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Abstract 11 

Environmental heterogeneity can lead to spatially varying selection, which can, in turn, lead to local 12 
adaptation. Population genetic models have shown that the pattern of environmental variation in space 13 
can strongly influence the evolution of local adaptation. In particular, when environmental variation is 14 
highly autocorrelated in space local adaptation will more readily evolve. Despite this long-held prediction, 15 
the evolutionary genetic consequences of different patterns of environmental variation have not been 16 
thoroughly explored. In this study, simulations are used to model local adaptation to different patterns of 17 
environmental variation. The simulations confirm that local adaptation is expected to increase with the 18 
degree of spatial autocorrelation in the selective environment, but also show that highly heterogeneous 19 
environments are more likely to exhibit high variation in local adaptation, a result not previously 20 
described. Spatial autocorrelation in the environment also influences the evolution and genetic 21 
architecture of local adaptation, with different combinations of allele frequency and effect size arising 22 
under different patterns of environmental variation. These differences influence the ability to 23 
characterise the genetic basis of local adaptation in different environments. Finally, I analyse a large-scale 24 
provenance trial conducted on lodgepole pine and find suggestive evidence that spatially autocorrelated 25 
environmental variation leads to stronger local adaptation in natural populations of lodgepole pine.  26 
Overall, this work emphasizes the profound importance that the spatial pattern of selection can have on 27 
the evolution of local adaptation and how spatial autocorrelation should be considered when formulating 28 
hypotheses in ecological and genetic studies.  29 
Lay Summary 30 
 31 
Many species exhibit local adaptation to environmental variation across their ranges. Theoretical 32 
population genetics predicts that the evolution of local adaptation and patterns of genetic variation 33 
underlying it will be influenced by the spatial pattern of variation across a species’ range. However, this 34 
prediction has not been thoroughly explored for cases of complex heterogeneous landscapes. In this 35 
paper, I analyse simulations and empirical data to characterise the effects that the spatial pattern of 36 
environmental variation can have on the evolution of local adaptation and the genetics underlying it. 37 
From these analyses, I show that the pattern of environmental variation influences the average level of 38 
local adaptation, variation in local adaptation as well as the genetics underlying this important 39 
phenomenon.  40 
  41 
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Introduction 42 
Local adaptation is an important phenomenon in the natural world. Along with phenotypic plasticity, 43 
local adaptation can dictate the extent of environmental heterogeneity that a species can tolerate, 44 
shape its geographic range (Kirkpatrick & Barton, 1997), and help predict how it will respond to changing 45 
environments (Rellstab et al., 2021). In forest trees, for example, local adaptation is widely observed 46 
(Leites & Benito Garzón, 2023) and is central to plans for adapting forestry practice in light of climate 47 
change (O’Neill & Gómez-Pineda, 2021; Ying & Yanchuk, 2006). Local adaptation can be defined as a 48 
kind of genotype-by-environment interaction for fitness, where individuals have higher chances of 49 
survival and/or reproduction when they are reared at home as opposed to away, though several other 50 
definitions are used in the literature (Blanquart et al., 2013; Kawecki & Ebert, 2004). Local adaptation is 51 
a property of a particular population at a particular point in time rather than a property of a species as a 52 
whole. For example, populations at range edges are often expected to be maladapted to their 53 
conditions, while populations in the core of a range may be well adapted (Angert et al., 2020). Locally 54 
adapted populations may harbour genetic variation that could help buffer susceptible ones against the 55 
detrimental effects of climate change (Aitken & Whitlock, 2013), which are already wreaking havoc on 56 
important species around the world (Hartmann et al., 2022). A deep understanding of local adaptation, 57 
the agents that have given rise to it and the genetics that underpin this phenomenon is thus important 58 
for our understanding of biodiversity and for species management and conservation in the 59 
Anthropocene (Aitken & Whitlock, 2013; Exposito-Alonso, 2023; Wadgymar et al., 2022). 60 
 61 
The ultimate cause of local adaptation is variation in the environment. Whether it is biotic (e.g. 62 
disease/parasite prevalence or intraspecific competition) or abiotic (e.g. climate, geology or 63 
photoperiod), variation in the environment may lead to spatially varying selection pressures where 64 
phenotypic optima differ over a landscape. Such variation in selection across space has been well 65 
documented (e.g. Siepielski et al., 2013) and there are, of course, myriad aspects of the environment 66 
that could conceivably induce spatially varying selection, many of which would be highly inter-67 
correlated. However, while there is an infinite number of ways to describe the environment, most of 68 
these may be functionally disconnected from a species’ biology. A recent review by Wadgymer et al 69 
(2022) highlighted a critical gap in our knowledge of local adaptation - that the aspects of environmental 70 
variation that have given rise to local adaptation (what they term the ‘agents of selection’) are unknown 71 
in most cases. For example, in the absence of experimental evidence many genetic studies have 72 
assumed that various climatic measures recorded in databases such as WorldClim correspond to agents 73 
of selection and search for the genetic basis of local adaptation using those data (Lasky et al., 2023). 74 
However, that a particular aspect of environmental variation could conceivably induce spatially varying 75 
selection is not a guarantee that it will have led to local adaptation.  76 
 77 
Population genetic studies have revealed numerous factors that can influence the evolution of local 78 
adaptation in a particular location, the most important being the strength of selection and rates of gene 79 
flow. The strength of natural selection is of foremost importance because larger fitness consequences 80 
for deviating from the optimal phenotype in a particular location can potentially lead to greater 81 
evolutionary change (Falconer & MacKay, 1995). The rate of gene flow is important because migration 82 
into a region experiencing idiosyncratic selection can overwhelm that selection, preventing regional trait 83 
differences (i.e. local adaptation) from accumulating (Nagylaki, 1975; Slatkin, 1978; Wright, 1931; 84 
Yeaman, 2015). In discrete space models, the evolution of local adaptation in a particular location 85 
depends on the ratio of gene flow from dissimilar environments (m) to the strength of selection (s), m/s 86 
(Slatkin, 1978; Wright, 1931; Yeaman, 2015). In models of continuous space, patterns of dispersal 87 
relative to the strength of selection can be used to determine the minimum size a region experiencing 88 
idiosyncratic selection needs to be for locally adaptive differences to accumulate, the so-called 89 
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“characteristic length” of a cline. Specifically, when dispersal is modelled as a diffusion process, the 90 
characteristic length is the standard deviation of dispersal distances (𝜎) relative to the square root of the 91 
strength of selection (i.e. 𝜎/√𝑠). Such characteristic lengths can be described for individual alleles 92 
(Nagylaki, 1975; Slatkin, 1973) or for stabilising selection acting on polygenic traits (Barton, 1999; 93 
Slatkin, 1978), see reviews by Felsenstein, (1976) and Lenormand (2002). Furthermore, the mean values 94 
of polygenic traits will more closely track changes in phenotypic optima over space if those changes are 95 
small (Barton, 1999; Slatkin, 1978). Because natural populations often inhabit large spatial ranges 96 
encompassing complex patterns of environmental variation, relative rates of gene flow among regions 97 
of high environmental similarity or dissimilarity will vary across the landscape, influencing the evolution 98 
of local adaptation. 99 
 100 
That the spatial pattern of environmental heterogeneity will influence the evolution of local adaptation 101 
has been recognised since at least the 1960s (Antonovics, 1971; Antonovics & Bradshaw, 1970; Forester 102 
et al., 2016; Hadfield, 2016; Levins, 1966; Schiffers et al., 2014). Indeed, the overall level of local 103 
adaptation a species exhibits can be strongly affected by the pattern of environmental variation over 104 
space (Forester et al., 2016; Gilbert & Whitlock, 2017; Hadfield, 2016; Schiffers et al., 2014) and several 105 
studies have framed this concept in terms of the spatial autocorrelation of the environment (Hadfield, 106 
2016; Urban, 2011). Spatial autocorrelation describes the similarity of observations from nearby 107 
locations and can be quantified, for example, using Moran’s I (Moran, 1950). Consider the maps of 108 
environmental heterogeneity shown in Figure 1A. When the environment that gives rise to spatially 109 
varying selection across a species’ range exhibits high spatial autocorrelation (e.g. the right-hand map in 110 
Figure 1A), selection pressures may be similar over large areas and changes in environment over space 111 
will tend to be gradual. On the other hand, when the environment exhibits weak autocorrelation (e.g. 112 
the left-hand map in Figure 1A), regions experiencing idiosyncratic selection will be comparatively small 113 
and selection pressures may change rapidly over space. Of course, other factors such as variation in 114 
population density, the magnitude of environmental variation and the scale of dispersal will also affect 115 
the outcomes of spatially varying selection. All else being equal, though, a species with restricted 116 
migration will tend to evolve the strongest local adaptation if agents of selection exhibit high levels of 117 
spatial autocorrelation.  118 
 119 
It is likely that the spatial pattern of selection across a species’ range affects the genetic architecture 120 
underlying local adaptation. In simple two-patch models, the relative balance of selection and migration 121 
influences the number of alleles underlying local adaptation, their effect sizes and rates of allelic 122 
turnover (Yeaman & Whitlock, 2011). In continuous, linearly varying landscapes, frequencies of alleles 123 
contributing to locally adaptive traits are expected to vary in relation to their effect sizes and the 124 
proximity of local trait means to phenotypic optima (Polechová & Barton, 2015). However, such models 125 
may not fully predict the patterns of genetic variation expected in complex landscapes where the 126 
relative balance of selection and migration vary across space. Previous studies have examined the 127 
effects of landscape structure on the genetics of local adaptation in single locus models (Forester et al., 128 
2016) or in models of population expansion (Gilbert & Whitlock, 2017; Schiffers et al., 2014), but it is 129 
unclear how the polygenic architecture of local adaptation will be influenced by the spatial pattern of 130 
environmental variation.  131 
 132 
In this paper, I examine patterns and the genetic bases of local adaptation in complex landscapes. 133 
Following previous studies, I cast spatial patterns of environmental variation across a species’ range in 134 
terms of spatial autocorrelation. With population genetic simulations, I examine the patterns and 135 
genetic architectures of local adaptation that evolve in environments that vary in their degree of spatial 136 
autocorrelation. These simulations show ways that the pattern of environmental variation across a 137 
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species’ range can influence the genetic variation underlying local adaptation. Finally, I analyse empirical 138 
data from a large-scale experiment in lodgepole pine and find evidence suggesting a link between spatial 139 
autocorrelation in climatic/environmental variation with the strength of local adaptation in a natural 140 
system. Taken together, the results of this study highlight the importance of considering the spatial 141 
pattern of environmental variation in studies of local adaptation. 142 
 143 
Results and Discussion 144 
Simulating local adaptation to spatially heterogeneous environments 145 
To further understand the effects that the spatial pattern of environmental variation can have on 146 
patterns of local adaptation, I constructed a simulation model of spatially varying selection. I used 147 
forward-in-time population genetic simulations in SLiM (4.1; Haller & Messer, 2023) modelling a 2-148 
dimensional stepping-stone metapopulation of 196 demes (i.e. a 14x14 grid). Migration was restricted 149 
to adjacent demes with rates of gene flow that resulted in pronounced population structure with clear 150 
isolation-by-distance (Figure S1). Spatially varying selection was modelled as stabilising selection, where 151 
each deme (𝑑) had a particular phenotypic optimum (𝜃!), i.e. an individual in deme 𝑑 had higher fitness 152 
if its phenotype was close to 𝜃!. The strength of stabilising selection was set such that an individual with 153 
the optimal phenotype for the deme with the most negative optimum translocated into the deme with 154 
the most positive optimum would experience a 50% reduction in fitness (strong selection) or a 25% 155 
reduction in fitness (moderate selection). I used a quantitative trait model to study local adaptation, 156 
because it is thought that the traits involved in local adaptation are generally polygenic (Savolainen et 157 
al., 2013). Additionally, there is evidence that the genetic basis of local adaptation can involve alleles 158 
that have spatially antagonistic fitness effects as well as conditionally neutral effects (Anderson et al., 159 
2013) and both kinds of effects can arise in a quantitative trait model given variation in genetic 160 
backgrounds and environments. I constructed a set of 200 maps of normally distributed environmental 161 
variation that varied in the degree of spatial autocorrelation (three examples are shown in Figure 1A). I 162 
quantified spatial autocorrelation in the environment using Moran’s I, which varied from 0.05 (weak 163 
autocorrelation) to 0.95 (strong autocorrelation) in the maps I constructed. The maps of environmental 164 
variation were used to specify phenotypic optima in individual simulations. 165 
 166 
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 167 
Figure 1 The pattern of environmental heterogeneity influences the outcomes of spatially varying 168 
selection. A) Three examples of environmental heterogeneity with similar distributions of phenotypic 169 
optima ranging from low autocorrelation on the left to high autocorrelation on the right. B) The pattern 170 
of local adaptation that evolved on the landscapes shown in panel A. C) The average local adaptation 171 
that arises as a function of Moran’s I across 200 maps of environmental variation. C) The coefficient of 172 
variation for local adaptation across the 200 maps. The simulation results shown are for cases with 173 
mean FST ~ 2% and moderate stabilising selection. 174 
 175 
The effects of environmental structure on patterns of local adaptation that evolved in simulations were 176 
profound. I measured local adaptation in simulated populations by comparing an individual’s fitness at 177 
“home” versus “away” following the method outlined by (Blanquart et al., 2013). Using this method, the 178 
observed local adaptation for each deme (𝐿𝐴) in the metapopulation was computed (e.g. Figure 1B). As 179 
expected, the mean local adaptation across populations (𝐿𝐴))))) increased with the degree of spatial 180 
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autocorrelation in the environment (Figure 1C), consistent with Hadfield (2016). This result held over 181 
various levels of gene flow and strengths of stabilising selection (Figure S2). Varying the rate of gene 182 
flow and/or the strength of selection had an effect on the level of local adaptation that arose in a given 183 
case, but a pattern of increasing 𝐿𝐴)))) with Moran’s I was always observed (Figure S2). In natural 184 
populations, it is likely that multiple aspects of environmental variation will induce spatially varying 185 
selection. In cases where simulated populations had multiple traits subject to selection due to different 186 
aspects of environmental variation, the trait corresponding to the more autocorrelated environment 187 
exhibited greater local adaptation (Figure S3).  188 
 189 
The spatial pattern of environmental variation did not just affect the average level of local adaptation, 190 
though, it also had a large influence on the variation in local adaptation across the landscape (Figure 1B). 191 
The coefficient of variation in local adaptation [𝐶𝑉(𝐿𝐴)] across the landscape decreased rapidly with 192 
increasing autocorrelation (Figure 1D, S2B). When environmental variation was weakly autocorrelated, 193 
the 𝐶𝑉(𝐿𝐴) was as much as 30x higher than for more highly autocorrelated environments (Figure 1D). 194 
Variation in the degree of local adaptation across a species range is understudied in the population 195 
genetics literature but has important implications (see below).  196 
 197 
At a finer scale, environmental variation in the immediate vicinity of a particular deme predicted its level 198 
of local adaptation and genetic variation, as predicted by theory (Barton, 1999; Guillaume & Whitlock, 199 
2007; Slatkin, 1978). Demes that were surrounded by populations with highly similar phenotypic optima 200 
evolved greater local adaptation than demes bordering more dissimilar environments (Figure S4A). This 201 
was particularly evident when the overall landscape was weakly autocorrelated (Figure S4A), 202 
presumably because in highly autocorrelated landscapes most demes are surrounded by similar 203 
environments. Furthermore, additive genetic variance (VA) for the trait under selection was highest in 204 
demes surrounded by dissimilar environments (Figure S4B), suggesting that gene flow among locally 205 
divergent populations has an effect of increasing genetic variability. Such a positive correlation between 206 
VA and local environmental heterogeneity has been reported in lodgepole pine (Yeaman & Jarvis, 2006). 207 
The magnitude of a species’ response to selection on a trait is expected to be proportional to VA 208 
(Falconer & MacKay, 1995), thus the pattern of environmental variation that local adaptation evolves 209 
under may influence how a species responds to changing environments. 210 
 211 
Environmental structure and the genetic architecture of local adaptation  212 
The results so far demonstrate that the structure of the environment can have a clear impact on the 213 
patterns of local adaptation that evolve, but does it influence the genetic basis of that adaptation? 214 
Under a model of spatially varying stabilising selection, each polymorphism that affects the phenotypes 215 
under selection will influence local adaptation, but the extent of this will depend on its effect size, 216 
where it is present and its allele frequencies. For each polymorphism in a simulation, I quantified the 217 
contribution it makes to mean local adaptation (𝐿𝐴))))) as follows. I shuffled the presence/absence of a 218 
particular polymorphism across the landscape, effectively erasing its contribution to local adaptation. 219 
Average local adaptation was then recalculated without the contribution of the focal polymorphism 220 
(𝐿𝐴")))))). The relative contribution of the focal polymorphism to mean local adaptation across the 221 
landscape was then calculated as 𝐿𝐴#$%,% = (1 − 𝐿𝐴"))))) 𝐿𝐴))))⁄ ). For example, a polymorphism with 𝐿𝐴#$% 	≈222 
1.0 would be the basis of all local adaptation, while one with 𝐿𝐴#$% 	≈ 0.0 would have no effect. Note, 223 
𝐿𝐴#$%  is not strictly a proportion (see Methods for details).  224 
 225 
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 226 
Figure 2 The genetic architecture of local adaptation is influenced by the structure of the environment. 227 
A) The proportion of total local adaptation explained by alleles that individually explain different 228 
amounts of local adaptation (LARel) varies as a function of environmental autocorrelation. Lines 229 
represent LOESS curves fit with a span parameter of 1.5. B) The mean allele frequencies compared to 230 
the squared effect sizes of polymorphisms that underly local adaptation differ depending on the pattern 231 
of the environment. The contour lines indicate regions with high densities of points. High 232 
autocorrelation refers to data from maps with the 50 highest values of Moran’s I. Low autocorrelation 233 
refers to data from maps with the 50 lowest values of Moran’s I. Results in both panels come from 234 
simulations with FST = 0.02 and moderate stabilising selection. 235 
 236 
The distribution of locally adaptive effects varied in relation to the pattern of environmental variation 237 
(Figure 2A, S5). In environments exhibiting weak autocorrelation, polymorphisms that individually made 238 
a large contribution to local adaptation across the species’ range (𝐿𝐴#$% > 0.10) were largely absent 239 
and polymorphisms that made intermediate (0.01 < 𝐿𝐴#$% < 0.10) and small contributions (𝐿𝐴#$% <240 
0.01) explained most of the local adaptation that evolved (Figure 2A). In environments that were more 241 
highly autocorrelated, polymorphisms with 𝐿𝐴#$% > 0.10 made a substantial contribution to local 242 
adaptation alongside those with intermediate and small effects, particularly under strong stabilising 243 
selection (Figure S5). These general patterns held over different levels of gene flow (Figure S5).  244 
 245 

0.000

0.005

0.010

0.015

0.020

0.25 0.50 0.75
Environmental Autocorrelation (Moran's I)

Lo
ca

l A
da

pt
at

io
n

0.10 < LARel <= 1.00

0.01 < LARel <= 0.10

0.00 < LARel <= 0.01

A

0.001

0.010

0.100

1.000

0.001 0.01 0.1 1 10
Squared Phenotypic Effect Size

0.10 < LARel < 1.0

0.001

0.010

0.100

1.000

0.001 0.01 0.1 1 10
Squared Phenotypic Effect Size

D
er

ive
d 

Al
le

le
 F

re
qu

en
cy

0.01 < LARel <= 0.1

0.001

0.010

0.100

1.000

0.001 0.01 0.1 1 10
Squared Phenotypic Effect Size

0.001 < LARel <= 0.01

Environmental
Autocorrelation

High Low

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.05.29.542754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542754
http://creativecommons.org/licenses/by-nc-nd/4.0/


Patterns of genetic variation underlying locally adaptive polymorphisms varied depending on the degree 246 
of spatial autocorrelation in the environment. In general, locally adaptive polymorphisms with similar 247 
𝐿𝐴#$%  tended to have smaller phenotypic effects but larger allele frequencies in highly versus weakly 248 
autocorrelated environments (Figure 2B). In highly autocorrelated environments, alleles may readily 249 
spread among populations facing similar environmental challenges. However, when alleles with large 250 
phenotypic effects spread among neighbouring demes, they may cause individuals to overshoot their 251 
respective phenotypic optima, so the alleles that are maintained may tend to have smaller phenotypic 252 
effects. In weakly autocorrelated environments, on the other hand, genes flowing from one location to 253 
another have a much greater chance of encountering highly divergent environments, preventing locally 254 
adaptive alleles from spreading across wide regions. In such cases, phenotypic effects may need to be 255 
large for locally adaptive mutations to withstand the swamping effects of gene flow. These general 256 
patterns were observed with both strong and moderate selection (Figure 2B, S6A) as well as over 257 
varying levels of gene flow (Figure S6A). Indeed, the patterns of allele frequency versus phenotypic 258 
effect still held when looking at absolute effects on local adaptation, though they were much less 259 
pronounced (Figure S6B).  260 
 261 
Characterising the genetic basis of local adaptation is important, and researchers generally attempt to 262 
do so using one of two strategies; by comparing phenotypic variation for traits important for local 263 
adaptation to genetic variation (i.e. genome-wide association studies, GWAS) or environmental variation 264 
to genetic variation (i.e. genotype-environment association analysis, GEA analysis)(reviewed in Lasky et 265 
al. 2023). Since patterns of genetic variation underlying local adaptation can differ depending on the 266 
pattern of environmental variation, statistical power to identify the genetic basis of local adaptation will 267 
likely vary for different aspects of the environment. To demonstrate this, I performed GWAS on 268 
phenotypes for 1,000 randomly chosen individuals from the simulations and corrected for population 269 
structure using the kinship matrix. Figure S7 shows that the -log10(p-values) for alleles that contribute 270 
similar levels of local adaptation tend to be smaller (i.e. there is less power) for high versus low 271 
autocorrelation environments. Some of this difference may partially be due to the population structure 272 
correction procedure (see below), but it demonstrates that the pattern of environmental variation that 273 
gave rise to local adaptation can affect the ability to study the genetics of that adaptation. 274 
 275 
There are numerous factors that may interact with the pattern of spatially varying selection to shape the 276 
genetics of local adaptation that I did not explore here. The degree of genetic redundancy in relevant 277 
traits, distribution of phenotypic effect sizes, mutation rates and patterns of dispersal can all influence 278 
the genetics of local adaptation (e.g. Láruson et al., 2020; Yeaman, 2013; Yeaman & Whitlock, 2011). 279 
Follow up studies looking at how such factors influence the genetic basis of local adaptation in 280 
differently structured environments are needed. However, the results from the simulations should 281 
provide researchers seeking to characterise the genetic basis of local adaptation with useful intuition.  282 
 283 
The evolution of local adaptation: maladaptation and allelic turnover  284 
In heterogeneous environments certain polymorphisms may have a net effect of reducing local 285 
adaptation across a species’ range. All populations will harbour such locally maladaptive alleles, because 286 
any new mutation that increases distance between an individual’s phenotype and the local optimum will 287 
reduce local adaptation even if only by a small amount. By summing the effects of all polymorphisms 288 
with 𝐿𝐴#$% < 0 across a simulation, I obtained a measure of the cumulative local maladaptation across a 289 
meta-population. Note that the cumulative local maladaptation is analogous to “migration load”. All 290 
simulations exhibited some degree of maladaptation regardless of the level of autocorrelation, but the 291 
cumulative effects of maladaptive alleles were always higher under weakly versus highly autocorrelated 292 
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environments (Figure 3A, S8B). Increasing the rate of gene flow increased the degree of maladaptation 293 
and increasing the strength of selection decreased it (Figure S8B).  294 
 295 
Regardless of the pattern of environmental variation in a simulation, levels of local adaptation had been 296 
maintained at a steady state for many generations before they were sampled (Figure S9). However, the 297 
average age of alleles underlying local adaptation increased with increasing autocorrelation in the 298 
environment (Figure 3B). Furthermore, weighing the average allele age within a simulation by effect 299 
size, the increase in allele age with spatial autocorrelation was even more pronounced (Figure 3B). Thus 300 
large effect alleles, in particular, are maintained for longer times in more highly autocorrelated 301 
landscapes. Taken together, these results demonstrate that the rate of allelic turnover is greater for 302 
more weakly autocorrelated environments.  303 

 304 
Figure 3 Species-wide maladaptation and the age of locally adaptive alleles are influenced by the pattern 305 
of environmental variation. A) Cumulative local maladaptation, the summed effects of all polymorphism 306 
that have a net negative effect on local adaptation across a simulated species’ range, decreases with 307 
increasing autocorrelation. Points represent individual simulations and lines represent LOESS curves fit 308 
with a span parameter of 1.5. B) Alleles underlying local adaptation tend to be older when the 309 
environment is more highly autocorrelated. Lines represent LOESS curves fit to the data treating all 310 
polymorphisms equally, or by giving higher weight to polymorphisms with greater effect size. 311 
 312 
Local adaptation, environmental autocorrelation, provenance trials and lodgepole pine 313 
The simulation results clearly show how the pattern of environmental variation across a species range 314 
may influence the evolution of local adaptation and the genetics underlying it. In natural populations, if 315 
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the relative strength of selection acting on different aspects of environmental variation is unknown, we 316 
should perhaps predict that local adaptation will be strongest when the environment is highly 317 
autocorrelated. Despite such strong predictions, though, empirical evidence that patterns of local 318 
adaptation coincide with spatially autocorrelated features of the environment is lacking (Siepielski et al., 319 
2013). Spatial autocorrelation in patterns of biotic interactions can explain a large proportion of 320 
variation in trait differentiation among populations in several species (Urban, 2011), but such variation is 321 
not necessarily locally adapted. Local adaptation has been demonstrated in many forest tree species 322 
using provenance trials (Leites & Benito Garzón, 2023), but not to test the prediction that the pattern of 323 
environmental variation influences local adaptation.  324 
 325 
Provenance trials involve planting multiple populations of a species in numerous common gardens to 326 
assess how “transfer distance”, the distance between home and the common garden, affects 327 
productivity (reviewed in Wadgymar et al., 2022). However, the structure of provenance trials is such 328 
that the methods I used to quantify local adaptation in the simulations above are not necessarily 329 
applicable. To demonstrate how provenance trial data could be used to quantify local adaptation, I 330 
conducted in silico provenance trials on the simulations (e.g. Figure 4A). As expected, the slope of fitness 331 
on transfer distance in provenance trials is increasingly negative with increasing autocorrelation (Figure 332 
4B, S10) and strongly negatively correlated with mean local adaptation (𝐿𝐴))))) in simulations (Figure 4C, 333 
S10). Provenance trials may, thus, contain information that is useful for assessing whether the pattern of 334 
environmental across a landscape is important in shaping local adaptation. 335 
  336 
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 337 

 338 
Figure 4 Comparing the results from a simulated provenance trial to measures of local adaptation. A) A 339 
map of a provenance trial conducted on a simulated population showing the locations of planting sites 340 
and provenances. B) Linear regressions of relative fitness on environmental transfer distance for 341 
landscapes with differing levels of environmental autocorrelation. C) The slope of relative fitness on 342 
transfer distance compared to the mean local adaptation (𝐿𝐴))))) across simulated meta-populations. 343 
Spearman’s ρ and its p-value are shown inset in the panel C.  344 
 345 
The Illingworth trial is an exceptionally large provenance trial established by the Ministry of Forestry in 346 
British Columbia, Canada in the 1970s to establish seed-transfer guidelines for the lodgepole pine (Pinus 347 
contorta) (Illingworth, 1978). Seeds were collected from 140 provenances from Northwestern North 348 
America and seedlings were planted in a set of 62 sites distributed across British Columbia (Figure 5A). 349 
Phenotypic data has been recorded for around 60,000 individual trees since the Illingworth trial began 350 
and previous studies have used this data to demonstrate clear local adaptation in lodgepole pine 351 
(Mahony et al., 2020; Wang et al., 2006). Given the geographic breadth of the Illingworth trial (Figure 352 
5A), it represents a suitable dataset to test the prediction that spatial patterns of environmental 353 
variation influence the evolution of local adaptation.  354 
 355 
I analyzed data from the Illingworth trial using a mixed-modelling approach. Different aspects of climatic 356 
variation across the sites in the Illingworth trial are highly intercorrelated (Figure S11A), so I used 357 
principal components analysis to identify independent axes of climatic/environmental variation in the 358 
dataset. I restricted the analysis to the first 6 principal components (PCs), as each one explained at least 359 
1% of the variation in the data and combined they explained 95% of the variation (Figure S11B). I then 360 
regressed tree diameter at breast height and survival measured after 20 years on transfer distance 361 
between planting site and provenances in PC-space (Figure 5B-C) (see Methods for details). For both 362 
diameter at breast height and survival, there were significant negative relationships predicting 363 
phenotypic variation from climatic PCs (Figure 5B-C). If diameter at breast height and/or survival are 364 
considered proxied for fitness, then the results shown in Figures 5B-C indicates local adaptation along 365 
several dimensions of climatic variability.  366 
 367 
Patterns in the Illingworth trial data suggest that local adaptation in lodgepole pine is strongest when 368 
climatic/environmental variation is highly spatially autocorrelated (Figure 5C-D). For both phenotypes, 369 
PC1 was the strongest climatic predictor (Figure 5B-C). PC1 captures climatic/environmental differences 370 
between coastal and inland locations (Figure S12). Spatial autocorrelation for PC1 was also among the 371 
highest in the dataset (Figure 5D-E). For survival, there was a negative relationship between the 372 
regression slope and Moran’s I (Figure 5E), which is qualitatively similar to the analysis of simulated 373 
provenance trials (Figure 4B). However, I did not conduct a formal statistical test of the relationship 374 
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between spatial autocorrelation and local adaptation because only 4 PCs exhibited statistically 375 
significant evidence for local adaptation so such an analysis would be underpowered. While this means 376 
the results are merely suggestive rather than concrete, they are in line with the prediction that spatial 377 
autocorrelation in the abiotic environment predicts the strength of local adaptation in natural 378 
populations.  379 

 380 
Figure 5 Analysis of local adaptation in lodgepole pine from the Illingworth provenance trial. Panel A) 381 
shows the map of provenances and planting sites in the Illingworth trials across the Northwest of North 382 
America. B) Fitted relationships between tree diameter at breast height (DBH) and transfer distance for 383 
8 principal components. C) Survival probability as a function of transfer function for 8 environmental 384 
principal components. D) Linear regression coefficients for the relationships shown in B compared to 385 
degree of autocorrelation in the environment. E) Logistic regression coefficients for the relationships 386 
shown in C compared to the degree of spatial autocorrelation in the environment. Statistical significance 387 
was assessed at ɑ = 0.05 after correcting for multiple comparisons using the Dunn-Šidak method.  388 
 389 
Population structure and the genetic basis of local adaptation 390 
Knowing the genetic basis of local adaptation in natural systems would give us a better understanding of 391 
evolution, but may also be informative for conservation and management (Grummer et al., 2022). Many 392 
studies have used methods that associate environmental/phenotypic variation with genotypes or allele 393 
frequencies to characterise the genetic basis of local adaptation (Lasky et al., 2023). A large proportion 394 
of species exhibit a specific pattern of population structure termed “isolation-by-distance” (IBD) where 395 
genetic distance is positively correlated with geographic distance or measures of resistance based on 396 
features of the landscape (Jenkins et al., 2010). IBD can arise with restricted migration, when rates of 397 
gene flow are highest among parts of a species’ range that are in close proximity, though it can also 398 
reflect demographic histories such as past population expansion (Slatkin, 1993). Greater levels of local 399 
adaptation may evolve across a species’ range if the spatial pattern of environmental variation aligns 400 
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with the opportunity for migration (Figure 1). Thus, stronger local adaptation is expected to arise when 401 
selection is co-linear or co-autocorrelated with patterns of population structure. 402 
 403 
The relationship between population structure and the structure of the environment likely impacts our 404 
ability to study the genetic basis of local adaptation. It is well established that a pattern of IBD can 405 
confound the search for genes involved in local adaptation (Meirmans, 2012). Indeed characterising the 406 
genetic basis of local adaptation when the agents of selection are co-linear or co-autocorrelated with 407 
patterns of gene flow, termed “isolation by environment”, is particularly challenging (Wang & Bradburd, 408 
2014). Many studies have analyzed genotype-environment associations (GEA) to characterize the 409 
genetic basis of local adaptation. Such association methods often treat population structure as a 410 
nuisance variable and various approaches are taken to correct for it. This is done for the statistical 411 
necessity of establishing a suitable null model (Meirmans, 2012). For example, latent factor mixed 412 
models (LFMMs) are widely used to conduct GEA analyses that correct for population structure (Caye et 413 
al., 2019; Frichot et al., 2013). However, Lotterhos (2023) recently found that the sensitivity of the 414 
LFMM method declined with increasing correlation between the environment and major axes of 415 
population structure. This all suggests that characterising the genetic basis of local adaptation is 416 
particularly difficult in the exact cases where local adaptation is expected to be strongest, when 417 
selection pressures and population structure are highly co-autocorrelated over space. Careful sampling 418 
strategies may alter the power of association methods (Lotterhos & Whitlock, 2015; Meirmans, 2015; 419 
Wang & Bradburd, 2014), but such strategies require a priori hypotheses about locally adapted traits, 420 
the agents of selection (e.g. Kreiner et al., 2022) and/or the genes involved (e.g. Fournier-Level et al., 421 
2011).  422 
 423 
Implications for conservation management 424 
A result from the simulations that was particularly striking is the heterogeneity in local adaptation that 425 
can arise under different patterns of environmental variation. The only difference between the 426 
simulations shown in Figure 1 is the pattern of environmental variation, yet the average level of local 427 
adaptation increased by a factor of roughly 5x and the coefficient of variation in local adaptation 428 
decreased by 30x when comparing the cases with the highest and lowest spatial autocorrelation in the 429 
environment. High heterogeneity in local adaptation across a species’ range may impact conservation 430 
interventions and population genetic analyses.  431 

432 
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Any practical conservation intervention that uses average patterns of local adaptation to project 433 
performance under changing climates should carefully consider heterogeneity in local adaptation. In 434 
forestry, for example, seed-transfer guidelines based on average transfer functions from provenance 435 
trials may give a misleading picture of performance for some provenances if there is high heterogeneity 436 
in local adaptation. The applicability of a single transfer function would vary depending on how 437 
heterogeneous local adaptation is among the populations in question.  438 
 439 
In recent years, population genetic analyses have been developed to identify parts of a species range 440 
that are particularly vulnerable to climate change (i.e. genomic offset; Rellstab et al., 2021). Such 441 
methods analyse present-day relationships between allele frequency and the environment to predict 442 
how species will fare given predicted patterns of environmental change. If the agents of local adaptation 443 
are highly spatially autocorrelated, neutral population structure may be partially aligned with gradients 444 
of selection, which could explain why the use of “adaptive” genetic markers and randomly chosen 445 
markers seem to perform equally well in some offset analyses (Fitzpatrick et al., 2021; Láruson et al., 446 
2022; Lind et al., 2023). Violating the assumption of homogeneous local adaptation in offset analyses, 447 
for example, would likely introduce noise into predictions but could potentially lead to spurious results.  448 
 449 
Thinking about environmental structure when building hypotheses about local adaptation 450 
Detailed prediction of the environmental variation that is relevant to patterns of local adaptation 451 
requires an understanding of a species’ life history and physiology. The fundamental factor underlying 452 
the evolution of local adaptation is the relative balance of selection and dispersal (see Introduction). 453 
However, the specific pattern of environmental variation across a landscape influences whether 454 
dispersing individuals are likely to encounter environments similar to those of their parents. Unlike 455 
dispersal or the strength of selection, which are hard to quantify, spatial autocorrelation in the 456 
environment is readily measurable. When seeking to characterise the genetic basis of local adaptation, 457 
studies comparing different aspects of environmental variation should consider the pattern of such 458 
variation when forming their hypotheses. For example, before comparing GEA results for the different 459 
bioclimatic variables from WorldClim, researchers could examine how these variables are distributed 460 
over space to form a priori hypotheses about factors underlying local adaptation. Of course, an aspect of 461 
the environment may be highly autocorrelated in space, but if the variation it exhibits does not 462 
correspond to varying selection pressures, then it is unlikely to be directly related to local adaptation. 463 
That local adaptation is predicted to be stronger with increasing autocorrelation in the environment 464 
does not imply that strong local adaptation cannot arise in highly heterogeneous environments or with 465 
little spatial autocorrelation. There are numerous examples of local adaptation to environmental 466 
heterogeneity that is not smoothly distributed in space. For example, heavy metal concentrations in 467 
mine tailings impose selection that is so strong it overwhelms the effects of gene flow (Jain & Bradshaw, 468 
1966). It must be kept in mind that the patchy distributions of environmental variation across a 469 
landscape, as may be the case for heavy-metal rich soils, may be more or less autocorrelated from the 470 
perspective of a given species depending on its dispersal behaviour. In my simulations, I matched the 471 
granularity of dispersal with that of the environment (Figure 1A). For real species, considering 472 
environmental variation at a scale relevant to how species disperse is critical and recent population 473 
genetic advances may make estimating dispersal in natural populations much less time-intensive than 474 
previously (Bradburd & Ralph, 2019; Smith et al., 2023). Comparing patterns of species dispersal with 475 
patterns of variation in environmental variation that is plausibly relevant to selection may help identify 476 
the drivers of local adaptation in natural populations.  477 
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 478 
Closing remarks 479 
While it has been a long-standing expectation that the pattern of environmental variation (and 480 
particularly spatial autocorrelation) will influence the evolution of local adaptation (e.g. Hadfield, 2016; 481 
Levins, 1966), the simulation results and analysis of the lodgepole pine data should serve to emphasise 482 
how important the spatial pattern of climatic/environmental variation can be. The spatial pattern of 483 
environmental variation that a natural population has experienced will have likely shaped the evolution, 484 
current patterns and genetic underpinnings of local adaptation. Thus, it likely also influences how 485 
populations will respond to changes in the future. 486 
  487 
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Materials and Methods 488 
Simulating spatially varying selection 489 
To explore the effects of landscape structure on the outcomes of spatially varying selection, I 490 
constructed set of maps that exhibited varying degrees of spatial autocorrelation. Maps of normally 491 
distributed environmental heterogeneity were constructed using the midpoint displacement algorithm 492 
as implemented in the NLMpy package (Etherington et al., 2015). I simulated a 14x14 cell grid (i.e. 493 
landscape), specifying the desired level of autocorrelation to achieve a set of 200 maps, spanning the 494 
range of Moran’s I values from 0.05 to 0.95 (i.e. Moran’s I varied in increments of 0.0045). Simulated 495 
maps were rejected if the mean value across the landscape was less than 0.4 or greater than 0.6. This 496 
ensured that the the approximately normal distributions of environmental values across the landscape 497 
were roughly equivalent across maps.  498 
 499 
Using SLiM v4.1 (Haller & Messer, 2023), I modelled a 2-dimensional stepping-stone meta-populations 500 
with 196 demes (i.e. a 14x14 grid). Each deme contained 100 diploid individuals for total meta-501 
population size of 19,600. Migration occurred between adjacent demes in the four cardinal directions 502 
except for populations at the range edge where migrants only moved back into demes they were 503 
connected to. Migration rates were set at 0.07, 0.035 or 0.0175, leading to population-wide neutral FST 504 
values of 0.02, 0.05 and 0.10, respectively (Figure S1A). Each diploid individual had a 10Mbp long 505 
genome that recombined at a constant rate of r=1 x 10-7. When modelling a single trait, mutational 506 
effects were distributed as 𝑁(0,1) and occurred at random along the sequence at a rate of 𝜇 = 10'(), 507 
corresponding to a mutational variance of 0.001 for the trait subject to stabilising selection. When 508 
modelling two traits, the mutation rate was the same, but effects were modelled as multivariate normal 509 
with means of 0, variances of 1 and covariances of 0 (i.e. mutational effects for the two traits were 510 
independent). A diploid individual’s phenotype for a given trait was the additive combination of the 511 
effects on that trait for the alleles the individual possessed (i.e. mutations were semidominant).  512 
Spatially varying stabilising selection was modelled using the maps of environmental heterogeneity to 513 
specify the distribution of phenotypic optima across the landscape. An individual’s relative fitness Wi 514 
was calculated using the standard expression for Gaussian stabilising selection (Walsh & Lynch, 2018): 515 

𝑊* = exp A− B+,!,#'-#.
$

/0%
CDEquation 1 516 

where VS is the variance of the Gaussian fitness function, αi is the phenotype of the ith individual in deme 517 
d, and 𝜃d is the phenotypic optimum of deme d. When modelling stabilising selection in cases with two 518 
traits, an individual’s fitness was calculated as follows: 519 

𝑊* = exp	 A− B+,!,&,#'-#,&.
$1+,!,$,#'-#,$.

$

/0%
C /2D, Equation 2 520 

where αi,1,d and αi,2,d are the values for traits 1 and 2 for individual i in deme d, respectively, and 𝜃d,1 and 521 
𝜃d,2 are the phenotypic optima for traits 1 and 2, respectively. In effect, an individual’s relative fitness in 522 
this 2-trait model is the average of the marginal finesses for each trait.  523 
 524 
To achieve an equilibrium of migration, selection and drift, meta-populations evolved for 100,401 525 
generations. Initially, meta-populations evolved under stabilising selection with an optimum of 0 in all 526 
demes. After 400 generations, the landscape was altered to one of the 200 maps of environmental 527 
heterogeneity and kept in that state for a further 100,000 generations. At the end of the simulation, 528 
phenotypes of each individual in each deme were recorded as well as the genealogical history of the 529 
meta-population stored as a tree-sequence. PySlim, tskit and msprime packages (Baumdicker et al., 530 
2022; Haller et al., 2019) were used to work with the output tree-sequence files. To calculate Weir and 531 
Cockerham’s FST, neutral mutations were added to the simulated population using PySlim at a rate of 10-532 
8/bp. 533 
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Analyzing simulated data 534 
Local adaptation was quantified for each deme using the “home-versus-away” (HA) method outlined by 535 
Blanquart et al. (2013). Specifically, each individual’s fitness was quantified in its home deme and every 536 
other possible location on the landscape. The mean local adaptation was calculated in each deme as the 537 
mean difference in fitness between home and away conditions across all individuals. For each deme d 538 
not on the edge of the simulated landscape, I quantified local heterogeneity in the landscape as the 539 
mean sum of squares between the focal deme’s environment and that of the four adjacent demes (in 540 
the cardinal directions). For each deme, across the n polymorphisms that affected the phenotype 541 
additive genetic variance for the trait was calculated as 𝑉2,! = ∑ 𝑝*,!(1 − 𝑝*,!)𝛾*/3

*4( , where 𝑝*,!  is the 542 
allele frequency of SNP i in deme d and 𝛾*  is the phenotypic effect of SNP i.   543 
 544 
The contribution of individual SNPs to local adaptation was quantified as follows. For each 545 
polymorphism that affected the trait(s) under selection, the presence/absence of the allele in different 546 
haplotypes in different demes can be represented as a vector of 1s and 0s. By shuffling this vector, the 547 
contribution of this polymorphism to local adaptation is effectively erased, while keeping its 548 
contribution to additive genetic variance across the species’ range constant. For polymorphism l, I 549 
recomputed all phenotypes for all individuals after shuffling allele frequencies and re-quantified local 550 
adaptation as 𝐿𝐴"))))). The relative contribution of the focal polymorphism to local adaptation is calculated 551 
as: 552 

𝐿𝐴#$%,% = (1 − 𝐿𝐴"))))) 𝐿𝐴))))⁄ ).    Equation 3 553 
Note that 𝐿𝐴#$%  is not strictly a proportion, as epistasis for fitness that arises in models of stabilising 554 
selection means that the ∑ 𝐿𝐴#$%,*3

*4( 	≠ 1 for the n SNPs that affect phenotypes. Furthermore, alleles 555 
that have a net negative effect on local adaptation (i.e. they are locally maladaptive) will have negative 556 
𝐿𝐴#$%  values. Indeed, the total amount of local maladaptation in a meta-population was calculated as 557 
the additive combination of all polymorphisms with negative 𝐿𝐴#$%. 558 
 559 
Provenance trials were conducted on simulated data by sampling a set of 50 “planting sites” and a set of 560 
100 “provenances”. The relative fitness of each provenance was computed in each of the 50 planting 561 
sites. The absolute difference in phenotypic optimum for each provenance and each planting site was 562 
used as environmental distance. Using lme4 in R, I fitted a linear mixed model regressing relative fitness 563 
on environmental distance with provenance as a random effect, with slopes and intercepts varying 564 
across provenances. 565 
 566 
I combined results across the 50 simulations with the lowest levels of spatial autocorrelation (weak 567 
autocorrelation) and the 50 simulations with the highest autocorrelation (high autocorrelation) and 568 
examined the relationship between allele frequency and phenotypic effect sizes for the alleles 569 
underlying local adaptation.  570 
 571 
For each simulation, I randomly sampled 1,000 individuals from the landscape and I recording their trait 572 
values as well as neutral and phenotype affecting polymorphisms. I applied LD-pruning (with a threshold 573 
of r2 < 0.2) to the neutral SNPs and used these data to infer the kinship matrix using PLINK (v2; Chang et 574 
al., 2015). I performed association studies on the phenotype affecting SNPs from individual simulations 575 
with GEMMA (v0.98.5; Zhou & Stephens, 2012), using the inferred kinship matrix as a random effect to 576 
account for population structure. 577 
 578 
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Analysis of data from the Illingworth trial 579 
ClimateNA (Wang et al., 2016) was used to extract climatic data for each location in the Illingworth Trial. 580 
Across the locations in the Illingworth trial, many aspects of climatic/environmental variation are highly 581 
inter-correlated (Figure S11B). Because such inter-correlation would make it difficult to tease apart the 582 
effects of individual aspects of climatic/environmental variation on local adaptation, I conducted a 583 
principal components analysis (PCA) to separate the variation onto independent axes. I restricted the 584 
analysis to the first 6 principal components as these explained 95% of climatic variation. Diameter at 585 
breast height (DBM) and tree height exhibit a strong positive correlation (Pearson’s r = 0.9), so analyses 586 
were restricted solely to DBM. Trees that were dead or dying after 20 years were given a survival score 587 
of 0, living trees were scored a 1. 588 
 589 
Phenotype and survival data after 20 years for individual trees from the Illingworth trial were analyzed 590 
using mixed models. Mean normalised DBH was modelled as a normally distributed variable using the 591 
lme4 package and survival using a generalised linear mixed model with a “logit” link function using the 592 
glmer package. The normalised Euclidean distance between each individual’s provenance and planting 593 
site (i.e. transfer distance) in PC-space was used as a predictor in the model. Provenance, planting site 594 
and planting block within sites were included as having random effects on the slope and intercept of the 595 
relationship between phenotype and transfer distance. 596 
 597 
Moran’s I was calculated for each principal component of climatic variation across provenances (using 598 
the ape package) incorporating a pairwise Haversine distance matrix as weights in the calculation.  599 
 600 
Data accessibility 601 
All the code used to perform, analyse, and plot the results of simulations is available at 602 
https://github.com/TBooker/LocalAdaptationArchitechture. R scripts to analyse and plot the results of 603 
the Illingworth trial data are available at https://github.com/TBooker/LocalAdaptationArchitechture, but 604 
the raw data files were used by permission of the BC Ministry of Forestry.  605 
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Supplementary Material 779 

 780 

Supplementary Figure 1 Overall FST (panel A) and isolation by distance (panel B) in simulated 781 
populations. Note the varying y-axes in panel B. In the main text, FST is used to refer to the panels of 782 
individual graphs. In panel A values from 200 independent simulations were used to construct the 783 
boxplot and in panel B individual simulations are shown as lines. Weir and Cockerham’s method for 784 
calculating FST, as implemented in the sci-kit-allel Python package, was used. 785 
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 786 

Supplementary Figure 2 The average extent of local adaptation (panel A) and coefficient of variation in 787 
local adaptation (panel B) as a function of spatial autocorrelation in the environment from simulated 788 
datasets. The upper cell of each column is included in Figure 1 of the main text. 789 
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 790 

Supplementary Figure 3 Comparison of local adaptation that evolves for two traits subject to spatially 791 
varying selection. Selection on each trait was dictated by distinct maps of environmental 792 
variation/phenotypic optima. The environment that exhibited the greater degree of spatial 793 
autocorrelation (as measured by Moran’s I) was designated “Environment 2”. The 1:1 line is shown for 794 
reference. 795 
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 796 

Supplementary Figure 4 The effect of spatial autocorrelation in the environment on the correlations of 797 
local environmental heterogeneity with local adaptation and additive genetic variance. A) The partial 798 
correlation between local adaptation and local environmental heterogeneity, controlling for additive 799 
genetic variance. B) The partial correlation between additive genetic variance and environmental 800 
heterogeneity, controlling for local adaptation. Statistical significance was assessed after correcting for 801 
multiple comparisons. The solid black line indicates the statistical null expectation of 0.  802 
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 804 

Supplementary Figure 5 The distribution of locally adaptive effects as a function of spatial 805 
autocorrelation in the environment. The area shown was calculated across 200 independent simulations 806 
and smoothed using a LOESS regression with span 1.5. The upper right cell is included in Figure 2 of the 807 
main text. 808 
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 810 

Supplementary Figure 6 The relationship between allele frequency and the squared phenotypic effect 811 
size for polymorphisms that contribute varying degrees of local adaptation in either relative (panel A) or 812 
absolute terms (panel B). 813 
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814 
Supplementary Figure 7 Results from a GWAS on 1,000 randomly chosen individuals from either high or 815 
low autocorrelation environments. Each panel compares the relative density of -log10(p-values) from a 816 
GWAS conducted on data from the 50 maps with the highest or lowest levels of spatial autocorrelation. 817 
  818 
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A B  819 

Supplementary Figure 8 A) Cumulative local maladaptation as a function of spatial autocorrelation in 820 
the environment across all parameter combinations. B) The average age of locally adaptive alleles in 821 
meta-populations subject to spatially varying selection. The lines represent LOESS regression curves 822 
calculated with span parameters of 1.5.  823 
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 825 

Supplementary Figure 9 Establishment of local adaptation in the simulations. Panel A) shows the 826 
average level of local adaptation across all demes. Panel B) shows the coefficient of variation in local 827 
adaptation across demes. Panel C) shows the Kendall’s tau rank correlation between phenotypes and 828 
local optima.  829 
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 832 

Supplementary Figure 10 Comparing local adaptation summary statistics to results of linear models 833 
applied to simulated provenance trials. Panel A compared the slopes of the relationship between 834 
relative fitness and transfer distance in simulated provenance trials to home-versus-away measure of 835 
local adaptation described by Blanquart et al., (2013). Panel B compares the variance in slopes across 836 
provenances to the variance in local adaptation across all populations. In both panels, each point 837 
summarises analyses from a single simulation. The Spearman correlation coefficient and the associated 838 
p-value are shown within each cell.   839 
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A)  B)  842 

Supplementary Figure 11 A) Percent variance explained by the principal component analysis conducted 843 
on climatic/environmental variation in the Illingworth trial data. B) The correlation matrix for the 28 844 
climatic/environmental variables for planting sites and provenances in the Illingworth trial. A key to the 845 
abbreviations for the 25 annual climatic variables from ClimateBC along can be obtained from 846 
https://climatebc.ca/Help2. Additionally, latitude (lat), longitude (Long) and elevation (Elev) are 847 
included.  848 
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 851 

Supplementary Figure 12 The spatial pattern of loadings onto the first 6 principal components of 852 
environmental/climatic variation across provenances and planting sites in the Illingworth Trial. The first 853 
6 principal components explained a total of 95% of the variation in the data. 854 
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