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Abstract 
 
The application of Machine Learning (ML) tools to engineer novel antibodies having predictable 
functional properties is gaining prominence. Herein, we present a platform that employs an ML-
guided optimization of the complementarity-determining region (CDR) together with a CDR 
framework (FR) shuffling method to engineer affinity-enhanced and clinically developable 
monoclonal antibodies (mAbs) from a limited experimental screen space (order of 10^2 designs) 
using only two experimental iterations. Although high-complexity deep learning models like 
graph neural networks (GNNs) and large language models (LLMs) have shown success on protein 
folding with large dataset sizes, the small and biased nature of the publicly available antibody-
antigen interaction datasets is not sufficient to capture the diversity of mutations virtually 
screened using these models in an affinity enhancement campaign. To address this key gap, we 
introduced inductive biases learned from extensive domain knowledge on protein-protein 
interactions through feature engineering and selected model hyper parameters to reduce 
overfitting of the limited interaction datasets. Notably we show that this platform performs 
better than GNNs and LLMs on an in-house validation dataset that is enriched in diverse CDR 
mutations that go beyond alanine-scanning. To illustrate the broad applicability of this platform, 
we successfully solved a challenging problem of  redesigning two different anti-SARS-COV-2 mAbs 
to enhance affinity (up to 2 orders of magnitude) and neutralizing potency against the 
dynamically evolving SARS-COV-2 Omicron variants. 
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Introduction 

Fueled by the success of AlphaFold, there has been tremendous interest in leveraging 

Machine Learning (ML) to  engineer proteins, including antibodies for developing them as 

successful therapeutics in the clinic 1. ML-guided optimization of the target antigen-binding 

affinity of antibodies has enormous potential to generate novel antibodies with enhanced affinity 

and  potency. A variety of deep learning (DL) models have been trained on datasets of 

experimentally generated libraries of antibody complementarity determining regions (CDRs). 

These DL models have been used to generate ‘optimized’ candidates faster than typical screening 

using display technologies 2 2 3 4 5 6. However, 104-108 designs are generally needed, thereby 

requiring a large experimental screening space, to analyze and verify the predictions from these 

models. 

Unlike large antibody sequence datasets, the publicly available data that combines 

structural information with the experimentally measured effect of CDR mutations on antibody-

antigen affinity (for example the SKEMPIV2 database) is limited. Moreover, the datasets in the 

SKEMPI database are biased towards mutation of CDR residues to alanine. The alanine mutation 

is a restricted subset relative to those sampled during in vivo  affinity maturation or by an expert 

with extensive domain knowledge on antibody-antigen interactions. DL models including GNNs 

pre-trained on PDB 7 or on SKEMPIV2 8 have achieved modest in silico benchmarks for 

successfully predicting affinity enhancing mutations despite the potential overfitting of the 

model parameters on limited datasets. In the case of 8, the model predicted-mutations were 

validated by experimental screening of less than 100 mutations for their impact on neutralization 

of a SARS-COV-2 antibody. However, given the potential bias in the alanine mutation training 

dataset, the robust performance of these models to consistently optimize affinity across different 

antibodies using a small experimental screen size remains to be evaluated.  

With public antibody repositories such as Observed Antibody Space (OAS) 9 that contain 

next generation sequencing (NGS) data growing to billions of sequences, it portends the 

significance to generate diverse, naturally occurring, antibodies using large language models 

(LLMs). An ensemble of pretrained LLMs were also recently used to predict affinity enhancing 

mutations on a variety of anti-viral antibodies in a structure and antigen independent manner, 

but using these LLMS did not uniformly improve binding, including in the context of the antibody 

binding to SARS-COV-2 Omicron variant 10. Therefore, there are challenges with using pre-trained 

LLMs to predict affinity enhancement as these models do not consider the protein-protein 

interaction data which fundamentally limits the design space. 

The recent emergence of employing DL models in antibody discovery has led to an 

overwhelming trend of abandoning human engineered features for the hopes of implementing 

an end-to-end machine-guided de novo antibody design. While this trend has gained popularity, 

there are still gaps and challenges in using DL models for practical or translational antibody 
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engineering. Our approach over the last 10 years has relied on engineering in silico metrics (or 

features) using network-based representations of protein structure and protein-protein 

interactions.  We have used these features to guide human selection of affinity enhancing 

mutations 11 12 13 14. Using an iterative design cycle of computational generation of a small screen 

size (fewer than 100 constructs per cycle) and experimental evaluation (wet-lab screening of 

expression, yield, purity, and target binding affinity), we have successfully engineered diverse 

clinical-stage antibodies with specificity and enhanced affinity to a target epitope on various 

antigens 12 13 15 16. Notably, even within the small screen size, our overall approach permitted us 

to sample diversity in the sequence and structural features that loop-back into our design 

platform for learning. 

With this foundation, we have developed an ML-guided antibody engineering platform 

that combines knowledge-guided featurization with a data-driven model design. Notably, the ML 

model presented here,  referred to henceforth as the Antibody Random Forest Classifier or 

AbRFC, outperformed the GNN and LLM-based models on an in-house validation dataset 

comprising diverse CDR mutations for affinity enhancement, thereby representing an important 

step towards addressing the overfitting of the limited antibody-antigen interaction data. Also, 

unlike other ML-models that used regression to optimize mutations for affinity enhancement, 

the approach described here uses classification, classifying deleterious from non-deleterious 

mutations to maximally leverage the information content in alanine mutations (ALA-scan) heavy 

SKEMPIV2. Importantly, the individually classified affinity-enhancing mutations on different CDRs 

were combined to generate synergistic enhancement of antigen-binding affinity. The optimized 

CDRs were then shuffled with FR regions that were selected from the large antibody sequence 

repositories to generate candidate antibodies that were simultaneously optimized for antigen-

binding affinity and developability.  

Using the ML-guided platform described here, we engineered two distinct antibodies 

respectively building on two starting template antibodies that were developed against the 

original Wuhan SARS-COV-2 virus and that lost potency against Omicron and subsequent 

variants. For each antibody, the CDR optimization and CDR-FR shuffling each involved 

experimental screen size of fewer than 100 constructs. The engineered antibodies showed up to 

two orders of magnitude improved affinity compared to the corresponding template mAbs 

against various Omicron subvariants BA.1, BA.2 and the more recent VOCs BA.4/5, and XBB.1, 

surpassing the results produced by a pretrained LLM on S309 10.  Significantly, using a 

combination of these two mAbs shows potency (IC50 < 200 ng/ml) against the different Omicron 

subvariants.  

The ML-guided platform described in this study highlights the value of employing classical 

ML methods (e.g. linear regression, support vector machines, and tree-based boosting or bagging 

methods) with expert-guided feature engineering and an appropriate choice of training and 
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validation datasets in achieving affinity enhancement with only two rounds of experimental 

screening of order of 102 constructs.  

 

Results 

 ML-guided antibody engineering platform described in this study is built over the 

foundational concept of “lab-in-a-loop” (Figure 1A) that we have evolved over the past several 

years. This platform involves two iterative cycles, the first for optimizing CDRs to enhance binding 

affinity and the second to select appropriate scaffolds to combine with the optimized CDRs to 

generate lead candidates. The candidate sequences in the first iteration were generated by in 

silico saturation mutagenesis of the template antibodies’ CDRs.  These in silico-generated 

candidates were virtually screened using the AbRFC model to predict non-deleterious mutations 

(since the model is set up classify deleterious vs non-deleterious mutations).  The rationale for 

predicting the non-deleterious mutations was that experimental screening less than 100 

candidate mutations (e.g. “selected subset” in Figure 1B) on a 96-well plate will potentially result 

in affinity enhancing mutations in a single round. The second iteration starts with search for 

antibody scaffolds in the large antibody sequence databases (including OAS) to select appropriate 

FR regions that can be combined with the optimized CDRs from the first iteration as previously 

described 16 to generate sequences with various FR-CDR combinations.  These second-round 

candidates were virtually screened to select candidates that have optimal developability scores 

(sequence liabilities, charge distribution, hydrophobic patches, T-cell epitopes, etc.) that are 

computed in silico. The final candidates were experimentally tested for critical quality attributes 

including potency. 

 

The AbRFC model for ML-Guided Affinity Optimization 

  

The common components of building any ML model are the objective function, the model 

architecture, and featurization (Figure 1C). The model design choices depend on the size, type, 

and quality of the training dataset.  Despite the wealth of antibody sequences, only limited data 

on antigen-binding affinity including impact of CDR mutations on binding is publicly available. A 

subset of the publicly available protein-protein binding affinity database SKEMPIV2 17 containing  

point mutations on antibody-antigen complexes (“training dataset”) is relatively small (N=900) 

and overwhelmingly biased (Figure 2A) (61% of the mutations are to ALA).  In contrast to the 

training dataset, the validation dataset included in-house data (unpublished) from a different 

antibody-antigen affinity enhancement campaign, wherein the point mutations were predicted 

by an expert using a structural model of antibody-antigen complex and were validated for binding 

experimentally. Therefore, the validation dataset contained very few mutations to ALA (Figure 

2B), and is enriched in patterns that the expert has learned to apply in a residue-specific manner 
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– for example in this instance frequently mutating L to F and Y and S to R and K.  This led us to 

reason that any model trained on the available limited training dataset would be biased relative 

to a model trained to learn affinity enhancement specifically, but that the training dataset still 

contains relevant information. 

 To mitigate these challenges, we made three model design choices.  First, we chose to 

frame the prediction problem as a binary classification problem rather than using the typical 

regression formulation.  Classification is a more natural fit for the filtering objective of virtual 

screening and also reduces the influence of outliers (e.g. mutations with reported fold change of 

>10000, |∆∆𝐺| 5.45) on the model predictions.  Additionally, rather than trying to predict 

affinity-enhancing mutations (|∆∆𝐺| ≫ 0), our model predicts deleterious vs. non-deleterious 

mutations (|∆∆𝐺| 𝜖 . We reasoned this formulation is more likely to learn generalizable 

patterns from an ALA-scan heavy training dataset and chose a small offset 𝜖 from |∆∆𝐺| 0 to 

avoid assigning arbitrary class labels due to experimental noise.  

 Second, we used a classical ML algorithm with engineered features rather than a DL 

approach. Specifically, we selected a Random Forest Classifier where the bootstrap aggregating 

(bagging) nature of the algorithm naturally reduces model variance (errors due to small changes 

in the training dataset) particularly for large forest sizes 18.  This method is also amenable to 

additional regularization by changing hyper parameters, which we leveraged, choosing a 

minimum of 10 samples per leaf and a large forest size of 1000 trees.   

 Third, we employed a defined set of features of antibody-antigen interactions that were 

specified by human experts. These expert-engineered features, in contrast to the high-

dimensional representations learned by DL algorithms, have the advantage of encoding 

previously validated inductive biases that are less likely to be overfit to the publicly available 

small, and ALA scan-biased training dataset.  In addition to a variety of Rosetta energetics terms 

accessed in PyRosetta 19, we used previously validated statistical 12 and network-based 11 

features.  The Random Forest Classifier applied to this featurization is termed AbRFC. 

 

Training dataset Cross Validation  

 

 To assess impact of our modelling choices on the performance during cross-validation on 

the training dataset, we compared our model to a retrained classifier using the architecture from 
8 (GNN Regressor), a RandomForestRegressor (RF Regressor) with the same parameters as 

AbRFC, and an LLM-based model that predicts mutations in a similar manner to Hie BL et. al., 10, 

but using an antibody-specific LLM (ABLang) 20.  All models performed similarly during cross-

validation (Figure S1), except that the LLM was slightly worse on some folds (still surprisingly 

good given it uses no antigen information), which was expected since all the folds in the training 

dataset contain a large amount of ALA-scanning data.  However, most mutations encountered 

during virtual screening (18/19 for  in silico saturation mutagenesis) are not ALA mutations.   
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 Notably, the cross-validation showed that model architecture and objective function 

influence AA mutation preference, even when using the identical training dataset.  Both RF 

models prefer charged residues, whereas the GNN Classifier predicts backbone altering G and P 

mutations at approximately the underlying training dataset frequency, unlike the RF algorithms 

that almost never predict these changes.  The bias of our featurization against G and P arises 

from our network and statistical metrics not accounting for the potential backbone altering 

effects of substituting to these amino acids.  All models are significantly enhanced for aromatic 

residues, but ABLang and the GNN classifier have a stronger relative preference for Y, while the 

RF algorithms have increased W preference compared to baseline (Figure 2C).  This indicates that 

when scoring mutations in practice there will likely be bias due to the underlying design choices. 

 Feature importance scores generated during cross validation show the following top 5 

features for differentiating non-deleterious and deleterious mutations – two Rosetta energy 

terms (fa_sol_0 and fa_atr_0), a statistical amino acid preference feature 12, a networking feature 

of Ab-Ag complex (sin_norm), and a total energy difference (dE2) (Figure 2B).  Table S1 details 

the features used in the AbRFC.  

 

Testing against the Validation Dataset  

  

The validation dataset consists of mutations selected by an expert to enhance affinity and 

therefore it has its own bias and is not representative of saturation mutagenesis.  We used this 

dataset to test our ML model and others including GNN Regressor, GeoPPI 7, and an ensemble of 

ESM Language models 21.  AbRFC picked (on average) non-deleterious mutations in the top 10%, 

20%, 30%, and 40% of ranked mutations (Figure 2E).  AbLang was the only other model able to 

predict non-deleterious mutations in the top 10% of ranked mutations on the validation dataset.  

To ascertain whether our model would generalize to the saturation mutagenesis setting, we 

applied it to engineer two antibodies targeting two distinct epitope regions on SARS-COV-2 with 

the goal of providing a long-lasting solution to the dynamically evolving SARS-COV-2 virus. 

 

Starting template antibodies targeting mutationally constrained epitopes on SARS-COV-2 

 

 An important part of the platform is to engineer antibodies targeting specific epitopes. In 

the context of SARS-COV-2, our goal was to identify epitopes that are constrained to mutate. To 

this end, we ranked template epitopes using a metric that combines the sequence conservation 

of epitope residues with their networking to CDR residues (Supplementary Methods). Among 

the various epitope regions, those that were targeted by a class III mAb (S309) 22 referred to here 

as ‘glycan’ epitope (since it comprises of glycosylation site) and class IV mAb CR3022 23 referred 

to here as ‘cryptic’ epitope (since it is harder to access on the spike rimer) were highly conserved 

across SARS-COV-1 and SARS-COV-2 (Figure S2). Therefore, we chose CMAB0 (a CR3022 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.02.543458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.02.543458


 8 

derivative) and GMAB0 (S309) as starting template antibodies to engineer new antibodies with 

substantially enhanced affinities to the Omicron variant and subvariants given that CMAB0 and 

GMAB0 had significantly lower binding affinity to these variants. 

 

First round of experimental screening: screening for affinity enhanced CDRs against BA.1 

 

 Two crystal structures per template (7BEP/7R6W for GMAB0, 6YLA and 7LOP for CMAB0) 

were used to minimize structure-based variability.  The BA.1 epitope mutations (G339D/N440K 

for GMAB0 and S371F/S375F for CMAB0) were modeled using PyRosetta (see Methods).  We 

then ranked mutations based on the AbRFC model score (predicted non-deleterious class 

probability).  We noticed that ranking mutations purely based on model score without 

considering other factors naturally oversamples specific positions and mutant AAs (Figure 2C).  

As stated previously our model design was such that it has a bias against mutating to glycine and 

proline residues. However, glycine mutations have been known to contribute to affinity and 

specificity 24 and were preferred by other models (Figure 2C). Therefore, to address these biases 

and enhance diversity in the selected candidate set we added additional rules to augment the 

AbRFC score with Rosetta ∆∆G and ABLang Score (unbiased by training dataset) when considering 

mutations to Glycine (see Methods).  

 An ELISA-based screening assay using the BA.1 RBD (see Methods) showed that 21 and 

24 of the ML-filtered CDR mutation sets had improved binding to the glycan and cryptic epitopes 

over GMAB0 and CMAB0 respectively (Figure 3 A,B,C,D).  Included in this set are several 

mutations such as H31_SK,H100_AS,L52_SE for the glycan antibody and H55_SQ , H99_SN/W, 

L31_NE, L90_QN and L93_SK for the cryptic antibody that have significantly higher OD values.  

This shows filtering for non-deleterious mutations and using diverse sampling is sufficient to 

arrive at multiple potential affinity enhancing mutations.  In the next step, we combined CDR 

loops carrying the affinity enhancing mutations with diverse FR regions to derive affinity-

enhanced, developable candidates. 

 

“Lab-in-a-loop” second iteration: CDR-FR shuffling to further optimize the affinity enhanced 

candidates.  

 

 Given that CDRs and FR regions play a key role in antibody affinity, stability and 

pharmacokinetic properties 25,  the second round of designs combined the top point mutations 

with novel human VH/VL frameworks to make clinically developable lead candidates. This 

iteration was critical to address issues of affinity-enhancing CDR point mutations could 

potentially introducing undesirable physical properties (alter expression, Fab melting 

temperature (Tm), isoelectric point (pI) as observed in other studies 25 26.    Importantly, we 
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directly combined the promising affinity enhancing mutations rather than building mutants up 

gradually through multiple rounds, permitting us to generate lead candidates in 2 iterations.   

 A diverse set of FR regions were sampled from a database containing next-generation 

sequences from public repositories such as cAb-Rep 27 and OAS.  As previously described 16, FRs 

were filtered based on structural properties such as North CDR cluster 28, CDR length (to 

accommodate the modified CDR loops), PTMs, rare amino acids, high-energy (PyRosetta) 

residues, and FR sequence diversity. Figure S3 shows the AbLang embeddings of the scaffold 

sequences, where the spread of the red crosses illustrates the diverse sequence space sampled. 

 Second round experimental screening significantly showed affinity enhanced constructs 

with developability properties that are in the range seen for clinical stage therapeutic antibodies, 

both by in silico (Figure S4) and experimental (Table S3) analyses.  The combination of scaffolds 

and point mutations that were screened by ELISA against BA.1, along with the relative EC50 of 

the designs with respect to the template (Figure 3 C,F).  The most promising of these leads were 

then tested in Octet for binding against the BA.1, BA.2, BA.4/5, and XBB.1 subvariants.  The lead 

candidate targeting cryptic epitope, CMAB283, showed significantly increased affinity to BA.1 (to 

which the affinity was optimized), but also to the other VOCs, BA.2, BA.4/5, BQ1.1, and XBB.1, 

maintaining a KD of 2.14E-11 or lower on all tested VOCs relative to >1nM KD for the template 

CMAB0 (Figure 4A, Figure S5).  The lead targeting glycan epitope, GMAB156 showed improved 

affinity ranging from ~317-fold for BA.1 to 1.2-fold for XBB.1. Importantly, GMAB156 maintained 

sub nanomolar binding on all VOCs while S309 exhibited showed KDs >1 nM for BA.2 and, BA.4/5 

(Figure 4A, Figure S5). Given the established correlation between affinity and neutralization for 

S309 29, the consistent sub-nanomolar binding of GMAB156 makes it an attractive therapeutic 

candidate, especially since the current circulating strain (XBB.1.5) has no mutations near the 

glycan epitope relative to XBB.1. Given that our lead mAbs showed substantial improvement in 

the binding affinity, we tried to rationalize the positive effect of these mutations on the antigen-

binding use three-dimensional structural models of our lead mAbs with the various SARS-COV-2 

variants RBD (Supplementary Methods). However, while some of the mutations selected by the 

platform were rationalizable using structure-based reasoning, the platform also discovered 

mutations that are not obvious a priori from static structure analysis (Supplementary 

Information). 

 

Pseudovirus Neutralization of SARS-COV-2 variants by the lead mAbs 

  

The two candidate mAbs GMAB156 and CMAB283 that showed improved affinity (as 

compared to the respective template mAbs) to the distinct glycan and cryptic epitope regions on 

Omicron subvariants BA.1, BA.2, BA.4/5, and XBB.1 respectively were tested further. Especially, 

we evaluated the impact of improved binding affinity and the postulated synergy (assessed using 

our previously described PADS framework) 30 in targeting multiple epitopes on the neutralization 
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potency.  We adapted a SARS-COV-2 pseudotyped virus neutralization assay based on previously 

established methods 31. As reported previously, the neutralization of the template mAb S309 

significantly reduced between Omicron and subsequent BA.2 and newer VOCs including BA.4/5 

and others 31.The loss of neutralization potency of S309 correlates with its binding affinity to the 

corresponding spike proteins of the Omicron subvariants 29  (Figure 4A). On the other hand, our 

candidate GMAB156 shows uniformly potent neutralization across BA.1 and BA.2 which 

correlates with its substantially higher binding affinity to the corresponding spike protein (Figure 

4B and 4C). Given this correlation and based on its sub nanomolar binding to BA.4/5, BQ1.1, and 

XBB.1, we anticipate that this mAb would show substantially improved potency to these more 

recent subvariants to be effective as a therapeutic to counter these subvariants. 

 Unlike the glycan epitope, substantial improvement in the affinity of the CMAB283 to the 

cryptic epitope when compared to CMAB0 does not lead to potent neutralization of BA.1 and 

BA.2 Omicron variants. This is likely due to the ‘cryptic’ nature of the epitope that might have 

different exposure in the RBD of spike protein when compared to the spike protein on the surface 

of the pseudovirus or live virus. However, the combination of CMAB235 with GMAB156 further 

enhances potency of GMAB156 both against BA.1 and BA.2 (Figure 4B and 4C) indicating synergy 

in targeting these antigenically distant epitope surfaces on the spike protein. Additionally, using 

a combination therapy is attractive as it minimizes the chances of mutational escape. 

 

Discussion 

In silico antibody design is a rapidly evolving field that leverages the power of 

computational methods and molecular modeling to create epitope-specific antibodies with 

specific properties. While de novo design of epitope-specific antibodies is still a challenge, 

optimization of antibodies known to target the desired target epitopes is possible using structure-

guided metrices and ML algorithms.  

The earliest efforts to introduce ML in computational antibody engineering was made by 

us where we combined feature engineering and logistic regression to develop a predictive model 

for discriminating native antigen-antibody poses from decoys 12. Classical ML models can work 

on smaller (training) datasets and are computationally cheap and readily interpretable. On the 

other hand, deep learning models require extremely large datasets to train and are difficult to 

interpret owing to their "black box" nature. While tools like mCSM-AB2 32 have employed classical 

ML to determine the impact of mutations on antibody binding, this represents the first study (to 

the best of our knowledge) to show that antibodies having improved properties (e.g., affinity) 

can be generated within a small experimental screen space using classical ML. The classical ML-

guided platform presented here is distinct in the following aspects. We reduce the challenge of 

predicting the most affinity enhancing mutations to a classification problem, where we train a 
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model to discriminate deleterious mutations from neutral or affinity enhancing mutations in the 

CDRs. Consequently, using the classification models, we were able to sample diverse mutations 

and rapidly screen combinations of mutations experimentally despite the size and bias of the 

training dataset. Additionally, we have explicitly examined the biases of our model and those 

implemented by others and accordingly augmented the AbRFC model scores to sample diverse 

mutations including glycines.  Minimizing these biases and increasing the mutation sampling led 

to increased propensity for identifying affinity enhancing mutations within a small screen size. A 

two-pronged approach of CDR engineering (using ML-guided mutations) and scaffold selection 

was employed to identify antibody FR regions from large sequence databases that have improved 

properties, which translate to better developability criteria as a clinical stage therapeutic. Finally, 

another important distinction of the platform is the richness of the datasets on single and 

combination point mutations on the CDRs and their associated experimental binding and 

developability metrices. The progressive increase in these datasets further augment the 

classification performance of the model for future tasks thereby making the ML-guided lab-in-a-

loop more efficient with each antibody engineering campaign. 

Acknowledging the limitations in the relatively small and ALA-scan heavy publicly 

available training datasets, we set out to apply ML specifically to pre-screen a large set of point 

mutations.  Recent work on activity cliffs in small molecules 33, an analogous situation where very 

small differences can have large impact, supports the idea of the continued use of classical ML 

for the problems involving predicting impact of small molecular changes on overall function and 

other properties, despite the exciting capacity of deep learning to generate large sets of highly 

diverse sequences 

To ensure diversity in our screening, we used basic rules including structural location and 

physiochemical properties in the context of CDR engineering and ported the CDRs onto a diverse 

set of scaffolds that passed in silico developability filters. One can possibly imagine using a more 

sophisticated system such as generative modeling to sample from the distribution of somatic 

hypermutations associated with a template clonotype and subsequently scoring them with this 

platform to achieve a fully end-to-end AI system.  Further, these models may be able to suggest 

and score candidates that have multiple mutations, decreasing the experimental iteration time 

still further. 

The platform presented here demonstrates that given a template antibody and structural 

information of the antibody in complex with a homologous but nonidentical antigen, it is possible 

to apply the ML-guided computational methods presented here to find highly diverse, 

functionally improved antibodies using only 2 rounds of experimental iterations.  In conclusion, 

we have successfully applied this platform to a practical problem of obtaining rapid antibody 

neutralization solutions to the constantly evolving SARS-COV-2 viruses.   
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Figure Legends 

Figure 1. Schematic of our ML-guided Platform. A. The underlying lab-in-the-loop screening 

methodology is enabled by 4 key pieces.  First, an in silico algorithm that uses large public 

datasets and in-house data to generate candidate sequences. Second, a virtual screening step, 

where the sequences are screened for properties such as affinity and developability.  Finally, 

constructs are screened in the wet lab and data is stored so that it can be used both for generating 

subsequent constructs and for enhancing the virtual screening models.  The designs for the G and 

C programs required only 2 iterations of this cycle. B. The filtering hypothesis that is central to 

our novel approach posits that a model that is trained to predict the binary deleterious vs non-

deleterious classification task will filter the candidate set sufficiently such that affinity enhancing 

mutations will be observed during wet lab screening.  C. The in silico procedure used to identify 

candidate mutations in practice.  Steps 1-3 are typical for in silico affinity prediction pipelines, 

with many different featurization techniques used.  Our approach is differentiated by splitting 

the training dataset into binary class labels rather than training a model to predict the 

experimental 𝚫𝚫G directly and using a cutoff 𝛥𝛥𝐺 slightly below 0 to account for noise in the 

experimental measurements. 

 

Figure 2.  Dataset Analysis for Model Design Decisions. A,B. Distribution of sampled mutations 

in A. the training subset of SKEMPIV2, and B. The validation set, which includes expert-picked 

mutations for an affinity enhancement campaign.  The distribution of mutations that are picked 

during an affinity enhancement campaign is fundamentally different from the ALA scan heavy 

dataset that is publicly available for training.  A ML model will need to generalize from the ALA-

scan heavy training dataset to the affinity enhancement use case.  C. Different models learn 

different biases, despite being trained and evaluated on identical CV splits. D.  Feature 

importance calculated for the AbRFC during cross validation show that the strongest predictors 

include both local (fa_sol_0,fa_atr_0, aif_score) and global  descriptors (dE2,sin_norm).    E.  We 

ranked the mutations in the IH dataset generated for expert-picked mutations using each of the 

models and plotted the mean relative OD of the top N ranked constructs.  The Oracle line shows 

what a perfect ranking would look like, while the random line indicates the performance of 

random reranking.   AbRFC performs the best on this (N=87) validation set, while the AbLang 

language model also selects non-deleterious mutations in the top 10%.   

 

Figure 3. Experimental Screening of Point Mutations and CDR-FR Shuffling. A. Single 

concentration ELISA OD to estimate the binding of constructs carrying the S309 VH point 

mutations to the BA.1 RBD (* indicates point mutation used in round 2). B. Single concentration 

ELISA OD to estimate the binding of constructs carrying the S309 VL point mutations to the BA.1 

RBD. C. Single concentration ELISA OD to estimate the binding of constructs carrying the CMAB0 
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VH point mutations to the BA.1 RBD. D. Single concentration ELISA OD to estimate the binding of 

constructs carrying the CMAB0 LH point mutations to the BA.1 RBD. E. Relative EC50 (relative to 

S309) of glycan epitope targeting antibodies constructed using the selected point mutations and 

FW-CDR shuffling. Rows indicate H FR and HCDRs used, while columns represent the VL FRs and 

CDRs.  Details on the VH and VL FRs are in Table S2.  The most promising antibody (red box) was 

selected for further characterization.  F.  Relative EC50 (relative to CMAB0) of cryptic epitope 

targeting antibody designs.  The most promising antibody (red box) was  selected for further 

characterization. 

 

Figure 4. Binding affinity and pseudovirus neutralization of the engineered leads.  A. KD values 

of the templates and engineered leads when measured by BLI.  The engineered leads show 

significantly (7-1000x) improved affinity relative to the templates across VOCs.  B and C. The 

neutralization profile of the antibodies against the designed strain (BA.1) and the subsequent 

strain (BA.2) is consistent with the enhanced affinity and there appears to be some synergistic 

effect from targeting the orthogonal epitopes. 
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Methods 

Training Dataset: The GNN and Random Forest models were trained on the mCSM-AB2 dataset 

(http://biosig.unimelb.edu.au/mcsm_ab2/data).  AbLang is pretrained and therefore was not 

retrained. 

Structure Processing: All structures, regardless of dataset, were processed identically.  PDBs 

associated with the complexes in the training dataset were downloaded from the RCSB Protein 

Data Bank.  Structures were cleaned by renaming heavy and light chains to (H,L respectively) and 

renumbering them using the Chothia numbering scheme.  Structures associated with the original 

(WT) complex were relaxed 10 times using Rosetta Fast Relax with the identical parameters to 

those used in the RosettaAntibodyDesign protocol.  The lowest energy structure was selected 

and used for feature extraction.  For each mutation, a new PDB file was generated using 

PyRosetta, wherein side chains within 5A heavy atom distance of the mutation were repacked.  

Classification Labels:   To extract signal from the available training dataset,  a cutoff of fold 

change =  .7 was used to classify mutations as non-deleterious (𝑦 1) or deleterious 

(𝑦 0).  ∆∆G  ∆G ∆G  values were converted to fold change using: 

𝐾𝐷
𝐾𝐷

 e∆∆ /  

The cutoff of .7 was used rather than 1 to reduce the signal noise for mutations with . 7

1. 

 

 

AbRFC Implementation: The Random Forest algorithm was implemented using the 

RandomForestClassifier from the scikit-learn package in python.  A small number of examples in 

the training dataset are not AB-AG complexes and therefore do not permit the use of the AIF 

score.  AIF scores for these instances were imputed using the IterativeImputer class from scikit-

learn. 

Feature engineering was implemented by computing previously validated metrics for the 

mutant residue, the neighborhood residues (see Supplementary Methods for neighborhood 

definition), the interface residues (PyRosetta definition), or the full complex and used as inputs 

to the model.  For each feature, the value of that feature used in the model is  ∆𝐹𝑒𝑎𝑡𝑢𝑟𝑒
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑊𝑇 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑢𝑡 .  Features ending in the suffix _0 are associated with the 

residue that was mutated, ending in the suffix _1 are neighbor features and otherwise are full 

complex or interface features. All features used are in Figure 2D. 

Feature selection was performed by averaging the feature importance (calculated by the 

scikit-learn RandomForestClassifier based on the mean decrease in impurity) from all trees across 

all 5 CV folds. 
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The only hyperparameter that was tuned was the fold change cutoff value for the 

classifier. This was tuned by trying the values [.6,.7*,1,1.2], which resulted in spearmanr of 

[.53,.51*,.26,.002], indicating that predicting non-deleterious values resulted in better 

performance on the validation set.  However, we note that the RandomForestClassifier still 

predicts non-deleterious mutations on average in the top 10% for all cutoff values tried: 

[1.33,1.42*,1.47,1.13], suggesting that the classification approach retains signal on the validation 

set regardless of cutoff.  

GNN Model Classifier Implementation: The code for the graph neural network was cloned from 

https://github.com/HeliXonProtein/binding-ddg-predictor.  To retrain the network as a classifier 

rather than a regressor, a sigmoid layer was added to the final layer readout to map the 

embeddings to [0,1].  Rather than using a mean squared error loss, the cross-entropy loss was 

used.  Hyperparameters for model training were extracted from the paper.  

AbLang Model Implementation: The AbLang package was installed via PyPi.   The pre-trained 

models for the heavy and light chains were downloaded.  The likelihoods for mutations at each 

position were scored using the `model(seqs,mode=’likelihood’) command, and the logits were 

converted into probabilities using the softmax function. 

Cross Validation: The 1800 datapoints (representing 900 mutations) were split into 5 folds such 

that approximately 1450 datapoints were in the training dataset and ~350 data points were in 

the validation set for each fold.  Mutations from the same complex were always grouped into 

either the training or the validation set.   

Random Forest Regressor Implementation: The Random Forest Regressor was implemented 

using identical parameters except for those parameters that are classification specific 

(min_impurity_decrease, class_weight, criterion).  The exact parameters used are in the 

Supplementary Methods. 

GNN Model Regressor Execution:  The model was downloaded from 

https://github.com/HeliXonProtein/binding-ddg-predictor and the `predict.py` script run as 

instructed in the README.md documentation.  The same structures used to train AbRFC were 

input as the wild type and mutant pdbs for the predict.py script. 

GEOPPI Model Execution: GEOPPI was cloned from `https://github.com/Liuxg16/GeoPPI.git` on 

09/27/2021.  Mutation candidates were evaluated using the command ` python run.py [pdb file] 

[Mutation] [partnerA_partnerB]` as described in the README.md file. 

ESM Language Model Execution: The same ESM language models used in the github repository 

associated with Hie BL et. al.,10  were used to score the validation set mutations.  Because the 

process used therein selects specific amino acids rather than scoring each mutation, we instead 

extracted a score for each mutation by computing score log . 

Structural Modelling of the Mutations: For S309, the PDBS 7BEP and 7R6W were used and for 

CMAB0 the PDBs 6YLA and 7LOP were used.  The Omicron BA.1 mutations were performed using 
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PyRosetta, with sidechain repacking with 5A of the mutated residues.  For CMAB0, the mutations 

between CMAB0 from CR3022 were also added to the model prior to relaxation.   

Mutation Scoring:  Residue positions to be mutated were selected by considering any position 

that had a heavy atom within 10A of the RBD in the starting structure (the loose criterion was to 

accommodate longer side chain mutations).  Additionally, the following positions were ignored: 

template AA is Cysteine; template AA is Glycine AND is 90% conserved in human antibody 

sequences; template AA is any amino acid AND 95% conserved in human antibody sequences.   

All amino acids except Cysteine and AAs that would introduce glycosylation were considered.   

Mutations were ranked on a position-specific basis using the AbRFC model scores to ensure we 

could meet the following diversity requirements: <=7 mutations per position, >=1 non-

synonymous mutation sampling in all CDRs.  Additionally, as described above due to the bias of 

AbRFC against G mutations, decisions for Glycine mutations were made based on AbLang and 

Rosetta ∆∆𝐺 scores in addition to AbRFC scores.  

CDR FR Shuffling: FRs were selected using an identical procedure to that described earlier 16. 

Briefly, filters for the S309-based designs included: 

 H1 north cluster = H1-13-A, H2 north cluster = H2-10-A, H3 length = 18, maximum number 

of PTMS: 18, maximum rare amino acids: 1, minimum V/J-germline ID>= .8. 

 L1 north cluster = L1-12-B, L2 north cluster = L2-8-A, L3 north cluster = L3-8-A, maximum 

number of PTMs=6, maximum rare amino acids = 2, minimum V/J-germline ID >=.81. 

Filters for the CMAB0-based designs included: 

 H1 north cluster = H1-13-A, H2 north cluster = H2-10-A, H3 length = 10, maximum number 

of PTMS: 12, maximum rare amino acids: 0, minimum V/J-germline ID>= .86. 

 L1 north cluster = L1-16,17-A,  L2 north cluster = L2-8-A, L3 north cluster = L3-9,10-A, 

maximum number of PTMS=7, maximum rare amino acids = 0, V/J-germline ID>=.80. 

Scaffold-CDR combinations were ranked according to Rosetta Energy, the developability metrics 

from Therapeutic Antibody Profiling, and sampled to maximize FR diversity as described 

previously. 

 

Expression and purification of recombinant monoclonal antibodies: The variable heavy and light 

chain sequence of anti-SARS CoV2 antibodies S309, and CMAB0 22  and variants were cloned into 

the full length IgG1 expression vectors pcDNA3.3 HC and pcDNA3.3 LC (ATUM). The recombinant 

antibodies were transiently expressed in both Expi CHO and Expi293 cells according to 

manufacturer’s protocol (Invitrogen). The supernatants from 1mL transient transfections of the 

antibodies were purified using the AssayMAP BRAVO platform with 5mL Protein A cartridges 

(Agilent Technologies). Lager scale transient transfections were purified on the Akta FPLC system 

using 1mL HiTrap MabSelect PrismA™ affinity chromatography resin (Cytiva). The purified 

recombinant monoclonal antibodies were stored in 1x phosphate buffered saline at 4°C until use. 
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Specific site directed mutations on the S309 and CMAB0 antibody sequence was done using the 

Quick-change site directed mutagenesis kit II (Agilent technologies).  

 

Screening of Expressed Recombinant Antibodies Using Enzyme Linked Immunosorbent Assay 

(ELISA): The antibodies purified from a 1mL transient transfection was tested for binding against 

BA.1 RBD (Acro# SPD C522e) protein on an ELISA. Briefly, 2ug/mL of SARS CoV2 BA.1 RBD protein 

were coated on 96-well ELISA plates (Nunc Maxisorp) and left overnight at 4°C. The wells were 

blocked with 5% Blotto (Santa Cruz) in 1xPBST for 1hr at room temperature. Using the Opentrons 

OT-2 benchtop liquid handler, the purified variant recombinant antibodies based on S309 and 

CMAB0 were diluted to either 12 and 0.3ug/mL or 12 and 0.06ug/mL respectively and added to 

the plates and incubated on a rocker platform for 2hrs at room temperature. After rinsing the 

plates three times with 1x PBST a rabbit anti-human IgG conjugated to horseradish peroxidase 

(Jackson Immuno Research) was added to each well. The plates were incubated for 1hr at room 

temperature followed by washing with 1xPBST and addition of TMB substrate. The reaction was 

stopped by adding 1N sulfuric acid and the absorbance was read at 405nm.  

Select CMAB and GMAB candidates were serially diluted and tested for binding against 

BA.1 RBD (Acro# SPD C522e) protein on an ELISA to determine apparent KD values. Briefly, 

0.5ug/mL of BA.1 RBD protein were coated on 96-well ELISA plates (Nunc Maxisorp) and left 

overnight at 4°C. The wells were blocked with 5% Blotto (Santa Cruz) in 1xPBST for 1hr at room 

temperature. Using the Opentrons OT-2 benchtop liquid handler, a three-fold serial dilution of 

select antibodies from 9μg/mL to 0.152ng/μL was made and added to the plates and incubated 

on a rocker platform for 2hrs at room temperature. After rinsing the plates three times with 1x 

PBST a rabbit anti-human IgG conjugated to horseradish peroxidase (Jackson Immuno Research) 

was added to each well. The plates were incubated for 1hr at room temperature followed by 

washing with 1xPBST and addition of TMB substrate. The reaction was stopped by adding 1N 

sulfuric acid and the absorbance was read at 405nm.  

 

Affinity determination using Octet (biolayer interferometry): The affinity of the antibodies to 

BA.1 RBD (Acro# SPD C522e), BA.2 RBD (Acro# SPD-C522g), BA.4/5 RBD (Acro# SPD-C522r), and 

XBB.1 RBD (Acro# SPD C5241) was determined using the Octet. The Pro A sensors were presoaked 

in 20mM HEPES with 150mM NaCl and 0.05% tween 20, pH 7.4 or assay buffer and then loaded 

with 0.5ug/mL of select recombinant monoclonal antibody. A twofold dilution of the different 

RBDs from 60nM to 1.875nM in assay buffer was made and the antibody coated Pro A sensors 

were then incubated in the various dilutions followed by dissociation in assay buffer. The KD 

values were calculated using the global fit method on the Octet Red96(Sartorius) instrument. 

  

Pseudovirus neutralization assay: : For the pseudovirus neutralization assay, HEK 293T cells 

expressing ACE2 and TMPRSS2 were purchased from Genecopoeia (Catalog # SL222).  The 
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pseudovirus particles used in the study were procured from eEnzyme (catalog #s SCV2-PsV-

Omicron, and SCV2-PsV-OmiBA2). The HEK 293T cells were maintained in DMEM (Corning 

Catalog# 10-013-CV) containing 10% FBS (Gibco Catalog # A38401-01) containing selection 

antibiotics hygromycin and puromycin as per the manufacturer’s protocol. The test antibodies 

were incubated with the pseudovirus particles for 1h at 37°C. Afterwards, HEK 293T cells 

expressing hACE2 and TMPRSS2 were incubated with the antibody/pseudovirus mixture and 

incubated for 48h. After 48hours incubation, the luciferase activity of SARS-CoV-2 pseudovirus 

infected HEK 293T cells were determined by luciferase reporter assay kit (eEnzyme, Catalog # CA-

L165-10). e. The relative luciferase activity (%) was calculated as follows:  

𝑚𝑒𝑎𝑛 𝑅𝐿𝑈 𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑅𝐿𝑈 𝑓𝑟𝑜𝑚 𝑐𝑒𝑙𝑙 𝑜𝑛𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑚𝑒𝑎𝑛 𝑅𝐿𝑈 𝑓𝑜𝑟 𝑣𝑖𝑟𝑢𝑠 𝑜𝑛𝑙𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑅𝐿𝑈 𝑓𝑟𝑜𝑚 𝑐𝑒𝑙𝑙 𝑜𝑛𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∗ 100 

Results of neutralization assays were plotted by normalization to samples where no antibody was 

used, and the half-maximal inhibitory concentration (IC50) was calculated using 4-parameter 

non-linear regression using GraphPad Prism. Each experiment was run in duplicate. 

 

Analysis of Select candidates by Size Exclusion Chromatography (SEC) and Thermal Shift Assay: 

Briefly, the purity of the recombinant monoclonal antibody samples was studied using the 

AdvanceBio, 300A, 2.7um, 4.6 x 300mm (Agilent, P/N: PL1580-5301) SEC column connected to 

Agilent 1260 Bioinert Infinity Quaternary Pump System (Pump serial# DEAGH00678). 1X 

Phosphate Buffered Saline at pH 7.4 and filtered with a 0.2um membrane filter unit was used as 

the mobile phase. After calibrating and verifying the performance of the column using the LC Bio-

standard (Agilent, P/N : 5190-9417), the recombinant antibody samples were diluted to 2mg/ml 

in 1XPBS and loaded onto a pre-conditioned column at a flow rate of 0.35ml/min. The samples 

were monitored by ultraviolet (UV) absorbance at a wavelength of 280nm with 4nm bandwidth. 

Using Agilent OpenLab software, based on the retention times, the Monomeric, Aggregate and 

Low molecular weight peaks were identified. The peak area percentage represents the relative 

concentration of the monomer, aggregate and fragments. 

 For the Thermal Shift Assay, select recombinant monoclonal antibody samples were 

diluted to 1.05 mg/mL in 1X Phosphate Buffered Saline at pH 7.4 and mixed with 20X SYPRO 

Orange Fluorescent Dye (Sigma Cat# S5692, 50uL) in a 96-well plate. The sealed plate was pulse 

centrifuged for up to 1000rpm to ensure there are no bubbles in the samples and run on the 

QuantStudio 3 device (Applied Biosystems) and the data was analyzed using their Protein 

Thermal Shift software. 
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C. 

1. Generate: Candidate 
mutations are 
generated by in silico
saturation mutagenesis 
of paratope residues.

𝑭 𝑀𝑈𝑇

3. Featurize: Extract features 𝑭
from the native (WT) and mutated 
(MUT) structural models.  The 
classifier input 𝑋 for a mutation is 
the feature-wise difference 
between the WT and MUT 
features.

𝑭 𝑊𝑇

𝑋 = 𝑭 𝑊𝑇 − 𝑭 𝑀𝑈𝑇 𝐶(𝑋) = ,10

4. Select: Train a classifier 
𝐶(�⃗�) to predict whether a 
mutation is non-deleterious 
(1) or deleterious (0).  
Candidates are selected for 
experimental testing based 
on a pre-defined model 
threshold.

NX(S/T)
C…

2. Pre-filter: Mutations 
that cause sequence 
liabilities or change 
conserved residues are 
filtered.

All Paratope Mutations

Non-Deleterious

Affinity Enhancing

Model Predicted and 
Wet Lab Screened

Subset 
Used

A.  B. 

Virtual 
Screening

Learning

Hours

Experimental 
Screening

Data 
Infrastructure

Sequence 
Generation

OAS, PDB

Weeks

2x
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A. B.

C. D.

E.
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VL Scaffold
L1 28_TE 28_TQ
L2 52_SE 52_SY 52_SY
L3 93_TE 93_TE 93_TK 93_TE 93_TE

VH Scaffold H1 H2 H3
1538 31_SK 54_NT 100_AS 0.11 0.29 0.07 0.06 0.1

589310 743983
28_TQ

52_SY

A.

D.

F.E.

C.

B.

vl_scaffold
L1 30E_NK,31_NE 31_NE 30E_NK,31_NE
L2 56_SE 56_SY 56_SE
L3 90_QN 90_QN,93_SK 90_QN,93_ST 90_QN,93_ST 90_QN 90_QN 90_QN,93_ST 90_QN

vh_scaffold H1 H2 H3
99_SN 0.92 0.93 0.92 0.91 0.93 0.97 1.03

96_SG,99_SW 0.63 0.92
99_SW 0.85 0.99 0.93 0.7 1.23 1.38 1.47 0.89

955762 55_SQ 99_SN 1.52 2.89 1.64 1.79

170425 55_SQ

586646 723055
31_NE 30C_SR,31_NE
56_SY 56_SY
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A.

C.B.

Antibody BA.1 RBD KD (M) BA.2 RBD KD (M) BA.4/5 RBD KD (M) XBB.1 RBD KD(M)
CMAB0 4.44E-09 9.10E-09 1.91E-08 Not Tested
CMAB283 1.54E-12 2.08E-12 6.02E-12 2.14E-11
S309 6.98E-10 1.74E-09 1.04E-09 8.38E-10
GMAB156 2.20E-12 7.55E-12 1.38E-10 6.95E-10
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