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1 Abstract

Nucleosomes form the fundamental building blocks of eukaryotic chromatin, and previous attempts to understand
the principles governing their genome-wide distribution have spurred much interest and debate in biology. In par-
ticular, the precise role of DNA sequence in shaping local chromatin structure has been controversial. This paper
rigorously quantifies the contribution of hitherto-debated sequence features – including G+C content, 10.5-bp pe-
riodicity, and poly(dA:dT) tracts – to three distinct aspects of genome-wide nucleosome landscape: occupancy,
translational positioning and rotational positioning. Our computational framework simultaneously learns nucle-
osome number and nucleosome-positioning energy from genome-wide nucleosome maps. In contrast to other
previous studies, our model can predict both in-vitro and in-vivo nucleosome maps in S. cerevisiae. We find that
although G+C content is the primary determinant of MNase-derived nucleosome occupancy, MNase digestion bi-
ases may substantially influence this GC dependence. By contrast, poly(dA:dT) tracts are seen to deter nucleosome
formation, regardless of the experimental method used. We further show that the 10.5-bp nucleotide periodicity fa-
cilitates rotational but not translational positioning. Applying our method to in-vivo nucleosome maps demonstrates
that, for a subset of genes, the regularly-spaced nucleosome arrays observed around transcription start sites can be
partially recapitulated by DNA sequence alone. Finally, in-vivo nucleosome occupancy derived from MNase-seq
experiments around transcription termination sites can be mostly explained by the genomic sequence. Implications
of these results and potential extensions of the proposed computational framework are discussed.
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2 Introduction

Eukaryotic DNA is tightly packaged inside the nucleus through a hierarchical structure of chromatin. The first level
of compaction involves wrapping 147 base pairs (bps) of DNA around a histone octamer, forming the nucleosome
that repeatedly occurs across the genome. The precise locations of nucleosomes on genomic DNA influence higher-
order chromatin structure [1] and regulates diverse cellular processes by controlling local DNA accessibility [2].
Specifically, it is believed that most DNA-binding proteins preferentially bind the unprotected linker DNA between
nucleosomes. Discovering the rules that govern genome-wide nucleosome landscape is thus a major step towards
understanding nucleosome-mediated chromatin structure and regulatory processes taking place on the chromatin
template.

Decades of research have demonstrated that no single mechanism can explain every aspect of the nucleosome
landscape, and several competing ideas have been proposed to date. First, both in-vitro [3, 4] and in-vivo [5–8]
studies have suggested that DNA sequence may play a role, since experimental evidence suggests that certain
sequences either favor or disfavor nucleosome formation. Second, nucleosome locations can be actively modulated
by trans-factors, including chromatin remodelers, transcription factors, and RNA polymerase [2]. Finally, statistical
positioning arising from a sharp barrier and the steric exclusion between neighboring nucleosomes may account
for a large portion of nucleosome arrays around transcription start/termination sites (TSS/TTS) [9,10]. The relative
contributions of these factors in shaping local chromatin structure remain unclear and, in fact, highly controversial
[2–4,11,12]. In particular, to what extent the global nucleosome landscape is a priori programmed into the genomic
sequence itself remains to be determined.

To date, various sequence features, such as the G+C content (GC), 10.5-bp nucleotide periodicity, and
poly(dA:dT) tracts (polyA), have been shown to influence nucleosome formation; however, the genome-wide con-
tributions of these individual features have not been completely characterized. Another impediment to understand-
ing the determinants of genome-wide nucleosome landscape stems from the confusion about different technical
concepts involved [13, 14]. That is, different sequence features may play different roles in affecting nucleosome
occupancy – referring to the probability of a given genomic location being occupied by a nucleosome – versus
nucleosome positioning – referring to the precise genomic locations of individual nucleosomes, which can be de-
scribed by the start or center (dyad) locations of the nucleosomes [13, 14]. The distinction between these two
concepts is often blurred in the literature. More precisely, the concept of nucleosome positioning can be further
distinguished into translational and rotational positions. The translational nucleosome position refers to the location
of the 147-bp DNA contacting the histone octamer, while the rotational nucleosome position refers to the rotational
orientation of DNA double helix relative to the histone surface [13, 14]. Previous studies have focused on either a
single sequence feature (e.g., [15] studies the role of 10.5-bp periodicity in genome-wide nucleosome occupancy
and nucleosome positioning in synthetic DNA sequences) or a single aspect of nucleosome landscape (e.g., [16]
studies the role of GC and 10.5-bp periodicity in nucleosome occupancy). By contrast, this paper presents a unified
framework for quantitatively characterizing the role of several distinct sequence features (GC, 10.5-bp periodicity,
and polyA) in nucleosome occupancy, translational nucleosome positioning, and rotational nucleosome position-
ing, both in vitro and in vivo. To avoid confusion in the rest of the paper, the term “nucleosome landscape” will
be used to refer to the general biological problem encompassing nucleosome occupancy, translational nucleosome
positioning, and rotational nucleosome positioning.

The “beads-on-a-string” structure of nucleosome-occupied DNA is reminiscent of the “Tonks gas” model [17]
of non-overlapping one-dimensional (1D) rods. Indeed, this model has been used to quantify the role of statisti-
cal positioning and explain the regularly-spaced nucleosome arrays observed around TSS and TTS [9, 10, 18, 19].
In order to further account for sequence effects, a 1D sequence-dependent binding energy can be introduced into
the model. This resulting model of 1D hard rods subjected to an external potential has been widely applied to
study the genome-wide distribution of nucleosomes [15,16,20–26]. In particular, Locke et al. consider the inverse
problem of inferring the nucleosome-positioning energy from genome-wide nucleosome maps generated through
high-throughput sequencing, regressing this energy as a linear function of DNA sequence content [16]. They con-
clude that GC is the primary determinant of nucleosome occupancy, with the 10.5-bp periodicity making little
contribution, and that DNA sequence alone cannot create the nucleosome arrays observed around TSS and TTS
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in vivo. The work of Locke et al. has provided refreshing perspectives in the field, and their approach has been
extended in several subsequent studies [23,24,26]. However, we here show that the calculation performed by Locke
et al. incorrectly estimates the total number of nucleosomes in the genome (we refer to this number as the nucleo-
some number, Materials and Methods, Section 1). We demonstrate that this problem ultimately leads to incorrect
inference of the nucleosome-positioning energy, thereby confounding the downstream analysis of sequence effects
(Materials and Methods, Section 1).

The main difficulty in the approach of Locke et al. arises from their normalization scheme for converting the
raw counts of sequencing reads to well-defined probability values. In this paper, we first develop a cross-entropy
method (CEM) that gets around this normalization problem and simultaneously learns nucleosome number as well
as nucleosome-positioning energy from genome-wide nucleosome maps (Materials and Methods, Section 2). Our
CEM is inspired by similar optimization-based approaches [15, 25, 26], but contains no artificial components (as
in [15, 26]) and provides a flexible framework that can incorporate various regulatory factors, such as chromatin
remodelers, which may affect nucleosome occupancy and positioning (Discussion section).

We validate our method using several independent nucleosome maps in S. cerevisiae and demonstrate that it
consistently outperforms the method of Locke et al. in predicting nucleosome occupancy, benefiting from the
ability to learn the correct nucleosome number, even though CEM contains much fewer free parameters (Results,
Section 1). We then present a comprehensive quantification of the influence of GC, 10.5-bp periodicity, and polyA
on nucleosome occupancy and positioning. Importantly, we show that the GC dependence of MNase-derived nu-
cleosome occupancy is substantially skewed by MNase digestion biases [27,28], while polyA excludes nucleosome
occupancy regardless of the experimental method used (Results, Sections 2 & 3). We also establish that the 10.5-bp
periodicity, although not significantly affecting nucleosome occupancy, facilitates rotational but not translational
positioning [29] (Results, Section 4). Further application of CEM to in-vivo nucleosome maps shows that the oft-
observed regularly spaced nucleosome array at TSS can be partially recapitulated by DNA sequence alone for a
subset of genes, in sharp contrast to the conclusion of Locke et al. (Results section 5, 6). We argue that this dis-
crepancy stems from the previous under-estimation of nucleosome number. Finally, we show that MNase-derived
nucleosome occupancy around TTS in S.cerevisiae is mostly encoded in the genomic sequence (Results, Section
7). Our work thus rigorously quantifies of the effect of DNA sequence on nucleosome formation and highlights the
importance of correctly estimating nucleosome number in modeling in-vivo and in-vitro nucleosome landscapes.

3 Materials and Methods

3.1 Evaluation of the effect of estimated nucleosome number on model predictions

Nucleosome distribution can be modeled as the hard-core Tonks gas of 1D rods [16, 23, 24, 30] (Supplementary
Methods, Section 1.1). In the simplest form, nucleosomes are assumed to occupy a fixed number a of base pairs
(bps) along DNA of length L and cannot overlap with each other due to steric exclusion. This steric exclusion is
realized by imposing hard-core interaction between neighboring nucleosomes. The total energy of the system then
involves only the sequence-dependent nucleosome-positioning energy u due to histone-DNA interactions, with each
nucleosome occupying bps i, i+1, . . . , i+a− 1 contributing an energy term u(i) at location i. Given a fixed form
of u, the statistical mechanics of nucleosome landscape concerns solving for the one-particle distribution function
n1(i), the probability of a nucleosome starting at bp i, and the nucleosome occupancy O(i) =

∑i
j=i−a+1 n1(j),

the probability of bp i being occupied by some nucleosome. This problem of calculating n1 andO from known u is
termed the direct problem, which can be solved using techniques from statistical mechanics. However, the inverse
problem of calculating u from known n1 and O is more difficult and also more pertinent in biology, since n1 and
O can be directly linked to experimental data, as described below.

This 1D hard-rod model and its variants have been widely applied to study various questions associated with
genome-wide nucleosome landscapes [9, 10, 15, 16, 20–26]. In particular, Locke et al. have used this approach to
investigate how DNA sequence regulates nucleosome occupancy [16]. Specifically, n1 and O are first obtained
from high-throughput sequencing data of genome-wide nucleosomes; then, the nucleosome-positioning energy u
(or rather, u−µkBT

, where µ denotes chemical potential, kB the Boltzmann constant, and T temperature) is calculated
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by solving the inverse problem in the Grand Canonical Ensemble. To simplify notation, we use u to denote the
dimensionless quantity u−µ

kBT
throughout the paper. Finally, linear models on DNA sequences are fitted to the cal-

culated u to study how different sequence features influence the nucleosome energetics (Supplementary Methods,
Section 1.2). We here describe an important problem associated with their very first step of estimating n1 and O
from experimental data and demonstrate how this problem might lead to incorrect conclusions about the sequence
dependence of nucleosome landscape.

Raw data from a high-throughput genome-wide nucleosome mapping experiment, such as MNase-seq, yield
the nucleosome count ñ1(i) and the observed nucleosome occupancy Õ(i) =

∑i
j=i−a+1 ñ1(i), where ñ1(i) is

the number of sequenced nucleosomes starting at bp i and Õ(i) is the the number of sequenced nucleosomes
covering bp i. Under the assumption that the true one-particle distribution function is proportional to the observed
nucleosome count, i.e. n1 ∝ ñ1, n1 may be estimated by properly scaling ñ1. In Locke et al., n1 is estimated as

n1(i) =
ñ1(i)

maxj Õ(j)
, (1)

such that the obtained n1 and O are both bounded between 0 and 1 and, thus, have probabilistic interpretations.
We note several problems associated with this estimation. First, it artificially sets the maximum value of

O to 1; in other words, at least one bp in the genome is assumed to have probability 1 of being occupied by
some nucleosome, but this assumption is not necessarily true. Second, the normalization coefficient maxj Õ(j) is
determined by read counts in only a very small region of the genome and, thus, may be sensitive to experimental
noise and bias. Most importantly, Equation 1 does not guarantee the correct estimation of nucleosome number. In
the Grand Canonical Ensemble, the ensemble-averaged nucleosome number in the entire genome is (Supplementary
Methods, Section 1.1.3),

N =
L∑
i=1

n1(i). (2)

If N were known, the theoretically correct estimate of n1 would be

n1(i) = N
ñ1(i)∑L
j=1 ñ1(j)

, (3)

such that Equation 2 is automatically satisfied. Since 1
maxj Õ(j)

is not necessarily equal to N∑L
j=1 ñ1(j)

, however,

the normalization in Equation 1 does not guarantee the condition in Equation 2. In fact, the nucleosome number
estimated by Equation 1 is solely determined by the total sequencing depth and the denominator maxj Õ(j), which
may be sensitive to experimental noise and bias.

The incorrect estimation of nucleosome number using Equation 1 may confound the inference of nucleosome-
positioning energy u and the subsequent analysis of its sequence dependence. We illustrate this issue using a
simple simulation, where the nucleosome-positioning energy is fixed to be proportional to the G+C content (GC)
of occupied nucleosomal sequence; that is, u(i) = βG/C

∑146
j=0(IC,i+j+IG,i+j)+u0, where βG/C = −0.2, u0 = 10,

and Iα,i is the indicator function for nucleotide α at location i. Figure 1 shows the simulation results using the
genomic sequence on chromosome I (chrI) of S. cerevisiae. Since energy u(i) is completely determined by the
DNA sequence and known, n1 andO can be calculated by solving the direct problem (Figure 1A). The nucleosome
number on chrI is then calculated to beN =

∑
i n1(i) = 1276. An array of well-positioned nucleosomes is evident

between the two energy barriers at the locus shown in Figure 1A, reminiscent of statistical positioning [9,10,18,19].
Conversely, assuming that the true n1 and O are known, energy u can be calculated by solving the inverse problem
(Figure 1B). We then fit a linear model of energy that depends only on GC of nucleosome-occupied sequence.
As expected, the learned parameters are exactly the same as the true values, β̂G/C = −0.200 and û0 = 10.0,
with R2 = 1.00; consequently, the predicted n̂1 and Ô obtained from this estimated energy function reproduces
the true n1 and O (Figure 1B). Next, to simulate the incorrect estimation of nucleosome number by Equation 1,
we have scaled n1 down globally such that the estimated nucleosome number is N̂ =

∑
i n1(i) = 500. The

energy calculated from this incorrectly normalized n1 significantly deviates from the true energy (Figure 1C; c.f.
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Figure 1A). In this case, a linear model depending only on GC cannot fully capture the incorrectly learned energy
(R2 = 0.186), and the fitted parameters, β̂G/C = −0.0236 and û0 = 6.79, are also off from the true values.
Furthermore, the n̂1 and Ô profiles predicted from the fitted linear energy function do not agree with the true n1
and O. In particular, the predicted profiles in Figure 1C lack a nucleosome array between the two energy barriers
present in the true data shown in Figure 1A. Therefore, incorrect normalization of n1 can easily lead to incorrect
inference of nucleosome-positioning energy and incorrect predictions of nucleosome profiles; and, conclusions
about the sequence-dependence of nucleosome landscape drawn from analyses using this normalization scheme
may be confounded.

A B C

Figure 1: Incorrect estimation of nucleosome number may distort the inference of nucleosome-positioning energy.
(A) True energy (top panel), n1 (middle panel), and occupancy O (bottom panel) in the simulation. (B) Using the
true n1 and O from (A), nucleosome-positioning energy is calculated by solving the inverse problem (orange curve
in top panel, hidden by the overlapping green curve). By fitting this calculated energy to a linear sequence model
that depends only on GC, the positioning energy can be predicted based on sequence (green curve in top panel). n̂1
(middle panel) and Ô (bottom panel) are predictions from this fitted linear energy model. (C) Same as (B) except
that the true n1 is scaled down, so that the nucleosome number is now only 500 (see main text).

It is important to note that the above simulation is not an intentional exaggeration of the potential problem. On
the contrary, according our investigation, using Equation 1 on various in-vivo nucleosome maps in S. cerevisiae
yields an estimated nucleosome number of at most ∼ 30000 (Supplementary Table S1), whereas, as shown in the
Results section, the correctly estimated nucleosome number is more than 60000, which is close to the common
belief that about 80% of the yeast genome is occupied by nucleosomes in vivo [31]. Thus, the normalization in
Equation 1 underestimates the nucleosome number by half in real in-vivo data sets, close to the scenario depicted
in Figure 1.

Finally, we point out that Equation 3, despite being justified as a maximum likelihood estimate, has its own
problems. First, the precise nucleosome number N is unknown, and estimating N would require some nucleosome
calling algorithm which usually depends on an arbitrary choice of thresholds. Another issue is that the estimated
n1 and O are not guaranteed to be between 0 and 1, leading to difficulties in downstream analysis, such as solving
the inverse problem to obtain u. To avoid these issues, we will develop in the following section a method that learns
N and u simultaneously from experimental data, without requiring a direct estimate of n1 beforehand.

3.2 A cross-entropy method for simultaneously learning nucleosome number and nucleosome-
positioning energy

The above difficulty faced by the Locke method (LM) arises because solving the inverse problem of inferring
the nucleosome-positioning energy u requires estimating n1 and O as the first step. In order to get around this
difficulty, we avoid solving the inverse problem and instead learn u through solving the following optimization
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problem (Supplementary Methods, Section 1.3),

u = argmin
v
{L(O(v), Õ)}, (4)

where Õ denotes the observed nucleosome occupancy from raw data as previously defined, O(v) the nucleosome
occupancy predicted from nucleosome-positioning energy v, and L a loss function that measures the difference be-
tween prediction O(v) and observed Õ. Throughout the paper, we use a weighted version of negative Pearson cor-
relation coefficients as the loss function (see below). The obtained nucleosome-positioning energy u thus predicts a
nucleosome occupancy profile that best correlates with the observed one. Since the Pearson correlation coefficient
is invariant under linear transformations of its arguments, no scaling or normalization of Õ is needed beforehand,
and the difficulty described in the previous section thus completely disappears. Importantly, the information of
nucleosome number is implicitly contained in the overall shape of Õ, and our method is able to automatically
adjust the nucleosome number to match the observed nucleosome occupancy profile. We will show in the Results
section that this method can indeed learn the correct nucleosome number empirically observed in high-throughput
nucleosome maps. Since the Pearson correlation coefficient can be inflated by extreme outliers, we filter out outlier
regions based on observed nucleosome occupancy, resulting in a disjoint set of “good regions” along the genome
(Supplementary Methods, Section 1.3). Average Pearson correlation coefficient across these good regions weighted
by the region lengths is then used as the final loss function (Supplementary Methods, Section 1.3).

Naively solving the optimization problem in Equation 4 is prohibitive, since the number of parameters is of
order of the genome length, with u(i) at each genomic location i being a free parameter. In order to reduce the
parameter space, we enforce a linear sequence-dependent model:

u(i) =

a−1∑
j=0

∑
α∈{A, C, G, T}

βα,jIα,i+j + u0, (5)

where Iα,i+j again denotes the indicator function of nucleotideα at genomic location i+j, βα,j the linear coefficient
characterizing how much nucleotide α at position j relative to the start of nucleosome contributes to energy u(i),
and u0 the sequence-independent offset. Note that this paper focuses on mono-nucleotide models, as in Equation 5,
but a generalization to k-mer models with k > 1 is straightforward. Using this linear sequence-dependent model,
the number of free parameters is only several hundreds when a is set to the canonical nucleosome size 147.

To further reduce the number of parameters, we use a template-based model for the linear coefficient βα,j ,

βα,j = σαβ̂α,j + µα, (6)

where β̂α,j denotes a pre-defined template of nucleotide α, and σα and µα are free parameters modulating the
standard deviation and mean of the template, respectively. The template β̂α,j may represent our prior belief about
how much different nucleotides at different relative positions contribute to the nucleosome-positioning energy. We
construct this template from the negative average nucleotide frequency of nucleosomal sequences obtained from
raw sequencing data (Supplementary Methods, Section 1.3). Briefly, let −β̃α,j denote the average frequency of
nucleotide α at position j relative to the start of the nucleosome, calculated from identified nucleosomes. The
larger the value of −β̃α,j , the stronger the nucleosome preference for nucleotide α at relative position j; thus,
nucleotide α at j should empirically contribute more negative energy, justifying our choice. For each nucleotide
α, we then standardize β̃α,j to obtain the template β̂α,j that has mean 0 and standard deviation 1 with respect to j.
During optimization, σα in Equation 6 are constrained to be nonnegative.

Note that simple nucleosome calling algorithms can be used to obtain β̃α,j from the raw sequencing data,
without worrying about estimating the nucleosome number accurately, since we only need the average nucleotide
frequency (Supplementary Methods, Section 1.3). Furthermore, we enforce reverse-complement symmetry in the
model by requiring β̂A,j = β̂T,a−1−j , β̂C,j = β̂G,a−1−j , σA = σT := σA/T, σC = σG := σC/G, µA = µT := µA/T,
and µC = µG := µC/G (Supplementary Methods, Section 1.3), such that the energy u(i) calculated from any
nucleotide sequence is the same as that calculated from its reverse-complement. Finally, it is easy to see that only
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one of µA/T and µC/G is independent, due to the constraint
∑

α∈{A, C, G, T} Iα,j = 1, ∀j (Supplementary Methods,
Section 1.3), allowing us to set µA/T = 0. The resulting sequence-dependent energy model is thus

Model GC+SR: u(i) =

a−1∑
j=0

{
σA/Tβ̂A,jIA,i+j + σA/Tβ̂T,jIT,i+j

+ (σC/Gβ̂C,j + µC/G)IC,i+j + (σC/Gβ̂G,j + µC/G)IG,i+j

}
+ u0.

(7)

The motivation behind the choice of model name is as follows. Note that there are in total only four free parameters
in the model above: σA/T, σC/G, µC/G, and u0. Solving the optimization problem in Equation 4 amounts to finding
the optimal values of these four parameters, such that the predicted occupancy has the highest correlation with the
observed one. σA/T and σC/G characterize how the spatially resolved (SR, as dubbed in Locke et al.) pattern of the
template β̂α,j modulates the positioning energy; similarly, µC/G captures the energy dependence on G+C content
(GC) of the underlying sequence, thus the name Model GC+SR. u0 effectively modulates the chemical potential of
the system and, thus, the nucleosome number (recall that u denotes u−µ

kBT
throughout the paper).

In order to study how different sequence features, especially GC, 10.5-bp periodicity, and polyA, regulate
nucleosome positioning, we constructed two other models with different complexities: Model GC, where the energy
depends on GC only, given by

Model GC: u(i) =

a−1∑
j=0

µC/G(IC,i+j + IG,i+j) + u0, (8)

and Model GC+SR+polyA, where all three components contribute to the energy, given by

Model GC+SR+polyA: u(i) =
a−1∑
j=0

{
σA/Tβ̂A,jIA,i+j + σA/Tβ̂T,jIT,i+j

+ (σC/Gβ̂C,j + µC/G)IC,i+j + (σC/Gβ̂G,j + µC/G)IG,i+j

}
+ µpolyAmpolyA(i) + u0,

(9)

where mpolyA(i) denotes the number of bps belonging to a poly(dA:dT) tract (defined as a homopolymer of A or
T of length ≥ 5) from i to i − a + 1, and µpolyA characterizes the energy dependence on poly(dA:dT) content.
Note that the 10.5-bp periodicity is characterized as part of the spatially resolved sequence motif in β̂α,j . The three
models Model GC, Model GC+SR, and Model GC+SR+polyA constitute a hierarchy of sequence models, along
the same line as in Locke et al., allowing us to dissect the contributions from GC, SR, and polyA to nucleosome
positioning, respectively.

To optimize the cost function, we apply the cross-entropy method [32–35] (Supplementary Methods, Section
1.3). We note that similar ideas of learning the nucleosome energetics through optimization have been used in
previous studies [15, 25, 26]. However, [15] mainly focuses on how dinucleotide periodicity affects nucleosome
positions in synthetic DNA sequences and genome-wide nucleosome occupancy, and it does not analyze other
sequence features such as GC and polyA; it also does not address genome-wide nucleosome positioning; finally,
the proposed energy model uses artificial sinusoidal functions. Both [25] and [26] mostly focus on the effect of
nucleosome unwrapping. In particular, [25] does not study the sequence-dependence of nucleosome occupancy
and positioning. The sequence-dependent nucleosome-positioning energy in [26] is obtained by solving the inverse
problem as in Locke et al. and thus has the same normalization problem described above. By contrast, our proposed
method involves no artificially constructed components and provides a flexible framework that can incorporate
several distinct biological features in the energy model, as illustrated by the hierarchical models in Equations 7, 8,
and 9. Most importantly, our method automatically learns the nucleosome number together with the nucleosome-
positioning energy, as will be demonstrated in the following Results sections.
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3.3 Additional information on datasets and computational details

A list of datasets analyzed and their respective labels is provided in Supplementary Methods, Section 1.4. Supple-
mentary Methods also contains an additional description of computational analyses, including the sequencing data
analysis (Supplementary Methods, Section 1.5) and partial correlation analysis (Supplementary Methods, Section
1.6).

4 Results

4.1 The cross-entropy method correctly learns the nucleosome number and improves the predic-
tion of nucleosome occupancy

We applied the cross-entropy method (CEM) (Materials and Methods; Supplementary Methods, Section 1.3) to
three independent in-vitro nucleosome maps in S. cerevisiae (Supplementary Methods, Section 1.4): two using salt
dialysis followed by MNase-seq (Kaplan-MNase-invitro-salt [3] and Zhang-MNase-invitro-salt [4]) and another us-
ing ACF assembly followed by MNase-seq (Zhang-MNase-invitro-ACF [4]). ACF is an ATP-dependent chromatin
assembly factor in Drosophila melanogaster. Model GC+SR (Equation 7) was trained on the three datasets sepa-
rately, with the templates β̂α,j calculated from identified nucleosomes in each dataset. From the learned parameters
(Supplementary Table S2), we then predicted nucleosome occupancy O and nucleosome number N =

∑
i n1(i)

(Table 1) by solving the direct problem (Materials and Methods; Supplementary Methods, Section 1.1). To compare
with Locke et al.’s method (LM) [16], we first estimated n1 via Equation 1, calculated the nucleosome-positioning
energy u by solving the inverse problem (Materials and Methods; Supplementary Methods, Section 1.1), fitted a
linear model as in Equation 5 (Materials and Methods; Supplementary Methods, Section 1.2), and finally predicted
nucleosome occupancy O and nucleosome number N (Table 1) using the fitted sequence model.

Since both calculations using CEM and LM accounted for contributions from GC and SR, a difference in their
performance is not attributable to different sequence features used by these approaches. Nucleosome occupancy
predicted by both methods highly correlated with the observed one (Table 1). However, CEM achieved better
correlation in all three datasets, despite the fact that the LM linear model (Equation 5) contains many more free
parameters than the CEM Model GC+SR (Equation 7). In particular, CEM improved the correlation in Zhang-
MNase-invitro-ACF the most, by about 0.1. Interestingly, the predicted nucleosome number of LM differs from
that of CEM the most in the same dataset (Table 1), indicating that an incorrectly estimated nucleosome number
might influence the performance of LM (Materials and Methods). Indeed, by simply tuning the nucleosome number
(or equivalently, u0 in Equation 5), while keeping the learned energy from LM unchanged, we could achieve better
correlations between the predicted and observed nucleosome occupancy in all three datasets (Supplementary Figure
S1). By contrast, the solutions found by CEM already achieved the maximum correlations (Supplementary Figure
S1). Moreover, the maximum correlations obtained by tuning the nucleosome number in LM models were still
lower than the correlations achieved by CEM (Supplementary Figure S1). These results suggest that CEM is
indeed learning the correct nucleosome number and demonstrate that it improves the prediction of nucleosome
occupancy compared to LM.

Table 1: Predicted nucleosome number (N ) and Pearson correlation coefficient (r) between observed and pre-
dicted nucleosome occupancy on three in-vitro datasets. As previously described, r was calculated within each
“good region” after filtering out outlier regions (Supplementary Methods, Section 1.5). Table shows the average r
weighted by region lengths.

Zhang-MNase-invitro-ACF Kaplan-MNase-invitro-salt Zhang-MNase-invitro-salt

LM
r 0.675 0.723 0.566
N 49372 35575 52680

CEM
r 0.777 0.732 0.595
N 22130 29060 43280
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We plotted the predicted and observed nucleosome occupancy at the GAL10-1 locus (Figure 2) and also aligned
them at TSS/TTS (Supplementary Figure S2) for all three in-vitro datasets analyzed. Since larger nucleosome
number means more tightly packed nucleosomes, we could empirically order the nucleosome numbers in these three
datasets from the overall shape of the observed nucleosome occupancy (black curves in Figure 2 and Supplementary
Figure S2). Specifically, Zhang-MNase-invitro-salt showed relatively tightly packed nucleosome arrays within the
gene bodies of GAL10 and GAL1 (black curve in Figure 2C) and around TSS/TTS (black curve in Supplementary
Figure S2E, F), while the nucleosome arrays were less pronounced in Kaplan-MNase-invitro-salt (black curves
in Figure 2B and Supplementary Figure S2C, D) and hardly visible in Zhang-MNase-invitro-ACF (black curves
in Figure 2A and Supplementary Figure S2A, B). These observations thus suggested that the nucleosome number
was the largest in Zhang-MNase-invitro-salt, modest in Kaplan-MNase-invitro-salt, and the smallest in Zhang-
MNase-invitro-ACF. Indeed, a quantitative estimation of nucleosome number by comparing the Fourier transform
of predicted and observed nucleosome occupancies in the frequency domain confirmed these empirical arguments
(Supplementary Figure S3).
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Figure 2: An example of a genomic locus illustrating that CEM nucleosome occupancy predictions better correlate
with the observed profiles compared to LM predictions. (A) Observed (black curve), LM predicted (red curve),
and CEM predicted (green curve) nucleosome occupancy for Zhang-MNase-invitro-ACF. (B) Same as (A), but for
Kaplan-MNase-invitro-salt. (C) Same as (A), but for Zhang-MNase-invitro-salt. Each curve was standardized by
subtracting the mean and then dividing by the standard deviation within the shown region.

The nucleosome numbers predicted by CEM were consistent with this ordering, while those predicted by
LM were not (Table 1), further demonstrating the ability of CEM to better learn the correct nucleosome number.
In particular, LM predicted a much larger nucleosome number than CEM for Zhang-MNase-invitro-ACF, and
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Table 2: Pearson and partial correlation analyses of CEM nucleosome occupancy predictions for three in-vitro
datasets. r(data, prediction): Pearson correlation coefficients between observed and predicted nucleosome occu-
pancy from Model GC, GC+SR, and GC+SR+polyA. The first row of partial correlation shows the partial correla-
tion between observed and Model GC+SR-predicted nucleosome occupancy conditioned on Model GC-predicted
nucleosome occupancy, representing any additional contribution from SR. The second row of partial correlation
shows the partial correlation between observed and Model GC+SR+polyA-predicted nucleosome occupancy con-
ditioned on Model GC+SR-predicted nucleosome occupancy, representing any additional contribution from polyA.
All Pearson and partial correlation coefficients were calculated within “good regions” after filtering out outlier
regions (Supplementary Methods, Section 1.5) and weighted by the region lengths in the reported average.

Zhang-MNase-
invitro-ACF

Kaplan-MNase-
invitro-salt

Zhang-MNase-
invitro-salt

r(data, prediction)
Model GC 0.775 0.729 0.589
Model GC+SR 0.775 0.730 0.592
Model GC+SR+polyA 0.775 0.755 0.606

Partial correlation
SR 0.048 0.036 0.081
polyA 0.018 0.287 0.161

the predicted nucleosome number 49372 was actually closer to the number 43280 predicted by CEM for Zhang-
MNase-invitro-salt. As a result, the nucleosome occupancy profile predicted by LM in Zhang-MNase-invitro-
ACF (red curves in Figure 2A and Supplementary Figure S2A, B) showed evident nucleosome arrays and were
more similar to the observed nucleosome occupancy in Zhang-MNase-invitro-salt (black curves in Figure 2C and
Supplementary Figure S2E, F). Interestingly, Kaplan-MNase-invitro-salt used 0.4:1 histone-to-DNA ratio in salt
dialysis [3], while Zhang-MNase-invitro-salt used 1:1 [4], indicating that a higher histone-to-DNA ratio indeed
results in a larger nucleosome number in vitro. We also note that the data in Figure 2 and Supplementary Figure
S2 were standardized to have mean 0 and standard deviation 1, in order to facilitate the visual comparison of
correlation; but, the outperformance of CEM was even more evident when normalization (dividing by the genome-
wide mean) was used instead (Supplementary Figure S4, S5), in which case LM showed only a limited dynamic
range in occupancy. Models involving only GC yielded similar comparison results, indicating that our conclusions
did not depend on the specific sequence model employed (Supplementary Table S3, Supplementary Figures S6 and
S7).

Lastly, we note that the predicted nucleosome occupancy in Locke et al.’s manuscript did not show any clear
nucleosome array in Zhang-MNase-invitro-salt, neither at the GAL10-1 locus (red curve in Supplementary Figure
S1D of [16]) nor in the average profiles aligned at TSS/TTS (black dashed curves in Supplementary Figure S7B
of [16]). By contrast, our implementations of LM did exhibit evident nucleosome arrays (red curve in Figure
2C and Supplementary Figure S2E,F). These discrepancies might have been caused by subtle differences in data
processing affecting the normalization factor in Equation 1.

4.2 Contributions of G+C content, spatially resolved sequence motifs, and poly(dA:dT) tracts to
in-vitro nucleosome occupancy

Diverse sequence features, such as GC [36], 10.5-bp periodicity [29, 37], and polyA [38], have been proposed
to influence nucleosome landscape. However, which sequence feature actually contributes to which aspect of
nucleosome landscape and the degree of these contributions are still under active debate. The flexibility of our
CEM framework allows different sequence models to be studied on the same dataset (Equations 7, 8, and 9),
providing an opportunity to dissect the complex relationship between different sequence features and different
aspects of nucleosome landscape. This section quantifies how much the key sequence features that have received
much attention in the community influence nucleosome occupancy.

We trained the aforementioned models in hierarchical order – Models GC, GC+SR, and GC+SR+polyA – on
the three in-vitro nucleosome maps of S. cerevisiae studied in the previous section (Supplementary Table S4). To
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Figure 3: Contributions from GC, SR, and polyA in shaping nucleosome occupancy at TSS and TTS. (A)
Nucleosome-positioning energy in Model GC+SR+polyA attributable to GC (yellow curve), SR (green curve),
and polyA (red curve) aligned and averaged at TSS of all genes. The total energy is shown in blue. Each energy
component is subtracted by its genome-wide mean shown in the legends to facilitate visualization. (B) Same as
(A), but aligned at TTS. (C) Observed (blue curve) and predicted nucleosome occupancy from Models GC (yellow
curve), GC+SR (green curve), and GC+SR+polyA (red curve), aligned and averaged at TSS and normalized by the
genome-wide mean. Pearson correlation coefficients between observation and prediction are shown in the legends.
(D) Same as (C), but aligned at TTS.

facilitate comparison between different datasets, we used a common template β̂α,j for all three datasets. This com-
mon template was constructed by combining average nucleotide frequencies of nucleosomes detected by MNase-
seq [39] and chemical cleavage [40]; combining these two types of data help eliminate potential MNase digestion
biases towards the ends of the nucleosome as well as chemical cleavage biases around the nucleosome dyad (Sup-
plementary Figure S8). For all datasets considered, the three learned models had negative values of µC/G and
positive values of µpolyA (Supplementary Table S4), supporting the previous hypotheses that GC facilitates and
polyA hinders nucleosome occupancy [36, 38]. To compare the relative contributions of the distinct sequence fea-
tures to nucleosome occupancy, we calculated the Pearson correlation between the genome-wide observed and
predicted nucleosome occupancy profiles (Table 2). Model GC achieved high correlation in all three datasets,
and Model GC+SR showed essentially the same correlations as Model GC. These results suggest that nucleosome
occupancy is predominantly determined by GC, while SR, including the 10.5-bp periodicity, does not play a sig-
nificant role in determining nucleosome occupancy, consistent with previous studies [16, 29]. Furthermore, Model
GC+SR+polyA showed slightly improved correlations in Kaplan-MNase-invitro-salt and Zhang-MNase-invitro-
salt, but not in Zhang-MNase-invitro-ACF. To investigate whether polyA really does provide additional information
about nucleosome occupancy on top of GC and SR, we calculated the partial correlation coefficient between the
observed and Model GC+SR+polyA predicted nucleosome occupancy conditioned on the Model GC+SR predic-
tion (Table 2) (Supplementary Methods, Section 1.6) [41, 42]. The calculated partial correlation was around 0.2
in both Kaplan-MNase-invitro-salt and Zhang-MNase-invitro-salt, but negligible in Zhang-MNase-invitro-ACF. By
contrast, similar partial correlations for Model GC+SR conditioned on Model GC was < 0.1 for all three datasets
(Table 2). Therefore, for in-vitro nucleosome maps obtained from salt dialysis, polyA does make a small contribu-
tion to determining genome-wide nucleosome occupancy, while the contribution from SR is negligible.

Locally, it is well known that nucleosome occupancy tends to be reduced around TSS and TTS, resulting in
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nucleosome depleted regions (NDR) [31]. To study which sequence features predominantly contribute to the forma-
tion of NDR, we plotted the nucleosome-positioning energies at TSS and TTS from the three separate components
of GC, SR, and polyA in the learned Model GC+SR+polyA (Figure 3 and Supplementary Figure S9). Again, GC
was the primary component responsible for the energy barrier at both TSS and TTS (Figure 3A,B and Supple-
mentary Figure S9A,B,E,F). Compared with GC, polyA showed detectable but smaller energy barriers in datasets
obtained from salt dialysis (Figure 3A,B and Supplementary Figure S9A,B), but not in Zhang-MNase-invitro-ACF
(Supplementary Figure S9E,F). In comparison, SR showed much suppressed energy barriers. Interestingly, CEM
predicted higher energy barriers and lower nucleosome occupancies at TTS than at TSS in all three datasets, consis-
tent with the observed nucleosome occupancy. Finally, unlike in datasets obtained from salt dialysis, neither polyA
nor SR showed any influence on nucleosome occupancy in Zhang-MNase-invitro-ACF, suggesting that chromatin
assembly factors such as ACF might overwrite certain intrinsic sequence preferences of nucleosome formation.

4.3 The dependence of MNase-derived nucleosome occupancy maps on G+C content is substan-
tially biased by MNase digestion

We have shown in the previous section that GC is the primary determinant of the nucleosome occupancy derived
from MNase-seq experiments. However, MNase has a substantial GC bias in its cleavage preference [27, 28]. To
further investigate the GC dependence of nucleosome occupancy, we calculated the Pearson correlation between
GC, polyA, and observed nucleosome occupancy generated by an independent chemical cleavage method that
did not involve MNase (Brogaard-chemical-invivo-WT) [40] (Figure 4A). Since the chemical cleavage data were
obtained in vivo, we analyzed an in-vivo dataset generated by MNase-seq (Kaplan-MNase-invivo-WT) [3] for com-
parison (Figure 4D). As before, chemical-cleavage-derived occupancy showed positive correlation with GC and
negative correlation with polyA (Figure 4A). However, unlike MNase-derived occupancy which correlated, either
positively or negatively, most strongly with GC (Figure 4D), we found that chemical-cleavage-derived occupancy
correlated most strongly with polyA (Figure 4A). Furthermore, partial correlation analysis showed that there was
little direct correlation between GC and chemical-cleavage-derived occupancy after conditioning on polyA (Fig-
ure 4B), while the correlation between polyA and chemical-cleavage-derived occupancy was mostly retained even
after conditioning on GC (Figure 4B). This result shows that the marginal correlation between GC and chemical-
cleavage-derived occupancy was largely a secondary consequence of the negative correlation of both variables with
polyA. By contrast, the GC dependence of MNase-derived nucleosome occupancy was almost unchanged after
conditioning on polyA (Figure 4E). Other independent MNase-derived in-vivo and in-vitro datasets showed simi-
lar trends (Supplementary Figure S10). Therefore, the GC dependence of nucleosome occupancy was specific to
MNase-derived datasets, indicating that this GC dependence might be an artifact of MNase digestion biases.

To further resolve the experiment-specific relationship between nucleosome occupancy, GC, and polyA, we di-
vided the genome into 1000-bp segments and binned the segments according to theirGC and poly(dA:dT) content.
We then plotted the average nucleosome occupancy in the bins as a heat map (Figure 4C for chemical cleavage
occupancy, Figure 4F for MNase). The existence of a left-to-right gradient in Figure 4C demonstrated the direct
correlation between polyA and chemical-cleavage-derived nucleosome occupancy, while the lack of a top-to-bottom
gradient in Figure 4C showed that there was little direct correlation between GC and chemical-cleavage-derived
nucleosome occupancy. This figure also confirmed that it was the negative correlation between GC and polyA that
gave rise to the spurious correlation between GC and chemical-cleavage-derived nucleosome occupancy. By con-
trast, for the MNase-derived dataset, both GC and polyA showed direct correlation with nucleosome occupancy,
illustrated by the existence of both weaker left-to-right and stronger top-to-bottom gradient in Figure 4F. Analysis
of other independent MNase-derived datasets yielded similar results (Supplementary Figure S10). These results
thus further confirmed that the GC dependence of nucleosome occupancy was specific to MNase-derived datasets.

We reasoned that if the GC dependence of MNase-derived nucleosome occupancy was truly a consequence
of MNase digestion biases, then the correlation between GC and nucleosome occupancy should depend on the
MNase digestion level. That is, the higher the digestion level, the stronger should be the correlation between GC
and nucleosome occupancy. To test this hypothesis, we analyzed a dataset where MNase digestion was performed
for 2.5, 5, 10, and 20 minutes [43] (Figure 4G, H). As expected, the correlation between GC and nucleosome
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Figure 4: The dependence of MNase-derived nucleosome occupancy on G+C content is substantially biased by
MNase digestion. (A) Distribution of pairwise Pearson correlation coefficients between chemical-cleavage-derived
nucleosome occupancy, GC, and polyA, calculated on 1000-bp intervals tiling the “good regions.” (B) Distribution
of pairwise partial correlation coefficients between chemical-cleavage-derived nucleosome occupancy, GC, and
polyA, conditioning on the third variable, calculated on 1000-bp intervals tiling the “good regions.” (C) A heatmap
of nucleosome occupancy as a function of GC and polyA. The S. cerevisiae genome was divided into 1000-bp
segments, and each segment was then assigned to a 2-dimensional bin of given GC and poly(dA:dT) content.
Color indicates the average nucleosome occupancy in each bin. (D-F) Same as (A-C), but for MNase-derived
nucleosome occupancy. (G) Median of the Pearson correlation coefficients of GC and polyA with MNase-derived
nucleosome occupancy at different digestion levels, calculated on 1000-bp intervals tiling the “good regions.”
Linear extrapolation was performed to infer the correlation coefficient at digestion time 0. (H) Same as (G), but for
partial correlation coefficients.

occupancy increased with digestion time (Figure 4G), as did the partial correlation between GC and occupancy
conditioned on polyA (Figure 4H).

Interestingly, the Pearson and partial correlation coefficients showed an almost linear relation with the logarithm
of digestion time, although there were only four data points. This linear relationship allowed us to extrapolate the
correlation coefficients at digestion time 0, which could be thought of as representing the true biological condition
without any MNase bias. Strikingly, the partial correlation between GC and nucleosome occupancy almost dropped
to 0 at digestion time 0 in this extrapolation analysis (Figure 4H), suggesting that almost all of the observed GC
dependence of MNase-derived nucleosome occupancy was due to MNase digestion biases. By contrast, the par-
tial correlation between polyA and nucleosome occupancy conditioned on GC changed little with digestion time
and was largely retained at the extrapolated time 0 (Figure 4H), further supporting that the polyA dependence of
nucleosome occupancy reflected a true biological signal.
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4.4 Contributions of G+C content, spatially resolved sequence motif, and poly(dA:dT) tracts to
in-vitro nucleosome positioning

We now turn to investigating the sequence determinants of translational and rotational nucleosome positioning. We
trained the Models GC, GC+SR, and GC+SR+polyA on in-vitro nucleosome maps generated through MNase-seq
experiments (Supplementary Table S4) and predicted nucleosomes genome-wide by progressively calling genomic
locations with the largest predicted n1 as nucleosome start positions, while constraining that the called nucleosomes
cannot overlap with each other (Supplementary Methods, Section 1.5). The nucleosome calls were thus ranked by
the value of n1. Similarly, positioned nucleosomes were also identified from experimental data by using the same
algorithm. To assess the agreement between observed and predicted nucleosome positions, we examined top N
nucleosomes from the respective ranked lists, where N was set to be the nucleosome number predicted by Model
GC in each dataset (Supplementary Table S4; Supplementary Methods, Section 1.5). The three models showed
modest and similar prediction power on single nucleosome positions (Figure 5A), being able to predict about 50%
of observed nucleosomes within 50 bps. In particular, adding the SR component to nucleosome-positioning energy
did not significantly improve the prediction accuracy, agreeing with our previous finding based on spectral analysis
that sequence periodicity does not play a major role in translational positioning [29].
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Figure 5: Spatially-resolved sequence motifs, including the 10.5-bp periodicity, facilitate the rotational but not
translational positioning of nucleosomes. (A) Cumulative distribution of absolute dyad-to-dyad distance between
predicted and observed nucleosome positions. Grey curve represents a random control using non-overlapping uni-
formly distributed nucleosomes. (B) Distribution of dyad-to-dyad distance between predicted and observed nucle-
osome positions. (C) Distribution of absolute dyad-to-dyad distance between predicted and observed nucleosome
positions mod 10 bp. (D) Distribution of dyad-to-dyad distance between redundant nucleosomes.

By contrast, the distribution of dyad-to-dyad distance between the nucleosome positions observed in sequenc-
ing data and those predicted by the models including an SR component was enriched for multiples of 10 bp (Figure
5B), and the rotational nucleosome positions were also better predicted by these models (Figure 5C). In order to
better capture cell-to-cell variation in nucleosome positions, we progressively identified a redundant set of nucleo-
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somes containing five times the above number of nucleosomes in each dataset. The dyad-to-dyad distance between
nucleosomes within this redundant set exhibited a 10-bp oscillatory pattern emerging from rotational positioning of
nucleosomes (black curve in Figure 5D). Importantly, this 10-bp oscillation could be recapitulated by a model only
if it included the SR component in its nucleosome-positioning energy (Figure 5D). These results thus demonstrated
that spatially-resolved sequence motifs, including the 10.5-bp periodicity, facilitated the rotational positioning of
nucleosomes, again confirming our previous conclusion based on spectral analysis [29]. Analysis of other in-vitro
nucleosome maps provided similar results, except that Zhang-MNase-invitro-ACF showed little sequence depen-
dence other than GC, as previously mentioned (Supplementary Figure S11).

4.5 Models on in-vivo nucleosome maps exhibit a high degree of experiment-specific variability

We have so far focused on in-vitro nucleosome maps, since in-vitro conditions provide a simplified platform for
studying intrinsic sequence preferences hidden in the nucleosome landscape. In vivo, DNA sequence is only one of
many factors that can influence nucleosome positioning. Trans-factors, such as chromatin remodelers, transcription
factors and RNA polymerase, can actively regulate nucleosome positions. In order to quantify the role of DNA se-
quence in determining the in-vivo nucleosome landscape, we applied CEM to available in-vivo nucleosome maps.
See Supplementary Methods, Section 1.4 for detailed information about these datasets and our labeling convention.
CEM-predicted nucleosome occupancy achieved consistently higher correlation with observed nucleosome occu-
pancy than the LM prediction (Supplementary Table S5), demonstrating that the benefits of CEM generalized to
in-vivo datasets. However, CEM trained on different in-vivo nucleosome maps yielded discordant results (Supple-
mentary Table S5). In particular, the estimated nucleosome number, although consistently larger than that predicted
by LM, varied between ∼36000 and ∼56000.

Since all curated in-vivo nucleosome maps were generated using wild-type S. cerevisiae in log phase, one
would expect similar nucleosome numbers in these datasets. Indeed, a quantitative estimation of nucleosome num-
ber by matching the Fourier transform of observed nucleosome occupancy profiles showed that all analyzed in-vivo
nucleosome maps contained a similar number of ∼65000 nucleosomes (Supplementary Figure S12), suggesting
that CEM was consistently underestimating the nucleosome number in these datasets (Supplementary Table S5).
Visually comparing predicted and observed nucleosome occupancy profiles showed that, for datasets where nu-
cleosome number was significantly underestimated (Kaplan-MNase-invivo-WT and Ocampo-MNase-invivo-WT),
CEM-predicted nucleosome occupancy was indeed missing a large fraction of nucleosomes evident from ex-
perimental data (Supplementary Figure S13). Of note, the observed nucleosome occupancy in these datasets
showed peculiar long-range fluctuations which were not observed in McKnight2016-MNase-invivo-WT-log-80 and
McKnight2015-MNase-invivo-WT-log-50, where nucleosome number was only modestly underestimated (Supple-
mentary Figure S13). Interestingly, the latter two datasets, McKnight2016-MNase-invivo-WT-log-80 and
McKnight2015-MNase-invivo-WT-log-50, that we were able to model better, were from the same lab and generated
by the same author(s). Fourier analysis of the observed nucleosome occupancy further demonstrated that these two
datasets also had relatively large spectral density at the peak around ∼200 bp corresponding to a nucleosome-size
signal. By contrast, other in-vivo nucleosome maps contained smaller spectral density at the peak around ∼200
bp, but had more spectral energy in long-range components (Supplementary Figure S12A). These results suggested
that experiment-specific noises and biases, such as a trending effect, might be confounding the CEM optimization.

Since the two datasets McKnight2016-MNase-invivo-WT-log-80 and McKnight2015-MNase-invivo-WT-log-50
exhibited the smallest long-range trending effect and resulted in only a modest underestimation of nucleosome
number, we used these two datasets to study the in-vivo nucleosome landscape by training the aforementioned
Models GC, GC+SR, and GC+SR+polyA (Supplementary Table S6, S7). As in the in-vitro case, GC was still the
primary factor determining in-vivo nucleosome occupancy (Supplementary Table S6), although this GC dependence
might have arisen from MNase digestion biases, as previously described. Also similar to the in-vitro findings, polyA
made a small contribution to determining in-vivo nucleosome occupancy (Supplementary Table S6). One difference
was that SR seemed to have a greater impact on nucleosome occupancy in vivo than in vitro (Supplementary Table
S6), especially at the TSS (Supplementary Figure S14). For single nucleosome positions, the prediction accuracy
based on sequence information alone was very modest, although SR still showed signatures of facilitating rotational
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positioning (Supplementary Figure S15).

4.6 In-vivo nucleosome occupancy around TSS is partially determined by DNA sequence

It has been known for a long time that nucleosome occupancy in vivo tends to be reduced around TSS, leading to
a nucleosome depleted region (NDR), and that the average nucleosome occupancy downstream of TSS exhibits an
oscillatory pattern reflecting statistical positioning [18, 31]. It has been argued that DNA sequence itself is not suf-
ficient to explain the NDR and oscillatory pattern [16] and that active remodeling by trans-factors are needed [23].
Ostensibly consistent with these claims, the CEM-predicted occupancy using Model GC+SR+polyA, averaged over
all genes at TSS, did not show an NDR that was as deep as in the observed occupancy (Figure 6A, Supplementary
Figure S16A). Furthermore, the oscillations in CEM-predicted average occupancy were very weak (Figure 6A,
Supplementary Figure S16A), seemingly supporting the idea that DNA sequence alone is not able to fully explain
the energy barrier present at TSS.

0.
0

0.
5

1.
0

1.
5

2.
0

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Probability density

P
ea

rs
on

co
rr

el
at

io
n

0

1

2

3

4

0.2
0.4
0.6
0.8
1.0
1.2
1.4

r=0.92

0

1

2

3

4

0.2
0.4
0.6
0.8
1.0
1.2
1.4

r=0.866

0

1

2

3

4

0.2
0.4
0.6
0.8
1.0
1.2
1.4

r=0.76

0

1

2

3

4

0.2
0.4
0.6
0.8
1.0
1.2
1.4

r=0.585

0

1

2

3

4

- 1000 - 500 0 500 1000
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Coordinate w.r.t TSS (bp)

r=0.101

N
uc

le
os

om
e 

oc
cu

pa
nc

y

D
N

as
e

Solid line: data Dashed line: prediction

McKnight2016- MNase- invivo- WT- log- 80

Data
Prediction

- 1000 - 500 0 500 1000
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Coordinate w.r.t TSS (bp)

O
cc

up
an

cy

r=0.768

A

B C D
0.499 0.463 0.447 0.483 0.455 0.481 0.499

0.466 0.473 0.484 0.465 0.49 0.49 0.486

0.462 0.484 0.461 0.474 0.446 0.477 0.51

0.566 0.534 0.534 0.496 0.541 0.513 0.48

0.501 0.566 0.579 0.602 0.553 0.551 0.513

sto
ch

as
tic

no
ise

res
po

ns
ive

ne
ss

str
es

s res
po

ns
e

tra
ns

va
ria

bil
ity

ex
pre

ss
ion

div
erg

en
ce

ch
rom

ati
n reg

ula
tio

n eff
ec

t

tra
ns

cri
pti

on
- fa

cto
r

reg
ula

tio
n eff

ec
t

Median rank < 0.5 and
p < 0.05 p < 0.01 p < 0.001

Median rank > 0.5 and
p < 0.05 p < 0.01 p < 0.001

McKnight2016- MNase- invivo- WT- log- 80

Figure 6: In-vivo nucleosome occupancy around TSS is partially determined by DNA sequence. Shown are the
results using the Model GC+SR+polyA trained on McKnight2016-MNase-invivo-WT-log-80. (A) Observed (blue)
and predicted (yellow) nucleosome occupancy aligned at TSS and averaged over all genes. (B) Genes were ranked
by the Pearson correlation coefficient between observed and predicted nucleosome occupancy within ±1 kb of
TSS and divided into quintiles (different colors). The distribution of these correlation coefficients are shown. (C)
Observed (solid curves) and predicted (dashed curves) nucleosome occupancy aligned at TSS and averaged over
the genes within each quintile from (B). Average DNase I hypersensitivity [44] (gray curve and shade) is also
shown for genes within each quintile. (D) Enrichment analysis for expression variability [45]. All genes are ranked
between 0 and 1 according to a variability measure. The median rank of genes within each quintile is shown. A
permutation test is performed to assess whether the genes within each quintile are significantly enriched for high
or low variability.
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To investigate the nucleosome occupancy around TSS in greater detail, however, we ranked the genes according
to their predictability, as measured by the Pearson correlation between observed and predicted nucleosome occu-
pancy within ±1 kb from TSS, and divided the genes into quintiles (Figure 6B, Supplementary Figure S16B). For
genes in the fifth quintile showing the highest predictability, the NDR depth and oscillatory pattern in predicted
occupancy better matched the observed patterns (Figure 6C, Supplementary Figure S16C); for this subset of genes,
DNA sequence thus played a more significant role in regulating nucleosome occupancy at TSS. Interestingly, this
same subset of genes showed less DNase hypersensitivity [44] around TSS (Figure 6C, Supplementary Figure
S16C), smaller expression variability as measured in [45] (Figure 6D, Supplementary Figure S16D), and a slightly
lower histone turnover rate [46] (Supplementary Figure S17). Importantly, the oscillation of average nucleosome
occupancy for this class of genes was predicted from DNA sequence alone, using the simplest model accounting
for only hard-core interactions between adjacent nucleosomes. In sharp contrast, previous studies either failed to
reproduce this oscillatory pattern using sequence alone [16], potentially due to their underestimation of nucleosome
number, or required artificially constructed energy barriers at TSS [23]. The fact that DNA sequence alone could
partially recapitulate the average nucleosome occupancy in a subset of genes highlighted that different genes might
utilize distinct mechanisms to regulate nucleosome formation at TSS.

4.7 In-vivo nucleosome occupancy around TTS is primarily determined by DNA sequence

Finally, we investigated the pattern of in-vivo nucleosome occupancy around TTS. Unlike at TSS, the Model
GC+SR+polyA was able to fully capture the nucleosome depletion at TTS (Figure 7A, Supplementary Figure
S18A). The slight discrepancy between prediction and observation at TTS could be explained by the existence of
a nearby TSS [47]. When sorted by the distance to the closest TSS (Figure 7B, Supplementary Figure S18B),
the TTS isolated from any TSS had an even better agreement between predicted and observed nucleosome occu-
pancy (Figure 7C, Supplementary Figure S18C); by contrast, those TTS close to TSS showed greater deviation
from prediction (Figure 7C, Supplementary Figure S18C). We note, however, that these observations might be spe-
cific to MNase-derived nucleosome maps. For instance, the sharper energy barrier at TTS predicted by CEM was
mostly attributable to GC (Supplementary Figure S14), but according to our previous analysis, the GC dependence
of MNase-derived nucleosome maps were subject to substantial MNase digestion biases. Moreover, nucleosome
maps obtained from experimental methods avoiding MNase digestion showed much less pronounced depletion at
TTS than the maps obtained from MNase-seq [48].

5 Discussion

In this paper, we have developed a cross-entropy method (CEM) for simultaneously learning the nucleosome num-
ber and nucleosome-positioning energy from empirical genome-wide nucleosome maps. CEM circumvents a cru-
cial computational difficulty encountered by previous approaches when estimating the nucleosome number [16].
Applying our framework to various in-vitro and in-vivo datasets in S. cerevisiae has provided a comprehensive
quantification of the role of DNA sequence in shaping the genome-wide nucleosome landscape that includes the
distinct concepts of nucleosome occupancy and nucleosome positioning.

Using in-vitro nucleosome maps, we have shown that spatially resolved sequence patterns, including the con-
troversial 10.5-bp nucleotide periodicity, facilitate rotational, but not translational positioning, consistent with the
previous conclusion based on categorical spectral analysis of nucleosomal DNA [29]. In our models, GC is the
primary determinant of MNase-derived nucleosome occupancy, while the ostensibly minor role of polyA may be
under-estimated due to a confounding effect. More precisely, our partial correlation analysis has demonstrated
that the GC dependence of MNase-derived nucleosome occupancy may be largely attributable to MNase digestion
biases, in line with a recent deep-learning study showing that GC contributes to the classification of only a small
fraction of nucleosomal sequences in S.cerevisiae [49]. However, we cannot rule out the possibility that the intrin-
sic sequence preferences of MNase digestion and nucleosome formation are partially overlapping. Using currently
available sequencing data, it is difficult to dissect how much of the GC dependence is due to MNase bias and how
much, if any, is truly nucleosome preference. Further in-vitro studies using MNase-independent experiments, such
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Figure 7: In-vivo nucleosome occupancy around TTS is primarily determined by DNA sequence. Shown are the
results using the Model GC+SR+polyA trained on McKnight2016-MNase-invivo-WT-log-80. (A) Observed (blue)
and predicted (yellow) nucleosome occupancy aligned at TTS and averaged over all genes. (B) Genes are ranked
by the distance from their TTS to the closest TSS and divided into quintiles (different colors). The distribution
of these distances are shown. (C) Observed (solid curves) and predicted (dashed curves) nucleosome occupancy
aligned at TTS and averaged over the genes within each quintile from (B).

as the chemical cleavage method [40,50,51], should improve our understanding in the future. By contrast, the effect
of polyA on nucleosome occupancy is robust and independent of the specific experimental method used, suggesting
that polyA, together with the steric exclusion between adjacent nucleosomes, may be the truly dominant factor in
determining genome-wide nucleosome occupancy.

Applying CEM to in-vivo nucleosome maps has shown, for the first time, that the canonical oscillatory pattern
in average nucleosome occupancy around TSS can be partially recapitulated by DNA sequence and steric exclusion
of nucleosomes for a subset of genes. We believe that previous studies have not been able to capture this pattern,
because of the aforementioned underestimation of true nucleosome number [16]. This result also highlights a key
difference between in-vitro and in-vivo nucleosome maps: in-vivo conditions tend to yield a larger nucleosome
number, or equivalently, higher chemical potential. Although some in-vitro experiments have used histone-to-
DNA ratios close to those under in-vivo conditions [4], histone chaperones and chromatin remodelers may actively
package histones onto DNA, effectively increasing the chemical potential in vivo. This difference between in-
vitro and in-vivo conditions, although previously noted [15, 22], has not been fully appreciated to date, especially
regarding the formation of regularly spaced nucleosome arrays around TSS.
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Specifically, the oscillatory pattern in average nucleosome occupancy around TSS has been thought to be
a unique feature of the in-vivo nucleosome landscape created by regulatory factors other than DNA sequence
itself. However, the fact that DNA sequence alone in our in-vivo models can reproduce this oscillatory pattern
for select genes suggests that, given high enough chemical potential, this pattern may be also produced in vitro.
This hypothesis may be tested by mapping nucleosome positions in vitro with an even higher histone-to-DNA
ratio than that used in [4]. In fact, our analysis shows that nucleosome arrays are already vaguely visible in some
in-vitro nucleosome maps [4] (Figure 2C, Supplementary Figure S5E,F) and that tuning up the chemical potential
to match the expected in-vivo nucleosome number indeed creates a more pronounced oscillatory pattern around
TSS (Supplementary Figure S19). We also note that the effective chemical potential may be different at different
genomic locations, especially in vivo [15]. A future study where separate models are trained on distinct genomic
segments may help elucidate our hypothesis [15].

Our method represents a unified framework that accounts for both intrinsic sequence preference of nucleo-
some formation and steric exclusion between neighboring nucleosomes. In order to fully complete the story, other
factors such as chromatin remodelers, transcription factors, and RNA polymerase need to be taken into account.
One advantage of our computational framework based on CEM is that it can be potentially extended to include
these regulatory factors. To a first order approximation, the presence of these trans-factors can be considered as
modulating the effective nucleosome-positioning energy in addition to DNA sequence. For example, an additional
term that linearly depends on the ChIP-seq intensity of relevant trans-factors can be introduced into Equation 9.
Another related strategy is to use CEM to study specific functions of individual chromatin remodelers, utilizing
the data generated through in-vitro genome-wide reconstitution of nucleosomes in the presence of individual chro-
matin remodelers [52]. For example, it has been shown that RSC clears the promoter by reading poly(dA:dT) as a
directional nucleosome removal signal [52]. We expect this effect to be captured by a relative change in µpolyA in
Equation 9. Similarly, INO80 has been shown to help position the +1 nucleosome [52], suggesting that INO80 may
act as an additional energy barrier at TSS. Thus, incorporation of INO80 ChIP-seq information into the sequence
model may help improve the prediction of nucleosome landscape. Lastly, it is known that ISW1 can tighten the
spacing in nucleosome arrays downstream of TSS [52]. A plausible hypothesis is that ISW1 increases the effec-
tive chemical potential so that the nucleosomes in the region are more tightly packed. All of these aspects can
potentially be captured by CEM with different energy models.

Finally, it is important to note that other statistical mechanics-inspired models that relax the assumption of hard-
core interactions have been also used to study nucleosomes. For example, nucleosome unwrapping and breathing
can be captured by a soft-core interaction [25] or variable nucleosome size [20,26]. More complex nearest neighbor
interactions imposed by higher-order chromatin structure can be modeled [23, 24]. Models beyond equilibrium
statistical mechanics have also been attempted [53–55]. Nevertheless, this paper demonstrates that even the simplest
model involving only steric exclusion can still provide new insights into the principles that guide nucleosome
occupancy and nucleosome positioning.

6 Funding

NSF [1442504] and NIH [R01CA163336].

7 Disclosure Declaration

No conflicts to declare.

References

[1] J. M. Buckwalter, D. Norouzi, A. Harutyunyan, V. B. Zhurkin, and S. A. Grigoryev, “Regulation of chromatin
folding by conformational variations of nucleosome linker dna,” Nucleic Acids Research, vol. 45, no. 16,
pp. 9372–9387, 2017.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/202580doi: bioRxiv preprint 

https://doi.org/10.1101/202580
http://creativecommons.org/licenses/by-nc-nd/4.0/


[2] A. L. Hughes and O. J. Rando, “Mechanisms underlying nucleosome positioning in vivo,” Annual review of
biophysics, vol. 43, pp. 41–63, 2014.

[3] N. Kaplan, I. K. Moore, Y. Fondufe-Mittendorf, A. J. Gossett, D. Tillo, Y. Field, E. M. LeProust, T. R. Hughes,
J. D. Lieb, J. Widom, et al., “The DNA-encoded nucleosome organization of a eukaryotic genome,” Nature,
vol. 458, no. 7236, pp. 362–366, 2009.

[4] Y. Zhang, Z. Moqtaderi, B. P. Rattner, G. Euskirchen, M. Snyder, J. T. Kadonaga, X. S. Liu, and K. Struhl,
“Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo,” Nature
structural & molecular biology, vol. 16, no. 8, pp. 847–852, 2009.

[5] D. J. Gaffney, G. McVicker, A. A. Pai, Y. N. Fondufe-Mittendorf, N. Lewellen, K. Michelini, J. Widom,
Y. Gilad, and J. K. Pritchard, “Controls of nucleosome positioning in the human genome,” PLoS Genetics,
vol. 8, no. 11, p. e1003036, 2012.

[6] L. Y. Beh, N. Kaplan, M. M. Müller, T. W. Muir, and L. F. Landweber, “DNA-guided establishment of
canonical nucleosome patterns in a eukaryotic genome,” Mol Biol, vol. 425, pp. 4206–22, 2014.

[7] B. S. Sexton, D. Avey, B. R. Druliner, J. A. Fincher, D. L. Vera, D. J. Grau, M. L. Borowsky, S. Gupta, S. B.
Girimurugan, E. Chicken, et al., “The spring-loaded genome: Nucleosome redistributions are widespread,
transient, and DNA-directed,” Genome research, vol. 24, no. 2, pp. 251–259, 2014.

[8] B. R. Druliner, D. Vera, R. Johnson, X. Ruan, L. M. Apone, E. T. Dimalanta, F. J. Stewart, L. Boardman, and
J. H. Dennis, “Comprehensive nucleosome mapping of the human genome in cancer progression,” Oncotarget,
vol. 7, no. 12, p. 13429, 2016.

[9] R. D. Kornberg and L. Stryer, “Statistical distributions of nucleosomes: nonrandom locations by a stochastic
mechanism,” Nucleic acids research, vol. 16, no. 14, pp. 6677–6690, 1988.

[10] H. T. Rube and J. S. Song, “Quantifying the role of steric constraints in nucleosome positioning,” Nucleic
acids research, vol. 42, no. 4, pp. 2147–2158, 2014.

[11] N. Kaplan, I. Moore, Y. Fondufe-Mittendorf, A. J. Gossett, D. Tillo, Y. Field, T. R. Hughes, J. D. Lieb,
J. Widom, and E. Segal, “Nucleosome sequence preferences influence in vivo nucleosome organization,”
Nature structural & molecular biology, vol. 17, no. 8, pp. 918–920, 2010.

[12] Y. Zhang, Z. Moqtaderi, B. P. Rattner, G. Euskirchen, M. Snyder, J. T. Kadonaga, X. S. Liu, and K. Struhl,
“Evidence against a genomic code for nucleosome positioning reply to “Nucleosome sequence preferences
influence in vivo nucleosome organization”,” Nature Structural & Molecular Biology, vol. 17, no. 8, pp. 920–
923, 2010.

[13] J. Widom, “Role of DNA sequence in nucleosome stability and dynamics,” Quarterly reviews of biophysics,
vol. 34, no. 03, pp. 269–324, 2001.

[14] N. Kaplan, T. R. Hughes, J. D. Lieb, J. Widom, and E. Segal, “Contribution of histone sequence preferences
to nucleosome organization: proposed definitions and methodology,” Genome Biol, vol. 11, no. 11, p. 140,
2010.

[15] T. van der Heijden, J. J. van Vugt, C. Logie, and J. van Noort, “Sequence-based prediction of single nu-
cleosome positioning and genome-wide nucleosome occupancy,” Proceedings of the National Academy of
Sciences, vol. 109, no. 38, pp. E2514–E2522, 2012.

[16] G. Locke, D. Tolkunov, Z. Moqtaderi, K. Struhl, and A. V. Morozov, “High-throughput sequencing reveals a
simple model of nucleosome energetics,” Proceedings of the National Academy of Sciences, vol. 107, no. 49,
pp. 20998–21003, 2010.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/202580doi: bioRxiv preprint 

https://doi.org/10.1101/202580
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] L. Tonks, “The complete equation of state of one, two and three-dimensional gases of hard elastic spheres,”
Physical Review, vol. 50, no. 10, p. 955, 1936.

[18] T. N. Mavrich, I. P. Ioshikhes, B. J. Venters, C. Jiang, L. P. Tomsho, J. Qi, S. C. Schuster, I. Albert, and B. F.
Pugh, “A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome,”
Genome research, vol. 18, no. 7, pp. 1073–1083, 2008.

[19] W. Möbius and U. Gerland, “Quantitative test of the barrier nucleosome model for statistical positioning
of nucleosomes up-and downstream of transcription start sites,” PLoS computational biology, vol. 6, no. 8,
p. e1000891, 2010.

[20] T. Chou, “An exact theory of histone-dna adsorption and wrapping,” EPL (Europhysics Letters), vol. 62, no. 5,
p. 753, 2003.

[21] D. J. Schwab, R. F. Bruinsma, J. Rudnick, and J. Widom, “Nucleosome switches,” Physical review letters,
vol. 100, no. 22, p. 228105, 2008.

[22] G. Chevereau, L. Palmeira, C. Thermes, A. Arneodo, and C. Vaillant, “Thermodynamics of intragenic nucle-
osome ordering,” Physical review letters, vol. 103, no. 18, p. 188103, 2009.

[23] R. V. Chereji, D. Tolkunov, G. Locke, and A. V. Morozov, “Statistical mechanics of nucleosome ordering by
chromatin-structure-induced two-body interactions,” Physical Review E, vol. 83, no. 5, p. 050903, 2011.

[24] R. V. Chereji and A. V. Morozov, “Statistical mechanics of nucleosomes constrained by higher-order chro-
matin structure,” Journal of statistical physics, vol. 144, no. 2, pp. 379–404, 2011.

[25] W. Möbius, B. Osberg, A. M. Tsankov, O. J. Rando, and U. Gerland, “Toward a unified physical model
of nucleosome patterns flanking transcription start sites,” Proceedings of the National Academy of Sciences,
vol. 110, no. 14, pp. 5719–5724, 2013.

[26] R. V. Chereji and A. V. Morozov, “Ubiquitous nucleosome crowding in the yeast genome,” Proceedings of
the National Academy of Sciences, vol. 111, no. 14, pp. 5236–5241, 2014.

[27] H.-R. Chung, I. Dunkel, F. Heise, C. Linke, S. Krobitsch, A. E. Ehrenhofer-Murray, S. R. Sperling, and
M. Vingron, “The effect of micrococcal nuclease digestion on nucleosome positioning data,” PloS one, vol. 5,
no. 12, p. e15754, 2010.

[28] J. S. Song and D. E. Fisher, “Nucleosome positioning in promoters: significance and open questions,” Epige-
nomics: From Chromatin Biology to Therapeutics, pp. 47–60, 2012.

[29] H. Jin, H. T. Rube, and J. S. Song, “Categorical spectral analysis of periodicity in nucleosomal dna,” Nucleic
acids research, vol. 44, no. 5, pp. 2047–2057, 2016.

[30] J. K. Percus, “Equilibrium state of a classical fluid of hard rods in an external field,” Journal of Statistical
Physics, vol. 15, no. 6, pp. 505–511, 1976.

[31] W. Lee, D. Tillo, N. Bray, R. H. Morse, R. W. Davis, T. R. Hughes, and C. Nislow, “A high-resolution atlas
of nucleosome occupancy in yeast,” Nature genetics, vol. 39, no. 10, p. 1235, 2007.

[32] R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” European Journal of Op-
erational Research, vol. 99, no. 1, pp. 89–112, 1997.

[33] R. Rubinstein, “The cross-entropy method for combinatorial and continuous optimization,” Methodology and
computing in applied probability, vol. 1, no. 2, pp. 127–190, 1999.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/202580doi: bioRxiv preprint 

https://doi.org/10.1101/202580
http://creativecommons.org/licenses/by-nc-nd/4.0/


[34] R. Rubinstein and D. Kroese, “The cross-entropy method: A unified approach to combinatorial optimization,
monte-carlo simulation and machine learning,” 2004.

[35] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein, “The cross-entropy method for continuous multi-extremal
optimization,” Methodology and Computing in Applied Probability, vol. 8, no. 3, pp. 383–407, 2006.

[36] D. Tillo and T. R. Hughes, “G+C content dominates intrinsic nucleosome occupancy,” BMC bioinformatics,
vol. 10, no. 1, p. 442, 2009.

[37] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thåström, Y. Field, I. K. Moore, J.-P. Z. Wang, and J. Widom,
“A genomic code for nucleosome positioning,” Nature, vol. 442, no. 7104, pp. 772–778, 2006.

[38] E. Segal and J. Widom, “Poly (dA:dT) tracts: major determinants of nucleosome organization,” Current
opinion in structural biology, vol. 19, no. 1, pp. 65–71, 2009.

[39] J. Ocampo, R. V. Chereji, P. R. Eriksson, and D. J. Clark, “The isw1 and chd1 atp-dependent chromatin
remodelers compete to set nucleosome spacing in vivo,” Nucleic acids research, vol. 44, no. 10, pp. 4625–
4635, 2016.

[40] K. Brogaard, L. Xi, J.-P. Wang, and J. Widom, “A map of nucleosome positions in yeast at base-pair resolu-
tion,” Nature, vol. 486, no. 7404, pp. 496–501, 2012.

[41] A. De La Fuente, N. Bing, I. Hoeschele, and P. Mendes, “Discovery of meaningful associations in genomic
data using partial correlation coefficients,” Bioinformatics, vol. 20, no. 18, pp. 3565–3574, 2004.

[42] H. T. Rube, W. Lee, M. Hejna, H. Chen, D. H. Yasui, J. F. Hess, J. M. LaSalle, J. S. Song, and Q. Gong,
“Sequence features accurately predict genome-wide mecp2 binding in vivo,” Nature communications, vol. 7,
2016.

[43] K. Krassovsky, J. G. Henikoff, and S. Henikoff, “Tripartite organization of centromeric chromatin in budding
yeast,” Proceedings of the National Academy of Sciences, vol. 109, no. 1, pp. 243–248, 2012.

[44] J. R. Hesselberth, X. Chen, Z. Zhang, P. J. Sabo, R. Sandstrom, A. P. Reynolds, R. E. Thurman, S. Neph,
M. S. Kuehn, W. S. Noble, et al., “Global mapping of protein-dna interactions in vivo by digital genomic
footprinting,” Nature methods, vol. 6, no. 4, pp. 283–289, 2009.

[45] J. K. Choi and Y.-J. Kim, “Intrinsic variability of gene expression encoded in nucleosome positioning se-
quences,” Nature genetics, vol. 41, no. 4, pp. 498–503, 2009.

[46] M. F. Dion, T. Kaplan, M. Kim, S. Buratowski, N. Friedman, and O. J. Rando, “Dynamics of replication-
independent histone turnover in budding yeast,” Science, vol. 315, no. 5817, pp. 1405–1408, 2007.

[47] R. V. Chereji, J. Ocampo, and D. J. Clark, “Mnase-sensitive complexes in yeast: nucleosomes and non-histone
barriers,” Molecular Cell, vol. 65, no. 3, pp. 565–577, 2017.

[48] X. Fan, Z. Moqtaderi, Y. Jin, Y. Zhang, X. S. Liu, and K. Struhl, “Nucleosome depletion at yeast terminators
is not intrinsic and can occur by a transcriptional mechanism linked to 3’-end formation,” Proceedings of the
National Academy of Sciences, vol. 107, no. 42, pp. 17945–17950, 2010.

[49] A. I. Finnegan and J. S. Song, “Maximum entropy methods for extracting the learned features of deep neural
networks,” bioRxiv, p. 105957, 2017.

[50] G. Moyle-Heyrman, T. Zaichuk, L. Xi, Q. Zhang, O. C. Uhlenbeck, R. Holmgren, J. Widom, and J.-P. Wang,
“Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning,”
Proceedings of the National Academy of Sciences, vol. 110, no. 50, pp. 20158–20163, 2013.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/202580doi: bioRxiv preprint 

https://doi.org/10.1101/202580
http://creativecommons.org/licenses/by-nc-nd/4.0/


[51] L. N. Voong, L. Xi, A. C. Sebeson, B. Xiong, J.-P. Wang, and X. Wang, “Insights into nucleosome organization
in mouse embryonic stem cells through chemical mapping,” Cell, vol. 167, no. 6, pp. 1555–1570, 2016.

[52] N. Krietenstein, M. Wal, S. Watanabe, B. Park, C. L. Peterson, B. F. Pugh, and P. Korber, “Genomic nucleo-
some organization reconstituted with pure proteins,” Cell, vol. 167, no. 3, pp. 709–721, 2016.

[53] G. Lakatos and T. Chou, “Totally asymmetric exclusion processes with particles of arbitrary size,” Journal of
Physics A: Mathematical and General, vol. 36, no. 8, p. 2027, 2003.

[54] T. Chou, “Peeling and sliding in nucleosome repositioning,” Physical review letters, vol. 99, no. 5, p. 058105,
2007.

[55] J. J. Parmar, D. Das, and R. Padinhateeri, “Theoretical estimates of exposure timescales of protein binding
sites on dna regulated by nucleosome kinetics,” Nucleic acids research, vol. 44, no. 4, pp. 1630–1641, 2016.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 18, 2017. ; https://doi.org/10.1101/202580doi: bioRxiv preprint 

https://doi.org/10.1101/202580
http://creativecommons.org/licenses/by-nc-nd/4.0/

