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Abstract 

Human healthy and pathological aging is linked to a steady decline in brain resting state activity 

and connectivity measures. The neurophysiological mechanisms underlying these changes 

remain poorly understood. Making use of recent developments in normative modeling and 

availability of in vivo maps for various neurochemical systems, we test in the UK Biobank 

cohort (N=25,917) if and how age- and Parkinson’s disease related resting state changes in 

commonly applied local and global activity and connectivity measures co-localize with 

underlying neurotransmitter systems. We find the distributions of several major 

neurotransmitter systems including serotonergic, dopaminergic, noradrenergic and 

glutamatergic neurotransmission to explain age-related changes as observed across functional 

activity and connectivity measures. Co-localization patterns in Parkinson’s disease deviate from 

normative aging trajectories for these, as well as for cholinergic and GABAergic 

neurotransmission. The deviation from normal co-localization of brain function and GABAa 

correlates with disease duration. These findings provide new insights into molecular 

mechanisms underlying age- and Parkinson’s related brain functional changes. Combining 

normative modeling and neurotransmitter mapping may aid future research and drug 

development through deeper understanding of neurophysiological mechanisms underlying 

specific clinical conditions. 

 

Abbreviations: rs-fMRI: Resting-state functional magnet resonance imaging; PD: Parkinson’s 

disease; SERT: Serotonin transporter; DAT: Dopamine transporter; VAChT: Vesicular 

acetylcholine transporter; NET: Norepinephrine transporter; PET: Positron emission 

tomography; BOLD: blood oxygenation level dependent; fALFF: Fractional amplitude of low-

frequency fluctuations; LCOR: Local correlation; GCOR: Global correlation; FWHM: Full 

width at half maximum; HC: Healthy controls; TIV: total intracranial volume; SD: Standard 

deviation; BH: Bonferroni-Holm; FDR: False discovery rate 
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Introduction  

Understanding the neurophysiological mechanisms underlying healthy and pathological brain 

aging is an essential component for development of successful prevention, detection, and 

intervention strategies for age-related diseases and cognitive decline. Despite ample evidence 

for age-related decline in various brain functional measures there is only limited understanding 

of the neurophysiological mechanisms underlying these changes. As the interplay of different 

neurotransmitter systems is the major contributor to the blood oxygen level dependent (BOLD) 

signal it is plausible to assume that changes in respective systems also manifest in age-related 

functional alterations as observed using resting state functional magnetic resonance imaging 

(rs-fMRI).  

Most commonly applied rs-fMRI measures estimate either the temporal change in the regional 

amplitude of the BOLD signal as a measure of local activity, or compute correlations of BOLD 

time series across different brain regions as a measure of synchronicity. Previous rs-fMRI 

studies reported aging related reductions in local brain activity primarily in medial and frontal 

regions1–4. These alterations are complemented by reduced local synchronicity in cortical, sub-

cortical, and cerebellar motor structures5 and increased local synchronicity mainly in 

hippocampal and thalamic regions4,6. In parallel, positron emission tomography (PET) studies 

of aging reported reduced serotonergic7–11, dopaminergic12–15, glutamatergic16–18, cholinergic19 

and norepinephrinergic20 neurotransmission whilst evidence for increased availability was 

found for GABAa21 and µ-opioid22 receptors. Whilst both modalities point to complex 

functional re-organization during aging, the relationship between the respective rs-fMRI and 

PET findings remains poorly understood.  

Testing for associations between the regional availability of specific neurotransmitter receptors 

or transporters as derived from positron emission tomography (PET) and rs-fMRI derived 

functional signal has been shown to be a promising way to estimate their impact on the observed 

brain phenotypes23,24. To date, age-related changes in these associations have not been 

systematically addressed. Such age-related changes in co-localization patterns may reflect the 

altered availability or functional decline of cell populations that exhibit the respective 

neurochemical properties. Following this logic, disease related changes in such associations 

would support the notion of respective neurotransmitter systems being particularly affected by 

the respective neuropathology25.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562677
http://creativecommons.org/licenses/by-nc-nd/4.0/


Understanding of typical age-related co-localization changes of brain function and 

neurotransmitter systems can inform the study of pathological deviations from such as for 

example observed in Parkinson’s disease25 (PD). Previous studies provided evidence for 

increased vulnerability of specific neurotransmitter systems in PD including dopaminergic26–31, 

serotonergic32–34, glutamatergic35,36, GABAergic30, histaminergic37, cholinergic38–40, and 

norepinephrinergic41,42 neurotransmission. In our previous work, deviations from normal brain 

function in PD were related to the availability of D2 and 5-HT1b receptors, supporting the 

notion of specific vulnerability of these  neurotransmitter systems25.  However, if and how far 

these PD-related alterations deviate from typical age-related co-localization changes remains to 

be shown. 

To address these questions, we adopt a normative modeling approach to test for aging-effects 

on co-localizations between brain resting state functional measures and underlying 

neurotransmission in a large cohort drawn from the UK Biobank (n = 25,917). We then replicate 

and extend the previous evidence of increased vulnerability of specific neurotransmitter 

systems in PD (n = 58). We test for co-localization of PET-derived distributions for all major 

neurotransmitter systems with commonly deployed rs-fMRI derived activity and connectivity 

measures. 

 

 

Methods 

Cohorts  

We included 25,917 adult subjects from the UK Biobank who were not diagnosed with any of 

the listed diseases (Supplementary Table 1) as a control cohort for normative modeling of aging 

effects. Subjects with psychiatric, cognitive, and neurological disorders with known effect on 

brain structure (like demyelinating diseases or atrophies) and function (like intellectual 

disabilities, psychoactive substance use, or schizophrenia) were excluded. We additionally 

identified a group of 58 subjects from the UK Biobank who were diagnosed with idiopathic 

Parkinson’s disease (ICD-10, G20) before their imaging session. An overview of both groups 

is provided in Table 1. 
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Preprocessing of resting-state functional imaging data 

We used resting-state functional MRI data provided and processed by the UK Biobank (referred 

to as “filtered_func_data_clean.nii”, cf. UK Biobank Brain Imaging Documentation for a 

detailed description43). The pipeline consisted of primary T1 quality control, gradient distortion 

correction, motion correction, grand-mean intensity normalization, high-pass temporal 

filtering, echo planar imaging unwarping, gradient distortion correction unwarping, and the 

removal of structural artefacts via ICA+FIX. Further processing was conducted with SPM1244, 

the FMIRB Software Library (FSL v5.045), and the CONN toolbox46 implemented in MATLAB 

(v2020b). Functional images were transformed into MNI space using a general reference 

template provided by FSL and a subject specific warping image. After resampling (3mm3 

isotropic) and smoothing (Gaussian kernel with 4 mm FWHM), we applied a bandpass filter 

(0.008 – 0.09 Hz) to the BOLD signal, discarded the first five frames to ensure signal 

equilibrium, and regressed out 24 parameters of motion47, as well as the mean signal from white 

matter and cerebrospinal fluid. Distorted images and artifacts were identified by low 

correlations (r < 0.9) between individual and a reference, preprocessed mean rs-fMRI image of 

200 subjects. Visual inspection confirmed that failed spatial normalization or insufficient brain 

coverage in individual images were responsible for low correlation coefficients. We 

additionally excluded data from subjects with excessive in-scanner motion (maximum frame-

wise rotation > 2° and movement > 3 mm). 

 

Measures of local brain activity and synchronicity 

Three complementary maps of brain function, including measures of neuronal activity and 

synchronicity were derived from individual, preprocessed rs-fMRI data using the CONN 

toolbox. As a proxy for spontaneous local neuronal activity, we calculated voxel-wise maps of 

the fractional amplitude of low-frequency fluctuations (fALFF). fALFF is defined as the power 

ratio of low-frequency (0.008 – 0.09 Hz) oscillations to the total detectable frequency range in 

the BOLD signal48. Maps of local and global correlation (LCOR49 and GCOR50) represent 

proxies for both BOLD activity and synchronicity. LCOR is defined as the normalized sum of 

correlation coefficients of the BOLD signal in the voxel of interest with other voxels in its 

vicinity, with distances weighted by a Gaussian kernel (25 mm FWHM). GCOR is calculated 

in the same way as LCOR, but without distance-dependent weighting of the individual 

correlation coefficients. Thus, GCOR represents a measure of the global synchronicity of a 
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voxel, whereas LCOR represents a measure of local coherence. Unlike fALFF, LCOR and 

GCOR do not depend on the amplitude of the BOLD signal, but rather on the similarity of the 

BOLD time series of all considered voxels. These three metrics provide a complementary 

characterization of the BOLD signal providing information about local neural activity as well 

as local and global functional connectivity. 

 

Aging effects and sex differences in fALFF, LCOR, and GCOR  

We estimated voxel-wise aging effects by general linear modeling of (t-)contrast maps using a 

family-wise-error corrected voxel-wise threshold of P < 0.05 combined with a cluster-defining 

threshold of k > 20, including sex as a covariate. Using voxel-wise beta weights of the aging 

effects, we generated maps of annual changes in fALFF, LCOR and GCOR. Additionally, we 

assessed voxel-wise sex effects in fALFF, LCOR, and GCOR between women and men by 

general linear modeling of (t-)contrast maps using SPM12, including age and total intracranial 

volume (TIV) as covariates (thresholding as above).  

 

Spatial co-localization of brain function and neurotransmitter 

systems and effects of aging in the healthy population 

We analyzed to what extent unthresholded group-level aging effects (maps of annual change) 

in fALFF, LCOR, and GCOR co-localize with specific neurotransmitter systems. For this, 

Spearman correlation coefficients were derived using the default Neuromorphometrics atlas 

(119 regions) estimating the similarity of aging effects in fALFF, LCOR, and GCOR with 19 

distinct neurotransmitter maps as included in the JuSpace toolbox25. To approximate a normal 

distribution, correlation coefficients were Fisher’s z-transformed. We choose the 

Neuromorphometrics atlas as it provides a neuroanatomically plausible delineation of cortical 

and subcortical structures. As shown in our previous study51, the choice of atlas (with a 

comparable number of parcels) has a neglectable effect on the observed co-localization patterns 

of brain dysfunction and PET maps.  

Included PET maps covered serotonergic receptors (5-HT1a52, 5-HT1b53, 5-HT2a52, 5-HT452, 

5-HT611), dopaminergic receptors (D154, D255), histamine receptor 3 (H356), dopamine uptake 

(DAT24), serotonin (SERT52), norepinephrine (NET20), vesicular acetylcholine (VAChT57) 
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transporters, as well as the acetylcholinergic receptors M158 and A4B259, the glutamate 

receptors mGluR560 and NMDA61, the cannabinoid CB162, opioid µ57, and the GABAa24 

receptor. Source publications, age, sex, and sample sizes characteristics of each PET map are 

provided in Supplementary Table 2. 95% confidence intervals of Spearman correlation 

coefficients were estimated using the Bonett-Wright63 procedure.  

To better understand if and how these group level aging effects are also reflected in terms of 

the magnitude and the spread across all individual data, we re-computed the correlations on the 

single-subject level using individual measures of fALFF, LCOR, and GCOR. Prior to testing 

for aging effects across individual co-localizations, we examined whether Fisher’s z-

transformed Spearman correlation coefficients of the healthy population were significantly 

different from a null distribution (one-sample t-test, alpha = 0.05). Aging effects on co-

localization strengths were then estimated using linear regression analyses considering sex as a 

confound.  

 

Higher variation in co-localization between brain function and 

neurotransmitter systems with aging 

Distinct aging trajectories from healthy aging to the effects of diseases and impairments are 

known to manifest in altered brain function. Depending on the underlying neurophysiological 

processes such changes are likely to be architecturally aligned with the spatial patterns of 

affected neurotransmitter systems. Correspondingly, one would expect to observe an increased 

variation in co-localization between brain function and receptor/transporter distribution in older 

as compared to younger participants. To test this hypothesis, we examined the 

heteroscedasticity in co-localization to identify neurotransmitter systems that are affected by 

such age-related brain functional changes. 

For this, we performed two complementary tests. Using the White test, we first identified all 

pairs of brain function measures and PET maps whose correlation coefficients did not exhibit 

constant variance across age. In a post-hoc analysis, we tested for each co-localization pair with 

non-constant variance (PFDR < 0.05) whether the variance for individuals in the upper third age-

range is higher as compared to those in the lower third age-range using the Goldfeld-Quandt-

test (one-sided, i.e., increasing variance). To account for potential confounding effects of sex 
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between younger and older adults, we regressed out sex effects from the Fisher’s z-transformed 

Spearman correlation coefficients prior to the comparisons. 

 

Normative modeling of brain function - neurotransmitter co-

localization and deviations in Parkinson’s disease 

To model the effects of aging on the observed co-localization patterns we generated normative 

models based on the Fisher’s transformed correlation coefficients (co-localization strengths 

between neurotransmitter and rs-fMRI measures) derived from the healthy UK Biobank 

subjects using the PCNtoolkit64. To account for non-linear trajectories and non-Gaussian 

variance of the normal co-localization levels, we used Bayesian linear regression (5 knot basis 

splines and sinh-arcsinh warping) with age and sex as covariates (cf. Figure 1 for a 

methodological overview).  

Deviations (z-scores) from these normative aging models were derived per neurotransmitter 

map for subjects with PD. By comparing the deviation scores to a null distribution (t-test, alpha 

= 0.05), we identified neurotransmitter co-localization pairs for which patients with PD differed 

from normative models derived from healthy controls. For the significant (PFDR < 0.05) 

deviations, we tested which regions contributed strongest to the observed deviations. To this 

end, we repeated the spatial correlation analyses in the data of PD using a leave-one-region-out 

approach65. As a measure of regional contribution to the deviation we calculated differences in 

squared correlation coefficients (Δρ2) between the reduced (nRegions = 118: ρLOO
2) and the full 

(nRegions = 119: ρTotal
2) set of regions. We set Δρ2 positive if omitting this specific region resulted 

in a more normal correlation coefficient (closer to the mean of the normative model), and 

negative if omitting led to stronger deviation from the normative model. We further evaluated 

whether these regional contributions to the observed co-localization strengths were spatially 

related to regional alterations in fALFF, LCOR, or GCOR by computing Pearson correlations 

between maps of Δρ2 and the regional effect size (Cohen’s d) in fALFF, LCOR, GCOR for 

differences between PD and an age- and sex-matched subgroup of HC (n = 17,400). In order to 

evaluate the extent of significant functional alterations in PD, regions with significant 

differences in fALFF, LCOR, and GCOR in PD compared with the matched controls were 

identified using the Mann-Whitney-U test. 

All analyses were corrected for multiple comparisons using either the Benjamini-Hochberg 

procedure or, in case of highly inflated P-values due to large sample sizes, Bonferroni-Holm 
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correction. To ensure that the observed functional co-localization effects are not driven by the 

underlying atrophy we repeated all analyses after regressing out the individual voxel-wise grey 

matter volumes (spatially smoothed with a 4 mm FWHM Gaussian kernel) from all functional 

maps. 

 

 

Results 

Demographic characterization 

From a total pool of 30,035 subjects from the UK Biobank for which all necessary functional 

images and movement data was available, our analysis was based on data of 25,917 subjects 

for whom no diseases with known effect on brain function were reported.  

Three subjects had no structural data available. Thus, the repetition of all analysis after 

controlling for age-related atrophy was performed on the data of 25,914 subjects. 75 subjects 

of the total pool had reported a diagnosis of Parkinson’s disease. In 58 of them, the first mention 

of the diagnosis (ICD-10: G20) was dated before their imaging session, so we classified them 

as “manifest” and included them for further analysis. In order to compare regional measures of 

brain function in PD with those of the healthy controls, we defined an age- and sex-matched 

subcohort consisting of 17,400 subjects (PD mean ± SD age in years: 68.6 ± 6.5, HCmatched mean 

± SD age: 67.6 ± 6.0, P>0.26; 55.17% male PD and 51.7% male HCmatched, χ
2(1)=0.29, P=0.59). 

An overview of the groups is provided in Table 1. 

 

Group-level aging effects in resting state measures and their co-

localization to underlying neurotransmission 

All three resting state measures decreased with aging in most cortical, sub-cortical, and 

cerebellar regions. Each measure showed a wide-spread but distinct spatial pattern of age-

related alterations with few regional increases (Figure 2A, Supplementary Table 3 and 

Supplementary Table 4).  
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Next, we aimed to understand if the topography of these age-related changes was linked to the 

distribution of specific neurotransmitter systems. For this, we derived voxel-wise maps of age-

related linear (annual) changes in all three resting state measures and tested for their spatial co-

localization with the neurotransmitter systems. The rate at which fALFF and LCOR changed 

during aging correlated significantly (PFDR<0.05) with serotonergic, dopaminergic, 

norepinephrinergic (also GCOR) and glutamate neurotransmission (Figure 2B, Supplementary 

Figures 1-2, Supplementary Tables 5-6). In addition, fALFF changes correlated with 

GABAergic and LCOR changes with cholinergic neurotransmission. Except for the correlation 

between fALFF changes and NMDA all findings remained significant after correcting for age-

related atrophy. Scatter plots of the strongest correlations are displayed in Figure 2B. Results 

for voxel-wise sex differences are summarized in Supplementary Figures 3-5 and 

Supplementary Tables 7-10.  

 

Individual co-localization of resting state measures and 

neurotransmitter systems covaries with age 

The extent to which a specific neurotransmitter system contributes to the measured brain 

function was evaluated by its correlation strength. We first computed the individual co-

localization strengths between each subject’s resting state measure and each available 

neurotransmitter map. Due to the large cohort size, even very small effects in all resting state 

measures were significantly associated with the 19 PET maps (all PBonferroni-Holm<0.0001, median 

absolute Spearman correlation coefficient ranged from 0.03 to 0.68) with the different 

neurotransmitter systems explaining between 0.1% and 46% of variance in the respective 

resting state measures (Supplementary Figure 6, Supplementary Tables 11-13, left columns). 

The direction of the correlations was highly similar across the three functional measures. 

Positive correlations were found for the norepinephrinergic, muscarinic, glutamatergic, 

GABAergic systems, as well as serotonergic receptors 5-HT1b, -2a, and -6. Negative 

correlations were found for the dopaminergic, histaminergic and opioid neurotransmitter 

systems, as well as for serotonin receptors 5-HT1a, 5-HT4 and serotonin and vesicular 

acetylcholine transporters (SERT and VAChT). All associations remained significant after 

controlling for age-related atrophy (Supplementary Tables 14-16). If age-related changes in 

brain functions are indeed primarily driven by specific neurotransmitter systems, the correlation 

coefficients should systematically (that is, in simplest approximation, linearly) in- or decrease 
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during aging. Thus, we tested whether and to what extent aging effects and their co-localizations 

with neurotransmitter systems observed at the cohort level are also reflected in the individual 

co-localization strength. Most of the observed correlations were significantly associated with 

age explaining up to 3%, 4% and 1% of the co-localization strength between fALFF (with 

NMDA and SERT), LCOR (with SERT) and GCOR (with VAChT) and the respective 

neurotransmitter systems (Figure 3A, Supplementary Tables 11-13, middle columns). 

Correction for atrophy lowered the correlation strengths for most associations but the findings 

remained largely significant (Supplementary Tables 14-16, middle columns).  

 

Variance in co-localization changes during aging  

As aging may not only be associated with changes in average co-localization strengths but also 

with increased variance in such (i.e., due to yet undetected neurodegenerative processes in a 

subpopulation) we tested for such changes using a two-step procedure. Using the White-test, 

we first identified significant non-constant variance in co-localization strength. For fALFF and 

LCOR, non-constant variance was observed for all classes of neurotransmitters except for 

LCOR and opioid system. For GCOR, significant non-constant variance in co-localization was 

found for serotoninergic, norepinephrinergic, cannabinoid, opioid, glutamatergic and 

cholinergic neurotransmission (Supplementary Table 17, left columns). These effects remained 

significant after controlling for age-related atrophy except for GCOR and 5-HT1b, 5-HT6, and 

SERT (Supplementary Table 18, left columns). As the above analysis only detects differences 

in variance over age but not their direction, we aimed to better understand the respective 

findings by computing the Goldfeld-Quandt test comparing the co-localization variance 

between the youngest (44 – 60 years) and oldest (68 – 82 years) third (nBoth =8,639) of the study 

population for the significant associations identified using the White-test (Figure 3B).  

For fALFF and LCOR, higher variability in co-localization was found in the elderly sub-

population for serotonergic, dopaminergic, noradrenergic, histaminergic, cannabinoid, 

glutamatergic and cholinergic neurotransmission. In addition, for LCOR, we found 

significantly higher variance in the older population in co-localization with the GABA system. 

For GCOR, higher variability in co-localization was found regarding the serotonergic, 

noradrenergic, glutamatergic, and cholinergic system. For fALFF, 11 out of 14, for LCOR, 14 

out of 15 and for GCOR, 7 out of 11 neurotransmitter co-localization pairs identified using the 

White-test displayed a higher variance in the older subpopulation (Figure 3B, Supplementary 
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Table 17, right columns). The effects remained largely similar after controlling for atrophy 

(Supplementary Table 18, right columns).  

 

Deviations from normal co-localization in manifest Parkinson’s 

disease 

Having established this reference for co-localization of normal age-related changes with 

different neurotransmitter systems, we now aimed to test if and how functional changes caused 

by progressive neurodegeneration deviate from the non-pathological co-localization patterns. 

For this, we adopted a normative modeling approach using the healthy aging population as a 

reference allowing for non-linear changes with age (models are visualized in Supplementary 

Figures 7-8). A UK Biobank subgroup of PD patients served as an example for the clinical 

relevance of our findings. For each PD patient, we derived individual deviation (z-)scores 

quantifying their deviation from the normative model. For fALFF, PD patients had a lower co-

localization strength with serotonergic, GABAergic, muscarinic and glutamatergic 

neurotransmission (Figure 4D). For LCOR and GCOR, PD showed lower co-localizations with 

serotonergic, dopaminergic, GABAergic, histaminergic, norepinephrinergic, glutamatergic and 

cholinergic neurotransmitter systems (Figure 4E-F, Supplementary Table 19). The deviation in 

co-localization strength regarding LCOR and GABAa (illustrated in Figure 4A-B) correlated 

negatively with disease duration with higher deviations being indicative of longer disease 

duration (Pearson r = -0.38, PFDR = 0.027; Figure 4C, Supplementary Tables 21-22). After 

atrophy correction, all deviations remained significant except for the LCOR-5-HT1b and 

LCOR-VAChT associations (Supplementary Table 20). 

Lastly, we aimed to understand which regions contribute most to the observed co-localization 

alterations in PD. For this, we first analyzed how leaving out each region of the deployed atlas 

changed the observed correlations. For fALFF, main contributing regions to co-localization 

changes in PD were the basal ganglia, insula and occipital regions. For LCOR and GCOR, main 

contributing regions to co-localization changes in PD were the basal ganglia, subcallosal areas, 

thalamus (LCOR only), basal forebrain, as well as pre- and postcentral, insula and occipital 

regions (Supplementary Figures 9-11). The effects remained largely similar after controlling 

for atrophy (Supplementary Figures 12-14). Regional contribution to the deviations found 

regarding the glutamatergic system significantly correlated with regional alteration in PD in 

both synchronicity measures (PFDR<0.05, Supplementary Figures 15-16, Supplementary Tables 
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23-24). Effect sizes in regions that exhibit significant (PFDR<0.05) differences in LCOR and 

GCOR in PD compared to the age- and sex-matched subgroup of HC are provided in Figure 

4G-H. Statistics of regional comparison of fALFF, LCOR, and GCOR in PD compared to the 

matched control group are provided in Supplementary Table 25-26. All regional effect sizes in 

fALFF, LCOR, and GCOR between PD and the age- and sex-matched subgroup of HC are 

shown in Supplementary Figures 17-19. 

 

 

Discussion  

Here, we tested how age-related changes in commonly applied resting activity and connectivity 

measures co-localize with underlying neurotransmission. Consistent with previous studies of 

aging effects on brain function, we find widespread age-related decreases but also few increases 

in the three evaluated measures2,3,66. These age-related changes display a robust co-localization 

pattern with various major neurotransmitter systems, including monoamines, glutamate, 

choline, and GABA, at group- and single-subject level. Variance in the co-localization patterns 

of these systems increases over age. PD patients display significant deviations from typical age-

related co-localization patterns in neurotransmitter systems related to the disease. The deviation 

in co-localization strength regarding the GABAergic system correlates with disease duration. 

In line with most studies reporting aging effects in the brain, we find wide-spread age-related 

decreases in all three evaluated resting state measures1–5. The extent of the decreases is 

substantially higher in our study covering basically all of the brain with few exceptions as 

discussed below. Considering that these findings are based on over 25,000 subjects, the 

increased statistical power as compared to previous studies with at most few hundred 

participants is the most likely explanation for the observed discrepancy. In parallel, we observe 

spatially distinct age-related increases across the three evaluated resting state measures 

covering parietal, precuneal, thalamic, gyrus rectus and cerebellar regions. With respect to 

directionality, these findings are consistent with several previous studies, reporting presumably 

compensation-related increases in different connectivity metrics in the aging population66,67. 

Consistent with this interpretation, we find the local activity and connectivity to be increased 

in parietal regions involved in cross-modal sensory integration, potentially compensating for 

the prominent loss in modality-specific sensory processing during aging68,69. 
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Supporting the previously reported complex re-organization of the excitation/inhibition balance 

during aging70, we find the group-level aging effects on brain function to be associated with 

glutamatergic and GABAergic neurotransmission. The additional co-localization of the aging 

effects with monoaminergic and cholinergic systems may be supportive of the underlying 

changes to be related to learning, memory, and other higher cognitive functions affected by 

aging7,15,67,71. In contrast, the age-related global connectivity is primarily increased in thalamic 

and cerebellar regions and the topography of these changes only aligns with the 

norepinephrinergic neurotransmission. Both regions and in particular the thalamus show a high 

expression of norepinephrine receptors72,73. Whilst the modulatory role of norepinephrine in the 

cerebellum has been repeatedly associated with motor learning74,75, its contribution to aging is 

controversially discussed with its activity being associated with prevention but also acceleration 

of the production and accumulation of amyloid-β and tau across the brain76. On a functional 

level, these findings may originate in the functional decline of the norepinephrinergic system, 

which is considered as key factor in maintaining arousal and cognitive adaptation and 

control77,78. 

When testing for co-localization of resting state measures with neurotransmission at the single 

subject level, we find age-related alterations in all three measures to co-localize primarily with 

monoaminergic neurotransmission. These findings are complemented by increases in variance 

observed for a variety of evaluated neurotransmitter systems. Considering the reportedly high 

prevalence of neuropathology in a cognitively normal elderly population79,80 the individual co-

localization changes - aside with increased variance - may indeed reflect such yet undetected 

neurodegenerative processes. To test the sensitivity of the co-localization patterns to such 

neurodegenerative processes we further adopted a normative modeling approach. A major 

advantage of normative models is their ability to represent population heterogeneity in the 

phenotype under investigation by means of normalized deviation scores64. We applied this 

approach in patients with a diagnosis of Parkinson’s disease, which was previously linked to 

monoaminergic neurotransmission as well as more recently to a dysbalance of GABA and 

glutamate81–83. Indeed, across all three resting state metrics we find the co-localization patterns 

in PD patients to significantly deviate from age- and sex-adjusted normative models across a 

variety of neurotransmitter systems. Deviations in co-localization of local activity in PD are 

found primarily with respect to serotonergic, GABA, and glutamatergic neurotransmission, 

whilst deviations in co-localization of both local and global connectivity are also present with 

respect to dopamine neurotransmission. We find that only the deviation in co-localization 
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strength of local connectivity with GABAa receptors predicts disease duration supporting the 

suggested relevance of GABA pathology for clinical progression81.  

It is important to acknowledge that the studied cohort was recruited as a representative sample 

of healthy residents of the UK. Because the metrics we studied target local brain function, 

subjects with diseases primarily affecting brain structure or function were excluded. Given the 

prevalence for mild depressive symptoms of the UK population of 11 %84 and that 12.32 % of 

our analyzed participants of the UK Biobank have a reference to ICD-10: F32, their exclusion 

would have biased the cohort. Additional healthy control biases in the UK biobank85 include a 

high average socioeconomic status, low alcohol and tobacco consume. Although, we estimate 

that deviations from the overall population results are small with respect to these primary biases, 

further sampling of a more diverse population is needed for replication. In addition, clinical 

scores superior to disease duration as an estimate of disease severity should be used to 

strengthen evidence of the observed association with GABAergic neurotransmission. The use 

of PET maps from differently aged healthy populations may introduce a further bias into our 

findings as proteomics such as receptor and transporter distributions may change during 

aging77,86. 

 

Conclusions 

Here, we provided a detailed overview on the effects of aging on macroscopic brain functioning 

as observed using rs-fMRI derived commonly measures of local activity and local and global 

connectivity. We link these age-related changes to the distribution of various major 

neurotransmitter systems demonstrating a decline in co-localization strength aside with 

increased variance during aging. By adopting a normative modeling approach, we further 

demonstrate on the example of Parkinson’s disease the feasibility of using co-localization 

strength as a sensitive measure of underlying neurodegeneration providing potentially valuable 

insight into the underlying neuropathological processes. 
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Tables: 

 

 Healthy 

controls 

(HC) 

 

Females (HC) 
 

Males (HC) 
Manifest 

Parkinson’s 

disease (PD) 

HC matched 

to PD 

 

Sample Size 25 917 14 000 11 917 58  17400  

Age [yr] 64.03 ± 7.5 63.5 ± 7.4 64.7 ± 7.6 68.6 ± 6.5 67.6 ± 6.0 

  Statistics   T = -12.48; P<0.0001; Cohen’s d=-0.16 T(57.32)=1.15; P=0.26 

Sex 11917 (46.0%) M - 32 (55.17%) M 8988 (51.7%) M 

  Statistics - - χ2(1)=0.29, P=0.59 

TIV [L] 1.548 ± 0.152 1.467 ± 0.116 1.643 ± 0.133 - - 

  Statistics  - T = -113.0; P<0.0001; Cohen’s d=-1.42 - - 
Table 1: Demographical characteristics. Normative modeling of co-localizations between brain function and neurotransmitter 

systems is based on the data of healthy controls. Regional differences in brain measures in patients with PD were calculated 

with respect to an age- and sex-matched subcohort of healthy controls. 
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Figures: 

 

Figure 1: Methodological overview. We derived voxel-wise maps of fALFF, LCOR, and GCOR from individual rs-fMRI data 

(A). First, this data was used to explore group-level voxel-wise aging changes in fALFF, LCOR and GCOR in the healthy 

cohort (nHC=25,917, A, right column). Second, we used PET maps of 19 neurotransmitter systems (B) to calculate the spatial 

correlation (co-localization) with both, the group-level aging effects (C) and individual fALFF, LCOR, and GCOR (D). We 

Fisher (z-)transformed the Spearman correlation coefficients ρ to ensure a normal distribution and examined the effects of age 

on the co-localization data of the healthy cohort (E). The blue cloud illustrates co-localization strengths (kernel density 

estimation of all transformed Spearman correlation coefficients) of the healthy cohort. For each pair of measure and 

neurotransmitter map, we analyzed mean co-localizations (yellow), linear aging effects (green), as well as differences in 

variances across subjects in the youngest (44 - 60 years) and oldest (68 – 82 years) third (nBoth = 8,639; red). Vertical dashed 

red lines were added for illustration only and do not correspond to the actual variance of the respective subpopulation. 

Afterwards, we normatively modeled the co-localization strengths depending on age and sex (F, left) in order to calculate the 

deviation in subjects with manifest Parkinson’s disease (nPD=58; crosses). Here, we show the predicted means (solid lines) and 

25% and 75% percentile (dashed lines) derived from the normative model for both men (blue) and women (orange). We 

analyzed whether the deviation (z-)scores of subjects with Parkinson’s disease were significantly different from a null 

distribution (F, box plot). In this example, the distribution was significantly below a null distribution, indicating that patients 

with PD exhibit lower Spearman correlation coefficients than the norm. Last, we quantified the mean regional contribution to 

the observed deviation score across subjects with Parkinson’s disease (G, left), as well as the functional differences in patients 

with Parkinson’s disease compared to an age- and sex-matched subcohort of healthy controls (nHCmatched = 17,900; G, right). 

The functional differences were quantified by calculating the regional effect sizes (Cohen’s d).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562677doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562677
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 2: Group-level voxel-wise aging effects in each functional measure and associations with neurotransmitter systems. A: 

Colors in the voxel-wise plots of thresholded group-level aging effects indicate annual decrease (blue) or increase (red) in 

fALFF (top), LCOR (middle), and GCOR (bottom). B, left column: Significant (PFDR< 0.05) linear correlations between annual 

rate in brain functional measure and neurotransmission. Vertical black lines indicate the uncertainty of Fisher’s z-transformed 

Spearman correlation coefficient estimated according to Bonett & Wright63. B, right column: Exemplary scatter plots show 

how the annual change in fALFF, LCOR, or GCOR spatially correlate with the PET signal of specific neurotransmitter systems. 

Colors group receptors and transporters of the same neurotransmitter system, i.e., serotonin (red), dopamine (blue), 

acetylcholine (green), glutamate (pink) and GABA (purple), cannabinoid (mint), opioid (yellow), norepinephrine (orange), and 

histamine (turquoise). 
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Figure 3: Single-subject co-localizations between brain functional measure and neurotransmitter systems depend on age. A, 

left column: Overview about all significant linear aging effects (PBonferroni-Holm<0.0001) in the co-localization strengths (Fisher’s 

z-transformed Spearman correlation coefficients) between each pair of brain functional measure (fALFF, LCOR, GCOR) and 

neurotransmitter system. Error bars correspond to the standard error of parameter (slope) estimation. A, right column: 

Exemplary plots show how co-localization strengths between brain functional measures (fALFF: top, LCOR: middle, GCOR: 

bottom) and specific neurotransmitter systems depend on age. The black, horizontal line indicate the population mean co-

localization (cf. Supplemd Spentary Figure 6 for an overview about all co-localization means). The colored clouds show the 

kernel density estimation of Fisher’s z-transformed Spearman correlation coefficients of the healthy cohort. The slope of the 

colored line (linear fits) corresponds to the bar plots in the left column. B, left column: Each plot shows the effect size (F-

statistic) of mean squared error (MSE) differences between younger and older adults. We show bar plots regarding 

neurotransmitter systems whose co-localization with the respective brain functional measure was previously shown to be 

significantly non-constant (White-test, PFDR<0.05). All pairs of brain function and PET map whose co-localization variance 

was significantly (PFDR<0.05) different between the older and the younger subpopulations are highlighted by asterisks (*: 

PFDR<0.05; **: PFDR<0.01; ***: PFDR<0.001). F-statistics (MSE of older divided by MSE of younger adults) above 1 correspond 

to a larger variance in the older subpopulation. B, right column: Exemplary plots visualize the individual squared errors of the 

co-localizations between younger and older adults. Box plots visualize both distributions. Note, that per definition, the squared 

errors are positive. Due to the kernel density estimation of all squared errors the colored clouds exceed the null level. Colors 

group receptors and transporters of the same neurotransmitter system according to the same scheme as described in Figure 2. 
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Figure 4: Subjects with PD deviate from normative models of co-localization between brain function and neurotransmitter 

systems. A: The purple cloud shows the kernel-density-plot of Fisher’s z-transformed Spearman correlation coefficients of the 

healthy cohort regarding the spatial correlation of LCOR and GABAa. Solid and dashed lines show the predicted mean and 

predicted 25% or 75% percentile of men (turquoise) and women (orange) derived from the normative models. Crosses indicate 

the co-localization levels of patients with PD. B: Box plot showing the significant deviation from the norm (null) in patients 

with PD. C: Deviation scores in PD are significantly correlated with disease duration. D-F: Box plots showing the deviation 

scores that were significantly different from the norm (null) regarding fALFF (D), LCOR (E), and GCOR (F). *, **, and *** 

indicate Bonferroni-Holm corrected significant deviations of the distributions from a null distribution with exact P<0.05, 

P<0.01, and P<0.001. Colors in box plots group receptors and transporters of the same neurotransmitter system according to 

the same scheme as described in Figure 2. G-H: Significant (PFDR<0.05) regional differences (effect sizes, Cohen’s d) between 

PD and the matched subgroup of healthy controls in LCOR (G) and GCOR (H). Lower values in PD are indicated by blue 

areas. Effect sizes of all region are provided in Supplementary Figures 17-19.  
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