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Animal behaviour is shaped to a large degree by internal cog-1

nitive states, but it is unknown whether these states are similar2

across species. To address this question, we developed a virtual3

reality setup in which mice and macaques engage in the same4

naturalistic visual foraging task. We exploited the richness of5

a wide range of facial features extracted from video recordings6

during the task, to train a Markov-Switching Linear Regression7

(MSLR). By doing so, we identified, on a single-trial basis, a set8

of internal states that reliably predicted when the animals were9

going to react to the presented stimuli. Even though the model10

was trained purely on reaction times, it could also predict task11

outcome, supporting the behavioural relevance of the inferred12

states. The identified states were comparable between mice and13

monkeys. Furthermore, each state corresponded to a charac-14

teristic pattern of facial features, highlighting the importance of15

facial expressions as manifestations of internal cognitive states16

across species.17
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Introduction20

In the wild, all mammals show similar behaviour: they all21

hunt or forage for food, sleep, mate, avoid predators, and ex-22

plore their environment, to name just a few. None of these23

behaviours can be simply explained as a passive reaction to24

environmental input; rather, they are crucially shaped by dy-25

namic fluctuations in internal states such as satiety, alertness,26

curiosity or attention (1, 2). So, if fundamental behaviours27

are comparable across species, how similar are the internal28

states that drive them? Is ’attention’ in a monkey the same as29

’attention’ in a mouse?30

The common approach to investigate internal states has been31

a reductionist one: highly restrictive tasks featuring simpli-32

fied stimuli and requiring narrow behavioural repertoires (e.g.33

button presses), with little room for fluctuations over time (3–34

5). What’s more, experimental paradigms diverge widely de-35

pending on the species under study. For example, attention36

studies in primates typically require the subject to fixate on37

a central fixation point while paying attention to a peripheral38

stimulus that might briefly or subtly change its appearance39

(6, 7). Attention studies in rodents, on the other hand, typ-40

ically use the 5-choice serial reaction time task (5CSRTT),41

in which the subject is required to scan a row of five aper-42

tures for the presentation of a brief light stimulus, and then43

navigate towards the light source (8, 9). Even though the44

behaviour associated with high attention, i.e. short reac-45

tion times and accurate responses, is the same in both cases,46

clearly these tasks are too different to draw any meaningful47

cross-species comparisons.48

Breaking away from this restrictive regime towards studying49

internal states as they occur naturally is tricky. To tackle this50

challenge successfully, an ideal behavioural paradigm needs51

to (1) rely on innate, naturalistic behaviours to accurately re-52

flect spontaneously occurring rather than training-induced in-53

ternal states (10), (2) identify internal states in a data-driven54

way that is not restrained by (potentially anthropomorphis-55

ing) concepts of cognitive processing imposed by the re-56

searcher, and (3) track the evolution of internal states over57

time to capture their intrinsically dynamic nature. For this,58

binary metrics of behaviour such as a button presses or nose59

pokes will not suffice; rather, precise, multi-parametric be-60

havioural tracking is needed to generate time-resolved anal-61

yses that extract the evolution of underlying cognitive states62

from the measured behavioural parameters moment by mo-63

ment (11–13).64

Recent technological advances have opened up new avenues65

to achieve these goals in a principled way. Virtual reality66

(VR) environments, for instance, allow researchers to cre-67

ate immersive yet highly controlled experimental settings that68

can be tailored to different species’ intrinsic sensory capaci-69

ties and behavioural repertoires (14, 15). For instance, color70

spectra can easily be adapted to the visibility range of most71

species; and input devices like treadmills allow animals to72

interface with the VR in largely intuitive ways that require73

minimal training (16). As such, VR provides a powerful74

tool for studying animal behaviour in a highly controlled yet75

dynamic and ethologically sound context. Importantly, this76

maximizes adaptability across species, opening up the unique77

opportunity to record directly comparable behaviours in dif-78

ferent species.79

At the same time, advances in deep-learning algorithms en-80

able us to dynamically track ongoing changes in body move-81

ment and posture from video footage (17–19). These algo-82

rithms have opened up new avenues to harvest an unprece-83

dented amount of information even from simple behavioural84

paradigms, far exceeding classical behavioural readouts such85

as button presses or saccades (20, 21). Most importantly,86

they allow for the ongoing and time-resolved tracking of be-87

havioural dynamics - a fundamental prerequisite if we aim to88
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identify the spontaneous emergence of internal cognitive and89

emotional states (22, 23).90

In this study, we leverage these technological breakthroughs91

to infer and directly compare the internal states of two species92

commonly studied in neuroscience - macaques and mice.93

Specifically, we combine a highly immersive and natural-94

istic VR foraging task with a state-of-the-art deep learn-95

ing tool that allows for precise, automated tracking of be-96

havioural features. The features extracted in this way then97

serve as inputs to a Markov-Switching Linear Regression98

(MSLR) model (24), which finally captures time-varying in-99

ternal states across trials.100

Importantly, such single-trial inference of internal states is101

only meaningful if the behavioural markers it relies on are102

not indirectly tracking the concrete motor outputs required103

for task performance. If the behavioural markers directly104

reflected task-related motor output (e.g. preparatory paw105

movements), then internal states inferred from this behaviour106

might be expected to trivially predict task performance. For107

instance, lack of preparatory paw movements might trivially108

predict a miss trial. To ensure that the behavioural parameters109

we chose would truly reflect internal processing, we focused110

on the animals’ facial expressions.111

While facial expressions have long been thought to only play112

a role in highly visual and social species like monkeys and113

humans (25–28), recent work has highlighted that also less114

social, less visual species like mice exhibit meaningful facial115

expressions (22, 29). As such, behaviourally relevant facial116

expressions seem to be much more evolutionarily preserved117

than previously expected (22, 29, 30). More specifically, they118

seem to reflect fundamental emotions like pleasure, pain, dis-119

gust and fear in a way that is not only consistent within one120

species, but also readily translatable across species (31, 32).121

This argues for an evolutionary convergent role of facial ex-122

pressions in reflecting (and potentially communicating) emo-123

tions.124

Unlike these previous studies on the relation between facial125

expressions and emotions, here we for the first time analyse126

facial expressions in mice and monkeys that occur sponta-127

neously, in the absence of a pre-defined emotional context.128

Such spontaneously occurring behavioural states have so far129

mainly been tracked using single facial features to identify130

isolated cognitive states, for instance by quantifying atten-131

tion via pupil size, both in rodents (33, 34) and primates (35–132

38). Similarly, eye movements in monkeys and humans (39–133

41) and whisker movements in mice (42) have been used to134

track attention and decision-making. By focusing on entire135

facial expressions beyond individual (often species-specific)136

features, we aim to for the first time map out the spectrum137

of spontaneously occurring internal states in a way that is 1)138

agnostic, i.e. not focused on a specific cognitive process or139

facial feature, and 2) directly comparable across species.140

Our approach of using facial expressions to infer internal141

states from natural behaviour constitutes a drastic move142

away from the classical approach of imposing internal states143

through restrictive behavioural paradigms (e.g. cued atten-144

tional shifts). By tying the results of this approach back145

to known relationships between internal states and overt be-146

haviour, such as shorter reaction times during focused atten-147

tion, these data-driven, agnostically inferred internal states148

can be tentatively related to known cognitive processes such149

as attention and motivation. Importantly, this puts us in the150

unique position to directly compare inferred internal states151

across two species.152

Results153

A. Experimental set-up. To track and compare sponta-154

neously occurring internal states of mice and macaques dur-155

ing the performance of the same naturalistic visual discrim-156

ination task, the animals were placed inside a custom-made157

spherical dome (Fig. 1A, top). On the inside of the dome, we158

projected a virtual reality (VR) environment using a custom-159

made toolbox called DomeVR (16). The monkeys navigated160

through the VR environment manually using a trackball; the161

mice ran on a spherical treadmill, the movements of which162

were translated into VR movements (for details, see Methods163

- Experimental Setup).164

Two monkeys and seven mice were used in this study,165

comprising 18 and 29 experimental sessions (20459 and166

12714 trials) respectively. The animals engaged in a sim-167

ple, foraging-based two-choice perceptual decision task, in168

which they had to approach a target stimulus while avoiding169

a distractor stimulus, both of which were represented by nat-170

ural leaf shapes integrated in a meadow landscape (Fig. 1A,171

bottom; see Methods - Behavioral paradigm and Behavioral172

Training). Their performance on this task was quantified173

first in terms of trial outcomes: hit (target stimulus reached),174

wrong (distractor stimulus reached), and miss (neither stim-175

ulus reached); as well as in reaction time (RT). For this, we176

identified turning points in the animals’ running trajectories177

through the VR to define the moment when an animal deci-178

sively oriented itself towards one of the two potential targets179

(Fig. 1C; for details, see Methods - Reaction Time). As Fig.180

S1 shows, success rate and reaction times were largely com-181

parable across species, although mice showed less consistent182

performance than monkeys, in terms of running trajectories,183

reaction times, and correct target choices. We hypothesize184

that this is due to the lack of fine motor control of the mice185

on the trackball.186

As the animals were performing the task, we recorded their187

faces. For macaques, this was done by analysing video188

footage from one camera positioned frontally on the mon-189

key’s face, as well as eye tracking output (see Methods - Be-190

havioural tracking). For mice, we analysed video footage191

from one camera positioned on the side of the face (Fig. 1B).192

From these videos, we extracted facial features such as eye-193

brow, nose and ear movement using DeepLabCut (Fig. 1C;194

see Methods - Facial key point extraction). For monkeys, we195

selected 18 features; for mice, 9 features (see Methods - Face196

features for the full list of facial features).197

For each trial, facial features were averaged over a time win-198

dow of 250 ms before the stimuli appeared in the VR en-199

vironment. This time window was chosen to maximize the200

interpretability of the inferred hidden states: as there is no201
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B Model performance

Fig. 1. Experimental setup and computational pipeline. A) Macaques and mice were seated inside a large dome on the inside of which a VR was projected via a curved
mirror (top). They were rewarded for moving towards a spike-shaped leaf compared to a round-shaped leaf (bottom). B) As the animals were engaged in the task, behavioural
data were collected: movements of the trackball (top and bottom) and videos of their faces (middle). C) Trackball movements were translated into paths through the virtual
environment (top and bottom), from which reaction times were determined (see Methods). Individual facial features were automatically detected from the videos and tracked
over time (middle). D) Facial features entered two separate MSLR models (one for each species), which yielded, for every trial, a predicted reaction time and internal state
probabilities.

task-relevant information available yet, presumably all of the202

facial expressions that the animals make are due to internally203

generated processes, rather than being reflective of stimulus204

or task parameters.205

B. Model performance. The facial features extracted in206

this way were used as inputs to a Markov-Switching Lin-207

ear Regression (MSLR) model (Fig. 1C; see Methods -208

MSLR). The MSLR manages to reflect the non-stationarity209

and regime shifts often present in behavioural data (43–210

46), by flexibly accommodating complex temporal dynam-211

ics while keeping a relative simplicity, compared to deep212

learning-based methods (47). Moreover, the MSLR is less213

data-hungry than other common data-driven models (48–50).214

The MSLR uses the ’pre-stimulus’ facial features in each trial215

to predict the animals’ reaction time (RT) in the same trial by216

assuming ’hidden’ states. Each hidden state implies a differ-217

ent linear relation between individual facial features and the218

subsequent RT in the same trial. For instance, in one hidden219

state, the RT might be best predicted by eyebrow movements,220

while in another, nose sniffing might be most predictive. We221

used cross-validation to select the number of states for each222

species (see below). For each trial, the model then outputs the223

predicted RT as well as the probability of each hidden state224

(Fig. 1D). The two models (one for mice, one for monkeys)225

were trained and tested on data from all individuals; Fig. S14226

shows the outcomes of the models split by session and by227

individual.228

Mathematically, this model takes the form:229

RTt = Wzt ·xt + ξzt , (1)

where RTt is the reaction time at trial t, zt is the state at trial230

t, Wzt are the regression weights for state zt, xt is the vector231

of facial features at trial t, and ξzt is a zero-mean Gaussian232

noise with variance σzt .233

To test if this approach was appropriate for our behavioural234

recordings, we first checked if assuming the presence of mul-235

tiple hidden states was in fact warranted by the data, or if236

they could also be described by one constant, uniform rela-237

tionship between facial expressions and RTs over time. To238

this end, we determined model performance when only one239

internal state was permitted (Fig. 2A). For both species, the240

model’s predictive performance was remarkably low under241

these circumstances - in fact, predictions were less accurate242

than random guessing.243

Next, we quantified model performance for different num-244

bers of hidden states - which is the main free parameter of245

the MSLR. Model performance was tested by using cross-246

validation (see Methods - Model tuning). For both species,247

the cross-validated R2 improved dramatically when allowing248

for more than one hidden state until reaching a plateau. Since249

the accuracy of RT predictions began to saturate with in-250

creased model complexity, we took the finite difference of the251

CV performance curve for each species and fixed the number252

of internal states at its maximum (Fig. S10), in order to reach253

the optimal trade-off between predictive accuracy and model254

simplicity (Fig. 2A). This approach yielded a similar optimal255

number of hidden states for both species: For monkeys, the256

optimal number of states was 4, for mice it was 3. Tests on257

held-out data showed a similar performance (Fig. 2A, insets),258

indicating that the high predictive performance was not due259

to overfitting.260

In both species, our models yielded remarkably accurate trial-261

by-trial predictions of RT, indicating that pre-trial facial ex-262

pressions can indeed predict subsequent task performance263

(Fig. 2B, top row). It also suggests that the relation between264

facial features and task performance is dynamic rather than265

static over time, reflecting multiple underlying states.266
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The coexistence of several hidden states opens up the ques-267

tion whether task performance is dominated by a single state268

at any given moment, or if several states co-exist continu-269

ously. After fitting the model parameters, we used the model270

to identify the animal’s internal state on a trial-by-trial basis.271

Note that the model does not allow for the animal to be in272

multiple states at the same time; rather, it gives us probabili-273

ties telling how confident we can be about the state the animal274

is in on each trial. Specifically, we computed the posterior275

probability over states on each trial given all past and future276

observations. The probabilities of each state over time sug-277

gest that the model is highly confident about what state the278

animal is in on each trial (Fig. 2B, bottom row). These ob-279

servations were confirmed by the highly bimodal distribution280

of these probabilities for both species (Fig. 2C). Crucially,281

in monkeys, this separation between high-certainty (ps ≈ 1)282

and low-certainty (ps ≈ 1/ns) trials was particularly pro-283

nounced, while in mice, state probabilities were somewhat284

more mixed. Quantifying the single-trial certainty as measur-285

ing its difference with the uniform distribution –through the286

Kullback-Leibler divergence (KL)– corroborated these find-287

ings (Fig. 2D; Mann-Whitney U-test: p = 1.11 · 10−274).288

As such, the hidden states identified by our model seem to289

reflect largely mutually exclusive behavioural modes that an-290

imals switch into and out of. Given how consistently trials291

were dominated by one state, we chose to binarize hidden292

state outcomes by assigning each trial to its most probable293

hidden state.294

C. State dynamics. To explore if the hidden states showed295

attributes that could be reflective of internal cognitive states,296

we first characterized their temporal dynamics. To this297

end, we examined the frequency of state transitions in both298

species. The state transition matrices, which show how299

likely a trial of a given hidden state is followed by a trial of300

any (other or same) state (Methods - Markov-Switching Lin-301

ear Regression), revealed high values along the diagonal for302

macaques, indicating stable states that switched rather rarely.303

In mice, the diagonal of the transition matrix was slightly less304

pronounced, suggesting that hidden states in mice were less305

stable and more prone to transition than in macaques (Fig.306

3A).307

As a complementary analysis, we computed the dwell time308

for each state. This quantity is defined as the number of con-309

secutive trials that a given state is occupied for, before transi-310

tioning to a different state. Supporting the previous observa-311

tions, hidden states lasted generally longer in macaques than312

in mice (Mann-Whitney U-test; nmac = 4092, nmice = 2543313

trials, p = 0.0014), suggesting that internal processing may314

be more steady in macaques (Fig. 3B). This is consistent315

with previous findings that behavioural dynamics may fluc-316

tuate faster in mice (34, 51) than monkeys (52). Apart from317

a genuinely species-driven difference, this observation may318

also reflect the fact that monkeys are trained more exten-319

sively and may therefore have developed more stereotyped320

behavioural strategies than mice, which were trained more321

briefly.322

Fig. 2. Model performance and state probabilities. A) Cross-validation perfor-
mance for various numbers of states, for macaques (left) and mice (right). Circles
indicate the maximum CV R2 and the shaded region extends until the 5th per-
centile. For both species, increasing the number of states improves model perfor-
mance to a plateau at an R2 ≈ 0.8. Lasso is a regularized Linear Regression
(i.e., a MSLR with 1 internal state). The arrows indicate the number of states we
selected, based on the maximum difference of the CV performance curve (see Fig
S10). Insets show model performance for held out data at the selected number of
states; dashed horizontal lines indicate the 99th percentile of the surrogate per-
formances (see Methods). Note that the shuffled R2 is negative, because only
uncorrelated predictors are expected to be centered at 0, and due to finite sampling
effects, there is always a non-zero correlation between the shuffling and the ground-
truth. Furthermore, as we are dealing with skewed distributions (see Fig. S1), the
null tendency is not captured by the mean, as assumed by the default R2. B) Pre-
dicted RTs (top) and state probabilities (bottom) for an example stretch of data (left,
macaques; right; mice). C) Probabilities of all states over all trials, regardless of
state identity (blue, macaques; orange, mice). The bimodal distribution suggests
that states are either absent or dominant on any given trial. D) Kullback-Leibler
divergence (KL) for monkey (blue) and mouse (orange) internal states. KL quanti-
fies the difference between the posterior state probability under the model and the
uniform distribution, normalizing by the number of states. A KL value close to 1
indicates maximally dissimilar distributions (i.e., only one present state at a time),
while a value close to 0 indicates indistinguishable distributions (i.e., equally likely
states).
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E Relationship to facial features

Fig. 3. State dynamics. A) State transition matrices for macaques (left) and mice
(right), that show the probability, at any one trial, of transitioning from a certain
state (rows) to any other state (columns). Transitions between different states (off-
diagonal terms) are more frequent for mice than for macaques. B) Macaques (left)
spend more time than mice (right) in the same state, as measured by the dwell time
(number of consecutive trials of each state being the most likely one). Individual
dots reflect sequences of consecutive trials of a particular state.

D. Hidden states as performance states. To link the323

identified hidden states more concretely to internal cognitive324

processing, we set out to investigate how each hidden state325

related to behavioural outcomes, starting with the RTs that326

the model was trained to predict. There are two potential327

scenarios for how the model might partition RT variability:328

on the one hand, it is possible that each hidden state covers329

the full range of RTs, but predicts them from a different con-330

stellation of facial features. Alternatively, each hidden state331

might ’specialize’ on predicting specific ranges of RTs. For332

example, one hidden state might cover facial features that dis-333

tinguish between fast and extremely fast RTs, while another334

state mainly predicts variations between slower RTs. This335

second scenario would make it more likely that the identified336

hidden states reflect genuinely distinct performance states.337

To distinguish between these scenarios, we plotted the overall338

state-specific RT distributions, pooling trials across all ses-339

sions and animals, for each hidden state (Fig. 4A; Fig. S15340

shows the same plot for individual sessions and animals). The341

resulting distributions support the second scenario: while one342

hidden state (state B in both monkeys and mice) covered a343

rather broad range of RTs, all other states showed a distinct344

profile of response speeds. This implies that the hidden states345

relate to distinct performance regimes (in this case in terms of346

response speed), making them viable candidates for defining347

specific internal states of cognitive task processing.348

To further probe the possible link of our internal states to349

known cognitive processes, we related all hidden states to350

the three possible trial outcomes of the task (hit, wrong, and351

miss; see Methods - Task performance and internal states).352

Crucially, given that we trained the model to predict RTs, it353

never received any explicit information about trial outcome.354

Furthermore, RTs were only marginally related to trial out-355

comes (Fig. S1), so that trials with a specific RT would not356

be significantly more likely to result e.g. in a hit or a miss357

trial. Finally, as we only used information about facial fea-358

tures in the pre-stimulus phase of the trial to train the model,359

it cannot reflect stimulus features.360

Even though information about trial outcomes was not part361

of the MSLR model, the resulting hidden states were con-362

sistently predictive of specific trial outcomes (Fig. 4B). For363

instance, in monkeys, trials that were classified as belonging364

to state C were most likely to result in a hit, while trials from365

state A often resulted in incorrect responses, even though the366

RT distributions of both states overlapped strongly. The same367

dynamic can be observed in states A and C in mice.368

Combining these effects of internal states on RTs and trial369

outcomes revealed specific combinations of speed and accu-370

racy. We plotted mean RT per hidden state against the dif-371

ference in probability of a hit versus a wrong trial, in the372

same state. Interestingly, the constellation of states in this373

space was comparable across species (Fig. 4C). Both mouse374

and monkey data seem to generate a hidden state (state A in375

mice, state C in monkeys) that is associated with fast RTs and376

largely successful trial outcomes - a performance regime that377

could be interpreted as globally attentive. Conversely, state378

C and A in mice and monkeys, respectively, reflects rather379

fast yet often incorrect responses, potentially reflecting more380

impulsive decision-making (53, 54). Finally, state B for both381

species features particularly slow RTs, large RT variability,382

and mostly misses for mice and equally likely trial outcomes383

for monkeys, potentially signifying a state of global inatten-384

tion (55, 56). The only state that appears in monkeys but not385

mice (state D) features no reactions at all (i.e. no change in386

path direction) and only misses; a sign of complete task dis-387

engagement.388

E. Relationship to facial features. A final clue towards389

the interpretation of our internal states might be given by the390

facial features from which they are inferred. To explore this391

possibility, we plotted the regression weights of all facial fea-392

tures for the hidden states associated with hit, wrong, and393

miss trials (Fig. 5A; for the facial features comprising the394

fourth state in the monkey, see Fig. S8). These plots reveal395

highly distinct contributions of different facial features to396

each internal state. For example, in mice, eye movements and397

pupil size strongly predict reaction speed in the ’hit’ state,398

whereas nose movements predict reaction speed in wrong and399

miss states. Similarly, in monkeys, large pupil size predicts400

fast reactions in hit and wrong states, but slow reactions in401

miss states, and ear movements play a strong predictive role402

in hit and wrong, but not in miss states. One interpretation of403

these observations is that different senses are more dominant404

in driving decision making (and thereby decision speed) in405

different states. Especially in mice, one of the hallmarks of406

the hit state is that it is the only state in which vision-related407
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Fig. 4. Internal states and task performance. A) Splitting the RTs over internal
states shows large diversity for both macaques (left) and mice (right), from fast
reaction-states to extremely slow ones. Individual dots reflect trials. B) Correlations
of state probabilities with the three task outcomes (hit, wrong, miss), for macaques
(left) and mice (right). Black boxes indicate the states most strongly associated
with a certain task outcome. C) Conjunction of RT and excess likelihood of a hit
outcome, for all states (blue circles, macaque; orange triangles, mouse).

facial features play a decisive role, suggesting that in other408

states, behaviour may be less strongly driven by sensory sam-409

pling in the visual dimension (and more by sampling in the410

olfactory dimension).411

The overall variability of different facial features’ predictive412

weights across states confirms that while some facial features413

had more constant predictive power across all states, others,414

such as ear movement in monkeys and nose movement in415

mice, are highly predictive of performance in some states,416

but not in others (Fig 5B).417

Moreover, in both species, reaction times are best predicted418

by a complex constellation of facial features rather than one419

feature in isolation. On the same note, different states are420

consistently distinguished by more than one facial feature.421

Together, these results suggest that 1) holistic analysis of422

complex facial expressions is much more informative than423

analysis of one isolated facial feature such as pupil size and424

2) the relationship between facial features and cognitive pro-425

cessing is not linear, but changes depending on the internal426

state that the animal is in. For instance, in a high-performance427

state, large pupil size may indeed predict trial success (as428

shown e.g. by (33, 35)), whereas it may be irrelevant or anti-429

correlated in a low-performance state.430

Interestingly, the facial constellations predicting RTs in hit431

and wrong states are quite similar in monkeys, but not in432

mice. This resonates with the fact that ’hit’ and ’wrong’433

states also have more overlap in terms of trial outcomes in434

monkeys than in mice (Fig 4B). This may suggest that in435

monkeys, the behavioural state underlying hit and wrong tri-436

als may be a more generalized engaged and high attention437

state, and hit or wrong outcomes may be mainly dictated by438

visual difficulty than different internal cognitive state. In con-439

trast, it appears that in mice, hit and wrong trials may be the440

product of more distinct underlying cognitive states (see Fig.441

S13 for a summarized visualization).442

One reason why hidden states can predict trial outcomes443

so accurately despite not being trained on them in any way444

might be that pre-trial facial features are mostly a trivial con-445

sequence of the animal’s trial history. For example, facial446

features might mainly reflect an animal still drinking reward447

from the previous trial, which might in turn raise motivation448

to perform correctly in the upcoming trial. In this case, fa-449

cial features would merely be a particularly convoluted way450

of quantifying the previous trial outcome, and using it to pre-451

dict upcoming performance, as has been achieved previously452

(57, 58). To account for this possibility, we trained an Auto-453

Regressive Hidden Markov Model (ARHMM) based on RTs454

(see Methods - ARHMM for details). As can be seen in Fig.455

S5, the facial features model outperforms the ARHMM for456

all states, for both species.457

As an extra control, we correlated each facial feature with the458

history of prominent task parameters, specifically two related459

to the directly previous trial (its outcome, which might affect460

motivation; and the location of its target, which might predict461

side biases), and two related to the overall session history462

(the cumulative amount of reward and the time that passed463

since the start of the session, as proxies for satiety and fa-464
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tigue, respectively). Correlations between task variables and465

facial features were sparse in both species (Fig. S11). In466

fact, attributes of the previous trial did not relate significantly467

to facial features at all, and more sustained session attributes468

modulated facial features merely somewhat. This suggests469

that facial features may be modulated by ubiquitous internal470

processes like fatigue and satiety, which are in turn impacted471

by task parameters, but they are not a trivial reflection of task472

history. Rather, the fact that facial expressions are modulated473

by the overall task context makes them a more plausible re-474

flection of realistic fluctuations in cognitive processing.475

Discussion476

Internal cognitive states are known to substantially shape477

overall brain activity (59, 60) as well as behavioural decision478

making (1, 2), yet they are notoriously difficult to identify.479

As a result, it is even less clear to what extent they converge480

across species. To infer hidden cognitive states in mice and481

monkeys, we harnessed an MSLR model (24) trained on their482

facial features while they were engaged in an immersive VR483

foraging task. Specifically, we trained the MSLR to predict484

an animal’s reaction time (RT) in a given trial based on its485

facial expressions prior to stimulus presentation. For both486

species, RTs could be predicted with high accuracy from pre-487

ceding facial features only, suggesting that facial expressions488

reflect parameters that are directly relevant to task perfor-489

mance. These parameters were only minimally shaped by490

task history, suggesting that they were not a trivial reflection491

e.g. of the previous trial outcome.492

Even more surprisingly, this approach revealed multiple dis-493

tinct hidden states, which were characterized by equally dis-494

tinct relationships between a complex constellation of facial495

features, and subsequent task performance. Moreover, in dif-496

ferent states, performance seemed to be dominated by spe-497

cific sensory modalities, e.g. eyes versus nose for hit versus498

wrong states in mice. This suggests that, depending on an an-499

imal’s internal state, the relation between facial features and500

subsequent task performance can shift dramatically.501

These findings stand in marked contrast to previous research,502

which has mainly highlighted linear relationships between503

single facial features (e.g. pupil size or eye movements) and504

isolated cognitive states (e.g. attention) (33–41). Our find-505

ings imply that such analyses miss out on a large portion506

of the information available through complex facial expres-507

sions. Our findings were not dependent on the use of one spe-508

cific MSLR model, as we repeated our analyses with a differ-509

ent model and training pipeline (a GLM-HMM, training an510

individual model per animal and experimental session), with511

very similar results (61).512

Most importantly, the internal states revealed in this manner513

mapped robustly onto behavioural trial outcomes (i.e. hit,514

wrong and miss trials) - even though this information had515

been in no way part of the inputs the MSLR received. This516

suggests that the hidden states highlighted by the MSLR were517

not simply ’computational devices’ increasing the model’s518

predictive power. Instead, they appear to reflect genuine, dy-519

namically fluctuating cognitive states, which result in distinc-520

tive behavioural outcome profiles.521

Interestingly, despite the fact that the optimal number of522

states was determined separately for each species and in a523

purely data-driven way, our approach converged onto a low524

and noticeably similar number of internal states for both525

species: three states for mice, four for macaques. How com-526

parable are these internal states of mice and monkeys?527

We found that in terms of the dynamics by which animals528

traversed different internal states, results diverged across529

species. Specifically, mice appeared to transition more fre-530

quently between states than monkeys. A control analysis that531

matched the number of subjects, trials and facial parameters532

across species before fitting the MSLR models showed that533

this difference is not a trivial result of divergences in data534

structure (see Fig. S12). Given that mice have previously535

been shown to alternate between strategies during perceptual536

decision-making (43), this finding may point at a genuine dif-537

ference in the cognitive dynamics of mice and monkeys. Al-538

ternatively, the prolonged training time of the monkeys com-539

pared to the mice may have given them the chance to con-540

verge on more stable behavioural strategies over the course541

of training (62, 63). Recordings from mice that experienced542

a more prolonged training scheme and/or from more naive543

monkeys will give fascinating insights into the role of ex-544

pertise in fostering more stable transitions between cognitive545

states.546

Beyond state dynamics, the constellation of behavioural pro-547

files covered by different states was also largely comparable548

across species (64, 65). Each hidden state predicted only a549

narrow range of reaction times; and when relating the in-550

ferred hidden states to task performance beyond the RTs551

that the model was trained to predict, we found that states552

mapped onto the behavioural outcomes (hit, wrong, miss)553

with distinct probabilities. Moreover, each hidden state cov-554

ered unique combinations of RT ranges and trial outcomes555

(hit, miss and wrong trials), despite the fact that trial out-556

comes had not been part of the MSLR in any way. Specif-557

ically, both monkeys and mice display a state where trial558

outcome is typically slow and unsuccessful (which could be559

interpreted as ’inattentive’), as well as several states where560

performance is largely fast and correct, with a preference for561

thoroughness in one state, and a preference for speed (and562

potentially impulsivity) in the other. These states potentially563

map onto various levels of task-related attention, and further564

support the notion that classical concepts of attention can in-565

deed reflect much of the internal structure of goal-directed566

behaviour, also in naturalistic settings.567

The fact that different states are associated with distinct con-568

stellations of facial features points to a role of facial expres-569

sions beyond emotional expression. Facial expressions have570

so far been mostly studied in a social or emotional context,571

and mostly in social species such as monkeys (28, 66) and572

humans (25, 67). In mice, until recently facial expressions573

were thought to mainly reflect pain (29, 68, 69), until careful574

analyses using machine-learning algorithms identified their575

facial expressions as innate and accurate reflections of sev-576

eral emotional states as well (22, 31, 70). Our results suggest577

Tlaie et al. | bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.01.24.577055doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577055
http://creativecommons.org/licenses/by/4.0/


Fig. 5. Informativeness of facial features A) Predictor weights of the facial features for the macaque (top) and mouse (bottom) model in the hit, wrong and miss states (see
black boxes in Fig4B). Central circle indicates a predictor weight of zero, inside this circle are negative predictor weights, outside are positive weights. Each state has its own
characteristic facial expression pattern. B) Variability of all facial features over states. Although some features contribute more than others, clearly all features contribute to
the model distinguishing between the various internal states.

that similarly to humans, facial expressions in monkeys and578

mice also convey cognitive and motivational variables such579

as focus or cognitive strain, even in the absence of a particu-580

lar emotional or social context.581

The fact that such performance-related states are equally ap-582

parent in both species is particularly surprising, since one583

can assume that the prominent differences between the two584

species (such as the acuity and dominance of their visual585

system) would imply that they are likely to solve tasks us-586

ing different strategies. Yet both species are subject to task-587

independent internal states, such as slow fluctuations in at-588

tention (52–54, 59). We believe that the internal states we589

tap into with the current approach are more reminiscent of590

such fluctuations, and as such, can be important indicators591

of underlying brain-wide activity fluctuations. Global in-592

ternal states such as arousal, motivation, and attention typ-593

ically manifest themselves via brain-wide dynamics, and it594

will be an exciting endeavour to investigate how well those595

neuronally defined internal states correspond to the ones we596

here identified behaviourally.597

The MSLR model that we used yielded single estimates of598

the internal states per trial. This constitutes a great basis for599

time-resolved tracking of internal states, which can be further600

extended in future, using MSLR models with higher temporal601

resolution. Such MLSR models will be able to align identi-602

fied internal states with specific events within each trial, such603

as the appearance and disappearance of stimuli, thereby al-604

lowing for more precise characterisation of their dynamics605

and functional roles.606

Perhaps even more importantly, such a time resolved MSLR607

would also allow us to link cognitive processes to neural ac-608

tivity on a moment by moment basis, without the need for609

repeatedly presenting identical trials and then doing exten-610

sive post-hoc averaging. As the MSLR model yields a time-611

resolved estimate of cognitive states, these time courses can612

be directly compared to continuous neural activity. As such,613

this approach opens up a much more naturalistic view of the614

neuro-behavioural dynamics involved in spontaneous cogni-615

tive states than traditional approaches can offer (44, 71).616

These findings suggest that in an ecologically valid frame-617

work that applies across species (in this case, a foraging-618

based task set in a naturalistic, immersive visual environ-619

ment), many features of cognitive processing are more sim-620

ilar than classical paradigms might have suggested. At the621

same time, presumably genuine cross-species differences,622

e.g. in the transition frequency between cognitive states, also623

become more apparent.624

In summary, we have shown here that in both monkeys and625

mice, facial features can be used to infer internal cognitive626

states, and to track their spontaneous dynamics over time.627

With this approach, we find that the basic attributes of such628

internal states map onto known cognitive states such as at-629

tention in both species in a translatable way, but that the dy-630

namics by which mice and monkeys traverse these states is631

somewhat different. This highlights the crucial importance of632

using naturalistic behavioural paradigms, especially in cross-633

species research, in order to discern truly species-specific re-634

sults from differences induced by restrictive testing methods.635
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E Relationship to facial features

Methods869

Animals. This study includes data from two male macaques (Macaca mulatta) and six male Black6 mice (Mus musculus).870

All procedures were approved by the regional authorities (Regierungspräsidium Darmstadt) under the authorization number871

F149/2000 and were performed in accordance with the German law for the protection of animals and the "European Union’s872

Directive 2010/63/EU".873

Surgical Procedures. All animals were fitted with custom-milled headposts for the purpose of head fixation during this874

experiment. The headpost design and implant procedures for the macaques have been extensively discussed in (72). Briefly, a875

four-legged titanium baseplate was screwed into the skull under general anesthesia. After several weeks of osseo-integration,876

a titanium top part was screwed onto the baseplate in a simple procedure. The headposts for the mice have been described in877

(73). Briefly, the animal was placed under isoflurane anaesthesia, shaved and given local analgesia on the top of the head. An878

incision was made and the skin on top of the cranium was removed, before the cranium was cleaned and the custom milled879

titanium head plate was attached using dental cement.880

Experimental Setup. Experiments were carried out in a darkened room (mice) or electrically shielded booth (monkeys). The881

animals were in the centre of a 120-cm diameter spherical dome extending to 250 deg visual angle. The headfixed mice were882

positioned on a styrofoam spherical treadmill; the headfixed monkeys were seated in a monkey chair and could spin a 12-cm883

diameter trackball with their hands. Movements of the spherical treadmill and trackball allowed the animals to traverse a virtual884

reality (VR) environment projected on the inside of the dome by means of a spherical mirror. Projecting the VR environment885

on a dome surrounding the animals enabled both their central and peripheral view to be covered, thereby providing an immer-886

sive and realistic VR environment. The VR environment was created using DomeVR, our custom-made toolbox combining887

photorealistic graphics rendered with Unreal Engine 4, with high timing precision required for neuroscience experiments (16).888

Experimental Paradigm. Mice and monkeys were required to distinguish two natural shapes at equal distance in front of them,889

amidst a grassy field with a blue sky above and mountains in the background (Fig 1A). The two shapes emerged out of a central890

shape which was either right at the starting position (for monkeys) or a short distance in front (for mice). A virtual collision891

with the correct shape yielded a reward (’hit’), whereas the incorrect shape yielded no reward (’wrong’), and no collision with892

either shape also yielded no reward (’miss’) (2AFC paradigm). Rewards were drops of diluted juice for the monkeys and drops893

of vanilla soy milk for the mice. For the monkeys, the shapes varied smoothly between a non-rewarded, textured square and a894

rewarded triangle (monkey K) or between a rewarded, jagged and a non-rewarded, hour-glass shaped leaf (monkey C). On each895

trial, a blend between the two shapes was shown alongside the exact middle blend (’reference shape’). For the mice, the shapes896

and their reward contingencies were the same as for monkey C.897

Monkey data were recorded in 7 sessions for monkey C, 11 sessions for monkey K. Each session lasted about one hour, during898

which the monkeys completed 1208 ± 186 and 991 ± 492 trials at 67 and 77 percent correct (monkeys C and K, respectively).899

The monkeys were both fully trained on handling the trackball to move through the VR environment, as well as the VR task.900

Mouse data were recorded in (12,4,6,3,2,2) sessions for mice (001, 003, 004, 005, 012, 013), respectively. Each session901

lasted about one hour, during which the mice completed (280 ± 103,514 ± 70,573 ± 112,246 ± 87,462 ± 8,394 ± 87) trials at902

(59,54,60,77,45,63) percent correct (same mice ordering as before). Following the headpost surgery, the mice were handled903

for 5 days to reduce experimental anxiety due to head fixation and interaction with the experimenter, before behavioural training904

began. Behavioural training in the experimental setup at initial stages lasted between 3-5 sessions, before final data collection905

began, which lasted up to 30 sessions.906

Behavioural tracking. We recorded videos of the monkeys’ and mice’ faces during the tasks at 60 Hz907

using Basler acA640-121gm infrared cameras with a modified version of PylonRecorder2 software908

(https://gitlab.mpcdf.mpg.de/mpibr/scic/pylonrecorder/PylonRecorder2). Additionally, in the monkeys, eye movements909

were recorded at 500 Hz using a Grasshopper3 infrared camera and the free eye tracking software iRecHS2 (74) and910

synchronized with DomeVR (16).911

Facial key point extraction. To extract facial key points from the videos, we used markerless pose estimation on them, as912

implemented in DeepLabCut (17, 75). For mice, features were extracted from videos of the left side of the face using our own913

model to identify key points such as the coordinates of the eye, whisker pad and nose. For mouse pupillometry, we used the914

eye coordinates from the face model to crop the video to include the entire left eye and ran it through a refined model based on915

the "mouse pupil vclose" Animal Zoo model (provided by Jim McBurney-Lin at the University of California Riverside, USA)916

included with DeepLabCut. The output of the pupil model was 8 points covering the circumference of the mouse pupil, that917

were then used to calculate pupil and eye summary statistics.918

For the macaque facial key points, we used the pre-trained "primate face" model from the DeepLabCut Animal Zoo (provided919

by Claire Witham at the Centre for Macaques, MRC Harwell, UK) and extended it with additional points on the lips to capture920
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more precise mouth movement than in the original model. All models were further trained and refined to achieve a detection921

error of less than 2 pixels per tracked key point in all conditions. The macaque raw pupil size recorded by the eye-tracker was922

Z-scored over time within the training data set.923

To synchronise the video timing with events in the virtual reality environment, we used 32 ms long infrared flashes emitted924

from an LED mounted near the camera lens. These flashes were then extracted from the face videos to be used as timestamps925

for synchronisation with DomeVR. Five consecutive flashes indicated the start of a behavioural session; a single flash indicated926

the start of a trial.927

Reaction Time. In our VR setting, where animals move towards one of two stimuli rather than pressing a button or lever,928

or making an eye movement, we define the reaction time (RT) as the time point of the initial substantial movement directed929

towards either stimulus. While determining this time point, it is crucial to distinguish between stimulus-related movements930

and minor positional adjustments. We specifically focus on the first deviation in lateral movement, while excluding forward931

movement due to its susceptibility to random movements and its task irrelevance.932

Fig. S1. Reaction Times. Distribution of Reaction Times for macaques (A) and mice (B), split by behavioral outcome; data are pooled over sessions (n = 18 and n = 28
for macaques and mice, respectively). The three distributions largely overlap.

To calculate the RT, we use a sliding window linear regression approach, incorporating a time decay mechanism. This approach933

enables us to detect non-linearity by examining the coefficient of determination (R2) for each window. A low R2 value indicates934

that the data deviate from linearity, and such a deviation can be interpreted as a deviation in lateral movement.935

First we compute a linear regression on the time series of lateral VR movement for adjacent sliding windows i and j of a given936

size (nw). Then, R2
i (i.e., R2 for window i) is calculated as:937

R2
i = 1−

nw∑
j=1

(
lj − l̂ij

)2

nw∑
j=1

(
lj − l̄

)2
(2)

where lj is the jth element of the lateral movement observed in the second window, l̂ij is the corresponding predicted lateral938

movement value (based on window i) and l̄ is the mean lateral movement within the second window. As a result, we get an939

array of R2 values: R2 = [R2
1, . . . ,R2

n].940

Subsequently, we reverse the sign of the −R2 array and detect its local maxima. For this, we resort to the definition of extreme941

points (we have a univariate function in this case):942

L = argmax
w

[
d2r(w)

dw2

]
(3)

where we have simplified the notation, using −R2 ≡ r(w). Once we have found the local maxima (L), we further require that943

they have a minimum prominence (λ). Prominence is a measure of the significance of a peak by comparing the peak to its944

surroundings:945

λi = r(w0)−max
[
r(bl,i), r(br,i)

]
,

bl,i = argmin
j∈[0,L0]

[
r(wj)

]
,

br,i = argmin
j∈[L0,n−1]

[
r(wj)

] (4)
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E Relationship to facial features

where r(w0) is −R2 at L0 and bl and br are the arrays of left and right bases of the peaks; we are making use of the notation946

by which r(w) ≡ −R2.947

For each peak in r(w), we calculate the prominence and discard the ones that are below a given threshold (λ0). The particular948

value for this threshold was not critical for the overall performance of the algorithm. For the sake of stability, we use multiple949

window sizes (100, 150, 200 and 250 ms) and combine the results in the following way. For each window k, we have an array950

of candidate points (xk
cand). Then, we create a vector of weights (wk ∈ Rn) that have a value equal to a Gaussian distribution951

centered around each candidate point of each window. Mathematically:952

wk(x) =
{

N (x−xk
cand,σ) if x ∈ Bk

cand

0 otherwise

where Bk
cand denotes the vicinity of each point in xcand for window k. Finally, the RT is given by:953

RT = argmax
x

[(∑
k

wk(x)
)/

x

]
(5)

Fig. S1 shows the distribution of RTs split by trial outcome over sessions, for both species; Fig S2 shows example paths and954

detected RTs for both species.955

Fig. S2. Example VR paths Paths are colored according to the normalized running speed. A) Example paths for macaques, with the detected RT as circles. B) Same, but
for mice.

Facial features. The extraction of the predictors for the MSLR model involves a multi-step process to go from continuous956

recording time (60 Hz for video data and 500 Hz for the macaque eye-tracker) to trial-based predictions.957

First, we chose several points of interest on the animals’ faces, which are then automatically identified and tracked over time958

using DeepLabCut (17):959
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• Macaque: both ears, eyebrows, nostrils and lips (see Fig. S3 A).960

• Mouse: nose tip, left ear, left eye and median whiskers location (since we have a side view of the face, see Fig. S3 B).961

A B

C

D

Fig. S3. Face features. A) Example frame of the macaque face camera. We have marked the key points that we used as the raw data for our pipeline. For this animal, we
track a total of 73 key points. Some of them will be aggregated into centroids of interest, to minimize the influence of noise. B) Same as A), but for the mouse. In this case,
we also have a separate model for tracking pupil changes. C) Two example traces of a common feature for both species, over time. D) As described in the Methods, we use
trial summaries for each of the face features of interest. Here, we show all of them, after having preprocessed them, for an arbitrary selection of 300 trials.

Once the data streams were aligned, we computed the median location (x,y) of each facial point over the 250 ms window before962

the stimuli appeared on the dome. This time window was chosen to make sure that all of the facial expressions of the animals963

are due to internally generated processing, rather than stimulus processing. Different window sizes (particularly: 200,300 and964

500 ms) did not yield any qualitative difference. In addition to the median location, we also computed the total velocity of each965

facial point.966

For both species, we further computed the median pupil size over the same time window. Pupil size is a well-known indicator967

of arousal and cognitive load, and thus provides valuable information about the internal state of the animal.968

This resulted in a set of data points for each trial, corresponding to the median vertical and horizontal location, and total velocity969

of each of the facial features. These data points serve as the predictors for the MSLR model.970

Markov-Switching Linear Regression. Markov-Switching Linear Regression (MSLR) models, which we ran using Dyna-971

max (76), are a powerful tool for modeling time series data that exhibit regime-switching behaviour, where the underlying972
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E Relationship to facial features

dynamics of the system change over time.973

The MSLR model is defined by a set of linear regressions, each associated with a particular state of a discrete Markov chain.974

The state of the Markov chain determines which sets of weights and biases predicts the evolution of the observed data at each975

time step. The transitions between states are governed by the transition probabilities of the Markov chain, which are learned976

from the data.977

Formally, an MSLR model can be described as follows. If S is the total number of latent (discrete) states of a Markov process,978

at each time step t, a given state zt

(
∈ {0,1, ...,S}

)
will follow a Markovian evolution such that:979

P (zt+1 = j|zt = i) = πij (6)

As these are stochastic matrices, πij ∈ [0,1].980

Let the M−dimensional input time series at time t be denoted by xt

(
∈ RM

)
. Let the N−dimensional output time series at981

time t be denoted by yt

(
∈ RN

)
. Then, in the case of a MSLR, the discrete latent variable at time t (zt), will dictate which982

emission weights (W ∈ RN×M ) and emission biases (bs ∈ RN ) we will use to predict the outputs (emissions) based on the983

inputs (predictors). Moreover, an emission covariance matrix (Σs ∈ RN×N
⪰0 ) will also have to be learnt. Explicitly, at time t,984

the emission distribution in this model is given by:985

p(yt | zt,xt,θ) = N (yt | Wztxt + bzt ,Σzt) (7)

Therefore, the problem of fitting this model amounts to finding the set of emission parameters denoted by:986

θ =
{(

Ws, bs,πs,Σs

)}S

s=1
(8)

In other words, the aim is to find the weights (Ws) and biases (bs) for the linear regressions and the transition πs and covariance987

Σs matrices for the Markov process.988

In our case, the discrete latent variable (zt) represents the internal state of the animal at trial t, which is inferred from the facial989

features (xt) extracted using DeepLabCut (17) and the observation (yt) that represents the RT of the animal. We trained the990

MSLR model using the Expectation-Maximization (EM) algorithm (77), which iteratively computes the probability over latent991

states given the data and updates the model parameters to maximize the likelihood of the observed data. For further details, we992

refer the reader to (78). We iterated the EM algorithm for 50 times, for all models. We initialized the model parameters using993

a normal distribution for weights and biases and we used the identity matrix as the initial covariance matrix for the emissions.994

We assumed a Dirichlet prior for the transition matrix. We repeated this process 10 times to increase confidence that we got the995

optimum value for each combination of parameters.996

Training and inference. We used an 80 : 20 ratio for train-test splitting and performed hyperparameter optimization by cross-997

validating the training set only (see Model tuning for details on CV and model selection). For each species, we concatenated998

the training sets of all sessions, with forced transitions in between the sessions (setting predictors and emissions to 0 for 50999

consecutive trials), so that state probabilities are reset. Then, after optimizing each model, we performed inference on each held1000

out test set (separately per session). We decided to take this approach for various reasons:1001

• Model generalization: as the model learns from potentially different faces, it is likely that it can pick up on common1002

information between them.1003

• Model interpretability: given that we do not update the model parameters at the inference step, all internal states have the1004

same meaning over subjects and, thus, are directly comparable.1005

• Better convergence: increasing the number of training samples (i.e. concatenating sessions as opposed to training a1006

different model per session) allows the model to have more data to learn from.1007

All of the results in the main text, unless otherwise stated, are for held out data.1008

Model tuning. For the model we described in Markov-Switching Linear Regression, there are several parameters that can be1009

tuned to explain the data better. In our case, we decided to explore the influence of changing the maximum number of internal1010

states (S), to add sticky transitions to the Markov process (a self-bias term in the transition matrix π, making states taking1011

longer to transition to a different one), and to vary the transition matrix sparsity (concentration).1012

In order to balance model performance with scientific insights, we took a hybrid approach. We increased the number of internal1013

states in a greedy way, to show that the error saturates and that there are diminishing returns when increasing model complexity.1014

On the other hand, for a given number of states, we optimized two free parameters of the Markov process: state stickiness and1015

state concentration. For the sake of efficiency, we used Optuna (79), a flexible framework to implement Bayesian optimization.1016

In Table 1 we report the relevant quantities for this process.1017

To select the best combination of parameters, we performed 5-fold Time-Blocked Cross-Validation (80).1018
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Parameter Value

Concentration [0,100]
Stickiness [0,100]
Sampler CMA-ES (81)
Objective function R2

Number of Searches 100

Table 1. Parameter values for the Bayesian parameter optimization procedure. These are independently explored for each number of internal states of the HMM.

Synthetic data and ground truth states. In order to validate the retrieval of states when we do not have access to ground1019

truth ones, we generated a time series of ground truth emissions and states based on the given inputs (by using the same1020

input data as in the main text). To this end, we trained an MSLR model with a known given number of states and sampled1021

some emissions and states sequence from it. We aimed to recover the appropriate number of states with the correct temporal1022

sequence, and to correctly predict the emissions. Figure S4A illustrates the input data (composed of session-concatenated1023

mouse facial features, as described in the main text). In Figure S4C, we show that, once we have selected the appropriate1024

number of states, the model’s log-probability does peak at the ground-truth one (dashed vertical line). In Figure S4D, we show1025

a comparison between the true and the inferred states, for some example trials. Although the temporal coincidence of the state1026

transitions is very high, due to the stochastic nature of the model, some state labels might be permuted (i.e., state 1 in our1027

model might correspond to state 0 in the ground truth states). Therefore, in order to quantify state similarities and to account1028

for state-swapping, we one-hot encoded the true and predicted states sequences and correlated all pairs with each other (Figure1029

S4D). There is an almost perfect match (ρ(strue,spred) > 0.9) between the true and inferred states (the 99th percentile of the1030

surrogate correlation distribution was 0.12).1031

A B

DC

Fig. S4. Synthetic states and emissions. A) Performance when varying the number of states. We are able to recover the number of states (vertical dashed line) that
generated the ground truth emissions. B) For the selected number of states, log-probability of the fitted parameters; it converges to the ground truth value (horizontal dashed
line). C) Some example trials for the true and predicted states. State transitions are correctly captured, but state labels might be permuted. D) Temporal correlation between
the one-hot encoded state arrays. There is an almost perfect match in between the predicted and the true states arrays, up to a label permutation.

ARHMM. As we wanted to ensure that facial features were indeed informative of reaction times (RTs) beyond what is to be1032

expected by the RT autocorrelation structure, we implemented an Auto-Regressive Hidden Markov Model (ARHMM). In this1033
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E Relationship to facial features

case, we used the same pipeline as we detailed in the previous sections, but substituted the facial features at the current trial t1034

for the RT of the previous trial (t − 1). As it can be seen from Fig. S5, the facial features model outperforms the ARHMM for1035

all states, for both species.1036
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Fig. S5. Comparison of the MSLR face model and the reaction time Auto-Regressive HMM. Both face feature models outperform their Autoregressive counterparts, for
any number of internal states that we swept over. Nevertheless, it can be seen that the performance gap is smaller in mice than in macaques. This is consistent with the
finding that mice are more history dependent than macaques (See Fig. 5 D).

Task performance and internal states. We were interested in investigating whether the inferred internal states were corre-1037

lated with task performance, even though the model had not been trained on such information. We therefore used the predicted1038

single-trial state probabilities to decode choice, using a simple Logistic Regression model, with a L2 penalty term. After veri-1039

fying that the model does indeed classify outcome beyond chance level (Fig. S6), we took the weight of each state as a proxy1040

for how related it was to each outcome.1041
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Fig. S6. Inferred state probabilities decode outcome beyond chance. We used a normalized version of Mutual Information that already takes chance level into account
and sets that as 0.

Supplementary figures1042
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Fig. S7. Input variable correlation. We show that, out of all of the original variables (in lighter colors), we end up discarding one per animal (Left Eyebrow [y], macaques;
Eye movement, mice), given that they were highly multi-colinear with some of the other predictors, as measured by the Variance Inflation Factor (VIF). After discarding them
and recomputing the VIF, we did not find any alarming colinearity.

Fig. S8. Face features importance for State B in macaques.

Fig. S9. No-switching model performances. If we assume there is a simple linear relationship (i.e. we do not allow for any switching) between the face (or the pupil) and
the Reaction Time, the test performance is back at chance level.

Fig. S10. Finite difference performance curves. We selected the number of states that was given by the maximum relative gain in performance, computed as the finite
difference in Cross-Validated R2.
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E Relationship to facial features

A

B

Fig. S11. Facial features and task history correlations, for macaques (top) and mice (bottom): time spent in session, cumulative reward in the session, the correct stimulus
switching from being the left to the right one compared to the previous trial and vice versa, and whether the previous trial had been rewarded or not. Those highlighted in
colour are significantly correlated.

Matched
Full model

Matched
Full model Matched

Matched

Fig. S12. Matched models. Our main findings still hold if we match the number of predictors, trials and animals we use in each species.

Fig. S13. Simplified face features weights.
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Fig. S14. Predicted and true RTs for all sessions, for the held out test set. For both species, true RTs are shown in gray; for mice, predicted RTs are shown in orange; for
macaques, predicted RTs are shown in blue. Each subplot is titled with that session’s model performance (R2).

Fig. S15. RTs over states for all sessions, for the held out test set. For mice, distributions are shown in orange; for macaques, distributions are shown in green-blue.
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E Relationship to facial features

Fig. S16. Most likely states for all sessions, for the held out test set. For mice, states are shown in orange; for macaques, states are shown in green-blue.
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