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Abstract (250 words, actual = 207) 

Researchers have proposed that solving complex reasoning problems, a key indicator of 

fluid intelligence, involves the same cognitive processes as solving working memory tasks. 

This proposal is supported by an overlap of the functional brain activations associated with 

the two types of tasks and by high correlations between inter-individual differences in 

performance. We replicated these findings in fifty-three older subjects but also showed 

that solving reasoning and working memory problems benefits from different 

configurations of the functional connectome and that this dissimilarity increases with 

higher difficulty load. Specifically, superior performance in a typical working memory 

paradigm (n-back) was associated with up-regulation of modularity (increased between-

network segregation), whereas performance in the reasoning task was associated with 

effective down-regulation of modularity. We also showed that working memory training 

promotes task-invariant increases in modularity. Since superior reasoning performance is 

associated with down-regulation of modular dynamics, training may thus have fostered an 

inefficient way of solving the reasoning tasks. This could help explain why working 

memory training does little to promote complex reasoning performance. The study 

concludes that complex reasoning abilities cannot be reduced to working memory and 

suggests the need to reconsider the feasibility of using working memory training 

interventions to attempt to achieve effects that transfer to broader cognition. 
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INTRODUCTION 

Fluid intelligence is central to solving complex reasoning tasks; that is, to identifying 

common patterns and applying logic to extrapolate them to novel problems. The cognitive 

processes that determine performance in such tasks have been a matter of debate for 

decades (1-5). Task analyses have led some researchers to propose that reasoning ability 

depends on and is almost isomorphic with the capacity to maintain and manipulate 

information in working memory (5, 6). In keeping with this line of reasoning, psychologists 

have emphasized the demands that both working memory and reasoning tasks place on 

executive control (7, 8). The high correlation between inter-individual differences in 

working memory and complex reasoning scores (4, 5) and observations that these tasks 

elicit similar functional brain activity in the frontoparietal control network (CN) (8-14) are 

also consistent with this idea. Yet there are reasons to believe that cognitive processes 

other than working memory ability are involved in complex reasoning. Among them are 

exploratory cognitive functions such as perspective shifting and aspects of creativity that 

may facilitate rule discovery and insight. The latter refers to the spontaneous realization 

that a difficult problem has a simple solution if perceived from a conceptually different or 

new perspective. While these processes are much less studied, their importance in solving 

complex reasoning tasks has been demonstrated in psychometric studies (15, 16).  

Functional brain imaging studies of large-scale brain dynamics allow us to 

disentangle some of the key principles underlying higher cognition. Shaped by evolution to 

enhance adaptability and efficient information processing, the brain appears to function as 

a critical system achieving optimal performance near phase transitions from order to 

disorder (17). This, in turn, requires a hierarchical modular structure balancing 

segregation and integration of its functional subdivisions (18-20). Modularity has been 

used as a global measure of such neurodynamics in studies of age-related changes (21, 22), 

working memory (23, 24), learning (25, 26), reactivity to environmental irregularities (27) 
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and visual awareness (28). While task performance is generally associated with lower 

modularity than resting state (29-31), superior performance on cognitive tasks requiring 

outward attentional focus (e.g., working memory tasks) has been linked to relatively more 

modular (i.e., segregated) functional connectome at rest (23), whereas tasks requiring 

inward attentional focus, such as odor recognition and episodic memory retrieval, are 

instead linked to low-modular (i.e., more globally integrated) states (32, 33). Relatedly, 

effective suppression of the default mode network (DMN; functionally integrated group of 

mostly midline brain structures involved in self-referential processing and other tasks 

requiring inward focus) is related to performance on problems requiring outward 

attentional focus (34, 35). An opposite association has been reported for more complex 

tasks that demand creativity, cognitive flexibility, and, importantly, complex reasoning, in 

which resting state and task-related connectivity between the DMN and CN have been 

linked to superior performance (13, 36, 37). Furthermore, the direction of the association 

between modularity and performance may depend on task complexity: performance on 

simple tasks is positively associated with modularity, whereas performance on more 

complex tasks, in contrast, appears to be positively associated with low-modular states 

(38). 

These disparate findings lead to the hypothesis that, despite a high correlation 

between performance and convergence of brain activation patterns, reasoning tasks 

require different, or at least additional, cognitive processes and different modes of large-

scale brain dynamics than working memory. Better complex reasoning performance may 

be linked to a low-modular configuration of the functional connectome characterized by 

enhanced communication of the CN with the DMN and other brain networks. This 

enhanced communication may in turn promote an exploratory mode of cognition (39) – a 

state of “expected uncertainty” (40) – beneficial to rule discovery and abstraction (41). In 

contrast, successful solution of working memory tasks may require a more modular 
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network configuration with stabilized configuration of the frontoparietal network coupled 

with effective suppression of the DMN activity to prevent inward attentional focus and 

mind-wandering. These divergent associations may be particularly marked at higher 

difficulty loads, because complex reasoning requires a more exploratory mode of cognition 

than simpler reasoning, one that benefits pattern discovery. It follows from these 

hypotheses that improvements from training working memory should lead to more 

modular brain dynamics during task performance. If such a shift in modularity generalizes 

to solving the reasoning task then this may only be beneficial for simple reasoning 

performance but not for solving the complex reasoning tasks that may require a higher 

degree of between-network integration. We employed large-scale network analysis to 

investigate these hypotheses. The study used functional magnetic resonance imaging 

(fMRI) during one reasoning and working memory task. The spatial reasoning task was 

developed to be similar to the classic matrix reasoning tests and a classical figural updating 

task (n-back) was used to probe working memory. Both tasks were performed at three 

different difficulties (Figure 1) in a sample of healthy older adults (n = 53; age = 65-75 

years) before (i.e., at pretest) and after (i.e., at posttest) working memory training (n = 27) 

and active control training (perceptual matching; n = 26).   
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METHODS 

 

Subjects. For the present analysis, the sample consisted of 53 participants who had brain 

scans of acceptable quality from two fMRI scanning sessions, one before and one after four 

weeks of cognitive training. Imaging data quality criteria were: i) no motion artifacts in the 

raw data noticeable to the naked eye, ii) max frame-wise displacement below 3mm, iii) less 

than 10% of missing volumes after the de-spiking procedure. The study was approved by 

the Regional Ethical Review Board in Stockholm (DNR: 2014/2188-31/1) and was 

conducted in accordance with the revised declaration of Helsinki [2013]. Informed consent 

was obtained from all subjects prior to enrollment. Standardized physical and 

neuropsychological examinations were also carried out at screening. The subjects were 

randomly assigned to one of the two alternative training programs: (1) working memory 

(active; n = 28; age = 68.89±3.13 years; education = 15.17±3.25 years; number of women = 

14; attendance = 19.07±0.94 session) and (2) perceptual matching (control; n = 25; age = 

69.48±2.96 years; education = 15.02±4 years; number of women = 14; Attendance = 

19±1.58 session) and were blind to the hypotheses about the two protocols. The 

randomization was accomplished in an automated manner using R-programming language 

(42) for each study wave separately with age, gender and fluid intelligence used as 

stratifies. 

The main study targeted 123 participants and imaging data were acquired for a random 

subsample of 78 subjects, 25 of whom were excluded from the analyses in keeping with the 

image quality criteria (see above). See (43) for details. As a part of the study, half of the 

subjects received transcranial direct current stimulation (tDCS), whereas the other half 

received sham stimulation. Since the main study found no effects of stimulation on any of 

the collected cognitive measures, we did not estimate corresponding effects of stimulation 

on the imaging data in the present set of analyses, but accounted for stimulation as an 

additional nuisance regressor during modeling.    
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Cognitive training. Between pretest and posttest assessment with cognitive tasks and 

imaging, a JAVA-based computerized cognitive training battery was administered over 20 

sessions (4 weeks, weekends off), each lasting 40 minutes. In the active program, four tasks 

trained two crucial facets of working memory: updating (running span and n-back tasks) 

and switching (rule- and task-switching tasks), each with four randomly varying stimuli 

sets to minimize the use of stimuli-specific strategies. The control intervention was focused 

on perceptual matching speed, employing four versions of the same task. In the task, 

participants were asked to assess the similarity of the presented figures and shapes, 

responding as quickly and accurately as possible. The training batteries were designed to 

be adaptive, such that the difficulty of the tasks increased systematically with 

improvements in performance so that the participants always trained at the highest level 

reached. The batteries were designed and carefully pilot-tested to balance the length and 

scope of the training, and the working memory training (active) and perceptual matching 

training (control) groups did not differ in the average level reached by the participants or 

in overall attendance. The cognitive training took place the week after an extensive 5-day 

assessment of cognitive functions. See (43) for details and a comparative description of the 

two batteries. 

 

Magnetic resonance imaging. Structural and fMRI scans were collected with the GE  

Discovery MR-750 3.0 Tesla scanner with the 32-channel research head coil located at the 

Karolinska University Hospital, MRI center in Solna, Sweden. Structural images were 

acquired employing a standardized contrast-enhanced T1 spoiled gradient (SPGR) 

“BRAVO” sequence with 0.94 mm3 isotropic voxels, FoV 256 mm (256 x 256 matrix), 

TR/TI/TE = 5.688/450/2.492 ms, flip angle = 12°. Functional MRI data were collected 
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using echo-planar T2* imaging to measure the blood-oxygen-level dependent (BOLD) 

signal (voxel size 3 mm3 , TE/TR=30/2000 ms, flip angle = 80°). 

 

Functional magnetic resonance imaging tasks. Two tasks were administered inside the 

MR scanner to evaluate connectivity patterns during working memory and reasoning. A 

figural n-back task assessed working memory performance. Three 1-minute blocks were 

administered: 1-, 2- and 3-back (each repeated 3 times) with a 4-second fixation screen 

indicating the rule for the forthcoming level (9:54 min, in total). See Figure 1 for an 

illustration. For this task, accuracies were calculated as the average value of true positives 

and true negatives with a chance level of 50%. The second task was developed to evaluate 

the functional state involved in complex visuospatial reasoning. Subjects were instructed to 

complete the presented pattern by selecting one of the four solutions shown at the bottom 

of the screen. One of the four answers was always correct. Like the n-back task, this 

paradigm had three levels of difficulty: A, perceptual matching; B, simple analytical (single 

rule); and C, difficult analytical (with at least two non-trivial rules), similar to the 

implementation proposed by Yamada et al. (44). Each block was repeated 3 times in a 

pseudo-random order during the scanning session (9 task-blocks + 9 fixation screens, in 

total). The reasoning task was self-paced to better match typical fluid intelligence 

paradigms (such as Raven’s progressive matrices) with fixed (1-minute) blocks (9:54 min 

of total acquisition time including fixation blocks). The subjects were explicitly instructed 

not to guess. For the reasoning paradigm, accuracy was defined as fraction of correctly 

solved problems relative to the total number of attempts per block. In a number of 

simulations with randomly varying answers and total number of responses, chance-level 

accuracy was estimated at 25%. 
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In both tasks, the subjects demonstrated consistent accuracy drop as the difficu

level increased. In all the analyses, performance was measured as total task accura

which was defined as the sum of block-specific accuracies.  

Both tasks were administered twice: before and after the cognitive training and we

programmed and presented using PsychoPy software, version 1.84 (45). 

Fig. 1. fMRI tasks. 

 

Two tasks were administered inside the MR scanner to evaluate large-scale patterns of brain connectivity underlying working mem

and reasoning. A figural n-back task assessed working memory performance. Three 1-minute blocks were administered: 1-, 2- an

back (each repeated 3 times) with a 4-second fixation screen indicating the rule for the forthcoming level. The second task 

developed to evaluate modifications of the functional connectome involved in complex visuospatial reasoning. Subjects were instru

to complete the presented pattern by selecting one of the four solutions shown at the bottom of the screen. One of the four answers 

always correct. Similar to the n-back task, this paradigm had three levels of difficulty: A, perceptual matching; B, simple analytical (si

rule); and C, difficult analytical (with at least two non-trivial rules) tasks. Each block was repeated 3 times in a pseudo-random or

during the scanning session. The reasoning task was self-paced (to better match typical fluid intelligence paradigms such as Rav

progressive matrices) within a fixed (1-minute) block. Thus, different subjects completed different numbers of items per block, and

subjects were explicitly instructed not to guess. For the reasoning paradigm, accuracy was defined as the fraction of correctly so

problems relative to the total number of attempts per block. 
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Cognitive assessment at pretest and posttest. We evaluated the effects of working 

memory training via an extensive testing battery completed over four sessions, each lasting 

about 180 minutes. Pre-intervention testing took place 2 weeks before the training started, 

and post-testing was completed the week after the intervention. The battery was identical 

on both occasions and included a number of diverse cognitive tests measuring switching 

(task- and rule-switching), updating (n-back, running span), attention (temporal 

expectancy, perceptual matching), episodic memory (verbal and spatial recall), and spatial 

(WASI, Raven’s, BETA matrices) and verbal (Syllogisms, BIS Analogies, ETS Kit inference) 

reasoning. See (43) for detailed description of the cognitive assessment. 

 

Magnetic resonance imaging processing. A standardized SPM12-based (Wellcome Trust 

Center for Neuroimaging, UCL) pipeline was implemented in the MATLAB R2013a 

environment (46).  

Each subject’s T2* imaging data underwent subsequent steps for slice-timing 

correction, spatial realignment, and registration to standardized Montreal Neurological 

Institute (MNI) space using a population-specific template produced from the set of T1 

images with the Diffeomorphic Anatomical Registration Through Exponentiated Lie 

Algebra (DARTEL) algorithm (47).  

An extended 24-parameter model (48) was employed for head motion correction. 

The images were also smoothed (FWHM = 6 mm), de-trended, and, for the connectivity 

part, also band-pass filtered (0.008–0.12 Hz). The resulting output was used to calculate 

connectivity matrices (one matrix per each task and load level) based on temporal 

(Pearson r) correlation between the regions parcellated in accordance with the Craddock’s 

200-ROI scheme (49). We did not employ global signal regression due to high risks of 

removing task-relevant signal variance (see Supplement, S3).  
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No between-task differences were found in mean framewise displacement (meanFDn-

back = 0.09±0.04; meanFDreasoning = 0.11±0.09) and neither of the cognitive measures 

significantly correlated with FD. Nevertheless, we repeated our analyses with scrubbing, 

which had a very minor impact on the results and did not change any inferences.   

After removing negative weights, the adjacency matrices were then used to estimate 

whole-brain network modularity as implemented in the “Brain Connectivity Toolbox” (50). 

The Louvain community detection method generalized for weighted graphs was used in the 

study as a measure of between-network segregation. The method attempts to solve an 

optimization problem by maximizing modularity (Q) given observed graph weights: 

 

, 

Where: 

 - weight (connectivity strength) between nodes i and j 

,  - sum of the weights attached to nodes I and j 

m - sum of all graph weights 

,  - communities of the nodes 

 - Kronecker delta 

 

When there are few edges between the communities and within-cluster density is 

high, Louvain modularity is close to 1, but when the number of within-modular 

connections is comparable to the one from a random graph, modularity usually approaches 

0. Practically, it measures level of modular segregation in a graph.  

 

Statistical analyses. After the preprocessing and cleaning, behavioral and imaging 

measures underwent outlier detection and checks for distribution normality. Between-

group comparisons of demographic data used two-sample t-tests for continuous variables 

and binomial tests for sex ratios. 

Next, we conducted a number of analyses to evaluate the reliability and validity of the 

collected measures. Pre-post Pearson correlation coefficients were calculated for the 
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behavioral data to evaluate reliability. To address the problem of task validity, we analyzed 

updating and spatial reasoning domains in latent space, employing structural equation 

modeling (SEM) of the two constructs with offline measures and data collected inside the 

MRI scanner (See Figure 2). Each of the offline latent variables (LVs) was modeled with 3 

tasks (updating: n-back and two running span tasks; spatial reasoning: Raven’s progressive 

matrices, WASI, and BETA). Online (fMRI) LVs were formed with two indicators each 

(updating: 2-back and 3-back; spatial reasoning: “simple analytical” and “difficult 

analytical”; 1-back and reasoning “A” accuracies were excluded from the SEM due to ceiling 

effects). The variance of the LVs was constrained to 1 to make path coefficients equivalent 

to Pearson correlations. SEM was also repeated for block-specific measures of in-scanner 

performance (2-back and “simple analytical”; 3-back and “difficult analytical”). 

The next block was focused on evaluating task-related BOLD activity and modularity 

at baseline. First, we estimated first-level contrasts in both tasks: a) 2-back – 1-back, b) 3-

back – 1-back, c) reasoning “B” – reasoning “A,” and d) reasoning “C” – reasoning “A.” Then 

we performed a second-level analysis of the activations, which yielded block-specific 

statistical maps. Once the smoothness of the data had been estimated, adjustment for 

multiple tests was carried out using Monte Carlo simulations (n=5000) as implemented in 

the AlphaSim algorithm (51) with an initial cluster-forming threshold of p<0.005. In 

addition, individual block-specific activation patterns were matched with a meta-analytical 

map derived using Neurosynth software (http://www.neurosynth.org/) (52). This 

procedure employs voxel-wise Pearson correlation as a measure of similarity (53) between 

the statistical map and the meta-analytical image generated for a specific feature of 

interest. In the present analysis, the search was completed for the terms “working 

memory” (n=901 studies) and “reasoning” (n=147). The search was also completed for 

“executive control” (n=157), which was used as a third independent term to evaluate 

validity of the activation patterns.   
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Next, we embarked on the analyses of large-scale connectivity, evaluating the 

differences in functional connectome between the tasks and between-task correlation of 

modularity across different loads. Subsequently, we conducted a number of mass-

univariate tests of raw functional connectivity to identify which of the networks and 

between-network interactions were involved in the reported global effects. This was 

accomplished by fitting a linear model that evaluated correlations between block-specific 

functional connectivity and total task performance.  

The last analytical block addressed effects of working memory training on 

performance and large-scale functional connectome. We started by evaluating the main 

effects of time on task performance and then estimated load x group x time effects in each 

of the two tasks using linear mixed-effects models (random effect: “subjects”). 

Standardized effect sizes were also calculated and reported as the mean difference in 

performance divided by the pre-test standard deviation. 

Modularity was analyzed as overall pre/post change, as well as Time x Group 

interactions. At this stage, a full-interaction model was fitted to evaluate the effects of 

working memory training in two tasks (modularity ~ load x task x time x group x WM 

performance, random effect: “subjects”). Finally, a subsequent analysis of raw functional 

connectivity was conducted to localize the reported global effects by estimating Group x 

Time effects on connectivity for each block. 

 

Statistical software and toolboxes. All statistical analyses of behavioral data and 

modularity were performed with the R programming language, version 3.2.2 (54) and 

“nlme” toolbox (55). In all models, age, sex, and first 3 principal components from the 

motion parameters were introduced as nuisance covariates.  

Mass-univariate analyses of BOLD activation patterns were carried-out in SPM12 

(Wellcome Trust Center for Neuroimaging, UCL). 
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The Network-Based Statistics Toolbox (56) was used to analyze raw functional 

connectivity. 

Structural equation modeling was conducted using Ωnyx software (57). 

 

Data availability. Raw MRI and behavioral data can be requested from the authors and 

transferred for specific analysis projects that are in line with the original ethical approval. 

This requires a data use agreement, which effectively transfers the confidentiality 

obligations of the institution (Karolinska Institutet) at which the original research was 

conducted to the institution of the recipient of the data. An R-script specifying main 

analytical and plotting steps is available at: https://github.com/alex-lebedev/RBT1_modularity  

 

RESULTS 

Cognitive measures. Initial analyses aimed to probe the reliability and validity of the 

cognitive tasks. Between-person differences in performance on the in-scanner tasks 

(Figure 1) were relatively stable from before to after cognitive training, with pre-post 

correlations of r=0.57 (p<0.001) for n-back and r=0.6 (p<0.001) for total reasoning 

performances averaged across the difficulty levels of the tasks. Corresponding values were 

equivalent between the groups: rpre-post=0.54/0.47 (z=0.32, p=0.75) in control/active 

groups for n-back and rpre-post=0.57/0.65 (z=-0.44, p=0.66) in control/active groups for the 

reasoning task. These results indicate satisfactory lower bounds of reliability.  

The validity of the in-scanner tasks was evaluated with structural equation modeling 

(see Methods). The n-back task performed in the scanner (UPD-fMRI) correlated strongly 

(pre: r = 0.65 p<0.001; post: r = 0.79, p<0.001) with a latent factor of working-memory 

updating (formed by tasks assessed outside the scanner; see Figure 2 and Methods for a 

more detailed description of the testing battery). Performance on reasoning task 

administered in the scanner also correlated strongly (pre: r = 0.6, p<0.001; post: r = 59, 
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p<0.001) with a reasoning factor (formed by three tasks assessed outside the scanne

Cross-correlations were equivalent. Performance on the in-scanner n-back correlated in

statistically significant way with the reasoning factor (pre: r = 0.71, p <0.001; post: r = 0.6

p <0.001), and performance on the in-scanner reasoning task, with the working-memo

updating factor (pre: r = 0.78, p<0.001; post: r = 0.67, p<0.001). The reasoning a

working-memory updating factors were highly correlated (pre: r = 0.89, p<0.001; post: 

0.72, p<0.001), and so were the in-scanner tasks (pre: r = 0.52, p<0.001; post: r = 0.4

p<0.001). Overall, the reliability as well as discriminant and convergent validity of the tas

used in the scanner were thus satisfactory.  

Fig. 2. Results of the structural equation modeling analysis. 

 

Circles represent modeled latent variables; rectangles, measured variables (indicators); omnidirectional arrows, dependence; and 

bidirectional arrows, correlation. SR = spatial reasoning; UPD = updating; SR-B,C = spatial reasoning (fMRI) blocks “B” and “C.” Numbe

next to the bidirectional arrows represent standardized covariances (i.e., correlations) between the latent factors at pretest (black) an

posttest (grey). 

 

 

er). 

n a 

67, 

ory 

and 

r = 

45, 

sks 

 

er 

nd 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/202630doi: bioRxiv preprint 

https://doi.org/10.1101/202630
http://creativecommons.org/licenses/by-nc/4.0/


15 

 

Task-related BOLD activity and modularity at baseline. Both tasks produced similar 

and reliable load-related activations in the control network (see Figure 3) that are typical 

for working memory and reasoning tasks. Moreover, similarity (voxel-wise Pearson r, see 

Methods for details) of individual activation patterns to the meta-analytical map derived 

using the Neurosynth package (see Figure S1) for “executive control” was statistically 

significant across all loads (significantly larger than 0 at p<0.001) and positively correlated 

with subjects’ performance during n-back (2-back: r=0.34,p=0.01; 3-back: r=0.43, p=0.001) 

and simple analytical reasoning tasks (reasoning-B: r=0.30, p=0.03; reasoning-C: r=0.19, 

p=0.18). These results indicate that both paradigms reliably engaged the executive control 

circuit and that the magnitude of the engagement significantly correlated with successful 

task solving in all active conditions except for the difficult analytical block (“C”) of the 

reasoning task, in which engagement of the circuit had a limited non-significant effect on 

performance.   

Despite similarities in the activation patterns, we observed a statistically significant 

effect of load, t(208)=-2.7, p<0.01 and load-by-task effect, t(208)=2.74, p=0.007 on 

modularity (Q). These effects were further qualified by a load-by-task-by-performance 

effect, t(208)=3.07, p=0.002. Although performance was implemented as a continuous 

variable in these analyses, to visualize these effects in an accessible manner we performed 

a median split on performance (Figure 4). The resulting graph shows that individuals who 

performed well on the n-back task had a tendency to increase modularity (i.e., between-

network segregation) with load, whereas individuals with better performance in the more 

complex reasoning task down-regulated modularity with task complexity. In other words, 

superior performance in the difficult working memory task (n-back) was associated with 

higher modularity (between-network segregation), whereas superior performance in the 

complex reasoning task was associated with lower modularity (see also Figure 5A). To 

further assess these effects, we selected a subset of subjects (n=17) who performed high on 
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both tests, defined as above-median performance both in n-back and reasoning. Load-by-

task effect was significant in this group, t(82)=3.28, p=0.001, whereas subjects performing 

poorly on both tasks (n=18) did not exhibit such pattern, t(87)=3.28, p=0.001. Thus, 

individual differences in performance were, as predicted, related to different (segregated 

vs. integrated) configurations of the functional connectome in the working memory and 

complex reasoning tasks, especially at higher loads. 

To identify which of the networks and between-network interactions drive these 

relations with global modularity, we conducted a number of subsequent tests of raw 

functional connectivity (56). The results presented a similar pattern of findings, which 

suggest that superior n-back performance is linked to increased segregation between the 

control and the DMN networks, whereas superior performance in the complex reasoning 

task is linked with more active cross-talk of the control network with the sensory 

community and the DMN (Figure 5B). 

Note that modularity during the fixation condition did not differ in a statistically 

significant way between the tasks, t(52)=0.34, p=0.736. Moreover, both tasks induced 

prominently less modular states than the fixation condition: N-back, t(52)=6.2, p<0.001; 

reasoning, t(52)=7.0, p<0.001 (Figure 4). Yet, all difficulty loads were consistently 

associated with modular states: mean modularity was significantly (p<0.001) and 

consistently larger than the one derived from a set (n=250) of simulated random networks 

with equivalent properties (see Supplement, S2), both as a total effect and when taken 

separately within specific tasks and loads.  

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/202630doi: bioRxiv preprint 

https://doi.org/10.1101/202630
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 3. Overlap of the task-related activation patterns  

 
Overlap of the activation patterns in the n-back and spatial reasoning tasks (pFWE<0.05). L1 = load 1 (1-back and reasoning-A); L2 = lo

2 (2-back and reasoning-B); L3 = load 3 (3-back and reasoning-C). 

 

Fig. 4. Shifts in modularity associated with successful solving of working memory and 

reasoning tasks. 

   
Different trajectories of modularity (Q, y-axis) change as a function of difficulty load (Loads 1-3, x-axis) in good (thick lines) versus po

(thin dashed lines) performers (median splits, for illustration purposes); dashed arrows represent increasing difference between goo

and bad performers across the difficulty loads. 

No task = fixation blocks; Load 1 = 1-back and reasoning-A; Load 2 = 2-back and reasoning-B; Load 3 = 3-back and reasoning-C. 

oad 

oor 

od 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/202630doi: bioRxiv preprint 

https://doi.org/10.1101/202630
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 5. Different associations between large-scale functional connectome and performanc

in n-back and reasoning tasks.  

The plot shows associations of subjects’ performance with modularity (panel A) and raw (node pairwise) functional connectivity (pa

B). On the plot B, blue lines show significant negative associations and red lines indicate positive associations between connectivity 

performance at pFDR<0.05. The identified pattern suggests that better n-back performance is associated with increased segrega

between the control and the DMN communities, whereas superior performance in the complex reasoning task is linked with enhan

connectivity of the control network with the sensory community and the DMN. 

Load 1: 1-back and reasoning-A; Load 2: 2-back and reasoning-B; Load 3: 3-back and reasoning-C.  

 

Effects of working memory training on performance and modularity. The main eff

of time (pretest vs. posttest) on performance was statistically significant, which indicat

general improvements in n-back and reasoning performance (0.57 SDs for n-ba

t(52)=4.97, p<0.001; 0.64 SDs for the reasoning task, t(52)=4.02, p<0.001; Figure 

Working memory training led to larger increases in n-back performance at higher loa

than perceptual matching training did (load-by-group-by-visit: t(155)=2.77, p<0.01). 

tests comparing gains from working memory training with gains from perceptual matchi

training at different loads indicated a statistically significant effect at 3-back only. The
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improvement in the control group, t(43.029)=2.92, p=0.003. Neither the group-by-visit nor 

the load-by-group-by-visit effects on reasoning performance were statistically significant, 

which confirmed the lack of far transfer effects of working memory training to reasoning 

published in our previous report of the behavioral data from this study (43). Subsequent t-

tests revealed that improvement in block “B” accuracy (simple analytical) tended to be 

larger in the active (0.695 SD) than the control group (0.13 SD), t(46.331)=-2.01, p=0.026. 

It is worth noting, however, that this comparison would not survive strict p-threshold 

correction for multiple testing (0.05/3 tests = 0.016).    

We found that the active and control interventions affected modularity differently, 

with a statistically significant group by time interaction, t(316)=3.5, p<0.001 (Figure 7). 

Taken separately, working memory training resulted in a significant increase in 

modularity, 0.31 SD, t(161)=3.3, p=0.001, whereas perceptual matching training did not 

result in statistically significant changes in modularity. Instead, it exhibited a trend toward 

reducing it, -0.2 SD, t(155)=-1.8, p=0.07. The group-by-load-by-time effect, however, was 

non-significant, which is consistent with a load-invariant effect of working memory 

training on modularity. The group-by-task-by-time interaction was statistically significant 

t(310)=2.25, p=0.025, indicating that effects of training on modularity were somewhat 

larger for the reasoning task. 
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Fig. 6. Effects of working memory training on in-scanner n-back and reasoning 

performance. 

Both groups showed significant improvements in performance. The active (working memory training) group demonstrated la

improvements on higher difficulty loads in n-back, load-by-group-by-visit: t(155)=2.76, p=0.006. The effect was mainly driven

improvements in the 3-back task. In addition, the active group demonstrated performance improvements in the “simple analyt

(block “B”) part of the reasoning task, t(46.331)=-2.01, p=0.026. 
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Fig. 7. Effects of working memory training on modularity  

The active (working memory training) group produced greater increases in modularity than did the control (perceptual matching 

training) group, t(316)=3.5, p<0.001. Taken separately, working memory training resulted in a significant increase in modularity, 0.3

SD, t(161)=3.3, p=0.001, whereas perceptual matching training did not result in statistically significant changes in modularity. Instead

exhibited a trend toward reducing it, -0.2 SD, t(155)=-1.8, p=0.07. The group-by-load effects were non-significant, which suggests a lo

invariant influence of working memory training on modularity. 
 

 

Longitudinal analyses of raw functional connectivity revealed that working memo

training reduced connectivity of the frontoparietal network mostly with the sensorimot

community and some components of the default mode / temporal cluster, with mo

marked effects seen in the reasoning paradigm (Group x Time T-contrast: pfdr<0.05, Figu

8).  
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Fig. 8. Effects of working memory training on functional connectivity 

Working memory training reduced functional connectivity of the frontoparietal network nodes with the sensorimotor community 

components of the default mode/ temporal cluster; a more marked effect was seen in the reasoning paradigm. Group x Time T-cont

(pfdr<0.05), red edges represent significant training-group-related increases in functional connectivity and blue edges repre

reductions (in the working memory training group compared to perceptual matching). LH/RH = left/right hemispheres; L1 = load 1

back and reasoning-A); L2 = load 2 (2-back and reasoning-B); L3 = load 3 (3-back and reasoning-C). 
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t(51)=-1.95, p=0.06]. For the in-scanner performances, however, a corresponding effect 

was non-significant [r=0.17, t(51)=1.3, p = 0.2]. 

Subsequently, exploring whether training-induced increases in modularity during 

reasoning task had negative relationships with changes in reasoning performance did not 

yield any significant results for any of the difficulty loads. However, we found that change-

change correlations between modularity during n-back task and reasoning performance 

gradually went down across the three loads (rLoad1=0.19, rLoad2=0.07, rLoad3=-0.15), but this 

was a trend that did not reach conventional levels of statistical significance, as shown be 

the Load-by-Modularity effect on performance (t(158)=1.75,p=0.08). 

 

DISCUSSION 

Employing methods of large-scale network analyses, we found that despite high 

correlations in the behavioral data and substantial overlap of brain activation patterns, 

performance in complex reasoning and working memory tasks was associated with 

different modes of large-scale connectivity. Better performance in a typical working 

memory task (n-back) was associated with higher modularity (i.e., increased between-

network segregation), whereas better performance in a reasoning task was associated with 

lower modularity (i.e., more interactions between the major brain networks) at higher 

task-complexity.  Furthermore, working memory training modified functional connectome 

in both tasks in a similar way; that is, by increasing modularity. Perceptual matching 

training, on the other hand, did not have any significant impact on it. The observed effects 

appeared to be driven by integration within the frontoparietal control network and its 

segregation from the other communities. 

It has been proposed that balanced modular organization of the brain is necessary for 

the emergence of the critical dynamics important for adaptive information processing and 

learning (18-20, 58-60). Previous research has indicated that most cognitive tasks 
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generally tend to perturb these modular dynamics by shifting them to a more integrated 

state of increased between-network communication (24, 29-31, 61, 62). We observed a 

similar pattern of general modularity reductions from rest to task in the present study. 

However, we also showed that performance on working memory and complex reasoning 

tasks is associated with modularity in different ways, such that between-network interplay 

benefits complex reasoning, whereas sustaining a more modular organization benefits 

working memory performance.  

The observed divergent pattern of shifts in connectivity is generally in line with the 

literature, which suggests that automated tasks requiring outward attentional focus tend to 

favor segregation of the DMN and the frontoparietal CN (34, 35, 63), whereas tasks 

requiring novel and creative problem solving benefit from enhanced between-network 

interplay (13, 36). It may be that lower modularity is associated with better complex 

reasoning performance because it relates to an exploratory mode of cognition (39) 

beneficial for rule discovery and abstraction (41). In contrast, such a mode of cognition 

may hinder working memory performance, which relies on a more modular network 

configuration with stabilized dynamics of the frontoparietal network coupled with effective 

suppression of DMN activity.  These distinct associations were more marked at higher task 

complexity. The findings fully support the network neuroscience theory of human 

intelligence suggesting that the tasks that engage broader cognitive functions benefit from 

dynamic shifts in connectivity patterns toward a more random reconfiguration, unlike the 

ones relying on specific cognitive abilities that rather benefit from a more regular mode of 

large-scale organization of the connectome (60). This possibility is also in line with the 

recent findings that performance on simple tasks is positively related to resting state 

modularity, whereas performance on complex tasks is negatively related to resting state 

modularity (38). 
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It is worth noting that the circuit described in the influential parieto-frontal 

integration theory (P-FIT) of intelligence represents a broader community than the 

frontoparietal network discussed in the present study and also includes components of the 

default mode and visual clusters (64). The reported results thus do not contradict P-FIT. 

Instead, our observation that superior reasoning performance favors enhanced cross-talk 

of the frontoparietal regions with occipital and medial prefrontal cortices is nicely in line 

with the P-FIT model. 

Working memory training produced marked increases in global modularity, thus 

promoting the pattern of large-scale dynamics that was associated with better working 

memory performance prior to training. Interestingly, the same pattern of modularity 

changes was observed for the reasoning task although no improvements in total reasoning 

performance were observed. This suggests that working memory training fosters a mode of 

solving the reasoning tasks that relies more on working memory and less on an 

exploratory mode of cognition. Such an interpretation is consistent with the trends for 

training-related improvements on the “simple analytical” (B) reasoning tasks, which may 

benefit from superior modularity (because the task demands attention, but the rules for 

solving it are simple to detect and to abstract) but not on the “complex analytical” (C) tasks, 

which may benefit from less modular dynamics (because they require complex pattern 

discovery). It should be acknowledged that the ability to solve the complex analytical 

blocks is generally more representative of fluid intelligence. Therefore, despite potential 

trends in training-related differences in performance improvements on the simple 

analytical part of our reasoning task, our study does not support the thesis that it is 

possible to improve the spatial aspect of fluid intelligence with working memory training, 

at least in healthy older people. This conclusion is generally in line with the literature, 

which shows that working memory training has either no effects at all (65) or, at best, 

small effects (66) on reasoning. Our results expand these observations: they suggest that 
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the reason working-memory training does not improve fluid intelligence is because it shifts 

large-scale brain dynamics in ways that are not beneficial for solving novel and complex 

reasoning problems.  

In summary, although inter-individual differences in reasoning and working memory 

performance, and most other cognitive tasks too, are positively correlated, the brain may 

solve these tasks in partly different ways. Rather than indicating strong links between the 

processes involved in reasoning and working memory, the correlated inter-individual 

difference could be produced by initially unrelated cognitive domains that support each 

other in learning and development over the lifespan (67). Indeed, it is clear that higher 

working memory capacity does not necessarily imply superior intelligence. A particularly 

illustrative example is the observation that chimpanzees have, in fact, better visual working 

memory than humans (68), which suggests that the cognitive advancement of the human 

species was unlikely driven by increased storage capacity. Despite the fact that our study 

did not find that changes in modularity induced by working memory training to actually be 

detrimental to reasoning abilities, it generally supports the idea that storage capacity may, 

in fact, compete with some aspects of complex reasoning, such as insight and deep 

information processing capabilities (69). Our results are also broadly in line with the 

recently proposed idea of a trade-off in biological systems, in which high-modular 

organization provides evolutionary benefits over shorter timescales, and low-modular 

systems exhibit greater fitness over longer timescales (38, 70). Notably, imposing time 

constraints on reasoning problems appear to increase the correlation between subjects’ 

performance on such tasks with their performance on working memory tests (4). The 

trade-off hypothesis (38, 70) and our results are in accordance with the observation that 

working memory training studies tend to show transfer effects when reasoning tasks are 

administered under more stringent time constrains (71) (possibly benefiting from high-
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modular states), whereas those that administer the tasks in a traditional, time-relaxed, 

manner (that benefit from low-modular dynamics) do not report such effects (72).  

This study had a number of limitations. First, one could argue that the tasks we used 

inside the scanner do not properly represent corresponding abilities of working memory 

and fluid intelligence, or at least that the tasks only tap into selected aspects of these 

abilities. For example, some tasks that are supposed to characterize the same domain of 

working memory (e.g., complex span and n-back) actually have relatively low correlation 

and may therefore represent different aspects of working memory (73). Meanwhile, some 

researchers have questioned the plausibility of this argument, as several studies 

demonstrate that the performances on the two tasks converge when working memory is 

modeled as a latent construct (74, 75). This is still of crucial importance for the present 

study, considering that both resting state and task-related modularity has been shown to 

be differently associated performance on working memory tasks, depending on their 

complexity with positive correlation found for visual working memory performance and a 

trend-level negative correlation observed for a complex span task (76).   

Another potential limitation of the study is the absence of counter-balancing of the 

fMRI tasks, which may have affected the reliability of the results because of carry-over 

effects of the n-back paradigm on reasoning. However, consistent engagement of the 

control circuit in both tasks, strong associations between modularity and performance, 

together with the occurrence of longitudinal changes in the expected direction strongly 

support plausibility of the proposed interpretations. It is also worth noting that even 

though we tried to minimize the difference between the tasks in aspects that are not 

central to the research question, the stimuli still differed in a number of ways, besides in 

their reasoning and working memory demands, which, in turn, might confound some of our 

results. Finally, the present study was conducted on a sample of older adults, and the 

results therefore may not be generalizable to younger populations, especially since 
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community structure of the brain undergoes substantial reconfiguration over different 

periods of the lifespan (21, 22). Decreased signal-to-noise ratio of brain activity found in 

older subjects (77) may  foster a different mechanism underlying rest-to-task perturbation 

of functional connectome in this population, perhaps imposing higher demands on the 

aging brain to upregulate segregation of the frontoparietal network to allow superior 

filtering of the neural noise, which in turn appears to have detrimental effects on working 

memory capacity (78), whilst facilitating exploratory states of brain dynamics (79). Further 

studies may want to focus on how differences in the amount of neural noise influence 

reconfiguration of the functional connectome depending on task complexity. This, in turn, 

may help to explain a discrepancy of findings from imaging studies of working memory, 

some of which show positive associations between modularity and performance (23), 

whereas others report negative relationships (62). 

Despite these issues, we conclude that reasoning performance and working memory 

performance in older adults have different associations with large-scale functional brain 

connectivity at higher task complexity. We also found that working memory training 

fosters task-invariant increases in functional network modularity and does not improve 

performance on complex reasoning tasks. Instead, complex reasoning tasks benefit from a 

higher degree of between-network integration. Together, these results indicate that 

complex human reasoning abilities cannot be reduced to working memory and add weight 

to the conclusion that working memory training interventions will not result in 

improvements that transfer to broader cognition. 
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