominate the long-term 627 

distribution of effect sizes of an adaptive walk (Kopp & Hermisson 2009b). In the case of 628 

fluctuating environments, outcomes often depend directly on the degree of temporal 629 

autocorrelation of the changing environment. In such cases of stochastic fluctuation around a 630 
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linear trend of environmental change, extinction risk increases relative to that of the strictly 631 

linear trend (Bürger & Lynch 1995) where local adaptation lags, to some degree, behind any 632 

given contemporaneous scenario. In comparison, and similar in some ways, stochastic 633 

fluctuations around a constant mean are expected to resemble the dramatic environmental 634 

change scenario described above, characterized by strong selection pressures, maladaptation 635 

between generations, and a large lag load (Bürger 1999; Chevin 2012; Kopp & Matuszewski 636 

2013). In the case of autocorrelated shifts, the ‘predictability’ of such fluctuations may decrease 637 

the possibility of extinction, increase probability of local adaptation, and lead to similar scenarios 638 

as discussed for gradual changes in the environment (Kopp & Matuszewski 2013).  639 

Gene flow 640 

Gene flow, to the extent that would be appreciable to that found in trees, is also an 641 

important component shaping quantitative expectations. Indeed, since the early 1900s we have 642 

known that gene flow can disrupt adaptation if selection is not strong enough to overcome the 643 

loss of beneficial alleles (Haldane 1930; Wright 1931; Slatkin 1987; reviewed in Felsenstein 644 

1976, Lenormand 2002, Savolainen et al. 2007, 2013, Feder et al. 2012a, and Tigano & Friesen 645 

2016). Particularly when gene flow is asymmetric between core and peripheral populations, 646 

adaptation can be inhibited in marginal habitats (Kirkpatrick & Barton 1997; Kawecki 2008). 647 

Even so, there is abundant evidence that gene flow can promote adaptation and maintain 648 

polymorphisms within populations, including Heliconius butterflies (Joron et al. 2011), white 649 

sand lizards (Laurent et al. 2016), stick insects (Comeault et al. 2014, 2015), cichlid fishes 650 

(Meier et al. 2017), Darwin’s finches (Lamichhaney et al. 2015), as well as lodgepole pine 651 

(Yeaman & Jarvis 2006). There is also evidence to suggest that as the number of traits 652 

experiencing spatially heterogeneous selection increases, the degree of local adaptation 653 

increases, even with considerable gene flow (MacPherson et al. 2015). The magnitude of gene 654 

flow between populations can also impact the distribution of effect sizes, for when gene flow 655 
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falls below a critical threshold, and over many thousands of generations, there is an increase in 656 

the probability of establishment and persistence times of large-effect alleles, thus reducing the 657 

proportion of the polymorphism due to small-effect loci (Yeaman and Otto 2011; Yeaman and 658 

Whitlock 2011). These dynamics are further influenced by the susceptibility of alleles to 659 

‘swamping’ (Slatktin 1975; Bürger & Akerman 2011; Lenormand 2002; Yeaman 2015; sensu 660 

Haldane 1930). For alleles that are prone to swamping, adaptive phenotypic divergence 661 

depends on genetic variation and is driven by allelic covariance among populations particularly 662 

when the underlying architecture is highly polygenic, the mutation rate is high, and the number 663 

of loci underlying the trait exceeds the number needed to achieve the local optimum phenotype 664 

(genetic redundancy, Yeaman 2015; see Goldstein & Holsinger 1992). Conversely, when there 665 

is little genetic redundancy underlying the trait, limited divergence is observed unless the effect 666 

size of a given swamping-prone allele exceeds the critical migration threshold. In these cases 667 

where swamping-prone alleles contribute to adaptive divergence, the genetic architecture is 668 

transient and any given locus contributes ephemerally to phenotypic divergence, even for loci of 669 

relatively large effect (Yeaman 2015). In the case of swamping-resistant alleles, the evolved 670 

architecture is enriched for large-effect loci and adaptive divergence can be maintained with 671 

little genetic variation or input from mutation. Yet while the contribution from such loci can last 672 

many thousands of generations, the architecture can again become transient as the genetic 673 

redundancy or mutation rate increases (Yeaman and Whitlock 2011; Yeaman 2015).  674 

 Physical linkage and reduction of recombination between adaptive loci can also play a 675 

considerable role in adaptive processes in the face of gene flow (Feder & Nosil 2010; Feder et 676 

al. 2012a,b; Yeaman 2013; references therein). In such cases, loci that are tightly linked to other 677 

loci already under selection will have an increased probability of contributing to local adaptation, 678 

both because of physical linkage as well as by reducing the effective recombination among loci 679 

within the sequence block. For instance, Yeaman & Whitlock (2011) showed that under 680 

divergent selection with gene flow, the number of contributing loci decreases with increasing 681 
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recombination while small effect loci tend to cluster in groups that act as a single large effect 682 

locus (see also Remington 2015), and strong selection can maintain these clusters of linked loci 683 

over greater map distances than can weak selection. More recently, Yeaman (2013) employed 684 

individual-based simulations to provide evidence that the clustering of alleles throughout a bout 685 

of adaptation is unlikely to be driven mainly by divergence hitchhiking alone, and that instead 686 

competition between genomic architectures and chromosomal rearrangements occurring 687 

throughout adaptive processes under a range of environmental fluctuation scenarios can lead to 688 

the evolution of tightly clustered adaptive loci which persist in the event of gene flow, unlike the 689 

clusters identified by Yeaman & Whitlock (2011). Yeaman (2013) found that the level of 690 

clustering was a function of the temporal fluctuation period, the rate of rearrangement itself is an 691 

important determinant on the evolution of clustered architectures, and clusters can in some 692 

cases be evolutionarily disadvantageous. Together, these results suggest that genomic 693 

rearrangements (reviewed in Ortiz-Barrientos et al. 2016), including inversions (Kirkpatrick & 694 

Barton 2006; reviewed in Hoffman & Rieseberg 2008), which decrease the effective rates of 695 

gene flow among adaptive sequences can be an essential component of local adaptation, and 696 

indeed some cases of speciation, in the face of gene flow. 697 

Summary 698 

While we provided an overview of the factors that can influence the genetic architecture 699 

of local adaptation, we acknowledge that it is far from exhaustive. Because the phenotypes 700 

used in studies of local adaptation (particularly those assumed or corroborated to be a 701 

component of total lifetime fitness) often have a continuous distribution, and are thus 702 

quantitative in nature, the underlying genetic basis for these traits is likely polygenic and is 703 

predicted to be underlain by multiple (often many) segregating loci, many of which may confer 704 

small phenotypic effects (and are thus unlikely to be detected using single-locus approaches). 705 

Even so, a continuum exists, where the true genetic architecture (the number of contributing 706 
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loci, as well as their relative locations within the genome, phenotypic effects, and interactions) 707 

underlying a given complex trait is itself determined by a combination of evolutionary forces that 708 

encompass an interplay between the strength, timing, and direction of (background) selection 709 

against the homogenizing effects of gene flow and recombination, disruptive effects of drift, 710 

linkage, transposition, inversion, and mutation, interactions between underlying loci as well as 711 

between these loci and the environment, structural variation, relationship to gene expression 712 

networks, as well as other factors related to life history. Consequently, the contemporary genetic 713 

architecture is a result of past evolutionary processes, while the adaptive response to future 714 

evolutionary dynamics is influenced in part by the contemporary architecture and genetic 715 

variance at hand. 716 

The genomics of local adaptation in trees 717 

Common approaches used to identify adaptive loci 718 

Across taxa, the predominant association and outlier methods for uncovering sets of loci 719 

underlying local adaptation have relied upon single-locus population genetic approaches. 720 

Putatively adaptive loci are often identified by elevated allele frequency differences among 721 

populations relative to a null model.  Because most of the loci in the genome are assumed to be 722 

neutral relative to fitness, outlier loci that stand out from this noise are identified as those being 723 

putatively under selection. However, outlier tests based on FST (sensu Lewontin & Krakaur 724 

1973) do not incorporate information regarding putative phenotypic targets of selection nor 725 

environmental drivers of differentiation, often do not correct for neutral population structure (but 726 

see Lotterhas & Whitlock 2015), and will inevitably isolate a biased set of candidate loci 727 

(Hermisson 2009; Cruickshank & Hahn 2014). In the case of genotype-environment 728 

associations (reviewed in Rellstab et al. 2015; see also De Mita et al. 2013), information about 729 

possible environmental drivers is incorporated by assessing the association between allele 730 

frequencies and environmental heterogeneity, yet without information regarding traits 731 
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hypothesized to be influenced by selection (Schoville et al. 2012). Single-locus genome wide 732 

association studies (see supplemental box SB1) and quantitative trait loci (QTL) experiments 733 

(reviewed in Ritland et al. 2011, Hall et al. 2016) have also been used in such investigations, 734 

quantifying the differential effects of typed alleles on a given phenotype. In these cases, a 735 

common garden or reciprocal transplant design (discussed above) can be utilized to control for, 736 

or at least minimize, environmental effects on the studied phenotypes, while a pedigree is used 737 

to minimize false associations and to isolate linkage groups, and/or to predict parental 738 

phenotypes through regression analysis of progeny. Despite the shortcomings of these 739 

methods, such studies provide candidate loci that can be investigated in further detail, which is 740 

particularly advantageous when resources are limited. Indeed, as discussed below, these 741 

single-locus approaches dominate the methods used to uncover complex traits (adaptive or 742 

otherwise) in trees. 743 

Current progress in trees 744 

The knowledge gained through the descriptions of genetic architectures underlying 745 

complex traits has fundamental implications for the success of conservation and breeding 746 

strategies. In light of the expectations outlined above for the architecture of quantitative traits 747 

under various evolutionary regimes, and the methods commonly used to detect these loci, we 748 

reviewed the literature of single-locus genotype-phenotype associations (GPAs, which included 749 

associations to gene expression levels) from studies in forest trees. In doing so, we identified 52 750 

articles across 10 genera and 25 species with a total of 2121 GPAs (Supplemental Table S3, 751 

Supplemental File F2). Because most studies in trees do not report phenotypic effect sizes of 752 

individual loci (i.e., regression coefficients), we report r2 values which can be used to quantify 753 

the percent phenotypic variance explained by the associated locus. In cases where multiple 754 

SNPs from a given locus (e.g., a gene or scaffold) were associated to a trait, we averaged the r2 755 

values for that locus. As with our review of trait heritability and QST, we grouped phenotypic 756 
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traits used in associations into twelve broad categories (in this case, no phenotypes fell into 757 

Survival or Seed and Seedling Properties groups). Across these trait groups, the mean r2 was 758 

0.039, where 80.85% (n = 1715) of recorded estimates had r2 values less than 0.05, 18.71% (n 759 

= 397) of r2 values falling between [0.05,0.22], and nine values of r2 greater than 0.22, which 760 

were all related to Cronartium ribicola resistance in Pinus monticola Douglas ex. D. Don (Figure 761 

3).  762 

Of the twelve trait groups, all but those traits relating to both reproduction and herbivore 763 

and insect resistance had r2 estimates greater than 0.10, with traits relating to disease 764 

resistance, growth, leaf and needle properties, phenology, and wood properties each 765 

contributing over 10% of these outliers. These small effects tend to also not account for much of 766 

the observed heritability, but can explain sizeable fractions in some instances (e.g., primary 767 

metabolites in Eckert et al. 2012). Of the loci associated with expression levels, r2 estimates 768 

were between 0.05 and 0.152 in all but one case (n = 54). We also assessed the propensity of 769 

individual loci to be associated to more than one phenotype or expression level across our 770 

literature review. Without correcting for the multiple associations of a locus to yearly phenotypes 771 

(e.g., bud flush 2009, bud flush 2010), we found that the average number of loci associated to 772 

multiple phenotypes per study was 6.94, while after correcting for multiple years the average 773 

number decreased to 5.59. The median number of SNPs utilized for association per study was 774 

195, where 75% (39/52) of studies used less than 1,000 SNPs, eight studies using less than 775 

10,000 SNPs, four studies using between 29,000-35,000 SNPs, and one study utilizing 776 

2,822,609 SNPs for association (all studies with greater than 10000 SNPs were from either 777 

Pinus or Populus species). Finally, to explore influence of sample size on estimated percent 778 

variance explained across studies we examined the relationship between r2 estimates and the 779 

number of maternal families used in estimate calculations and found a positive but non-780 

significant relationship (𝜌 = 0.0735, P = 0.623).  781 
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Are we out of the woods yet? 782 

 From insight gained from the literature review of genotype-phenotype associations it 783 

seems that the vast majority of the genetic architecture of local adaptation and complex traits in 784 

trees remains largely unexplained using common methods, a consistent pattern across the past 785 

decade of research in trees (Neale & Savolainen 2004; Savolainen et al. 2007; Ćalić et al. 2015; 786 

Hall et al. 2017). Furthermore, it is likely that the estimates for percent variance explained are 787 

inflated due to a combination of QTLs that break down into smaller effect loci (Remington 2015), 788 

the Beavis effect (Beavis 1994; Xu 2003), and the Winner’s Curse (Görning et al. 2001; Zöllner 789 

& Pritchard 2007) where locus effects are inflated by using the same data for both gene 790 

identification and phenotypic prediction (see Box 1 in Josephs et al. 2017b for a detailed 791 

synopsis of these biases). Such a pattern suggests that, indeed, many of the traits important to 792 

evolutionary, breeding, and conservation insight in trees are likely of a polygenic basis and that 793 

future studies must take this into account when seeking to identify the underlying loci. 794 

For GWAS and QTL studies, even within studies of model organisms, missing heritability 795 

is nothing new. Across taxa, missing heritability is less frequent within phenotypes of mono- to 796 

oligogenic bases (as seen for the Cr2 major-gene resistant locus in Pinus monticola, Lui et al. 797 

2017), as would be expected, and is a recurrent, pervasive shortcoming from genotype-798 

phenotype associations of complex traits, particularly those maintaining single-locus 799 

perspectives. A number of explanations have been put forth to explain the missing heritability, 800 

such as epistasis (Hemani et al. 2013) and its inflationary effect on heritability estimates (Zuk et 801 

al. 2012), environmental or epigenetic interactions (Feldman & Lewontin 1975) as well as their 802 

inflationary effect on heritability estimates (Zuk et al. 2012), (unmeasured) low-frequency 803 

variants of large effect (Dickson et al. 2010), genetic or variance heterogeneity of individual 804 

alleles (Leiserson et al. 2013; cf. Box 1 in Nelson et al. 2013), or common variants with effect 805 

size below detection thresholds (Yang et al. 2010). As such, here we avoid supporting one 806 
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causative hypothesis over another, particularly given the ongoing discussion within the 807 

literature, for which strengths and weakness for any viewpoint are apparent (e.g., Gibson et al. 808 

2010), and because of the progress yet to be made in trees.  809 

Indeed, the dissection of the genetic architectures underlying complex traits in trees is 810 

still in its nascency compared to the progress of model organisms (for which missing heritability 811 

is still an issue), and beyond issues of coverage, genomic saturation, and genomic resources 812 

(discussed below in The Path Forward), we must approach this issue with all possibilities in 813 

mind. Given the unique properties of the life histories, genome size and organization of many 814 

tree species, and the limited numbers of studies with large sets of molecular markers, causative 815 

sources of the missing heritability should be ruled out, or supported, as with any other 816 

hypothesis, particularly as we gain information from contemporary studies of trees that address 817 

shortcomings of those in the past. Further, we must keep in mind differences between functional 818 

and statistical epistasis (Álvarez-Castro et al. 2007; Nelson et al. 2013; Huang & Mackay 2016). 819 

In any case, it seems that sample sizes will need to be increased (Hall et al. 2016), albeit with 820 

diminishing returns (Boyle et al. 2017; Simons et al. 2017), to discover a higher proportion of the 821 

underlying loci in trees due to small to moderate additive effects, so incorporating investigations 822 

into such aspects of epistasis, GxE effects, and network analyses (when appropriate), may be a 823 

worthwhile complement (e.g., Mähler et al. 2017, Mizrachi et al. 2017; Tan et al. 2017).  824 

While the infinitesimal model will continue to prove to be immensely useful for breeding 825 

programs and for short-term evolutionary predictions, and we may find that the missing 826 

heritability in trees is truly due to consequences of the infinitesimal regime (as is often cited to 827 

be the majority consensus across taxa for missing heritability), it has been argued that the 828 

analysis paradigm for such studies is near its limits in describing the functional genetic 829 

architecture of quantitative traits, and that it is therefore necessary to move beyond single-locus 830 

perspectives and reconsider common practices (Pritchard & Di Rienzo 2010; Nelson et al. 2013; 831 

Sork et al. 2013; Tiffin & Ross-Ibarra 2014; Wadgymar et al. 2017). At this stage, it seems that 832 
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we investigators seeking to describe the genetic architecture of quantitative traits in trees have 833 

some ways yet to go before we are truly out of the woods. In the next section, we describe the 834 

path forward to describing genetic architectures from a polygenic and functional perspective, 835 

identify resources available to advance our knowledge and fill knowledge gaps, as well as future 836 

directions for this research area. 837 

The Path Forward 838 

As we have outlined, there is still ample room for improvement in our description and 839 

understanding of the genomic architecture of quantitative traits in trees. In this section, we orient 840 

our path forward by first highlighting utilities available to, and underused within, the forest 841 

genetics community to describe the genetic architecture of complex traits. We then outline 842 

several suggestions to facilitate further progress and advocate for prospective perspectives in 843 

future studies such that information and data may continue to be used easily in subsequent 844 

syntheses across pathways, environments, species, and towards insight to identify future 845 

needed resources as our understanding progresses. While our recommendations are specific to 846 

the tree community, we also acknowledge other valuable recommendations from recent reviews 847 

(e.g., Savolainen et al. 2013; Tiffin & Ross-Ibarra 2014; Lotterhos & Whitlock 2015; Gagnaire & 848 

Gaggiotti 2016; Hoban et al. 2016; Wellenreuther et al. 2016; Burghardt et al. 2017; Wadgymar 849 

et al. 2017). 850 

Stepping off the path – what’s in our pack? 851 

         The genetic architecture underlying local adaptation and complex traits likely has a 852 

polygenic basis composed of many loci of relatively weak effect yet many of the common 853 

association or outlier methods will often fail to detect many of the causative loci of small to 854 

moderate influence. Such investigations have so far led to an incomplete description of studied 855 

architectures, and, in many cases, have limited our understanding of complex traits in trees to a 856 

handful of loci. While we do not advocate that such single-locus methods be avoided in future 857 
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studies (considered further in the next section), here we outline underused and promising 858 

approaches to identify and describe underlying loci that explicitly take into account the polygenic 859 

basis of such traits and may help advance our understanding in future studies. Multivariate, 860 

multiple regression, and machine learning techniques are three such examples, and differ from 861 

univariate analyses by analyzing patterns among multiple loci simultaneously. 862 

The Bayesian sparse linear mixed model (BSLMM), for instance, such as that deployed 863 

in the software package GEMMA (Zhou et al. 2013), is developed for both genomic prediction and 864 

mapping of complex traits that offers considerable advantages over single-locus genotype-865 

phenotype approaches (Guan & Stephans 2011; Eheret et al. 2012; Zhou et al. 2013; Moser et 866 

al. 2015). This analysis has gained in popularity recently, being used across diverse taxa such 867 

as stick insects (Comeault et al. 2015, Riesch et al. 2017), butterflies (Gompert et al. 2015), 868 

Darwin’s finches (Chaves et al. 2016), and trees (Lind et al. 2017). BSLMM is a hybrid of LMM 869 

and Baysian variable regression that extends the Lande & Arnold (1983) multiple regression 870 

approach in an attempt to address the sparsity of common data sets used in genotype 871 

associations, where the number of model parameters (loci) is often much greater than the 872 

number of observations (sampled individuals; Zhou et al. 2013; Gompert et al. 2016). 873 

Specifically, the model takes into account relatedness among individuals and provides a means 874 

to summarize estimates of selection across the genome such as the proportion of phenotypic 875 

variation explained (PVE) across genotyped markers by estimating the combined influence of 876 

markers with either polygenic (infinitesimal) or measureable (moderate to large) effect, the 877 

proportion of PVE explained by genetic loci with measurable effects (PGE), and the number of 878 

loci with measurable effects that underlie the trait (for more details see Guan & Stephens 2011; 879 

Zhou et al. 2014; Gompert et al. 2016). Additionally, GEMMA returns the posterior inclusion 880 

probability for each marker providing evidence for association with the phenotype, and with 881 

sufficient genetic sampling PVE should approach the narrow sense heritability if all or most 882 

causal sites are in LD with genotyped loci (Gompert et al. 2016), a useful property considering 883 
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the uncertainties of genomic sampling saturation in trees. While the approach remains 884 

promising considering its performance in the context of genomic prediction and inference of 885 

PVE (e.g., Zhou et al. 2013, Speed & Balding 2014), there has been no attempts, to our 886 

knowledge, to assess the approach under various demographic histories, genetic architectures, 887 

and sampling designs. A close approximation to this comes from analyses carried out by 888 

Gompert et al. (2016), in which GEMMA was evaluated for PVE estimation, estimated effects of 889 

causative loci, and the estimated number of underlying SNPs based on various author-specified 890 

numbers of causal loci, underlying heritability ranges, and numbers of sampled individuals. In 891 

short, the authors convey that GEMMA is promising, but that there are important limitations to 892 

consider (Gompert et al. 2016). However, because the authors simulated architectures by 893 

randomly assigning effects to loci from an empirically-derived sequence data set, and while they 894 

were thorough in their data exploration, we encourage these results be replicated in silico 895 

through full modeling of genomic loci across various demographic, LD, sampling, and 896 

architecture scenarios to ensure underlying allele frequencies among populations and LD 897 

(within and among populations) reflect realistic patterns which may have an effect on model 898 

performance. Such additional analyses will also allow for more specific insight into model 899 

performance based on a priori biological insight available to investigators, allowing more 900 

informed decisions when choosing an appropriate genotype-phenotype association method 901 

such as BSLMM. 902 

Random Forests (Breiman et al. 2001) is a machine learning algorithm used to identify 903 

patterns in highly dimensional data sets to further generate predictive models. Alongside uses 904 

outside of evolutionary biology, the Random Forests algorithm has gained popularity in 905 

association studies across taxa as well as in trees such as that of genotype-phenotype 906 

associations in Sitka spruce (Picea sitchensis; Holliday et al. 2012) and genotype-environment 907 

associations in white spruce (P. glauca; Hornoy et al. 2015). Random Forests is based upon 908 

classification (for discrete variables, e.g., soil type) and regression (continuous variables; e.g., 909 
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temperature or phenotypic measurements) trees (so-called CART models). During its 910 

implementation, Random Forests creates these decision trees using two layers of stochasticity: 911 

the first layer is used to grow each tree by using a bootstrap sample of observations 912 

(environmental or phenotypic) while the second uses a random subset of predictors (marker 913 

loci) to create a node which is then split based on the best split of the observations across 914 

permutations of predictors using the residual mean square error (see Figure 2 in Hornoy et al. 915 

2015). The observations that were not used as training data to create the model are then used 916 

to estimate model accuracy, which can be further used to assess variable importance (Holliday 917 

et al. 2012; Hornoy et al. 2015; Forester et al. 2017). While creating a promising alternative to 918 

univariate approaches, until recently the Random Forests algorithm has not been fully explored 919 

to assess model performance for use in association studies. Forester et al. (2017) provide a 920 

thorough analytical assessment using simulated data to remark on performance for use in 921 

genotype-environment association studies (GEA). In their analysis, they used published 922 

simulations of multilocus selection (Lotterhos & Whitlock 2014, 2015) of various demographic 923 

histories and selection intensities across 100 causative (with 9900 neutral) loci to compare the 924 

Random Forests algorithm to the multivariate approaches of constrained ordination (redundancy 925 

analysis, RDA, and distance-based RDA, dbRDA - both of which are mechanistically described 926 

in Legendre & Legendre 2012, but are multivariate analogs of multiple regression on raw or 927 

distance-based data) and to the univariate latent factor mixed model (LFMM).  In short, Forester 928 

et al. (2017) found that LFMM performed better than Random Forests as a GEA, while 929 

constrained ordinations resulted in relatively lower false positive and higher true positive rates 930 

across levels of selection than both Random Forests and LFMM. Additionally, the authors found 931 

that correction for population structure had little influence on true and false positive rates of 932 

ordination methods, but considerably reduced true positive rates of Random Forests. They also 933 

note that further testing is needed across various evolutionary scenarios. Even so, constrained 934 

ordination provides an effective means by which to detect loci under a range of both strong and 935 
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weak selection (Forester et al. 2017). While promising under a GEA framework, future analyses 936 

may provide evidence that such methods also perform well in genotype-phenotype associations 937 

as well. Empirically, it has been used in trees to explore multivariate relationships between 938 

phenotypes, genotypes, and environments (e.g., Sork et al. 2016). Additionally, there have been 939 

many extensions of the original Random Forests model, such that extensions with purportedly 940 

better performance should be assessed alongside other popular association methods in the 941 

future. 942 

         Once a set of candidate loci have been identified to putatively underlie a phenotype or 943 

environment of interest, these loci can be used to further test the hypothesis of polygenic local 944 

adaptation. For instance, Berg & Coop (2014) use the significant hits from GWAS data sets to 945 

estimate within-population additive genetic values by calculating the frequency-weighted sum of 946 

effects across these loci. These values are then compared to a null model of genetic drift that 947 

accounts for population structure to test for an excess of variance among populations, ultimately 948 

identifying the populations most strongly contributing to this signal. The excess variance statistic 949 

(Qx) is analogous to QST and is composed of two quantities – an FST-like component describing 950 

allele frequency differentiation across populations and a LD-like component describing 951 

coordinated and subtle allele frequency shifts across populations. This method thus allows 952 

explicit hypothesis tests related to the expected polygenic architecture of local adaptation 953 

across populations of trees. It is also noteworthy in that it combines aspects of the genotype-954 

environment-phenotypic spectrum that underlies local adaptation within a single methodological 955 

framework (cf. Sork et al. 2013). Prior attempts take a pairwise approach examining each 956 

pairwise combination of the genotype-environment-phenotype spectrum (e.g., Eckert et al. 957 

2015). Despite the promising insight from this method, it has not been used widely outside of 958 

model organisms. Future applications in trees should consider the number of causal loci 959 

identified to be associated with quantitative phenotypes (driven somewhat by the number of loci 960 

used in mapping studies), the number of populations needed to increase power, especially in 961 
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the correlation of genetic values to environmental data, and the ability to reliably estimate 962 

genotypic effects. 963 

At the trail junction – where to next? 964 

 While we have outlined methods above that have not yet realized their full potential in 965 

describing genetic architecture of complex traits in trees, there are several matters that we, as a 966 

field, must keep in mind such that we can continue to progress our understanding in the most 967 

efficient manner. Here we believe the path forward lies in three critical areas which we discuss 968 

in further detail below: 1) needed data, 2) standardized data reporting, and 3) empirical studies 969 

in trees designed to test theoretical expectations of genetic architectures. 970 

Needed data  971 

While the common garden approach can facilitate understanding of evolutionary 972 

processes without specifically identifying underlying loci (Rausher & Delph 2015), identifying 973 

features of the genetic architecture will ultimately inform breeding applications important to 974 

management, conservation, and industry, and thus requires knowledge about underlying loci. 975 

Consequently, we have not yet had sufficient sampling of both marker densities and studies 976 

amenable to replication across systems to truly exhaust the use of single-locus approaches, 977 

particularly as the sample size of markers, individuals, and populations increase in the near 978 

future. Indeed, Hall et al. (2016) estimated that the number of causative loci underlying 979 

quantitative traits in trees is likely in the several hundreds, and to capture 50% of the heritable 980 

genetic variation, population sizes of about 200 will be needed for mapping disease traits, and 981 

about 25,000 for traits such as growth. Even so, we recommend that such single-locus 982 

associations should not be used as the sole method of architecture description as we carry out 983 

future studies unless justified a priori based on biological principles or knowledge of the 984 

expected architecture, and/or for testing specific hypotheses. While the limits of such methods 985 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/203307doi: bioRxiv preprint 

https://doi.org/10.1101/203307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lind et al: Are we out of the woods yet?  

 37 

should be considered for a given study, these approaches can be used alongside other lines of 986 

evidence to either support or spur further testing of underlying loci (sensu Sork et al. 2013). For 987 

instance, there is little downside to performing both a single-locus association and a multivariate 988 

analysis in the same study, even if some or all of the results for a given technique are excluded 989 

to the supplemental section (e.g., Sork et al. 2016). Further, contextualizing genotype-990 

phenotype and genotype-environment relationships with results that describe local adaptation 991 

(e.g., phenotype-environment, QST-FST comparisons) can also stimulate further understanding. 992 

Specifically, studies which do so within the context of a comparative approach, not only in the 993 

sense of Sork et al. (2013), but as well as within the context of comparisons within and across 994 

species (e.g., Yeaman et al. 2016) or environments (Holliday et al. 2016), offer unique 995 

circumstances under which to advance our understanding of complex traits (Lotterhos & 996 

Whitlock 2015; Ćalić et al. 2016; Hoban et al. 2016; Ingvarsson et al. 2016; Mahler et al. 2017).  997 

Considering the polygenic and network nature underlying such traits, future studies will 998 

benefit from a diverse set of markers that represent both functional proteins (genic regions) as 999 

well as those which control aspects of their expression or post-transcriptional regulation. If one 1000 

lesson is to be gained from the recent discussion of the applicability of reduced representation 1001 

techniques (Lowry et al. 2016; Catchen et al. 2017; Lowry et al. 2017; McKinney et al. 2017), it 1002 

is that genomic resources are paramount to advancement of knowledge, especially when 1003 

developed with knowledge of patterns of linkage disequilibrium or, if not with this knowledge, 1004 

with goal of quantifying it. However, RADseq remains one of the most cost-effective approaches 1005 

available to trees and should thus be assessed in the specific context of tree species, 1006 

particularly when strengths and limitations are understood and addressed (as reviewed in 1007 

Parchman et al. in review). No matter the approach used for association, some aspect of the 1008 

architecture is likely to be missed in trees. For example, RADseq based markers developed 1009 

within large genomes are not enriched within genic regions where structural changes to proteins 1010 

are expected to affect phenotypes (although choice of enzymes can affect the relative 1011 
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proportion of genic regions). In contrast, exome based approaches are anchored within coding 1012 

regions thus excluding putative regulatory elements outside of the exomic regions used to 1013 

develop probes. Recent marker development approaches, such as RAPTURE (Ali et al. 2016), 1014 

however, have blurred the lines between RADseq and targeted capture-based approaches and 1015 

offer a promising, cost-effective method that can explicitly avoid biased assumptions about the 1016 

importance of exomic versus intergenic loci comprising the architecture of local adaptation. 1017 

Beyond genetic linkage maps (e.g., Friedline et al. 2015) and reference genomes, which 1018 

undoubtedly should be among our top priorities, other techniques outside of traditional 1019 

genomics, such as transcriptomics, have the potential to complement genomic studies in many 1020 

ways without great need for existing species-specific resources (reviewed in Romero et al. 1021 

2012, Strickler et al. 2012; Vialette-Guiraud et al. 2016). For instance, comparative 1022 

transcriptomic techniques in trees can be used to identify putatively orthologous sets of markers 1023 

(e.g., Wachowiak et al. 2015; Yeaman et al. 2016) that can be used to describe the evolution of 1024 

architecture (e.g., shared orthologs versus paralogs across species) or for comparative linkage 1025 

mapping (Ritland et al. 2010) across systems. Additionally, with the appropriate study design, 1026 

transcriptomics can be implemented in tree species to describe various aspects of differential 1027 

expression (Cohen et al. 2010; Carrasco et al. 2017; Cronn et al. 2017), selective constraint 1028 

(Mähler et al. 2017), prevailing selective forces (Hodgins et al. 2016), mapping of disease 1029 

resistance (Liu et al. 2016; Liu et al. 2017), and regulatory networks (Zinkgraf et al. 2017). The 1030 

multilocus paradigm of transcriptomics is amenable to identifying and testing hypotheses of the 1031 

genetic architecture of complex traits in a network framework (Jansen et al. 2009; Leiserson et 1032 

al. 2013; Civelek & Lusis 2014) and will no doubt provide valuable contributions for tree 1033 

evolutionary biologists. Other areas amenable to network description such as metabolomics and 1034 

proteomics would also be a complement, particularly if genetic studies contextualize results with 1035 

findings from such approaches and vice versa. Ultimately the goal is to use a priori knowledge 1036 

synthesized across past studies, techniques, and perspectives to guide further hypotheses 1037 
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about underlying architecture, as exemplified by Mizrachi et al. (2017). Finally, high-throughput 1038 

phenotyping as well as environmental measures at fine spatial scales below square-kilometers 1039 

will also facilitate and advance our understanding of complex traits in trees (Sork et al. 2013; 1040 

Rellstab et al. 2015; Leempoel et al. 2017).  1041 

Standardized data reporting 1042 

 As we continue to accrue genotype-phenotype, genotype-environment, and phenotype-1043 

environment associations within and across tree species, authors should consider how their 1044 

results can most effectively be used in further studies and syntheses, both for the purpose of 1045 

validation or comparison as well as novel insights yet to be seen. Here we outline a few 1046 

suggestions that can be broken down into reporting within manuscripts and metadata. For 1047 

instance, in our survey of common garden studies used to estimate h2 and QST, in many cases 1048 

the exact design of the study could not be replicated with the information from the manuscript 1049 

alone. While an abbreviated design may be suitable for the main text, authors can provide much 1050 

more detail in supplemental materials that can facilitate replication and comparison across 1051 

studies (e.g., total individuals per garden, family, or block – as opposed to averages or ranges), 1052 

which will ultimately facilitate syntheses regarding future directions. Further, future studies 1053 

would benefit from estimating relatedness using marker data which will ultimately improve the 1054 

precision of h2, QST, and missing heritability estimates (de Villemereuil et al. 2016). For cases in 1055 

which estimating relatedness from markers is not appropriate or feasible, the field would benefit 1056 

by authors exploring a range of underlying sibships (e.g., Eckert et al. 2015), which are often 1057 

assumed to be half-sib relationships. While some studies in our survey assumed a mixed 1058 

sibship relationship for open-pollinated sources, ultimately such assumptions without data 1059 

exploration will affect the outcome or conclusions for any given study. A recently released R 1060 

package by Gilbert and Whitlock (2014) allows for such an exploration of effects of mixed 1061 

sibships on inference of QST and its magnitude relative to FST. Inclusion of such exploration, 1062 
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even in the supplement, will help contextualize such studies as they are published. For studies 1063 

estimating causality for genotype to phenotype, it would be worthwhile to include the regression 1064 

coefficients or other estimates of effect size in addition to PVE (r2). Importantly, the units of the 1065 

effect size must be explicitly reported (e.g., Julian days versus phenotypic standard deviations), 1066 

with the standard deviation also reported. For all association studies, supplemental tab- or 1067 

comma-delimited text files (outside of a word processing document) easily analyzed with 1068 

programming languages would also facilitate synthesis (even if providing redundant information 1069 

from the main text), particularly if such files are well described with a README file and 1070 

contained data regarding marker position, putative orthogroups, hits to reference genomes, 1071 

effect size, PVE, genotypes by individual identifiers, individual population assignments, and if 1072 

the sequence or marker was significantly associated to phenotype or environment. Such an 1073 

operating procedure may work well in the short term, however in the long term such information 1074 

will need to be easily accessible from one or very few repositories.  1075 

Data standardization, the inclusion of meta-information, and compilation of these data 1076 

specific to trees into a database with common terminology will be crucial to future inquiries with 1077 

the purpose of synthesizing evidence for underlying architectures across species and 1078 

environmental systems (e.g., as for human GWAS data: https://www.ebi.ac.uk/gwas/). If the 1079 

data generated by tree biologists is disparate and housed across databases and journal 1080 

supplements this impedes synthesis first by forcing scientists to collate information across 1081 

sources, which may be further impeded by data redundancies or inconsistencies in data format 1082 

and utilized nomenclature (Wegrzyn et al. 2012). While many journals have required submission 1083 

of sequence data to repositories such as NCBI, such databases are lacking with regard to 1084 

information pertaining to phenotypic, environmental, and geographic information upon which 1085 

much of the foundation of our field is built. Submissions to Dryad somewhat overcome this, but 1086 

there is no standardization within the community for content for such submissions and important 1087 

information may be lacking. Currently, this information is often appended in supplemental files 1088 
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that cannot be readily accessed, compared, or queried in an efficient manner. Hierarchical 1089 

ontologies can be used to ease this burden. Gene Ontology is likely the most recognizable to 1090 

evolutionary biologists, but there also exist Plant Ontologies for organismal structure and 1091 

developmental stages, Environmental Ontologies for habitat categorization, and Phenotypic, 1092 

Attribute, and Trait Ontologies for the annotation of phenotypes. Such ontologies not only 1093 

standardize nomenclature, but also assist in database queries. The utilization of such databases 1094 

will no doubt encourage comparative studies and syntheses, as infrastructure and data 1095 

accessibility are essential to the comparative approach (Neale et al. 2013; Ingvarsson et al. 1096 

2016; Plomion et al. 2016). Luckily, such a database exists for the broader tree genetics 1097 

community. The open-source database, called TreeGenes, can be accessed, queried, and 1098 

visualized through DiversiTree, a web-based, desktop-style interface (Wegrzyn et al. 2008). 1099 

Further, DiversiTree connects to the geographical interface CartograTree (Vasquez-Gross et al. 1100 

2013) to encourage comparative synthesis by providing technology to filter and visualize geo-1101 

referenced biotic and abiotic data housed on TreeGenes. As promising as such databases are, 1102 

they are only as useful as the data that is deposited to them. While TreeGenes will regularly 1103 

import and enhance data from public repositories (through e.g., sequence alignment to 1104 

published genomes), often pertinent metadata necessary for comparative synthesis is lacking 1105 

(Wegrzn et al. 2008, 2012). Indeed, from our survey of published GPA since the release of the 1106 

database in 2008, less than 13% (6/48) of the studies submitted their data directly to 1107 

TreeGenes. To better prepare for future synthesis, we advocate that authors submit their data to 1108 

the TreeGenes database and that reviewers and editors enforce this habit, as currently 1109 

implemented for linkage maps published in Tree Genetics & Genomes. Consolidated, open-1110 

source resources will be crucial to the advancement of this field (Neale et al. 2013), and will no 1111 

doubt spur knowledge that would not have been recognized otherwise. Prime examples of 1112 

advancement to knowledge because of these types of resources and community-wide efforts 1113 

come from the human GWAS literature where such resources provide crucial information 1114 
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necessary to study polygenic adaptation (e.g., Berg & Coop 2014). 1115 

Empirical tests of theory 1116 

In combination with the development of truly genome-wide public resources, there is 1117 

need to use these resources to validate and better characterize foundational ideas and 1118 

assumptions in the theory of polygenic adaptation relative to the life history strategies of tree 1119 

species. For example, Gagnaire & Gaggiotti (2016) highlight that the degree of polygenicity can 1120 

be tested as a function of the number of GWAS hits relative to the length of contigs or 1121 

chromosomes containing these markers. Simple models of polygenicity predict that there should 1122 

be a positive correlation between these quantities. Thus, rather than assuming some functional 1123 

form of a polygenic architecture (i.e., an approximate infinitesimal model) during analysis, 1124 

researchers can strive to characterize, or at least exclude some forms of, the underlying genetic 1125 

architecture prior to interpretation. In a related fashion, publically available data sets would spur 1126 

comparisons across species and study systems to test hypotheses about polygenic 1127 

architectures (e.g., genomic organization, effect size distribution) due to the relative timing of 1128 

selection, degree of environmental contrast (e.g. diversifying selection and changes to the 1129 

strength of negative selection), selection strength, and level of gene flow across diverging 1130 

lineages. As an example, much of the theory of polygenic adaptation requires assumptions 1131 

about simplistic demographics (where violations have consequences for standing levels of non-1132 

neutral diversity, e.g., Wang et al. 2017) and the equilibration among co-acting evolutionary 1133 

forces over a large number of generations (Brandvain & Wright 2016). Indeed, differing 1134 

architectures are expected as a function of the timing for the onset of selection (Le Corre & 1135 

Kremer 2003; Kremer & Le Corre 2012), with subtle allele frequency shifts across populations 1136 

dominating architectures near the onset of selection and larger allele frequency shifts much later 1137 

in time. While there is need for empirical validation of this theory, there is also a need to 1138 

characterize the prevalence of its predicted patterns across differing clades of tree species. In 1139 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2017. ; https://doi.org/10.1101/203307doi: bioRxiv preprint 

https://doi.org/10.1101/203307
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lind et al: Are we out of the woods yet?  

 43 

other words, researchers could imagine testing the theory itself in natural populations (e.g., as 1140 

begun by Le Corre & Kremer 2012) or assuming its validity and characterizing the 1141 

circumstances under which to expect large shifts in allele frequencies across tree species with 1142 

differing life history strategies. Little of any of this, however, will be possible without 1143 

development of needed data and its deposition into publically available, standardized 1144 

databases.   1145 

Concluding Remarks 1146 

The path forward provides a means by which we can most efficiently describe the 1147 

underlying genetic architectures of traits important to management, conservation, and industry, 1148 

and will can ultimately be used to expedite breeding projects. The past evolutionary history will 1149 

have a profound effect on the underlying genetic architecture of such traits, and thus strengths 1150 

and weakness of the data and methods used to uncover such architecture should be specifically 1151 

addressed in future investigations, particularly in how utilized methods perform across various 1152 

demographic and architecture scenarios. Insights gained from empirically testing theory in trees 1153 

will also contribute to the advancement of this field and will ultimately quantify the variation in 1154 

architecture across environments and species and inform effective management. The future is 1155 

bright, but we are not yet out of the woods. As such, efficient advancement in this field relies on 1156 

community efforts, standardized reporting, centralized open-access databases, and continual 1157 

input and review within the community’s research.  1158 
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FIGURES 1970 

Figure 1 1971 

 1972 
Figure 1. Averages of narrow sense heritability calculated by weighting the number of families 1973 
used in each estimate of heritability. Error bars represent the standard deviation of the weighted 1974 
averages. ColdH = cold hardiness, DisRes = disease resistance, DroughtH = drought hardiness, 1975 
HaIR = herbivore and insect resistance, LaNP = leaf and needle properties, Phen = phenology, 1976 
PSM = plant secondary metabolites, Reprod = reproduction, ResAllo = resource allocation, SaSP 1977 
= seed and seedling properties, WoodProp = wood properties. Asterisks indicate median values 1978 
of the unweighted QST distribution.  1979 
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Figure 2  1980 

 1981 
Figure 2. Average QST for each of 14 traits from literature review calculated by weighting each 1982 
estimate by the number of families used in the estimation. Error bars represent the standard 1983 
deviation of the weighted averages. Numbers above error bars represent total number of 1984 
estimates, with total number of unique species in parentheses. Asterisks indicate median values 1985 
of the unweighted QST distribution. Abbreviations as in Figure 1.  1986 
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Figure 3A  1987 

 1988 
Figure 3A. Counts of r2 estimates from single-locus genotype-phenotype associations from 1989 
literature review. Note logarithmic x-axis. 1990 
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Figure 3B  1991 

 1992 
Figure 3B. Distribution of r2 values for trait groups within genotype-phenotype literature review. 1993 
Values along x-axis are total number of estimates and number of species across estimates. Not 1994 
shown are nine outliers for disease resistance to Cronartium ribicola in Pinus monticola (range = 1995 
[0.402, 1.0]) from Lui et al. 2017. Abbreviations as in Figure 1.  1996 
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BOXES 1997 

Box 1 figure 1998 

 1999 
Figure I. Relevant quantitative genetic concepts are needed to understand the evolution of 2000 
polygenic traits. (A) Additive and nonadditive effects at a single locus, where a is defined as the 2001 
additive effect (also known as the average effect of allelic substitution [α] when there is no 2002 
dominance) and d is defined as the dominance deviation. With dominance, α = a[1 + k(p - q)], 2003 
where k is the degree of dominance (k = 0: additive, k = 1: dominance, k > 1: over-dominance, 2004 
see Lynch & Walsh 1998). (B) Polygenic traits are determined by multiple genes, each with 2005 
additive (shown) and non-additive (not shown) effects. The total additive effect is the sum of the 2006 
additive effects at all causative loci. (C) Additive-by-additive epistasis, where the additive effect of 2007 
an allele at the PHY_A SNP depends on what allele it is paired with at the RPL13 SNP. In this 2008 
case, the effects can be thought of as dependent in the following manner using the four possible 2009 
haplotypes at the PHY_A (A/T SNP) and RPL13 (C/T SNP) SNPs – AC: +5, AT: -2, TC: -1, TT: 4. 2010 
(D) The effect of genetic drift on the additive genetic variance as determined by 100 independent, 2011 
causative loci. Each line represents a simulation of genetic drift in a constant sized population (n 2012 
= 500 diploids) conditioned on initial allele frequencies across loci (p1) and effect sizes (α). The 2013 
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expected mean across all 100 simulations is given by the dashed black line. Any given simulation 2014 
can deviate strongly from this expectation (solid black line). Thus, when the elements of p change 2015 
over time, in this case due to genetic drift, so does the additive genetic variance.  2016 

Box 1: Basic Concepts from Quantitative Genetics 2017 

We follow the traditional decomposition of phenotypes into genetic and environmental components, which 2018 
forms the basis of quantitative genetics (Fisher 1918, Lynch & Walsh 1998, Charlesworth & Charlesworth 2019 
2010, reviewed by Hill 2010). The phenotype of an individual (P) can be decomposed into effects from its 2020 
genotype (G), its environment (E), and the interaction between its genotype and environment (GxE). 2021 
Typically, this is thought of as deviations from the population mean, with each causative locus having two 2022 
alleles. Using this framework, phenotypic variance (σ2

P) can be decomposed into genotypic variance 2023 
(σ2

G), environmental variance (σ2
E) and the variance due to the interaction between genotypes and 2024 

environments (σ2
GxE): 2025 

  2026 
σ2

P = σ2
G + σ2

E + σ2
GxE 2027 

  2028 
For a single locus, σ2

G can be decomposed into variances arising from additive (σ2
A) and dominance (σ2

D) 2029 
effects (Fig. I). For multiple loci, σ2

G can be decomposed into variances arising from additive, dominance, 2030 
and epistatic (σ2

I) effects, with the total additive effect across loci being the summation of the effects at 2031 
each of the causative loci. Dominance and epistatic effects are jointly termed non-additive effects. Thus, 2032 
the previous equation can be expanded to the following: 2033 
  2034 

σ2
P = σ2

A + σ2
D + σ2

I + σ2
E + σ2

GxE 2035 
  2036 
The decomposition of σ2

G into different types of effects provides a way of estimating narrow-sense 2037 
heritability (h2), which is defined as the ratio of additive genetic variance (σ2

A) to total phenotypic variance 2038 
(σ2

P). For tree populations, this is often accomplished through variance partitioning techniques 2039 
(Namkoong 1979) using half-sib designs in common gardens (White et al. 2007) or using molecular 2040 
markers to estimate relatedness in the field (cf. Ritland & Ritland 1996). In the case of half-sib designs, if 2041 
the assumptions of free recombination and little epistasis among causative loci, random mating, and lack 2042 
of environmental covariance among sibs are satisfied, σ2

A is given by (Lynch & Walsh 1998): 2043 
  2044 

σ2
A = 4σ2

F 2045 
  2046 
where σ2

F is the variance due to family (e.g., as extracted from a linear mixed model). Hence, for a half-2047 
sib design, h2 = 4σ2

F/σ2
P. Other sibling designs are possible, with the 4 in the previous equation replaced 2048 

by 1/r, where r is the coefficient of relationship (e.g., Whitlock & Gilbert 2012). Clonal and controlled 2049 
mating designs are also often used for estimation of heritability, often broad-sense heritability (Namkoong 2050 
1979; White et al. 2007). When families are nested into populations, and an estimate of the among 2051 
population variance component is made, these are the components also used to estimate QST (Spize 2052 
1993; Prout & Barker 1993). When compared against estimates of FST using a similar variance 2053 
decomposition procedure (e.g., Yang 1998) and a method suitable to account for the substantial variance 2054 
associated with these components (e.g., Whitlock & Guillaume 2009) conclusions about local adaptation 2055 
can be reached. 2056 
  2057 
Heritability estimates are population, environment, and time specific, as evidenced by the relationship 2058 
between σ2

A and allele frequencies within populations (Lynch & Walsh 1998; e.g. Berg & Coop 2014): 2059 
 2060 

𝜎+" = 	2 𝛼0"𝑝0(1	 −	𝑝0)
6

0	7	8

 2061 

 2062 
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where the summation is over the number of causative loci (L), 𝛼 is the average effect of allelic substitution 2063 
at each locus (Fig. I), and pi is the frequency of one of the alleles at each of the causative loci. Thus, any 2064 
evolutionary force altering p at some or all of the causative loci will change σ2

A (cf. Box 3.7 in 2065 
Charlesworth & Charlesworth 2010). Heritability is also uninformative about the underlying architecture 2066 
itself, as are the relative magnitudes of the different variance components themselves (Huang & Mackay 2067 
2016), and can often be misleading about evolutionary potential (Hansen et al. 2011).  2068 
  2069 
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Supplemental Figures 2081 

Figure S1  2082 

 2083 
 2084 

 2085 
Figure S1. Distributions of unweighted narrow sense heritability with (A) and without (B) 2086 
inclusion of the Growth distribution. Trait abbreviations as in Figure 1 of the main text.  2087 
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Figure S2  2088 

 2089 
Figure S2. Unweighted narrow sense heritability distributions by age (years). Unk = unknown 2090 
age (i.e., not specified by article).  2091 
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Figure S3 2092 

 2093 
Figure S3. Unweighted narrow sense heritability distributions by age (years) and by trait 2094 
category. Unk = unknown (i.e., not specified by article) 2095 
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Figure S4  2096 

 2097 
Figure S4. Distributions of unweighted QST estimates from literature survey. Abbreviations as 2098 
in Figure 1.  2099 
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Supplemental Tables 2100 

Table S1 2101 

Trait Group Total 
species 

Total 
measurements 

Angiosperm Gymnosperm Eucalypt Pine Populus 

Cold hardiness 11 94 35 59 27 6 2 

Disease resistance 9 38 20 18 1 12 13 

Drought hardiness 12 36 15 21 4 10 4 

Form 15 153 45 108 20 86 3 

Growth 41 819 174 645 71 412 21 

Herbivore and insect resistance 4 17 17 0 8 0 0 

Leaf and needle properties 16 65 41 24 11 8 20 

Phenology 22 240 92 148 0 50 29 

Plant secondary metabolites 1 7 7 0 7 0 0 

Reproduction 12 49 7 42 4 29 2 

Resource allocation 15 142 29 113 3 58 6 

Seed and seedling properties 5 13 2 11 0 2 0 

Survival 8 27 5 22 1 20 2 

Wood properties 10 168 35 133 13 81 22 

Table S1. Summary of total and per-species measurements used in literature review of narrow 2102 
sense heritability.  2103 
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Table S2 2104 

Trait Group Total 
measurements 

Total 
species 

Angiosperm Gymnosperm Eucalypt Pine Populus 

Cold hardiness 16 5 3 13 0 10 2 

Disease resistance 12 3 3 9 0 9 3 

Drought hardiness 17 7 9 8 4 5 4 

Form 18 6 15 3 1 3 12 

Growth 170 26 73 97 13 76 44 

Herbivore and insect 
resistance 

7 2 7 0 6 0 0 

Leaf and needle properties 52 14 44 8 11 5 12 

Phenology 95 10 63 32 0 18 53 

Plant secondary metabolites 7 1 7 0 7 0 0 

Reproduction 6 2 2 4 2 4 0 

Resource allocation 44 11 16 28 3 26 10 

Seed and seedling properties 6 3 2 4 0 0 0 

Survival 10 5 2 8 2 8 0 

Wood properties 24 8 14 10 8 4 5 
Table S2. Summary of total and per-species measurements used in literature review of 2105 
differentiation of quantitative genetic variation (QST).  2106 
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Table S3 2107 

Trait Group Total 
measurements 

Total 
species 

Angiosperm Gymnosperm Eucalypt Pine Populus 

Cold hardiness 35 4 2 33 0 0 2 

Disease resistance 82 5 31 51 0 51 30 

Drought hardiness 15 1 0 15 0 15 0 

Form 6 2 0 6 0 5 0 

Growth 258 12 205 53 44 17 152 

Herbivore and insect resistance 9 2 9 0 6 0 3 

Leaf and needle properties 78 6 58 20 0 5 45 

Phenology 947 10 886 61 0 0 846 

Plant secondary metabolites 40 3 32 8 29 8 3 

Reproduction 10 2 0 10 0 9 0 

Resource allocation 29 5 19 10 4 8 15 

Wood properties 592 13 414 178 94 136 316 

        

        
Table S3. Summary of total and per-species measurements used in literature review of percent 2108 
phenotypic variance explained by associated markers (r2).  2109 
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BOXES 2110 

Supplemental Box 1 2111 

Brief introduction to methods for single-locus genetic association analysis 2112 
 2113 
Detecting associations between genetic markers and complex trait variation relies on fitting and 2114 
evaluating linear models, typically of the form: 2115 
 2116 

y = X𝜷 + Zu + e, 2117 
 2118 
where y is a vector of observed or inferred phenotypic values,	𝜷	and u are vectors of random and fixed 2119 
effects, respectively, X and Z are design matrices associated with	𝜷	and u, and e is a vector of residuals 2120 
(Yu et al. 2005). In the simplest model, the phenotype (y) is modeled as a function of genetic effects at a 2121 
single locus, represented by marker genotypes for the samples comprising values in y, and covariates 2122 
describing relatedness among sampled trees and the structure among populations from which those trees 2123 
were sampled. Genetic effects are encoded based on a priori assumptions about the underlying 2124 
architecture of the phenotypic trait under consideration, with the most frequent encoding being that for 2125 
additive effects (e.g. counts of a reference allele) considered as either fixed or random effects (Goddard 2126 
et al. 2009). Phenotypic values are often estimates derived through analysis of materials established 2127 
within common gardens, either from clones or sibships, from which estimates of the genetic values of 2128 
unmeasured trees (e.g. maternal trees for which markers have been genotyped) are made using the 2129 
theory of Best Linear Unbiased Predictors (BLUPs; Henderson 1975; Searle et al. 1992; Piepho et al. 2130 
2008). Inclusion of only fixed effects results in a General Linear Model (GLM), whereas a mixture of fixed 2131 
and random effects results in a Mixed Linear Model (MLM or LMM). The use of covariates is necessary to 2132 
avoid identification of false positive associations arising from the confounding between neutral genetic 2133 
and phenotypic variation due to demographic history and the analysis of relatives (Devlin & Roeder 1999; 2134 
Yu et al. 2005; Price et al. 2006). 2135 
 2136 
Models as described above are typically fitted and evaluated using restricted maximum likelihood (REML, 2137 
Patterson & Thompson 1971), although Bayesian methods are available and have the advantage of 2138 
specifying a priori assumptions more clearly, remove the distinction between fixed and random effects, 2139 
and are more applicable to testing biologically realistic models (Stephens & Balding 2009). Output from 2140 
these models include estimates of effect sizes for markers (e.g. r2, coefficients for random effects, 2141 
genotypic trait means) and, when used in a frequentist framework, probability values (p-values) of 2142 
observing test statistics under a null model. Bayesian methods, in contrast, provide strength of evidence 2143 
measures such as Bayes Factors for the association of each marker to the phenotype of interest. The 2144 
ability to discover and correctly quantify effect sizes of true positives (i.e. causative markers or indirect 2145 
associations resulting from linkage to causative markers) is dependent upon experimental design, 2146 
including design of genotyping assays, and sample sizes (Long & Langley 1999; Zöllner and Pritchard 2147 
2007; Spencer et al. 2009), as well as genome-wide patterns of linkage disequilibrium relative to the 2148 
density of markers in the genome, the genetic distance between the indirectly associated maker and the 2149 
causative locus, and the true underlying genetic architecture of the phenotypic trait under consideration 2150 
(Platt et al. 2010; Prichard et al. 2010; Caballero et al. 2015). 2151 
 2152 
One model is typically fitted and evaluated per marker-phenotypic trait combination (but see e.g. Wegrzyn 2153 
et al. 2010 for haplotype analysis). Even without the issue of confounding described above, this increases 2154 
the likelihood of false positives arising solely from performing many statistical tests. A variety of methods 2155 
exist to deal with multiple testing, with the most popular methods being those based on the false 2156 
discovery rate (Storey & Tibshirani 2003) and permutation (Hirschhorn & Daly 2005). Additional methods  2157 
exist for situations where the multiple tests are not independent from one another (e.g. linkage 2158 
disequilibrium among markers, see Johnson et al. 2010) or when permutation analysis is problematic 2159 
(Joo et al. 2016).   2160 
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