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ABSTRACT 

 Reading disability is a complex neurodevelopmental disorder that is characterized by 

difficulties in reading despite educational opportunity and normal intelligence. Rapid 

automatized naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of 

reading outcome and involve the integration of different neural and cognitive processes required 

in a mature reading brain. Most studies examining the genetic basis of RAN and RAS have 

focused on pedigree-based analyses in samples of European descent, with limited representation 

of groups with Hispanic or African ancestry. In the present study, we conducted a multivariate 

genome-wide association analysis to identify shared genetic factors that contribute to 

performance across RAN Objects, RAN Letters, and RAS Letters/Numbers in a sample of 

Hispanic and African American youth. We then tested whether they also contribute to variance 

in reading fluency and word reading. Genome-wide significant, pleiotropic, effects across RAN 

Objects, RAN Letters, and RAS Letters/Numbers were observed for SNPs located on 

chromosome 10q23.31, which also showed significant association with reading fluency and word 

reading performance. Bioinformatic analysis of this region using extant epigenetic data from the 

NIH Roadmap Epigenomics Mapping Consortium indicates functionality in the brain. 

Neuroimaging genetic analysis showed that rs1555839, the top associated SNP, was also 

associated with cortical volume in the right inferior parietal cortex—a region of the brain that 

processes numerical information and that is activated in reading disabled individuals performing 

reading tasks. This study provides support for a novel locus on chromosome 10q23.31 associated 

with RAN, RAS, and reading-related performance.     
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AUTHOR SUMMARY 

Reading disability has a strong genetic component that is explained by multiple genes 

and genetic factors. The complex genetic architecture along with diverse cognitive impairments 

associated with reading disability, poses challenges in identifying novel genes and variants that 

confer risk. One method to parse out genetic and neurobiological mechanisms that contribute to 

reading disability is to take advantage of the high correlation among reading-related cognitive 

traits like rapid automatized naming (RAN) and rapid alternating stimulus (RAS) to identify 

shared genetic factors that contribute to common biological mechanisms. In the present study, 

we used a multivariate genome-wide analysis approach that identified a region of chromosome 

10q23.31 associated with variation in RAN Objects, RAN Letters, and RAS Letters/Numbers 

performance in a sample of Hispanic and African American youth. Genetic variants in this 

region were also associated with reading fluency and differences in brain structures implicated in 

reading disability. The gene, RNLS, is located within the implicated region of chromosome 

10q23.31 and plays a role in breaking down a class of chemical messengers known to affect 

attention, learning, and memory in the brain. These findings provide a basis to inform our 

understanding of the biological basis of reading disability.  
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INTRODUCTION 

Reading disability (RD) is the most common neurodevelopmental disorder diagnosed in 

school aged children with a prevalence of 5-17% (1). RD is characterized by life-long difficulties 

in reading despite normal intelligence and educational opportunity. The etiological basis of RD is 

complex and attributed to both genetic and environmental factors. The genetic component of RD 

is strong with family and twin-based studies estimating moderate to high heritabilities > 0.50 (2, 

3). To date, nine RD loci (DYX1-9) have been identified and replicated in several independent 

populations along with several candidate risk genes including KIAA0319, DCDC2, and DYX1C1 

(4-6). However variants in these candidate genes and loci do not account for a substantial portion 

of the estimated heritability (7). In addition, genome-wide analyses predicated on quantitative 

measures of reading ability and case-control status for RD have identified novel variants for 

both, but did not attain genome-wide significance (8-10). This could potentially be explained by 

low sample sizes in the studies, but another reason may be due to the phenotypic heterogeneity 

of the reading (dis)ability phenotype.  

One approach to studying the genetics of complex trait disorders such as RD is to 

examine relevant endophenotypes. An endophenotype is a quantitative trait measure that is 

correlated with a disorder or trait of interest due, in part, to shared (pleiotropic) underlying 

genetic influences. For a phenotype to be considered an endophenotype for a complex trait 

disorder, it must have a genetic component, be independent of clinical state (affected of 

unaffected), co-segregate with disorder status in a family, and have reproducible measurements 

(11-13). Endophenotypes are typically simpler—both phenotypically and genotypically—than 

the corresponding complex disorder. This could improve the statistical power to identify genetic 

variants through larger observed effect sizes. Two potential endophenotypes for reading that 
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satisfy the above criteria are rapid automatized naming (RAN) and rapid alternating stimulus 

(RAS).  

RAN tasks require sequential naming of visually presented, familiar items (e.g. objects, 

letters, numbers, or colors) as quickly and accurately as possible. RAN has been described as a 

“mini-circuit” of the reading network that taps into cognitive subprocesses critical for reading 

such as automatic attentional processing (14, 15). Reading and RAN performance are moderately 

correlated (0.28-0.57) with deficits in RAN performance observed in 60-75% of individuals with 

RD (16-18). Furthermore, performance on RAN in kindergarten is predictive of later reading 

fluency and is stable through elementary school (19, 20). RAN deficits even persist into 

adulthood (21, 22).  

RAS tasks are similar in overall design to RAN tasks, but differ in sequential naming of 

items across alternating stimulus categories as quickly and accurately as possible (i.e. 

consistently alternating letters and numbers). The general premise of RAS tasks is to evaluate 

ability to direct attention while performing an automatic task like sequential naming (23). Like 

RAN, RAS performance can differentiate poor from typically developing readers and is highly 

predictive of later reading ability (23, 24).  

 Like RD, RAN has a strong genetic component with heritability estimates ranging from 

0.46-0.65 (25, 26). To date, several family-based studies have been conducted to identify novel 

genetic loci in linkage with RAN and RAS performance, and determine whether previously 

identified DYX loci are also associated with RAN and RAS. The DYX8 region, located on 

chromosome 1p, showed significant linkage with a composite score of RAN Objects and RAN 

Colors in a sample of 8 extended multiplex families (27). In a German sample consisting of 

1,030 individuals from 246 families, a multipoint, variance component linkage analysis 
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identified a region of chromosome 6p21 in close proximity to (but not within) the DYX2 region 

associated with a composite score of RAN Objects and RAN Colors (28); however, no linkage 

signals were identified for RAN Letters or RAN Numbers, respectively, in the sample (28). In a 

separate study of 1,956 individuals in 260 families from the United States, strong linkage was 

observed on chromosome 2p (within the DYX3 locus) for RAN Letters and chromosome 10q for 

RAN Colors (29). Moderate linkage signals were observed for RAS Letters/Numbers on 

chromosome 1p (overlapping with DYX8), chromosome 12q for RAN Numbers and RAS 

Letters/Numbers/Colors, and chromosome 6q for a composite score of RAS Letters/Numbers 

and Letters/Numbers/Colors (29). In a sib-pair study of a Dutch RD sample, weak linkage to a 

composite measure of five RAN measures (Pictures, Colors, Numbers, Small Letters, and Capital 

Letters) showed weak linkage to the DYX3 and DYX8 loci (30). Overall, the above studies 

support RAN and RAS as strong endophenotypes for RD, and show that genetic studies 

conditioned on RAN and RAS tasks can identify both novel and previously implicated genetic 

loci for RD. 

Genetic studies of RAN and RAS were previously conducted on samples of largely 

European descent, and it is unclear whether the same genomic regions and variants contribute to 

the genetic architecture of RD in other ethnic populations—specifically populations of Hispanic 

and African descent who are largely underrepresented in the genetic analysis of RD. We present 

a multivariate genome-wide association study (GWAS) across quantitative measures of RAN 

Objects, RAN Letters, and RAS Letters/Numbers in children participating in the Genes, Reading, 

and Dyslexia (GRaD) study—a case/control sample of RD among Hispanic and African 

American youth. The present study builds on the previous literature that established genetic 

association of RAN and RAS performance as univariate traits. However, a univariate design can 
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miss underlying covariance across two or more correlated traits and therefore has low sensitivity 

for detecting shared genetic factors. We hypothesize that their correlation can partially be 

attributed to shared genetic factors. A multivariate genetic analysis allows us to leverage 

covariance across phenotypes and increase statistical power to identify the presence of pleiotropy 

across different RAN and RAS tasks (31). The present study aims to identify shared genetic 

factors that contribute to the variance across RAN Objects, RAN Letters, and RAS 

Letters/Numbers, and to determine whether they are also associated with variance in reading 

ability and fluency in the GRaD sample. 

RESULTS 

Multivariate and Univariate Associations for RAN and RAS 

Multivariate GWAS of RAS Letter/Numbers, RAN Objects, and RAN Letters was 

conducted using the R package, MultiPhen, to identify pleiotropic factors that could explain the 

high correlation across RAN and RAS tasks (S1 Table). The model corrected for the effects of 

age, sex, socioeconomic status (SES), and the first 10 principal components (generated from 

genome-wide SNP data) to correct for population stratification (S2 Table, S1 Figure). 

Multivariate analysis of RAS Letter/Numbers, RAN Objects, and RAN Letters revealed a 

genome-wide significant effect for rs1555839 (p = 2.23 × 10-8; Figure 1, S2A Figure, Table 1) 

located approximately 5 kb upstream from Ribosomal Protein L7 Pseudogene 34 (RPL7P34), a 

long non-coding RNA (lncRNA) on chromosome 10 located between the genes LIPF and LIPJ. 

Additional markers approaching significance were also clustered within a 70 kb region of 

chromosome 10q23.31 spanning RPL7P34 and the gene Renalase (RNLS) (Table 1). Follow-up 

univariate examination of RAN Objects, RAN Letters, and RAS Letters/Numbers, against the 

top SNPs identified in the multivariate analysis showed that the markers located on chromosome 
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10q23.31 had a statistically significant effect across all RAN and RAS tasks (Bonferroni 

correction for 10 markers: p < 0.005; Table 1). The strongest association in the chromosome 

10q23.31 region was with marker rs1555839 (β = -0.32, p = 1.04 × 10-9) for RAS 

Letters/Numbers.  
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Table 1: Multivariate GWAS results. 
     p-value  

MARKER CHR BP Minor 
Allele MAF Joint Model RAN Objects RAN 

Letters 
RAS 

Letters/Numbers GENE 

rs1555839 10 90382820 C 0.16 2.23 × 10-8* 4.54 × 10-5 4.71 × 10-6 1.04 × 10-9* RPL7P34 
rs10749593 10 90374057 C 0.153 1.33 × 10-7 2.56 × 10-4 1.57 × 10-5 7.36 × 10-9* RPL7P34 
rs7913742 10 90376864 C 0.149 1.62 × 10-7 1.90 × 10-4 2.38 × 10-5 8.86 × 10-9* RPL7P34 
rs1409136 10 90356598 A 0.138 9.29 × 10-7 1.32 × 10-4 3.20 × 10-6 5.58 × 10-8 LIPJ 
rs701825 10 90417547 G 0.132 1.05 × 10-6 3.93 × 10-4 1.05 × 10-6 4.56 × 10-8 -- 
rs2576167 10 90345671 A 0.137 1.15 × 10-6 1.70 × 10-4 3.80 × 10-6 6.83 × 10-8 RNLS/LIPJ 
rs755967 1 18504396 G 0.483 1.33 × 10-6 0.49 1.578 × 10-3 7.14 × 10-5 IGSF21 
rs1359581 10 90360515 A 0.137 1.36 × 10-6 1.69 × 10-4 4.51 × 10-6 8.87 × 10-8 LIPJ 
rs7997649 13 30494296 T 0.109 1.48 × 10-6 3.91 × 10-6 3.06 × 10-6 3.17 × 10-3 LINC00572 

rs11177505 12 69516642 C 0.437 1.68 × 10-6 2.45 × 10-2 1.27 × 10-7 5.56 × 10-4 -- 
Top 10 associated markers in the GRaD study that were identified using a joint model of RAN Objects, RAN Letters, and RAS 
Letters/Numbers. Results from follow-up univariate analysis of RAN Objects, RAN Letters, and RAS Letters/Numbers at each marker 
are also represented. Markers were assigned to genes if they fell within the canonical gene body as described by 1000 Genomes Project, 
Phase 3. CHR = chromosome, BP = Base Position, MAF = Minor Allele Frequency 
 aFor self-reported African Americans in the GRaD sample, rs1555839 has a MAF of 0.129. For self-reported Hispanic Americans, the 
MAF of rs1555839 is 0.178. 
*genome-wide significant (p < 5 × 10-8) 
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Univariate GWAS of RAS Letters/Numbers, RAN Objects, and RAN Letters, largely 

identified the same markers implicated in the multivariate GWAS analysis. Univariate 

examination of RAS Letters/Numbers revealed four markers that survived correction for multiple 

testing (p < 5 × 10-8; S2B Figure, S3 Table), and were the same four previous implicated in the 

multivariate analysis (Table 1). Univariate examination of RAN Objects and RAN Letters 

identified no markers that survived correction for multiple testing. The strongest association for 

RAN Objects was with a marker located within an intergenic region of chromosome 11p11.2 

(rs11038042; β = 0.26, p = 5.74 × 10-7; S2C Figure, S4 Table), while the strongest association 

for RAN Letters was with markers located in an intergenic region of chromosome 12q15 and 

LAMB1 on chromosome 7 (rs11177505 and rs6963842; β = 0.2, p = 1.27 × 10-7 and β = -0.18, p 

= 2.35 × 10-7; S2D Figure, S5 Table). Markers located in LAMB1 were not previously identified 

in the multivariate GWAS analysis.   

To determine whether allelic variation at rs1555839 was associated with mean 

differences in performance for reading fluency (Test of Word Reading Efficiency: TOWRE) and 

word reading (Woodcock-Johnson III Basic Reading; WJ-III Basic Reading), we next performed 

a univariate ANCOVA, covarying for the effects of age, sex, SES, and the first 10 principal 

components to correct for population stratification.  There was a significant effect of allele on 

TOWRE [F(1,1274)=13.15, p <0.001, ηp
2 = 0.01] and WJ-III Basic Reading [F(1,1271)=13.95, p 

<0.001, ηp
2 = 0.011] (Figure 2). Overall, performance on reading fluency and word reading was 

worse in the presence of the C allele at rs1555839.     

In the Colorado Learning Disabilities Research Center (CLDRC) cohort, RAN Colors, 

RAN Letters, RAN Numbers, and RAN Pictures were available for replication (RAN Objects 

and RAS Letters/Numbers were not collected in the CLDRC). Multivariate analysis showed 
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replication of top markers within the pseudogene RPL7P34 (Table 2). Specifically, rs701825 

survived correction for multiple testing (p < 7.14 × 10-3), while rs1555839 was nominally 

significant (p < 0.05).  Follow-up univariate association analysis of RAN Colors, RAN Letters, 

RAN Numbers, and RAN Pictures found a significant effect of rs701825 that survives correction 

for multiple testing across all RAN subtests, except for RAN Pictures. A significant effect of 

rs1555839 that survived correction for multiple testing was observed for RAN Letters, while 

nominally significant effects (p < 0.05) were observed for RAN Numbers and RAN Colors 

(Table 2, S6 Table). In the CLDRC, the C allele was associated with worse performance on RAN 

Letters (S6 Table).     
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Table 2: CLDRC Multivariate Replication. 

     p-value 

MARKER CHR BP Minor 
Allele 

MAF Joint Model RAN 
Pictures 

RAN 
Colors 

RAN 
Letters 

RAN 
Numbers 

rs2576167 10 90345671 A 0.302 0.067 0.592 0.051 0.027 0.064 
ars1409136 10 90356598 A 0.303 0.061 0.568 0.052 0.025 0.064 
rs1359581 10 90360515 A 0.303 0.061 0.568 0.052 0.025 0.064 

rs10749593 10 90374057 C 0.319 0.025 0.416 0.052 5.44 × 10-3* 0.025 
ars7913742 10 90376864 C 0.311 0.026 0.437 0.019 8.75 × 10-3 0.024 
ars1555839 10 90382820 C 0.319 0.019 0.410 0.034 5.21 × 10-3* 0.026 
ars701825 10 90417547 G 0.282 2.47 × 10-3* 0.562 4.09 × 10-3* 9.56 × 10-4* 2.76 × 10-3* 

Results from the joint analysis of RAN Colors, RAN Pictures, RAN Letters, and RAN Numbers across the top associated markers in 
chromosome 10 of the GRaD discovery analysis. Results from follow-up univariate analysis of RAN Pictures, RAN Colors, RAN 
Letters, and RAN Numbers at each marker are also represented. CHR = chromosome, BP = Base Position, MAF = Minor Allele 
Frequency 
a Imputed markers 

* Survives Bonferroni correction for multiple testing (p < 0.05/7 = 7.14 × 10-3) 
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Bioinformatic Analysis  

Using Genoskyline, we assessed whether the 70 kb region of chromosome 10q23.31 was 

a predicted functional region of the genome using high-throughput epigenomic annotations 

available through the NIH Epigenetic roadmap and ENCODE. Within the brain, Genoskyline 

predicted tissue specific functionality surrounding our top markers, with maximum GS scores of 

1 (high probability that a region is associated with biological function) (Figure 3A). We then 

examined whether these findings could be attributed to epigenetic factors specific to a neural 

region. We found GS scores equal to 1 for predicted functionality in all tested regions of the 

brain surrounding RNLS (Figure 3A). Region specific functionality was observed in the cingulate 

gyrus, anterior caudate, hippocampus, and inferior temporal lobe within 2 kb of RPL7P34 

(Figure 3A).  

To determine the chromatin state (i.e. weak enhancer region, active enhancer, active 

transcription start site, strong transcription) of the 70 kb region of chromosome 10q23.31 

contributing to high posterior probability scores for tissue-specific functionality in the genome, 

we evaluated the 18-state model previously generated by the Roadmap Epigenomic Project. 

Briefly, a model was derived from a multivariate hidden Markov model that considers the 

combinatorial interactions of 6 histone marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, 

H3K9me3, and H3K27ac) across 127 epigenomes and predicts the chromatin state within a 

genomic region within 18 different classifications (32). Examination of the 18-state model 

revealed that the region closely associated with the top performing markers in the GRaD 

discovery analysis (rs1555839, rs10749593, rs7913742) is flanked by an active enhancer site in 

the hippocampus and cingulate gyrus, and regions of heterochromatin containing ZNF genes and 

repeats in the cingulate gyrus and inferior temporal lobe (Figure 3B). In addition, the 18-state 
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model revealed an active transcription start site for RNLS in all evaluated brain regions (Figure 

3B).   

Examination of linkage disequilibrium (LD) blocks across different ethnic groups 

sampled in the 1000 Genomes Project that are also represented in the GRaD sample (CEU, 

MEX, and YRI) show a single LD block spanning the 70 kb from rs2576167 to rs701825 (Figure 

3C, S3 Figure), suggesting a similar underlying genomic architecture across ethnic groups (33).   

Pediatric, Imaging, Neurocognition, and Genetics (PING) Neuroimaging Genetic Analysis  

Following replication of rs1555839, and bioinformatic analysis showing predicted 

functionality in brain tissue within the region of chromosome 10q23.31, we conducted an 

imaging genetics analysis in the PING sample to determine whether rs1555839 was associated 

with variation in cortical volume of canonical left hemisphere ROIs in the reading network and 

their right hemisphere counterparts. We found an association with right hemisphere inferior 

parietal cortex that survived correction for multiple testing (β = -432.3, p = 2.9 × 10-3; Table 3). 

The C allele was associated with lower cortical volumes in the right inferior parietal lobule in the 

PING sample.             

Table 3: Reading-related regions of interest in the PING study  
 LEFT  RIGHT 
 BETA SE P BETA SE P 
Pars Opercularis -19.33 67.07 0.7733 1.006 60.07 0.9866 
Pars Orbitalis 14.54 26.82 0.588 -15 32.15 0.6409 
Pars Triangularis -62.3 52.4 0.2349 -58.89 60.88 0.3337 
Supramarginal Gyrus -166.8 120.1 0.1654 77.08 117.9 0.5133 
Inferior Parietal Cortex -71.7 138.4 0.6046 -432.3 144.4 0.0029* 
Inferior Temporal 
Gyrus 

-167.4 118.4 0.1576 -30.86 119.7 0.7966 

Fusiform Gyrus -100.6 95.21 0.2912 -165.7 85.78 0.0538 
Statistical models were corrected for general ancestry factor, age, sex, scanner 
device, handedness, intracranial volume, parental education, and family income. 
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* Survives Bonferroni correction for multiple testing (p < 0.05/14 = 0.0036) 
 
DISCUSSION 

 The present study is one of the first to examine the genetics of reading-related traits in an 

admixed population of Hispanic and African American children. Here, we described a 

multivariate GWAS that identified a region of chromosome 10q23.31 with pleiotropic effects 

across RAN Objects, RAN Letters, and RAS Letters/Numbers—all highly correlated tasks that 

are predictive of later reading outcome and reading ability in children and adults (14). Follow-up 

analysis also showed that this region of chromosome 10 is associated with variation in tests for 

reading fluency (TOWRE) and word reading (WJ-III Basic Reading). Further bioinformatic 

analysis indicate that top performing SNPs within chromosome 10q23.31 tag nearby regions of 

the genome with predicted function in the brain based on epigenetic markers. Additional imaging 

genetics analysis revealed that rs1555839 is associated with structural variation in the right 

inferior parietal lobule, which is linked to RD (34, 35).         

 The top associated marker in the analysis, rs1555839, is located upstream from the 

lncRNA pseudogene, RPL7P34. The function of RPL7P34 is unknown, and the role of lncRNAs 

in the genome are poorly understood. LncRNAs are a class of non-protein coding transcripts 

over 200 nucleotide bases long, and have characteristics that suggest functionality including 

tissue-specific expression, regulated expression, and regulation of gene expression and their 

networks (see (36) for review). LncRNAs have been reported to recruit transcription factors and 

interact with chromatin modifiers, suggesting that lncRNAs facilitate epigenetic regulation of the 

genome (37). Approximately 40% of lncRNAs are expressed in the brain and are hypothesized to 

play critical roles in neural development such as neural proliferation and differentiation (38).  
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In the present analysis, epigenetic examination of the region surrounding RPL7P34 

shows a predicted active enhancer site based on the presence of H3K4me1 and H3K27ac histone 

modifiers specifically in the brain. It is possible that RPL7P34 may play a role in the recruitment 

of proteins that bind to enhancer sites, which promote transcription of nearby genes. The nearby 

gene RNLS, approximately 30 kb away, is the closest predicted transcription start site within the 

brain. The predicted enhancer and transcription start site lie within a topologically associating 

domain (TAD) identified in actively mitotic neural precursors in the developing brain (39). 

TADs refer to regions of the genome that physically interact more frequently, while physical 

interactions across two TADs are less likely to occur (40). In addition, these two sites are also in 

high linkage disequilibrium with each other across different ethnic populations relevant to this 

study (HapMap release 27: European, Mexican, and Yoruban; S3 Figure). Taken together, it is 

possible that the enhancer region downstream from RPL7P34 could regulate RNLS. However, 

without further functional analyses, the molecular and epigenetic function of RPL7P34 cannot be 

confirmed. It is also important to note that epigenetic data in the brain attained and analyzed by 

the Epigenetic Roadmap project were from two individuals—one 75 and the other 81-years-old 

(32). Although these data offer some clues to potential functionality, interpretation of these data 

are limited.  

 RNLS (also known as C10orf59) is a gene also located on chromosome 10q23.31 and 

implicated in our GWAS and bioinformatic analysis. RNLS encodes a flavin adenine 

dinucleotide-dependent amine oxidase, called renalase, which metabolizes catecholamines such 

as norepinephrine and dopamine—both of which are neurotransmitters produced by the brain, 

but also secreted by the adrenal glands to modulate autonomic responses (41, 42). Renalase is 

known to be secreted by the kidneys, circulates in blood, and modulates cardiac function and 
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blood pressure (42). It is also present in the human central nervous system, specifically, the 

hypothalamus, pons, medulla oblongata, cerebellum, pituitary gland, cortex and spinal cord (41). 

In vitro analysis of monoamine oxidase activity of renalase shows that it is most efficient in 

metabolizing dopamine, but is also effective in metabolizing epinephrine and norepinephrine 

(42). In the brain, the dopaminergic and noradrenergic system are two major neuromodulatory 

systems that play important functions in motivation, attention, learning, and memory formation 

(43). Although bioinformatic evidence from the present study, expression data from GTEx and 

Brainspan, and evidence of renalase in postmortem human brain tissue support an active role in 

the brain, its functional role in metabolizing neurotransmitters in the brain is currently unclear 

(41). However, genetic variants in RNLS have been associated with schizophrenia, a 

neuropsychiatric disorder that may be caused by an imbalance in neurotransmission. 

Specifically, a recent study showed that human-induced pluripotent stem cell (hiPSC)-derived 

neurons from schizophrenia patients had altered catecholamine release relative to control hiPSC-

derived neurons (44).  

This is the first study to implicate RNLS in RD and across different reading-related 

domains. However, it is not the first gene associated with the metabolism of catecholamines. 

COMT encodes catechol-O-methyltransferase, which degrades catecholamines in the brain, and 

has been associated with variation in reading-related tasks as well as functional networks 

associated with reading ability (45, 46). There is also evidence showing neurochemical 

differences between poor readers and typically developing controls suggesting that there could 

be alterations in how neurotransmitters are metabolized in reading impaired individuals (47).   

Additional genes located in the region of chromosome 10q23.31 surrounding the top 

markers in the analysis include LIPJ and LIPF, which both encode proteins in the lipase family 
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that are associated with lipid metabolism in the skin and stomach, respectively (48, 49). Both 

LIPJ and LIPF show no evidence for expression in the brain and it is unclear if they may have 

biological relevance in the etiology of RD.  

Neuroimaging genetics analysis indicates that rs1555839 is associated with variation in 

cortical volume in the right inferior parietal cortex. The left inferior parietal cortex is part of the 

canonical reading network that includes the inferior frontal gyrus, temporoparietal region, and 

occipitotemporal area. However, in RD individuals, a more distributed network in brain 

activation across both left and right hemisphere structures during reading and RAN tasks are 

observed (14, 34, 35, 50). Limited studies have been conducted on structural neuroanatomical 

correlates of RAN, but there is evidence that RAN performance is associated with grey matter 

volumes in bilateral occipital-temporal and parietal-frontal regions, which include the right 

inferior parietal cortex (34). In addition, the variation in the right inferior parietal cortex has also 

been implicated in number related tasks and may have implications in the rapid naming of 

numbers (51).  

Previous genetic linkage studies for RAN have provided support for potential trait loci on 

chromosome 1p36-p34 (DYX8 locus) and 6p21 for a composite score of RAN Colors and 

Objects, 2p16-p15 (DYX3 locus) for RAN Letters, and 10q23.33-q24.32 for RAN Colors. The 

top region implicated in the present analysis is on chromosome 10q23.31, which does not 

overlap with any of the above loci or other known genomic regions implicated in RD. A 

potential reason why our results do not correspond with previously identified loci could be 

differences in the RAN data collected. In the GRaD study, the rapid naming tasks collected in the 

sample were RAN Objects, RAN Letters, and RAS Letters/Numbers. Grigorenko and colleagues 

(2001) and Konig and colleagues (2011) only showed association with RAN Colors, and neither 
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included RAS Letters/Numbers. This suggests potential independent mechanisms associated with 

RAN Colors performance relative to RAN Objects, RAN Letters, and RAS Letters/Numbers 

(52).  

Most studies of the genetics of reading and RD have largely focused on populations of 

European descent. However, the genetic architecture of complex traits, like reading and related 

disorders may not share the same underlying genetics across ethnic groups. In fact, opposite 

effects of variants in the RD risk gene KIAA0319 have been reported between European and East 

Asian populations (53). Potential differences in the genetic architecture of RAN/RAS 

performance and RD across ethnic groups could also explain why the present results do not 

overlap with those previously identified. The study conducted by Rubenstein et al., (2015) is the 

closest in neurocognitive design to the present RAN/RAS analysis with the inclusion of a RAS 

subtest, but their sample largely consisted of individuals of European descent.  

 Small sample size is a limitation of this study for modern GWAS analyses. However, 

based on power calculations for a multivariate GWAS, we had moderate power of 0.68 to 

identify a genetic variant with a minor allele frequency of 0.16, effect size ranging from 0.03-

0.013, and cross phenotype correlation of 0.7, in a sample with 1263 individuals (both phenotype 

and genotype data) and α = 5 × 10-8—all parameters applicable to this study and the observed top 

performing SNPs (54). While it is possible that the observed significant results could be 

attributed to population admixture, the calculated genomic inflation factor was within acceptable 

ranges (λ = 1.003-1.017) after correcting, suggesting adequate control for population 

stratification.  An additional limitation of the study is that phenotypes used in the CLDRC 

replication sample did not perfectly match the RAN and RAS tasks evaluated in the GRaD 

sample. In the CLDRC cohort, RAS Letters/Numbers was not collected. However, other rapid 
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naming tasks, specifically, RAN Colors and RAN Numbers, were available for analysis (RAN 

Letters and RAN Objects/Pictures overlapped). Although, RAS Letters/Numbers was not 

included in the CLDRC multivariate replication analysis, implicated SNPs in the chromosome 10 

region were significant, providing support that the chromosome 10q23.31 had a pleiotropic effect 

across rapid naming tasks.    

 In conclusion, the current study identifies and replicates a region of chromosome 

10q23.31 with pleiotropic effects across RAN, RAS, and reading abilities in a sample of 

Hispanic and African American youth. The present investigation leveraged different data sources 

and types across neuroimaging and epigenetic data to construct potential biological mechanisms 

contributing to neurocognitive aspects of RD and ability. However, further functional assays 

must be conducted to evaluate the potential molecular and biological mechanisms inferred. There 

is growing evidence that noncoding regions of the genome have an impact on reading and RD, 

and the identification of a lncRNA associated with a reading endophenotype lends additional 

support. Implication of RNLS also reinforces the hypothesis that alterations in neurochemical 

modulation in the brain could contribute to impairments in reading performance. Lastly, this 

study highlights the importance of studying the genetic architecture of RD across ethnicities and 

how genetic effects and variants differ (or are similar) across populations. This is critical in our 

understanding of the biological mechanisms that contribute to RD, and is necessary for 

presymptomatic identification and development of precision intervention strategies informed by 

genetic screening.       

MATERIALS AND METHODS  

Genes, Reading, and Dyslexia Study  
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The Genes, Reading, and Dyslexia (GRaD) study, is a multisite case-control study of RD 

in minority youth across the United States, Canada, and Puerto Rico. Detailed descriptions of 

recruitment, inclusion, and exclusion criteria for the sample are reported elsewhere (55). Briefly, 

male and female children age 8-15 years of African American and/or Hispanic American 

ancestry were recruited for study (S2 Table). Children were excluded if they were not of African 

American or Hispanic American ancestry, placed in foster care, had a medical history or 

neurological condition that could affect cognitive or neural development (i.e. preterm birth, 

prolonged stay in the NICU, seizures, acquired brain injuries), diagnosis of any cognitive or 

neuropsychiatric disorder (i.e. intellectual disability, autism spectrum disorder, depression), or 

documented hearing or vision impairment. A total of 1,432 children were recruited into the 

GRaD study. Of these subjects, 1,331 children with high-quality DNA samples were included in 

the analysis. Informed consent was obtained for all participants and parents or legal guardians of 

subjects. Ethical approval of study protocols and recruitment was obtained by Institutional 

Review Boards at each recruiting site (University of Colorado-Boulder, University of Denver, 

Tufts University, University of New Mexico, Kennedy Krieger Institute, Hospital for Sick 

Children-Toronto, and Yale University). 

Rapid Automatized Naming (RAN) and Rapid Automatized Stimulus Measures (RAS) 

RAN and RAS performance in the GRaD sample was evaluated using the RAN Objects, 

RAN Letters, and RAS Letters/Numbers tasks developed by Wolf and Denckla (56). For RAN 

objects and RAN letters, subjects name aloud 50 familiar, high frequency objects or letters, 

respectively, arranged in a 5 × 10 array as quickly and accurately as possible. The format of RAS 

Letters/Numbers is similar to RAN Objects and RAN Letters, except that items in the array are 

from alternating stimulus categories (e.g. letters and numbers). Time to complete each task is 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/202929doi: bioRxiv preprint 

https://doi.org/10.1101/202929
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

recorded and converted to age-standardized scores. Age-standardized scores (mean of 100, SD of 

15) were then converted to Z-scores (mean of 0, SD of 1) used for downstream genetic analyses 

(S7 Table).   

Test of Word Reading Efficiency (TOWRE) 

 The TOWRE Total Word Reading Efficiency is a composite of both Sight Word 

Efficiency and Phonetic Decoding Efficiency scores and is an assessment of reading fluency (the 

ability to read words quickly and accurately) under timed conditions (57). For this assessment 

the subject is evaluated on the number of individual words (Sight Word Efficiency) and 

nonwords (Phonetic Decoding Efficiency) correctly read in 45 seconds. For each subtest, the 

total number of words read correctly is converted into a standard score based on age norms and 

then z-scored (S7 Table). The TOWRE Total Word Reading Efficiency composite was used for 

downstream analysis.  

Woodcock–Johnson Tests of Achievement, Third Edition (WJ-III) 

The WJ-III Basic Reading Score is a composite of the WJ-III Letter-Word Identification 

and WJ-III Word Attack subtests (58). The WJ-III Letter Word Identification subtest is an 

untimed measure of reading increasingly complex English words aloud. The Word Attack 

subtest is a decoding measure of nonwords or pseudowords in isolation. For each subtest, the 

total number of words read correctly is converted into a standard score based on age norms and 

then z-scored (S7 Table). The WJ-III Basic Reading composite was used for downstream 

analysis. 

DNA Collection, Genotyping, and Analysis  
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Saliva was collected from each subject using the Oragene-DNA self-collection kit (OG-

500; DNA Genotek Inc, Ottawa, Ontario, Canada). DNA was extracted using prepIT-L2P (DNA 

Genotek Inc, Ottawa, Ontario, Canada). Subjects were successfully genotyped for 2,391,739 

single nucleotide polymorphisms (SNPs) using the Illumina Infinium Omni2.5-8 BeadChip at the 

Yale Center for Genome Analysis (Orange, CT). Initial genotyping quality control and SNP 

genotype calls were conducted using GenomeStudio (Illumina, San Diego, CA) and standard 

Infinium genotyping data analysis parameters to optimize genotyping accuracy. SNPs were 

removed from downstream analysis if that had missingness greater than 5% (n=22,849), Hardy-

Weinberg equilibrium p<0.0001 (n=116,259), were not autosomal (n=60,551), or had a minor 

allele frequency less than 10% (n=1,182,060). Samples were removed if they were missing more 

than 3% of their genotypes (n=39), if there were discrepancies between reported and inferred sex 

based on X chromosome heterozygosity (n=52), and IBD > 0.125 calculated using REAP (n=10) 

(59). After quality control, there were a total 1,331 samples genotyped with 1,010,020 SNPs.   

Population Stratification 

The first 10 principal components derived from genome-wide SNP data were used to 

correct for genomic inflation due to allele frequency differences across different ancestries 

(population stratification) with EIGENSTRAT (60). Population stratification was evaluated 

using a genomic inflation factor (λ) calculated using PLINK (61). A λ factor below the standard 

threshold of 1.05 indicates sufficient correction for population stratification. Since calculated λ 

ranged from 1.003-1.017 in the present study, 10 principal components were sufficient to correct 

for population stratification (S1 Figure).  

Statistical Analysis 
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Univariate genetic analyses for RAN objects, RAN letters, and RAS Letters/Numbers 

were performed using PLINK v1.9 to test each SNP using linear regression under an additive 

model. Multivariate genetic analysis jointly analyzing RAN objects, RAN letters, and RAS 

Letters/Numbers for pleiotropic effects was conducted using the R package MultiPhen (62). 

MultiPhen allows for the simultaneous examination of multiple correlated traits using a reversed 

ordinal regression to determine the linear combination of traits most associated with specific 

genotypes at each SNP. It then performs a log likelihood ratio test on the joint model against the 

null model to evaluate association. All statistical models were corrected for the first 10 principal 

components to correct for population stratification, sex, age, and socioeconomic status (SES). In 

this study, SES was assessed as a binary variable that describes whether the subject is enrolled in 

at least 1 government assistance program with an income eligibility requirement (e.g. food 

stamps, Medicaid, housing choice voucher program, and/or Women, Infants, and Children 

program). To correct for multiple testing, we used the standard threshold of 5 × 10-8 (Bonferroni 

correction for 1 million tests) to determine genome-wide significance.  

Replication Analysis  

Colorado Learning Disability Research Center (CLDRC) Cohort  

Replication was conducted on samples from the CLDRC. Methods related to recruitment, 

ascertainment, data collection (neurocognitive and genetic), and data processing are described in 

detail elsewhere (10, 63). Briefly, the CLDRC sample is a selected twin cohort for RD, ADHD, 

and other learning disabilities recruited from 27 school districts in Colorado (63, 64). Subjects 

were assessed with RAN colors, RAN objects, RAN letters, and RAN numbers (65). For this 

task, participants named as many items in a 15 x 5 array as quickly and accurately as possible. 

The number of correctly named items in 15 seconds was recorded. Raw scores were standardized 
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and age-regressed for each of the tasks based on a separate control sample consisting of typically 

developing children. All experimental procedures and written informed consent forms were 

approved by the institutional review boards (IRB) at University of Colorado-Boulder and 

University of Denver. 

DNA was collected and extracted from saliva and genotyped using the Illumina Human 

OmniExpress genotyping panel (713,599 SNPs). Initial genotyping quality control and SNP 

genotype calls were conducted using GenomeStudio (Illumina, San Diego, CA). Initial quality 

control filters included the removal of samples with a call rate <98% and SNPs with a call rate 

<95%, HWE <0.0001, and MAF < 5%. SNPs on chromosome 10 identified in the GRaD 

discovery analysis that were not genotyped were imputed with genipe—an automated genome-

wide imputation pipeline that executes PLINK 1.07 (61), SHAPEIT (66), and IMPUTE2 (67) for 

data imputation to the 1000 Genomes Project, Phase 3 reference (33, 68). All imputed SNPs had 

an info score (IMPUTE2 imputation quality metric) greater than 0.9, indicating that all 

replication SNPs were imputed with high confidence. 

The sample of twins and siblings available for this study comprised 749 participants in 

total, mean age 11.7 years, age range 8–19, from 343 unrelated twinships/sibships. For the 

present study, only participants of European descent were analyzed. Any subject with missing 

cognitive, demographic, or genetic data was removed from analysis. Then, one child per 

twinship/sibship was randomly selected. The total sample size for replication analysis was 318 

unrelated individuals.  

Multivariate genetic analysis jointly analyzing RAN colors, RAN objects, RAN letters, 

and RAN numbers standard scores for association at candidate chromosome 10 SNPs identified 
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in the GRaD discovery analysis was conducted using MultiPhen while covarying for the effects 

of age and sex.  

Bioinformatic Analysis 

 GenoSkyline is an unsupervised learning framework that predicts tissue-specific 

functionality in non-coding regions of the genome by integrating genome-wide epigenetic data 

from the Roadmap Epigenomics Project and ENCODE (32, 69, 70). Detailed description of 

tissue specific functionality has been previously described (69). Briefly, GenoSkyline uses an 

unsupervised-learning technique that evaluates the presence of well characterized histone marks 

(H3k4me1, H3k4me3, H3k36me3, H3k27me3, H3k9me3, H3k27ac, H3k9ac) and DNase 1 

hypersensitivity sites and calculates a posterior probability score (GS score) that a given genetic 

coordinate is functional. A GS score of “1” suggests that the genomic region of interest is 

functional within the given tissue type, while a score of “0” suggests no functional significance. 

Pre-calculated, genome-wide, tissue-specific GS scores for blood, epithelium, muscle, heart, 

lung, gastrointestinal, brain, and sub-regions of the brain (angular gyrus, prefrontal cortex, 

cingulate gyrus, anterior caudate, hippocampus, inferior temporal gyrus, and substantia nigra) 

were obtained from the GenoSkyline database (http://genocanyon.med.yale.edu/GenoSkyline).  

 Follow-up analysis of epigenetic data from the Roadmap epigenetics project was 

conducted to identify predicted chromatin state in the genomic region of interest 

(http://egg2.wustl.edu/roadmap/web_portal/index.html). Data were visualized using the 

Washington University in St. Louis (WashU) EpiGenome Browser v.42.  

Imaging Genetic Analysis 

Pediatric, Imaging, Neurocognition, and Genetics (PING) Study 
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Imaging genetics analysis of cortical volume was conducted in the PING sample 

(http://ping.chd.ucsd.edu/). Methods related to recruitment, ascertainment, data collection 

(neuroimaging, neurocognitive, genetic), and data processing are described in detail elsewhere 

(71). Briefly, the PING study is a cross sectional sample of typically developing children ranging 

in age from 3-20 years old. Individuals were excluded from participating if they had a history of 

major developmental, psychiatric, or neurological disorders, brain injury, prematurity (i.e., born 

at less than 36 weeks gestational age), prenatal exposure to illicit drugs or alcohol, history of 

head trauma, or other medical conditions that could affect development. Subjects with learning 

disability or ADHD were not excluded. All experimental procedures and written informed 

consent forms were approved by the institutional review boards (IRB) at each of the 10 

participating PING study recruitment sites (University of California at San Diego, University of 

Hawaii, University of California at Los Angeles, Children’s Hospital of Los Angeles of the 

University of Southern California, University of California at Davis, Kennedy Krieger Institute 

of Johns Hopkins University, Sackler Institute of Weill Cornell Medical College, University of 

Massachusetts, Massachusetts General Hospital at Harvard University, and Yale University). 

Parental informed consent was obtained for participants less than 18 years of age with child 

assent (ages 7-17). For individuals 18 years of age and older, written informed consent was 

obtained.   

DNA was extracted from saliva and genotyped on the Illumina Human660W Quad 

BeadChip (655,214 SNPs) for all subjects in the PING study. Initial genotyping quality control 

and SNP genotype calls was conducted using GenomeStudio (Illumina, San Diego, CA) by the 

PING genomics core at the Scripps Translational Science Institute (La Jolla, CA). Initial quality 

control filters included the removal of samples with a call rate <98% and SNPs with a call rate 
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<95%, HWE <0.0001, and MAF < 5%. To assess ancestry and admixture proportions in the 

PING participants, a supervised clustering approach implemented in the ADMIXTURE software 

grouped participants into six clusters corresponding to six major continental populations: 

African, Central Asian, East Asian, European, Native American and Oceanic (72). 

Implementation of ancestry and admixture proportions in the PING subjects is described in detail 

elsewhere (71). To prevent possible population stratification, genetic ancestry factor (GAF) was 

included as a covariate in all analyses.  

In depth descriptions of methods for neuroimaging data acquisition and processing for the 

PING study are described elsewhere (71). Briefly, structural MRI data were collected from all 

individuals using a standardized multiple-modality high-resolution structural MRI protocol 

involving 3D T1-weighted volumes across sites to maintain consistency across data collection. 

Image files in DICOM format were processed by the neuroimaging post-processing core at the 

University of California at San Diego using an automated processing stream written in 

MATLAB and C++. Cortical surface reconstruction and subcortical segmentation were 

performed using a fully automated set of tools available in the Freesurfer software suite 

(http://surfer.nmr.mgh.harvard.edu/). Cortical parcellation of sulci and gyri were automatically 

defined using the Desikan-Killiany Atlas integrated within the FreeSurfer suite (73). All data 

(genetic, neuroanatomical, and cognitive) were obtained from the PING portal (https://ping-

dataportal.ucsd.edu/). 

Cortical volume regions of interest selection and statistical analysis      

Left and right hemisphere cortical regions spanning the inferior frontal gyrus, 

temporoparietal region, and occipitotemporal area were selected for candidate region of interest 

analysis (S8 Table). Left hemisphere structures spanning the inferior frontal gyrus, 
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temporoparietal region, and occipitotemporal area comprise the canonical reading network, and  

show atypical patterns of functional activation in reading disabled children relative to typically 

developing children (35). Respective right hemisphere regions were also included in the analysis 

since evidence suggests that naming speed is also associated with grey matter volume differences 

in right hemisphere frontal, temporoparietal and occipital regions (14, 35).  

Imaging genetics analysis was conducted on 690 subjects with cortical volume and 

genetic data that passed both neuroimaging and genotype QC. All analyses were corrected for 

the effects of age, sex, handedness, scanner device (74), genetic ancestry (African, Central Asian, 

East Asian, European, Native American and Oceanic), intracranial volume, highest parental 

education, and family income. The marker rs1555839 was genotyped in the PING sample and 

was used for imaging genetics analysis. Cortical volumes across 14 ROIs were tested for 

association with rs1555839 using linear regression under an additive genetic model in PLINK 

1.9 (75).  
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FIGURE LEGENDS 

Figure 1: LocusZoom plot of genomic region surrounding genome-wide significant SNP, 

rs1555839, in multivariate GWAS for RAN Objects, RAN Letters, and RAS 

Letters/Numbers. LocusZoom plot represents -log10p (left y-axis) of each genotyped SNP 

(gray dots) surrounding the top associated SNP, rs1555839 (purple dot). Recombination rate 

(right y-axis) is represented by the blue overlay. LncRNA pseudogene, RPL7P34 (chr10: 

90,377,980-90,378,691), is not represented in this plot. 

Figure 2: Mean differences in TOWRE and WJ-III Basic Reading performance by alleleic 

variation at rs1555839 in the GRaD Study. In the presence of the C allele there is a significant 

reduction in TOWRE and WJ-III Basic Reading performance, while correcting for the effects of 

age, sex, and population stratification (first 10 principal components). Error bars represent 95% 

confidence intervals. ***p <0.001 

Figure 3: Bioinformatic examination of chromosome 10q23.31 containing the top 

performing markers in the GRaD discovery analysis. A) Plot of GS scores obtained from 

GenoSkyline indicating the posterior probability for functionality in the brain at each genomic 

locus. A GS score of 1 indicates a high probability for functionality, while a GS score of 0 

suggests no functionality.  B) 18-state chromatin model from Roadmap Epigenomics project 

showing predicted chromatin states based on the presence of H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, H3K9me3, and H3K27ac sampled across different regions of the brain. C) Location 

of genes, markers assessed in the GRaD discovery analysis, and underlying LD structure (D’) 

across SNPs in the CEU population sampled in HapMap release 27. 
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SUPPLEMENTAL TABLES LEGENDS 

S1 Table: Pearson correlation coefficients across RAN Objects, RAN Letters, RAS 

Letters/Numbers, Test of Word Reading Efficiency (TOWRE), and Woodcock-Johnson 

Basic Reading (WJ-III Basic Reading). **p<0.01 

S2 Table: GRaD Demographics. Demographic information on 1,331 children with available 

genetic data in the GRaD sample. a Enrolled in one or more government assistance programs 

including food stamps, Medicaid, housing choice voucher program, and women, infants, and 

children program. 

S3 Table: Univariate GWAS results displaying the top 10 markers associated with RAS 

Letters/Numbers in the GRaD study. 

S4 Table: Univariate GWAS results displaying the top 10 markers associated with RAN 

Objects in the GRaD study. 

S5 Table: Univariate GWAS results displaying the top 10 markers associated with RAN 

Letters in the GRaD study 

S6 Table: Univariate association analysis of RAN Letters in the CLDRC cohort displaying 

results from top chromosome 10 markers identified in the GRaD Multivariate discovery 

GWAS. *Survives Bonferroni correction for multiple testing (p < 7.14 × 10-3) 

S7 Table: GRaD Assessments Descriptives: Descriptive statistics for assessments evaluated in 

the GRaD sample. Means reflect the z-score (mean = 0, standard deviation (SD) = 1) of the 

population standard score (mean = 100, SD = 15) available for each psychometric analysis 

S8 Table: Cortical regions of interest associated with reading ability and disability 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2017. ; https://doi.org/10.1101/202929doi: bioRxiv preprint 

https://doi.org/10.1101/202929
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

SUPPLEMENTAL FIGURES LEGENDS 

S1 Figure: Plot of the first three principal components generated from genome-wide SNP 

data used to correct for population stratification. The plot displays the clustering of 

individuals across the first three principal components and its correspondence to self-reported 

ancestry. Colors represent self-reported ancestry.   

S2 Figure: Manhattan plots representing the -log10p at each SNP assessed in the A) 

Multivariate analysis of RAN Objects, RAN Letters, and RAN Letters/Numbers, and 

univariate analysis for B) RAS Letters/Numbers, C) RAN Objects, and D) RAN Letters 

across 22 autosomes. Red line indicates the standard threshold for genome-wide significance (p 

< 5 × 10-8).  

S3 Figure: LD heatmaps across CEU, MXL, and YRI populations in the region of 

chromosome 10q23.31 containing the top performing markers in the GRaD discovery 

analysis.  
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