
  

  

Abstract— Gender differences in terms of structural and 

functional organization of the human brain have been 

extensively studied, but existing works have mostly been limited 

to single modalities.  In this paper, we propose a graph attention 

network architecture (BrainGAT) that uses informative subject-

level features extracted from multimodal brain graphs to 

construct a population graph for gender classification. We show 

that while the extracted subject-level features can be directly 

used for classification, using these graph embeddings to 

construct a population graph further improves model 

performance. On the gender classification task, BrainGAT 

outperforms baseline models and existing multimodal modeling 

approaches, achieving an accuracy of 83.13% on the Human 

Connectome Project dataset. Salient connections highlighted by 

BrainGAT include connections between the inferior parietal and 

dorsolateral prefrontal areas of the cortex for females, while 

connections within the posterior cingulate cortex are highly 

salient for males. In sum, BrainGAT enables multimodal data to 

be modelled via population graphs in a parameter-efficient way. 

 
Clinical Relevance— Several neurological conditions exhibit 

significant differences across genders and multimodal studies on 

these diseases are increasingly prevalent. This work highlights 

gender differences of multimodal connectomes in neurotypical 

settings. These insights could help to separate multimodal 

disease biomarkers from fundamental gender differences. 

I. INTRODUCTION 

Neuroimaging methods are widely used to study the 
human brain and much attention has been devoted to 
identifying the neural basis of behavioural differences across 
genders. Elucidating the differences between the male and 
female brain is a key problem in neuroscience due to its impact 
on any downstream analysis tasks such as disease biomarker 
discovery. For instance, autism spectrum disorder is more 
prevalent in boys [1], while major depressive disorder is more 
common in females [2]. Whether this phenomenon is due to 
fundamental gender differences is unclear as the notion that 
sexual dimorphism even exists still remains controversial [3]. 
Nevertheless, it is clear that some differences exist across 
genders and more work is needed to fully understand their 
significance, especially in multimodal settings. 

One key limitation in most existing studies is their focus 
on a single neuroimaging modality. Biological systems like the 
brain are more completely described by combining structural 
and functional analysis. For example, structural MRI (sMRI) 
captures anatomical details while functional MRI (fMRI) 
captures the dynamics of brain activity via measuring changes 
in blood oxygenation. Studies using a single modality neglect 
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cross-modal interaction effects. However, the scarcity and 
complexity of neuroimaging data makes multimodal analysis 
challenging as models tend to overfit on such datasets.  

Existing multimodal neuroimaging analysis [4], [5] 
typically combines diffusion tensor imaging (DTI) and fMRI, 
which can be represented as structural connectivity (SC) and 
functional connectivity (FC) matrices. Recent works on 
training deep learning models on such connectome datasets 
have converged towards the use of graph neural networks 
(GNN). GNN is an intuitive fit to connectome datasets as these 
data are fundamentally graphs. It alleviates the overfitting 
problem by significantly reducing the number of model 
parameters, relative to alternatives such as vanilla deep neural 
networks [6] or convolutional neural networks  customized for 
connectivity matrices [7].  

There are three main approaches of constructing graphs 
from connectome data. Firstly, brain graphs represent each 
subject as separate graphs and capture intra-subject correlation 
between regions of interest (ROIs) [4]. Secondly, population 
graphs represent a group of subjects as a single graph, thus 
modelling inter-subject correlation. [8] It uses similarity 
between subjects as the graph edges and vectorized FC 
matrices (which tends to be very high dimensional) as the 
subject’s feature vector. This approach is not scalable to 
multiple modalities especially when feature selection is not 
desirable (e.g., in biomarker discovery, feature importance 
needs to be assessed across all features). Lastly, a recent work 
[9] proposed a method that considers both brain and 
population graph, but is limited to a single modality. 

In this work, we propose BrainGAT, a novel GNN 
architecture that incorporates both brain and population graphs 
to perform gender classification from DTI and fMRI datasets. 
Inspired by [8], our method improves it by enhancing the 
subject feature quality of the population graph. Unlike existing 
work, BrainGAT enables both SC and FC matrices to be used 
simultaneously, allowing cross-modal interactions to be 
considered. Our method outperformed baselines approaches as 
well as existing multimodal modelling [4] and dual graph [9] 
approaches. Ablation studies reaffirm the value of combining 
brain graphs and population graphs in both single modality and 
multimodal settings. BrainGAT also provides a way to identify 
salient connections in the male and female brain that considers 
the influence of SC on FC. The generated insights are different 
from existing studies performed on single modalities, 
potentially revealing novel findings that should be further 
verified in future multimodal studies. 
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II. METHOD 

We propose a two-stage early fusion method, as shown in 
Fig. 1, for classification based on two graph attention networks 
(GAT) [10]. In population graphs, the quality of subject 
features is crucial. Directly using high-dimensional single-
modality data as subject features for population graph misses 
out on the cross-modal interaction effects. Therefore, it is 
desirable to encode a holistic representation of each subject’s 
connectome by using multiple modalities. This introduces a 
new design question of the best way to aggregate the 
multimodal information. Simply concatenating data from 
multiple modalities increases the dimensionality of the subject 
feature, resulting in severe overfitting. Our method uses a 
multimodal brain graph for subject representation learning, 
which incorporates information from multiple modalities. 

The stages of our method are: 

1. Subject-level representation learning 

2. Population graph construction and classification. 

The subject representation learning stage performs early 
modality fusion and extract subject representations that are 
informative and have a reduced dimension. The extracted 
subject representation is used for population graph 
construction, where node classification is used for the final 
classification. 

A. Subject Representation Learning  

We assume there are 𝑛 ROIs for fMRI and DTI data. We 
construct a brain graph 𝐺𝐵(𝑉𝐵 , 𝐸𝐵) using row vectors of FC 
matrix (fMRI) data as graph nodes and inter-node SC (DTI) 
strength as node edge weights. Node features are encoded in a 
feature matrix 𝑋𝐵 ∈ ℝ𝑛×𝑛 whereby each 1 × 𝑛 vector is the 
feature vector for an ROI. Edge weights are encoded in an 
adjacency matrix 𝐴𝐵 ∈ ℝ𝑛×𝑛 whereby each element 
represents the SC strength between ROI pairs. We can use 
typical graph attention convolutions for feature learning. (1) 
defines the graph attention convolution operation on feature 𝑋, 
where Θ denotes the layer weights, 𝑎 denotes the weights of a 
single-layer feedforward neural network for attention 
mechanism, 𝒩(𝑖) denotes the neighborhood of a node 𝑖 in the 
graph. 

𝑋′ = α𝑖,𝑖Θ𝑋𝑖 + ∑ α𝑖,𝑗Θ𝑋𝑗𝑗∈𝒩(𝑖)                   (1) 

The attention coefficients αi,j are computed as 

α𝑖,𝑗 =
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⊤[Θ𝑋𝑖|| Θ𝑋𝑗]))

∑ 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⊤[Θ𝑋𝑖|| Θ𝑋𝑘]))𝑘∈𝒩(𝑖)∪{𝑖}
           (2) 

Global average pooling is applied after the last graph 

convolution to obtain the subject representation 𝑆 ∈ ℝ𝑛×𝑑.  

Let 𝑦̂𝐵  denote the predicted value and 𝑦 be the ground 
truth. The subject representation extraction network is learned 
using the ground truth value of the subjects and cross-entropy 
loss on softmax activation output of the subject representation.  

B. Population Graph Construction and Classification 

Using the learned subject representation, we construct a 
population graph 𝐺𝑃(𝑉𝑃 , 𝐸𝑃). The node feature matrix is 𝑆, 
whereby each row is the learned representation of a particular 
subject. The edge weights 𝐴𝑃 ∈ 𝑅𝑛×𝑛 represents the similarity 
between subject pairs. It is calculated using the similarity 
function defined in (3), where 𝑐𝑜𝑟𝑟(∙,∙) computes the Pearson 
correlation coefficient for the two vectors. 𝑖𝑉𝑀 is the brain 
volumetric measures of subject 𝑖, which is the concatenated 
vector of total intracranial volume, grey matter, and white 
matter. These features are used to account for the effects of 
brain size differences on discovering male-female differences 
[3]. 𝑖𝑆𝑅 is the subject representation extracted from the brain 
graph. Graph convolutions stated in (1) are applied onto 𝑆 with 
𝐴𝑃. Graph node classification is used to obtain individual 
subject prediction. Similar to subject representation learning, 
the population graph also learns using the ground truth value 
of the subjects and cross-entropy loss on softmax activation 
output. 

Sim(i,  j)  =  
𝑐𝑜𝑟𝑟(𝑖𝑉𝑀,𝑗𝑉𝑀)+𝑐orr(iSR,jSR)

2
             (3) 

C. Decoding 

Decoding is done to obtain the saliency score for each 
feature (ROI). We performed decoding for both gender classes 
to identify features contributing the most to the classification 
decision. The saliency score indicates the importance of the 
feature to the classification task, such that a high saliency score 
(in terms of magnitude) implies a higher contribution from the 
feature. The saliency scores are obtained using the integrated 
gradients method [11]. 

Given a function 𝐹 representing a deep neural network that 
maps input 𝑥 to prediction 𝑦̂, the saliency score 𝑆𝑆 for feature 
𝑖 of 𝑥 is given by 

𝑆S𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖

′
) × ∫

𝜕𝐹(𝑥′+𝛼×(𝑥 − 𝑥′))

𝜕𝑥𝑖

1

𝛼=0
𝑑𝛼       (4) 

where 
∂F(x)

∂xi 
 is the gradient of 𝐹(𝑥) along the 𝑖𝑡ℎ dimension 

and 𝑥′is the baseline of input 𝑥. The saliency score for an 

input feature 𝑖 is the 𝑖𝑡ℎ dimension of average saliency scores 
across all samples from the same class. In this study, saliency 
scores are aggregated across the class but it is possible to do 
the analysis at the level of individual patients by producing 
personalized disease biomarkers. 

Figure 1. BrainGAT architecture 
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III. EXPERIMENTS 

A. Dataset 

The pre-processed HCP S900 version of the dataset was 
used in this study, involving 638 healthy young adults (283 
male, 355 female) [12]. To generate the FC matrix, the Glasser 
atlas [13] was used to delineate 360 ROIs, and the time series 
of voxels within 2.5mm of the ROI were averaged. Pearson 
correlation coefficient is then computed on these 360 mean 
time series to obtain a symmetric functional connectivity 
matrix for each scan. Subjects in the HCP fMRI dataset often 
took multiple scans (ranging from 1 to 4). Each scan lasted for 
15 minutes and subjects were told to keep their eyes open 
while keeping their gaze fixated on a screen with a white cross 
on a dark background. For the SC matrices, data processed by 
[14] were used. These matrices were also generated based on 
the Glasser atlas, thus producing SC matrices with 360 ROIs. 
These matrices were then used to build the brain graphs. 

B. Implementation Details 

We tuned the model hyperparameters using 5-fold cross-
validation. These include: 1e-3 to 5e-3 for learning rate, 1e-4 
to 5e-4 for weight decay in both training stages, 0.1 to 0.7 for 
dropout rate, and GNN layers including graph convolutional 
network (GCN), Chebyshev GCN and GAT. For both subject 
representation extraction network and population graph, we 
used a network architecture of 2 GAT convolution layers, each 
with 3 heads, exponential linear unit activation, and one linear 
layer. We used the Adam optimizer with weight decay of 3e-4 
and a dropout rate of 0.5 for all layers. All networks are trained 
for 100 epochs with a batch size of 16 and 32 hidden channels. 
The subject features extracted from subject representation 
extraction networks have a dimension of 96. The experiments 
were done on an Nvidia P100 GPU. 

C. Experiment Results 

 We compared BrainGAT against logistic regression, 
dGLCN [9], and Joint-GCN [4]. For logistic regression, we 
applied both L1 and L2 regularization, with a ratio of 0.5 and 
a regularization strength of 1.0. The implementation of 
dGLCN and Joint-GCN are from the author’s published code. 
Our benchmarking results are presented in Table I. We show 
our method outperforms the second-best performing method 
by a large margin of 4.85%. The result for dGLCN on HCP 
dataset is unavailable as dGLCN requires the whole training 
set to be loaded as one batch. Considering the 360 × 360 SC 
and FC matrices, dGLCN would require over 62GB of GPU 
memory, which exceeds our GPU memory limit.  

D. Ablation Studies 

We conducted ablation studies on the design components 
of our method in Table II. Here, fMRI and DTI refers to using 
the two neuroimaging methods as modalities to construct the 
GNN. Brain refers to using brain graph and Population refers 
to using population graph for prediction. When only one 
modality is used for brain graph, it refers to using a single 
modality for both subject features and graph edges. When both 
fMRI and DTI are checked for brain graph, fMRI is used to 
construct the graph node vector and DTI is used as the graph 
edge weights. For methods using only population graph, the 
modality data is directly vectorized to form the subject feature. 
Our proposed method corresponds to the last row, where all 
design components are checked.  

 

TABLE I.  COMPARISIONS WITH BASELINES AND EXISTING WORKS 

Method Accuracy (%) 

Logistic Regression 78.28 (2.29) 

dGLCN [9] OOM 

Joint-GCN [4] 77.81 (2.19) 

BrainGAT 83.13 (1.44) 

TABLE II.  ABLATION STUDIES FOR GENDER CLASSIFICATION TASK 

fMRI DTI Brain Population Accuracy (%) 

    79.69 (2.26) 

    55.47 (0.00) 

    82.34 (1.53) 

    57.19 (3.43) 

    55.47 (0.00) 

    55.47 (0.00) 

    80.63 (1.81) 

    83.13 (1.44) 

 

Results from our ablation studies showed that using 
multiple modalities indeed improves the performance when 
using only brain graph or using both brain and population 
graph. This trend, however, does not hold when using only 
population graph. This could be because when using only 
population graph, the subject features are obtained by 
vectorizing the matrices and concatenating them when needed. 
In such a scenario, the dimensionality of the subject feature 
would be 129,240 for HCP dataset if two modalities are used. 
The high feature dimensionality aggravates overfitting, 
causing performance to deteriorate when multiple modalities 
are used for the population graph only baseline. We observe 
that using multiple modalities and using population graph 
improves the model performance, thus elucidating the 
importance of each design component. 

E. Visualisation of Learnt Representations 

Subject feature quality is crucial to the performance of the 
population graph. Our ablation studies in Table II showed that 
using subject features extracted from the brain graph 
significantly increases the performance of the population 
graph as compared to using vectorized data.  

We visualized the subject features using t-SNE [15] and 
the results corroborates our claim. As shown in Fig. 2, subject 
features extracted from brain graph are better separated by 
their class and form two clear clusters, whereas subject 
features directly obtained using concatenated vectorized SC 
and FC matrices show no clear clusters. 

 

Figure 2. t-SNE plots of subject features using concatenated vectorized SC 
and FC matrices (left) and subject representation extracted from multimodal 

brain graphs (right). 
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F. Decoding Results 

Saliency scores were generated for every subject (only the 
subjects in the test split were used) and every feature. The 
baseline was defined as a vector of zeros and the scores were 
generated for each class separately (male and female). Since 
there were 5 folds in the cross-validation setup, 5 sets of scores 
can be generated. These scores are then averaged across all 
folds. Finally, the scores are averaged across subjects to 
generate class-wide saliency scores that show the features 
which are being focused on for the specified class. 

Since the baseline is set as the zero vector, features that 
have high positive salience scores have much larger values 
than zero, while features with high negative salience scores 
have values much lower than zero. Amongst these most salient 
features, there will be some features shared across genders, but 
our key interest is on the differences. Table III and IV 
summarise the top (+ sign) and bottom (- sign) 0.005% of 
features that are different in females and males respectively.  

For females, multiple connections between the inferior 
parietal and dorsolateral prefrontal areas of the cortex had 
highly negative saliency scores, suggesting that these areas 
have relatively lower functional connectivity than others. For 
males, connections within the posterior cingulate as well as 
inferior parietal and lateral temporal cortical regions were 
found to have higher positive saliency scores. Regions such as 
inferior parietal and dorsolateral prefrontal areas of the cortex 
had highly negative saliency scores. 

Overall, many connections identified in our study are 
unique. It could be possible that these regions are only 
elucidated when both SC and FC are considered, and they 
would not have been identified in studies that are limited to a 
single modality. Further research on gender differences using 
multimodal datasets will be needed to ascertain the robustness 
of these gender differences highlighted in our study.  

IV. CONCLUSION 

BrainGAT provides a multimodal modelling approach that 
makes it possible to take in high-dimensional connectome 
features while still retaining the use of population graphs. Our 
method removes the need for feature selection and makes it 
possible to identify salient features – here, we identified key 
gender differences. Future work could extend this analysis to 
analyse gender differences in disease populations, explore the 
utility of intermediate fusion instead of the early fusion 
approach taken in this work, as well as to combine the two-
stage training process into a single stage.  

TABLE III.  SALIENT FEATURES FOR FEMALE SUBJECTS 

Sign ROI_1 ROI_2 Cortical regions involved 

- PFm_L 9a_L Inferior_Parietal, 
Dorsolateral_Prefrontal 

- PGi_R 7m_R Inferior_Parietal, 

Posterior_Cingulate 

- PGi_L 9a_L Inferior_Parietal, 

Dorsolateral_Prefrontal 

- LO1_R LO2_R MT+_Complex_and_Neighboring_ 

Visual_Areas 

+ PGi_R v23ab_R Inferior_Parietal, 

Posterior_Cingulate 

+ PGi_R 10d_L Inferior_Parietal, 
Orbital_and_Polar_Frontal 

TABLE IV.  SALIENT FEATURES FOR MALE SUBJECTS  

Sign ROI_1 ROI_2 Cortical regions involved 

- PGi_R TE1a_R Inferior_Parietal, Lateral_Temporal  

- 8Av_L 9a_L Dorsolateral_Prefrontal 

- A5_R A4_R Auditory_Association 

- PGi_R 9a_L 
Inferior_Parietal, 
Dorsolateral_Prefrontal 

+ POS2_L POS2_R Posterior_Cingulate 

+ PFm_R TE1m_R Inferior_Parietal, Lateral_Temporal 
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