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Abstract 

Numerous studies have investigated changes in protein expression at the system level using proteomic 
mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. 
We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels 
exposed lysine, and have now extended the method to whole intact animals to measure surface 
accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and 
protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal 
labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the 
course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon 
metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that 
proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, 
kidney, muscle, and spleen.  
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Introduction 
 
The proper functioning of cellular machinery depends on the ability to maintain the functional structures of 
proteins. Proper folding of proteins is necessary to engage with partners in complexes and to perform 
catalytic activities. Protein folds or shapes can be measured by powerful, high-resolution ex vivo 
techniques such as X-ray crystallography, NMR, and Cyro-electron microscopy (Cyro-EM).1,2,3,4 Cyro-EM 
can be used to analyze large protein complexes if they are extracted from cells or are produced 
recombinantly prior to deposition on the grid and frozen.5,6,7 Multiplexed Ion Beam imaging (MIBI) and ion 
beam tomography are capable of imaging cells and tissues, but they are not explicitly used to study the 
structure of proteins and protein complexes. Modeling algorithms can generate protein structures from ex-
vivo protein cross-linking data, while in vivo cross-linking analyses generate protein-protein interaction 
data. Thus, because no methods are available to determine the high-resolution structures of proteins in 
vivo, we are still limited in our ability to elucidate the structures of proteins in the cellular milieu.  

Protein “footprinting” methods were developed to probe the folding and interactions of proteins 
(such as epitope sites in antigens) using protease restriction or covalent labeling to identify exposed 
regions of proteins.8 The data generated in protein footprinting experiments is often low resolution, but the 
potential scale of experiments has made it an attractive method. In 2010 West et al. showed proteome-
scale footprinting in S. cerevisiae to determine off target binding of rapamycin9. A variety of protein 
labeling methods have been developed that provide low resolution ex vivo structural information about 
proteins.10, 11,12,13,5 Picotti and colleagues developed a limited proteolysis method to map ligand binding 
and protein folding in cell lysates and biofluids.14,15,5,16

 In 2015 Espino et al. used lasers to activate 
hydroxy radicals in vivo to label proteins, providing the first attempt to footprint an intact cell.17 Their 
approach has now been extended to the transparent worm C. elegans, which was chosen so the laser 
beam could penetrate the worm.18  
 Bamberger et al. developed Covalent Protein Painting (CPP), a chemical approach for 
quantitative protein footprinting to measure in vivo changes to protein conformations on a proteome 
scale.19 In CPP formaldehyde, a chemical that rapidly permeates through cells and tissues, is used to 
label proteins by forming a Schiff’s base at solvent exposed lysine residues. These unstable 
intermediates are converted to dimethyl labels by reduction with cyanoborohydride. After lysis of cells or 
tissue, denaturation and digestion of proteins, a second labeling with a different “weight” reagent is 
performed to label inaccessible amino acid residues. By using heavy and light isotope versions of the 
reagents, a quantitative measure of lysine accessibility can be obtained. Using this method, Bamberger et 
al. probed the conformational changes of a proteome from postmortem brain tissue to reveal structural 
changes and altered protein-protein interactions in the brain tissue of AD patients.19 In another study, 
Bamberger et al. measured the altered conformations of proteins in 60 cancer cell lines (NCI60).20 
Because the CPP protein labeling method begins with the widely used formaldehyde fixation step for in 
vivo dimethyl labeling it should be extensible to whole animal labeling to study models of disease. 

Methods to measure alterations of protein conformations in vivo are needed to study diseases 
caused by protein misfolding that create loss or gain of function disruptions to biological processes, 
including Alzheimer’s disease, a common misfolding disease that is characterized by plaques of amyloid-
beta and tangles of tau proteins. As observed by Bamberger et al., late-stage neurodegenerative 
diseases in humans are characterized by the misfolding of many additional proteins, suggesting that there 
is a generalized failing of proteostasis.19 Techniques that allow in vivo measurement of protein folding 
would be a powerful tool for the study of these misfolding diseases. 
 Here, we used AD as a model to test our hypothesis that the global measurement of structural 
changes of proteins in tissues can be used to understand changes in their biological functionality during 
progression of protein misfolding diseases. We reasoned that it is important to capture proteins in their 
innate states to preserve the complex cellular milieu without the protein degradation that might occur 
during extraction and homogenization of organs. In this study, we extended the CPP method to an animal 
model of disease to probe the dynamic changes in protein structures in vivo as AD progresses. This is the 
first in vivo study of structural changes of proteins in progressing AD on a proteome-wide scale in mouse 
tissue. We identified proteins whose structures were altered in co-expressed protein communities across 
7 types of mouse tissue, which helps us understand the role of spatially altered proteins in various 
biological processes.  
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MATERIALS AND METHODS 
 

Animals/Tissue collection 

Female mice (APP(NL-F))21 were purchased from RIKEN Brain Science Institute and female C57BL/6 were 
obtained from The Scripps Research Institute breeding colony. Mice were housed in plastic cages located 
inside a temperature- and humidity-controlled animal colony and were maintained on a standard cycle (a 
12 h day/night cycle). Animal facilities were AAALAC (Association for Assessment and Accreditation of 
Laboratory Animal Care) approved, and protocols were in accordance with the IACUC (Institutional 
Animal Care and Use Committee). Mice were sacrificed at 6, 9, 12, and 15 months of age.  
 

First dimethyl-labeling and tissue collections 

Mice were anesthetized by inhalation of 1% isoflurane. Chests of the anesthetized mice were opened by 
cutting the ribcage. The left heart ventricle was punctured with a perfusion needle and a small cut was 
made in the right atrium to allow outflow of the perfusion solutions. Blood components were washed away 
with prewarmed pH 7.4 phosphate-buffered saline (PBS) for 10 min. The mice were perfused with 20 mL 
of fixation solution (1% CD2O) at a flow rate of 2.0 mL/min. Immediately afterward, 40 mL of the solution 
for the first light-dimethylation reaction (0.3 mM NaBH3CN, 1% CD2O in pH 7.4 PBS) was added at a flow 
rate of 2.0 mL/min. Organs were quickly excised and cut into 50 mg of tissue blocks. The tissue blocks 
were incubated in the same labeling solution (0.3 mM NaBH3CN, 1% CD2O in pH 7.4 PBS) for 10 min, 
and then the reaction was quenched by immersing the tissue blocks in 50 mM ammonium bicarbonate 
(ABC) solution for 5 min. 
 

Tissue homogenization and protein extraction 

Tissue blocks were placed in 100 μL of 20 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 
(HEPES) pH 7.4 and were homogenized with a pestle until no chunks were visible. The tissue samples 
were sonicated for 10 cycles (pulse-on 5 sec, pulse-off 3 sec, amplify 30%) and then homogenates were 
clarified by centrifugation at 8,000 g at 4 °C for 30 min. Protein precipitation was performed by adding 
400 μL of 100% methanol, 100 μL of 100% chloroform and 300 μL of water to the sample. After vortexing 
vigorously, the samples were centrifuged at 8,000 g at 4°C for 30 min. The large aqueous layer was 
discarded. The samples were washed by adding 800 μL of 100% methanol and vortexing vigorously. After 
centrifugation at 8,000 g at 4 °C for 30 min, the supernatant was removed. The methanol washing step 
was repeated 3 times. Methanol was removed and the pellet was air-dried. The pellet was dissolved in 
100 μL of 1% sodium deoxycholate (SDC) in 20 mM HEPES pH 7.4. The protein concentration was 
determined with a BCA protein Assay kit following the instructions from the vendor (23225, Thermo 
Scientific). 
 

Proteolysis of labeled proteins with chymotrypsin 

Aliquots of tissue samples that contained 200 ug of proteins were adjusted to 80 μL with 1% SDC in 
20 mM HEPES pH 7.4. The proteins were reduced with 10 mM TCEP (Tris(2-carboxyethyl)phosphine 
hydrochloride) and 1% SDC in 20 mM HEPES pH 7.4 at 60°C for 60 min on a shaker. Reduced proteins 
were alkylated with 20 mM IAA (iodoacetamide) for 30 min at 25°C in the dark. Denatured proteins were 
digested with chymotrypsin (Promega) at 1:100 (enzyme:substrate(w:w)) at 37°C for 16 hr. Samples were 
acidified with formic acid to a final concentration of 1%. The sample was centrifuged at 8,000 g at 4°C for 
30 min and the supernatant was transferred to a new tube. The sample was centrifuged again at 8,000 g 
at 4°C for 30 min to collect the clean sample and the supernatant was transferred to a new tube. 
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Second dimethyl-labeling and desalting 

Pierce C18 spin tips (87784, ThermoFisher) were used for the second dimethyl-labeling step and 
desalting. A multipipette and a 96-well plate were used to prepare multiple samples in one batch. The C18 
tips were activated by aspirating and dispensing 100 μL each of 100% methanol and 100% acetonitrile 
(ACN). After the C18 tips were washed with 100 μL of 0.1% formic acid, the samples were loaded onto 
the C18 tips by aspiration. To clean the samples bound to C18 tips, 100 μL of 0.1% formic acid was 
aspirated and dispensed, and the pH was adjusted by aspirating 20 mM HEPES pH 7.4. Peptides bound 
to the C18 tips were dimethyl-labeled by aspirating 1% formaldehyde (13CD3O), 0.3 mM Sodium 
cyanoborodeuteride (NaBD3CN) and the saturated tips were incubated for 15 min at 25°C. The reaction 
was quenched by aspirating 50 mM ABC and incubating for 10 min at 25°C. After washing C18 tips with 
0.1% formic acid, the labeled peptides were eluted with 100 μL of 40% ACN in 0.1% formic acid followed 
by 100 μL of 60% ACN in 0.1% formic acid. The eluted peptides were lyophilized. 
 

Strong cation exchange (SCX) fractionation of peptides 

SCX fractionation was conducted with commercial spin columns (90008, ThermoFisher Scientific). The 
pH of the sample was reduced by adding 800 μL of 30% ACN in 0.1% formic acid. The spin column was 
equilibrated by adding 400 μL of 30% ACN in 0.1% formic acid. It was then centrifuged at 1,000 g for 
5 min, and the flow-through solution was discarded. The sample was loaded on the spin column and was 
centrifuged at 1,000 g for 3 min. Flow-through was stored for LC-MS/MS analysis. The peptides were 
eluted with consecutive 200 μL aliquots of elution buffer containing 10 mM, 30 mM, 50 mM, 70 mM 
100 mM, 150 mM and 300 mM of ammonium acetate. All elution buffer aliquots contained 0.1% formic 
acid and 30% ACN. 
 

LC-MS/MS analysis 

Samples were loaded onto EvoTips following the manufacturer’s protocol. The samples were run on an 
Evosep One (Evosep) coupled to a timsTOF Pro (Bruker Daltonics). Samples were separated on BEH 
1.7 μm C18 beads (Waters) packed in a 15 cm × 150 μm inner diameter column with an integrated tip 
(pulled in-house) using the 30 SPD (samples per day) method. Mobile phases A and B were 0.1% formic 
acid in water and 0.1% formic acid in acetonitrile, respectively. MS data was acquired in PASEF mode 
with one MS1 survey TIMS-MS and PASEF MS/MS scans acquired per 1.1 s acquisition cycle. Ion 
accumulation and ramp time in the dual TIMS analyzer was set to 100 ms each and the ion mobility range 
spanned from 1/K0 = 0.6 Vs/cm2 to 1.6 Vs/cm2. Precursor ions for MS/MS analysis were isolated with a 
2 Th window for m/z < 700 and 3 Th for m/z > 700 with a total m/z range from 100 to1700. The collision 
energy was lowered linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 1.6 VS/cm2 
to 20 eV at 1/K0 = 0.6 Vs/cm2. Singly charged precursor ions were excluded with a polygon filter, and 
precursors for MS/MS were picked at an intensity threshold of 2,500, target value of 20,000 and with an 
active exclusion of 24 s. 
 

Peptide identification and quantification 

Raw files were searched against mouse proteins from Swiss-Prot-Uniprot database (retrieved 03/13/2022, 
51,076 entries) containing canonical and isoform sequences, using MSFragger (version 17.1) in the 
FragPipe pipeline with mass calibration and parameter optimization enabled.22 Philosopher was used to 
filter all peptide-spectrum matches. Quantification analysis was performed with IonQuant. The parameter 
setting of chymotrypsin allowed for two missed cleavage sites and the minimal required peptide length 
was set to six amino acids. Dimethyl peptide pairs were identified using variable modifications of light 
(Δ mass: 32.0564) and heavy labeling (Δ mass: 36.0757) of lysine, oxidation of methionine (Δ mass: 
15.9949), fixed modification of heavy dimethylation (Δ mass: 36.0757) on N-terminus and the 
carbamidomethylation of cysteine (Δ mass 57.0214). Precursor tolerance was set to 50 ppm and 
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fragment tolerance was set to 50 ppm. Isotope error was set to 0/1/2. The minimum number of fragment 
peaks required to include a PSM (peptide-spectrum match) in modeling was set to two, and the minimum 
number required to report the match was four. The top 150 most intense peaks were considered, and a 
minimum of 15 fragment peaks were required to search a spectrum. The data were also searched against 
a decoy database and protein identifications were accepted at 1% peptide false discovery rate (FDR). All 
identified peptides were heavy-dimethylated on N-terminus. 
 

Determination of accessibility of lysine sites 

Each peptide with a lysine site should be either light- or heavy-dimethylated, depending on the 
accessibility of lysine site. The difference in intensity of the peptides labeled in the first isobaric labeling 
step versus the second yields a relative abundance ratio R.23 The R value represents the proportion of the 
peptide in which a specific lysine site was accessible for dimethylation and is independent of the overall 
protein amount in the sample.19 The relative accessibility of a lysine residue for dimethylation is assessed 
by the value of accessibility; Accessibility (%) = R/(1+R) × 100. 
 

k-Nearest Neighbor (kNN) Imputation 

Missing values were imputed by kNN machine learning method using the VIM package in R.24,25 The kNN 
method assumes a relationship between spot volume patterns of groups of proteins. The kNN method 
impute missing values by selecting spots with spot volume patterns similar to the spot of interest.26 A 
weighted average of values from the k most similar spots is used as an estimate for the missing value. 
The contribution of each spot is weighted by its similarity determined as the Euclidean distance. The 
optimum number of k-neighbors must be determined empirically. 
 

Weighted correlation network analysis (WGCNA) 

A weighted protein co-expression network was built using the value of protein abundance from 
blockwiseModules WGCNA function.27 Construction of weighted gene co-expression networks was 
conducted independently for each of 7 tissue datasets. The soft thresholding powers were determined 
with the R function pickSoftThreshold.28 To pick an appropriate soft-thresholding power for network 
construction, the value of power was raised to 50. The chosen values were the smallest threshold that 
resulted in a scale-free R2 fit of 0.75 and the networks were created by calculating the component-wise 
minimum values for topologic overlap. Soft threshold powers varied across seven tissues as follows: 22 
for brain, 16 for heart, kidney, 12 for liver, muscle and spleen, and 26 for thymus. BlockwiseModule 
function was run with the following parameters: TOMType = "signed", maxBlockSize = 5000, 
mergeCutHeight = 0.1, verbose = 3. Module eigenprotiens (MEs) were calculated the correlation between 
the traits of AD (AD vs. NC). Multiple comparisons were accounted for by FDR correction across modules, 
and the P-values for the modules were reported. 
 

Statistical analysis 

Differentially expressed proteins and altered accessibilities (%) between pairs of different age groups (6, 9, 
12, and 15 months) in AD or between different pathological conditions (AD and NC) per age were found 
using Mann-Whitney tests independently. Kruskal-Wallis was used to simultaneously compare the 
accessibilities among four age groups (6, 9, 12, and 15 months) or among three age groups (6, 9, and 12 
months or 9, 12, and 15 months) in AD. These comparisons were tested with Kruskal-Wallis followed by 
Bonferroni’s comparison post hoc test independently. The criterion for significance was a P-value less 
than 0.05. 
 

Enrichment of Gene ontology (GO) and protein-protein interaction analysis 
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GO analysis was performed with ClueGO (a plug-in in Cytoscape) to identify the significant biological 
functions of the proteins in the WGCNA module.29 Protein-protein networks were detected using 
Metascape and the following databases: STRING, BioGrid, InWeb_IM, OmniPath.30-32 The resultant 
network contained the subset of proteins that form physical interactions with at least one other list 
member, the confidence cutoff of physical interaction was set to medium (0.5) or strong (0.7). 
Visualization of the protein-protein interaction network was performed on the Cytoscape combining 
STRING.  
 

Complex modeling with AlphaFold2-multimer 

We used AlphaFold2-multimer to predict the protein-protein interaction motif of each complex. 
AlphaFold2-multimer modeling was performed with ColabFold.33 Input multiple sequence alignment (MSA) 
features were generated by local ColabFold using the “MMseqs2 (Uniref�+�Environmental)” MSA mode. 
By default, the constructed MSAs contain both unpaired (per-chain) and paired sequences. AlphaFold2-
multimer was run with one or several options from the following list: model type = alphafold2_multimer v3, 
num recycles = 3, recycle early stop tolerance = 0.5, max msa = auto, num seeds = 1. The models were 
ranked by confidence score, and rank 1 was selected as the most accurate model. The distance between 
two lysine residues was calculated using PyMOL2 version 2.5 (Schrödinger, LLC). 
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Results 

 

Deep profiling of dimethyl-labeled peptides in mouse tissues 
To probe the structural changes of the proteome in tissues in progressing AD, we developed a method for 
in vivo dimethyl labeling of proteins. Formaldehyde solution was diffused through blood vessels and into 
tissues by perfusion through the heart. All solvent exposed lysine residues were labeled with 
formaldehyde to form a Schiff’s base. This initial step was immediately followed by perfusing a 
cyanoborohydride solution into the mouse to convert the Schiff’s base to a dimethyl label. The process is 
fast enough to capture protein structures in a nearly innate state. Exposed lysine sites on the surface of 
proteins were light-dimethylated [(CHD2)2] and then 7 organs were harvested. After homogenization of 
each tissue and lysis of the cells, proteins were denatured and proteolyzed with chymotrypsin followed by 
labeling of the newly exposed lysine sites with heavy-dimethyl [(13CD3)2] tags (Figure 1A). The 
accessibility of each lysine site was determined from the ratio of the intensity of light-labeled peptide vs. 
the sum of intensities of the light- and heavy-labeled peptides. We systematically investigated the 
structural changes in the proteomes of 7 tissues in an AD mouse model ranging in age from 6 to 15 
months, as well as in normal control (NC) mice to exclude the effects of aging. 
 A total of 43,014 dimethyl-labeled peptides that mapped to 5,217 proteins across all tissues were 
identified at a peptide false discovery rate (FDR) of < 1% (Figure 1B and 1C). Among the labeled peptides, 
1,219 labeled peptides that mapped to 498 proteins were identified in all 7 tissues, whereas 24,026 
labeled peptides that mapped to 4,952 proteins were tissue-specific (Figure 1B). Likewise, the highest 
proportion of labeled proteins were tissue-specific (37.3% (n = 1,947)), whereas labeled proteins that 
were identified in all 7 tissues comprised 11.1% (n = 578) of all labeled proteins (Figure 1C). 

We next sought to examine the reproducibility of the in vivo CPP method for each mouse tissue. 
We evaluated the correlations of the accessibility between biological replicates for each age, then 
averaged these correlations. We found the highest R values for NC (0.842) and AD (0.782) in brain, 
whereas thymus showed the lowest correlation, 0.549 for NC and 0.505 for AD (Figure 1D-G, Table S1). 
Correlations averaged across all ages in all 7 tissues showed a correlation in accessibility, with R values 
of 0.668 and 0.649 for NC and AD, respectively. Because we observed strong correlations of the 
biological replicates regardless of anatomical source or pathological conditions of the tissue, we 
concluded that perfusion-based dimethyl-labeling was reliable. Also, we noticed that correlations of 
accessibility were higher within the same tissues, even in the presence of different pathological conditions, 
compared to those observed between different tissues at the same age. 
 
Formaldehyde and cyanoborohydride diffused evenly in first labeling reaction 
In CPP, dimethyl labeling relies on the reductive amination of the lysine residue.19,34 Although the 
formation of the Schiff’s base is fast, the perfusion process requires about 30 minutes for completion. We 
sought to examine whether the distribution of reagent via blood vessels was even and how efficiently 
proteins were dimethylated across seven organs. Efficiency of perfusion was assessed based on the 
proportion of K-containing peptides that were not light-dimethylated on lysine. Of a total of 23,039 
peptides detected in the brain, 39.0% of peptides (n = 8,974) harbored lysine sites, and 8,758 of the 
8,974 peptides were labeled with light- or heavy-dimethyl modifications (or both) (Figure 2A). Of a total of 
4,295 detected proteins in brain, 2,565 (59.7%) proteins were modified with dimethyl. Among the 8,974 
lysine-containing peptides, 8,368 were light-dimethyl labeled through perfusion, indicating a high labeling 
efficiency (93.2%), while 606 peptides (6.8%) were not labeled with light-dimethyl tags (Figure 2B). 
Among the 606 peptides that were not light-dimethylated, 390 were solely heavy-dimethylated and 216 
were not labeled with either light- or heavy-dimethyl tags. Heart showed the highest efficiency of light-
dimethylation, 10,745 peptides (97.5%) of 11,018 K-containing peptides. We presume that the high light-
labeling efficiency of heart is due to the extended time that reagent remained in heart before being 
circulated to other organs. Labeling efficiency was high and consistent across all organs, ranging from 
91.5% in muscle to 97.5% in heart, with a standard deviation for all organs of 2.3%. The average of the 
first labeling efficiency in all 7 tissues was 94.8%. Thus, we concluded that the first labeling via perfusion 
was efficient, and the reagents evenly diffused across all tissues. 
 We then plotted the dimethylation pattern in each tissue. The liver had the second highest 
number of identified labeled peptides (n = 14,962) but the highest number of tissue-specific labeled 
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peptides (n = 4,321), accounting for 18% of all 24,026 tissue-specific labeled peptides (Figure 2C and 2D). 
The kidney had the lowest number (11.1%, n = 2,664) of labeled tissue-specific peptides but ranked third 
lowest in the number of labeled tissue-specific proteins (11.1%, n = 216) (Figure 2F). Muscle-specific 
proteins represented a small proportion (2.7%, n = 53) of tissue-specific proteins out of a total of 1,947 
(Figure 2E and 2F). However, the presence of highly abundant proteins in muscle may have affected the 
identification of lower abundance proteins. The top 100 muscle proteins accounted for 78.6% of all 
identified muscle proteins, while the top 100 proteins in the kidney and heart accounted for 37.8% and 
57.5% of the identified proteins, respectively (Figure S1A). Myosin regulatory light chain 11 (Mylpf), the 
most abundant protein in muscle, contributed 11.3% of the total muscle protein mass, and the top 12 
proteins in muscle represented more than half of the mass of the top 100 proteins (Figure S1B). In 
conclusion, the labeling data provides tissue-specific protein information, which is valuable for 
understanding the physiological changes associated with disease in each tissue. 
 
Variability of the conformational changes among 7 tissues 
We used labeled peptides that were detected in all seven tissues to quantitatively measure the structural 
differences in proteins. To minimize the effect of tissue-biased accessibility, we used quantile-normalized 
values for comparison across tissues (Figure S2). We sought to identify patterns of changes in 
accessibility that occur specifically for AD in proteins from 6mo to 15mo. To achieve this, we tested for 
differences over time between NC and AD using spline model from 6 to 15 months for each labeled 
peptide (Figure 3A). Brain tissue was the most structurally affected by AD, with 686 peptides in AD brain 
showing significantly different patterns of accessibility compared to NC from 6 to 15 months (Figure 3B). 
In heart, kidney, and thymus, fewer than 25 peptides showed significantly different patterns of change in 
AD relative to NC. There were no labeled peptides that exhibited significant different patterns in 
accessibility across all organs from 6 months to 15 months. However, a total of 10 labeled peptides 
consistently showed significantly different patterns in accessibility across four different organs each in the 
AD model. To examine the conformational changes of proteins specifically impacted by AD, we corrected 
for the confounding effect of age by dividing the individual accessibility of AD by the accessibility of its 
corresponding sequence of NC, resulting in a metric referred to as "fold-change" in this study. We 
evaluated the variability in structural changes depending on tissues relative to the brain using 10 peptides 
that showed distinct patterns of change in accessibility in AD from those in NC in four tissues (Figure 3C-F, 
Table S2). At the early stage of AD (6 months), the biggest conformational discrepancy due to AD was 
observed between the liver and brain. The lysine site of TAKGLF (Eno1) was not only more accessible in 
AD liver than in AD brain, but also more accessible in AD liver than in NC liver. As AD progressed, AD-
specific structural changes in muscle and spleen were greater than those in brain when the fold-change 
between each tissue and the brain was compared. (Figure 3G-H). A functional enrichment analysis of the 
10 proteins retrieved KEGG pathways associated with metabolism, glycolysis, and the TCA cycle (Figure 
3I). For only 5 (51-67 amino acid (AA) of Atp5f1d, 469-479 AA of Dpysl2, 48-57 AA of Eno1, 1472-1483 
AA of Flna, and 277-284 AA of Ppp2cb) out of 1219 peptides detected commonly in the 7 tissues, the 
accessibility patterns in all 7 tissues during AD progression were not significantly different from those 
during normal aging, and no significant difference in accessibility was observed across the 7 tissues 
under each condition (4-ages, disease). This indicates that the regions corresponding to these 5 peptides 
were not affected by AD in all 7 tissues. As expected, this investigation confirms that the effects of AD are 
most significantly observed in brain tissue, but by quantifying conformational changes of proteins across 
all tissues, we found tissue-specific variations associated with AD. 
 
 
Conformations of proteins in the brain are changing as AD progresses 
Proteomic investigations into AD pathology have primarily relied on the analysis of differential protein 
expression. Bing et al. profiled the differentially expressed proteins and identified the protein networks 
that are affected during AD progression.35 Co-expressed proteins and altered protein expression in 
human brain tissue of asymptomatic and symptomatic AD patients were reported by Nicholas et al.36 
Savas et al. measured protein expression in several mouse models of AD using quantitative mass 
spectrometry.37 Despite extensive proteomic studies on AD and some footprinting studies on AD related 
proteins there have been no comprehensive in vivo studies of protein structures as AD progresses.19,38-40   
 To uncover the changes in the 3D structure of brain proteins, we focused on 780 proteins, which 
are known to be expressed in the brain based on the Human Protein Atlas database 
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(https://www.proteinatlas.org) and were also found to be dimethyl-labeled in our brain dataset. To identify 
lysine sites that change significantly in accessibility during the progression of AD and which also differ 
from NC, we used statistical methods to test the accessibility of 3,456 peptides corresponding to 780 
proteins. First, a Kruskal-Wallis test was used to simultaneously compare lysine site accessibility among 
the four age groups (6, 9, 12, and 15 months) of AD (P-value ≤ 0.05), and then Mann-Whitney was used 
to compare lysine site accessibility between AD and NC per age (P-value ≤ 0.05). Of the 3,456 peptides 
that were tested, 83 peptides corresponding to 62 proteins showed a significant difference in accessibility 
in all tests. These results suggest that the accessibility of these peptides changed consistently during the 
progression of Alzheimer's disease, and that they simultaneously diverged from the NC, thus indicating 
that the structural changes observed in the AD samples were not induced by aging (Figure 4A, 4B). Four 
pairs of peptides that shared lysine sites provided validation for the measured changes: APVISAEKAY 
and APVISAEKAYHEQL for Tuba1, HPEQLITGKEDAANNY and ITGKEDAANNY for Tuba1, 
QVVLVEPKTAW and QYQVVLVEPKTAW for Cnp, and RYLSEVASGENKQTTVSNSQQAY and 
SEVASGENKQTTVSNSQQAY for Ywhab. Many lysine sites showed a tendency to become inaccessible 
as aging progressed in both the NC and AD groups. However, the lysine sites in the AD group were found 
to be more inaccessible than those in the NC group. This suggests that the conformation of proteins in AD 
may be altered by the physiological changes associated with the disease. For example, 2',3'-cyclic-
nucleotide 3'-phosphodiesterase (Cnp), which is associated with neuronal cells and glial cells,41 was 
found to be enriched in the brain. When compared to the average expression levels in other tissues, the 
increase in expression levels of Cnp in the brain ranged from 13.4- to 23.9-fold in the NC and from 17.0- 
to 27.7-fold in the AD across four age groups (Figure 4C). The accessibility of 2 peptides of Cnp showed 
a decrease pattern in progressing AD but remained unchanged in the aging NC (Figure 4D and 4E). Of 
the 62 proteins that showed a significant difference in accessibility, 60 proteins (excluding two brain-
specific proteins) exhibited a range of enrichment factor from 0.13-fold (Eef2) to 1,232-fold (Tuba1b) 
when compared to their expression in other tissues (Figure 4F). Specifically, on average, 51 of these 
proteins were expressed at higher levels in the brain than in other tissues, while 9 proteins were 
expressed at lower levels in the brain than in other tissues. Expression of a total 60 proteins was also 
enriched 21.7-fold in NC and 20-fold in AD on average, but no tendency in expression was observed in 
either aging or AD status.  
 These results suggest that the structural information obtained through the accessibility of lysine 
sites can complement protein expression data by revealing changes that are not fully characterized by 
protein expression levels alone. This method provides an approach to collect both protein expression and 
structural information to gain a more comprehensive understanding of the changes that occur in a 
proteome during the progression of a disease. 
 
Differential structural changes of tightly regulated proteins 
We hypothesized that the changes in protein expression could accompany structural changes to proteins, 
which may suggest alterations to their physiological function. To evaluate our hypothesis, we initially 
analyzed the abundance of proteins in tightly co-regulated protein networks by modularizing them into 
protein communities using a WGCNA algorithm.28 WGCNA was applied to the dataset of each tissue; 
4,295 proteins in brain, 3,074 proteins in heart, 4,186 proteins in kidney, 4,298 proteins in liver, 1,721 
proteins in muscle, 4,800 proteins in spleen, 4,159 proteins in thymus were used to build protein co-
expression networks. No outliers were detected after all samples were hierarchically clustered using 
average distance and Pearson’s method. For brain, the lowest soft threshold power was 22, with an R2 of 
more than 0.75. This network consisted of 17 modules of proteins related by their co-expression across 
control and disease tissues based on the TOM-based dissimilarity, after merging the modules with 
dissimilarity (Figure S3A and S3B). The WGCNA analysis also divided the protein data sets into 14, 17, 
13, 10, 12 and 10 modules for heart, kidney, liver, muscle, spleen and thymus, respectively (Figure S4A-
G). 
 We evaluated the correlation of the co-expressed proteins with Alzheimer's disease (AD) by 
comparing the co-expression of proteins in AD and NC within each module, irrespective of age. 
Correlation of coefficient R > 0.4 and P-value < 0.05 were set as the criteria for significant correlation for 
the AD trait. We found that only a limited number of protein communities were significantly correlated with 
the AD trait, with one module (M3) in the brain showing a correlation of 0.41, two modules (M11 and M14) 
in the kidney showing correlations of 0.43 and 0.44, two modules (M2 and M5) in the muscle showing 
correlations of 0.44 and 0.46, and one module (M4) in the spleen showing a correlation of 0.44. No 
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modules in other tissues showed a significant correlation with the AD trait. (Figure 5A). We also assessed 
whether the direction and strength of the association between each module and the AD trait remained 
consistent (positive or negative) following the subdivision of the samples into four age groups (Figure 
S4A-G). Strong correlations were observed at a certain age in a few modules, while in most modules, the 
direction of correlation was inconsistent across the four age groups. For example, when samples from all 
age groups were included, a high correlation was observed for module 3 (M3) of brain (R = 0.41) (Figure 
5A and 5B). Following that, the samples were divided by age. M3 proteins from the 9-month samples 
were found to be highly negatively correlated with a value of R = 0.82. At 12 and 15 months, samples 
were also negatively correlated, with R values of 0.42 and 0.72, respectively. In contrast, M3 proteins 
from the 6-month samples showed a positive correlation with a value of R = 0.4 (Figure S4). The direction 
of association between the protein abundance-based module and the AD trait was found to fluctuate 
during the progression of AD. Therefore, we focused on the proteins in modules displaying significant 
correlations with the AD trait across all samples to investigate the conformational changes of the co-
regulated proteins. 
 We investigated the conformational changes of the co-regulated proteins from the 4 types of 
tissues (brain, kidney, muscle, and spleen) that showed the significantly correlated modules based on 
WGCNA. To examine whether the conformational changes of proteins were specifically impacted by AD, 
the labeled peptides were clustered based on the fold-change of the accessibility during the progression 
of AD using the K-means clustering algorithm. The number of clusters was determined via an optimization 
algorithm (Figure S5). For the brain, the 481 labeled peptides that were mapped onto 174 proteins 
constituting M3 were clustered into two clusters (Figure 5C). Accessibility of the lysine sites of 268 
peptides (123 proteins) in cluster 1 showed a steadily decreasing pattern, with a slight decrease during 
early AD development (6-9 months), a dramatic decrease from 9 to 12 months, and a slight decrease 
again during the late stage of AD development from 12 to 15 months (Figure 5D). This suggests that 
beginning at 9 months, the lysine sites included in cluster 1 were significantly sterically inaccessible due 
to AD. On the other hand, lysine sites of 213 peptides (113 proteins) in cluster 2 showed relatively stable 
accessibility during AD development (Figure 5E). Of 174 proteins in M3, 62 have 2 or more peptides 
included in both cluster 1 and cluster 2, and all labeled peptides of each of 61 and 51 proteins were 
exclusively included in cluster 1 and cluster 2, respectively (Figure S6). Twenty peptides that mapped to 
Map1a were identified most often in M3 proteins (Figure S7), and 5 of 20 peptides were hidden as AD 
progressed, but 15 lysine sites were spatially stable (Figure 5F). Subsequently, 19- and 14-labeled 
peptides were mapped to Pkg1 and Mdh1, respectively, and the peptides included in cluster 1 exhibited a 
consistently decreasing pattern of accessibility. The lysine sites of the peptides of Psat1, Mag, and Plp1, 
which are highly expressed in neuronal cells and were included in 62 brain proteins that constituted M3, 
became inaccessible during progression of AD (Figure 5G-I). The datasets from kidney, muscle, and 
spleen were processed separately to reveal the AD-induced spatial changes of proteins (Figure S8). 
Collectively, our findings suggest that the steric changes of proteins occur concurrently with changes in 
co-expression of proteins as AD progresses. 
 

Biological functions of protein communities whose conformational changes precede expression 
changes  

We sought to uncover how the network undergoing conformational changes was related to biological 
functions, particularly those involved in neurodegenerative diseases. To achieve this, we examined the 
interactions of these proteins and their functional implications. In this analysis, we used proteins that had 
shown altered patterns of accessibility fold-change via K-means clustering. For instance, the proteins that 
were included in cluster 1 were used for the brain dataset.  
 We investigated how changes in the structure and expression of proteins could affect the 
progression of Alzheimer's disease by examining the pathways and biological functions they are involved 
in. We performed the analysis for the enrichment network on Metascape (metascape.org), considering the 
inter-term similarity and intra-term redundancy in the enriched terms.30 This analysis represented an 
enriched term as a node connecting other nodes considering Kappa similarities. A total of 113 significantly 
enriched terms were grouped into 20 clusters based on their similarities and redundancies in the brain 
dataset (Figure S9 and Table S3). Fifteen proteins (Gnas, Mdh1, Ogdh, Pgk1, Ppp1cb, Slc1a3, Sod2, 
Taldo1, Sdha, Oxct1, Ndufa8, Epm2aip1, Aldh1l1, Etfa, and Ugp2) were enriched in “generation of 
precursor metabolites and energy” (node-107) with the most significantly enriched having a P-value of 
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1.78*10-9. “Energy derivation by oxidation of organic compounds” (node-1) was also enriched significantly, 
but was similar to node 107 with kappa score of more than 0.3. It has been demonstrated that an 
abnormality of carbon and energy metabolism occurs in neurodegenerative disease since neurons 
require large amounts of energy to maintain their normal activity, and metabolic decline of the brain 
contributes to cognitive impairment.42,43 Interestingly, we discovered that structural changes preceded the 
expression changes in both protein communities “generation of precursor metabolites and energy” and 
“carbon metabolism” (node-96) (Figure 6A-B, 6D-E and Figure S10). Protein expressions in node-107 
and node-96 increased in AD but remained stable in NC during aging. Expression fold-change increased 
significantly at 15 months, whereas accessibility fold-change decreased significantly from 12 months. We 
also noted that “metal ion homeostasis” (node-108) was significantly enriched with 12 proteins (Ank1, 
Calb1, Calb2, Gnas, Itpr1, Prkcb, Slc12a4, Slc1a3, Sod2, Vapb, Fis1, Immt). The homeostasis of metal 
ions is also known to be essential to maintain the normal function of brain, and abnormally elevated iron 
in brain is recognized to induce cell death and be a cause of several neurodegenerative diseases 
including AD.44,45 Zinc also has an essential role in protein binding for enzymatic activity or to modulate 
synaptic transmission, and abnormal levels of zinc have been reported to be implicated in AD.46,47 The 
enriched proteins in metal ion homeostasis showed an increased but insignificant pattern of expression, 
while a significantly decreased pattern in accessibility was observed from 9 months (Figure 6C, 6F and 
Figure S10). 
 Next, we used the STRING database to identify 45 out of 123 proteins included in cluster 1 that 
interacted directly with each other through 30 edges. Of these, 39 proteins were associated with either 
brain-related terms or the enriched terms in which proteins showed conformational changes preceding 
the expression change (node-97, node-107, and node-108) (Figure 7A, Table S4). We noted that Plp1 
and Mag, which were associated with central nervous system and abnormal nervous system and were 
also known to be located in extracellular space, interacted directly with each other. Alphafold2-Multimer48-

50 was utilized to predict the complex structure of Mag and Plp1. It showed that the two alpha carbons of 
the lysine residues FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF of Mag were located within 13.9 Å 
(Figure 7B). Since protein-protein interactions can occur if proteins exist within 20 Å of each other,51 it is 
possible that these adjacent peptides bind with each other. FSKNYQDY showed a greater decrease in 
accessibility in AD than in NC (Figure 7C), and YFNSPYPKNYPPVVF exhibited a similar accessibility in 
AD and NC at 6 months, but the lysine sites became inaccessible during AD progression, whereas no 
difference was observed in NC (Figure 7D). 
 In addition to the brain, it has been reported that the peripheral system plays a role in amyloid-β 
clearance. Approximately 40%–60% of brain-derived amyloid-β is transported across the blood-brain-
barrier into the peripheral system for clearance, although the involved periphery and the mechanisms 
remain unclear.52 Spleen is composed of a variety of immune cells (with 7-8% of all cells being 
monocyte/macrophage) and has a role in blood filter and immunological functions. In addition, the spleen 
monocytes/macrophages are reported to be involved in clearing amyloid beta.53 Still, the physiological 
mechanisms underlying the association between the peripheral organs and AD remain unknown. In the 
ontology network of the spleen dataset, we noted “carbon metabolism” (node-147) and “neutrophil 
degranulation” (node-151). In these communities of proteins, the lysine sites in AD became exposed 
during progressing AD, while the accessibility in NC remained stable from 6 months to 15 months (Figure 
S11A-B). No significant change in the expression of proteins was observed for proteins of carbon 
metabolism (Figure S11D), but by 15 months the expression of proteins in neutrophil degranulation 
differed significantly from the expression at 12 months (Figure S11C). The results from the other tissues 
are shown in the supplementary data (Figure S12-S13 and Table S5-S8). Collectively, the results 
presented here provide compelling evidence of a relationship between conformational changes and 
protein expression, thereby highlighting the significant impact of organ-specific alterations of biological 
function during the progression of AD. 
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Discussion 

This study elucidated the AD-associated conformational changes in the proteomes of seven tissues in 
mice. We used the AD mouse model (APPNL-F), which expresses APP at wild-type levels while producing 
elevated pathogenic Aβ through an APP knock-in approach. This model reduces the risk of artificial 
phenomena that might be observed with an APP overexpressed mouse model and enhances the 
interpretability of the results.21 We found co-regulated proteins whose accessibility changed in 4 of 7 
tissues, and we connected the structural protein differences in progressing AD compared to normal aging 
of unaffected mice to possible alterations in their biological functions. Whole animal perfusion was used to 
deliver reagents to comprehensively dimethyl label mouse organs with minimal intervention such as 
organ excision, tissue homogenization, and protein extraction that could denature or alter proteins. Our 
quantitative method for accessibility measurement determines the relative fraction of inaccessible over 
accessible for each lysine site. Changes in accessibility can be interpreted as a change in protein folding 
or a change in interaction with another molecule and thus can be a surrogate for protein conformation 
changes between different conditions.  
 In this study, we focused on changes in proteins of the brain. Amyloid beta is a well-known 
protein that accumulates as plaques in the brain and serves as a marker of AD, but we were not able to 
detect structural changes of amyloid beta. We quantified the accessibility of three peptides from APP in 
only one 15-month mouse. It has been known that the amyloid beta plaque accumulates primarily in the 
cortex, followed by the hippocampus, basal ganglia, thalamus, and basal forebrain.54 However, because 
the purpose of this study was to globally investigate the change of the proteome, we used whole brain 
tissue sample in this study, not just the amyloid-beta plaque containing cortex region of the brain.  
 It has been suggested that kidney function is linked to brain activity,55 and changes in kidney 
function may play a role in the development and progression of AD. Studies have shown that the MRI 
images of the brains of AD patients were similar to that of kidney patients56 and a systematic meta-
analysis demonstrated that cognitive impairment is significantly related to malfunction of kidney.57 Despite 
persuasive evidence of the link between the kidney and AD, the exact physiological mechanisms 
underlying this relationship are not fully understood. From our WGCNA analysis, we found two modules 
(M11 and M14) to be significantly co-expressed in kidney and investigated the enriched functions of the 
structurally altered proteins using GO enrichment analysis. In both modules, purine-related functions were 
most significantly enriched. Our findings from kidney are supported by results of metabolomic studies 
showing that guanosine monophosphate (which is derived from purine guanine and associated with 
purine metabolism) was dysregulated in the brain of an AD mouse model based on APOE4 allele mutant 
mice.58 Therefore, it can be inferred that purine metabolism may play a role in the link between kidney 
function and AD. 
 We introduced a feature to the CPP pipeline that can be employed under various experimental 
conditions. A multidimensional protein identification technology (MudPIT) can be used to generate high 
sequence coverage of the proteome.59,60 MudPIT separates peptides first by charge and then by 
hydrophobicity to create a two-dimensional separation. In MudPIT, peptides released from a C18 trap 
column are loaded onto a strong cation exchange column and then released with a buffer that increases 
in ionic strength through sequential elution steps. Released peptides are bound to the C18 analytical 
column and are then eluted sequentially to the mass spectrometer based on hydrophobicity. It is not 
recommended that hydrophobicity be used for the first dimension of the 2D-LC-MS because the 
hydrophobicity of deuterium is slightly lower than hydrogen, so a partial separation of differentially labeled 
peptides might occur.61  

 Limitations to this study include the lack of a standard to monitor the distribution of reagent 
solution to organs in the body during the first labeling step. Although some signs such as body twitching, 
tail flicking, and head moving in the anesthetized animals was observed, a reliable quantitative standard 
to assess the extent of labeling in each organ would be useful. We defined labeling efficiency as the ratio 
of initially labeled peptides over identified lysine-containing peptides per tissue. It is an inevitable 
limitation of CPP that dimethylation cannot occur on a lysine site that is already modified (i.e., acetylation 
and ubiquitination); thus, the accessibility of innate partially labeled lysine sites will not be accurate. An 
additional limitation is the method uses lysine as the conformation reporter which occurs at a frequency of 
roughly 5-7% in proteins and thus the quality of the analysis scales with sequence coverage of individual 
proteins. High sequence coverage will generate more MS/MS of lysine containing peptides and increase 
the completeness of the analysis.   
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 It is likely that changes in protein structure are a result of failing proteostasis and expression 
changes are a function of alterations in protein synthesis and/or degradation. Mutations of DNA in 
somatic cells accumulate as we age 62-65 and can result in changes to protein sequences, necessitating 
more effort to keep proteins properly folded. Our new method provides a means to measure protein 
surface accessibility as a surrogate for protein conformation in vivo and in animal models to study of the 
role of protein folding in aging and AD. Our proteomic analysis showed changes in protein structures in 
multiple tissues during the progression of AD. Even though the patterns of change in non-brain tissue did 
not correspond exactly with those in the brain tissue (and it is not clear they should), our analysis showed 
changes in protein structure and expression in other tissues in the AD mouse model. In conclusion, this 
new method to measure in vivo alterations to protein surface accessibility in animal models of disease 
provides a means to measure a previously unexplored characteristic of proteins to provide insights into 
how physiological systems are perturbed.   
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Figure legend 

Figure 1. Strategy for identifying dimethyl-labeled peptides 

A. Three mice per each age group (ranging 6 months to 15 months) were used for AD (APPNL-F) and NC 

(C57BL6/J). The first step of the CPP workflow consists of three sub-steps that were conducted via 

perfusion: i) blood was washed by PBS, ii) tissue was fixed by formaldehyde, and iii) exposed lysine sites 

of the native proteins were labeled with light-dimethylation ([CD2H]2). Proteins from each of the seven 

organs were extracted and digested separately with chymotrypsin, after which the newly exposed lysine 

sites were labeled with heavy dimethylation ([C13D3]2).  

B. More than half of the total labeled peptides were tissue-specific. Less than 3% of a total of labeled 

peptides were peptides common to all seven tissues.  

C. The proportions of labeled proteins were determined by assigning proteins to the labeled peptides. 

Unlabeled proteins were not counted. The largest portion of labeled proteins was tissue-specific proteins, 

and the portion of proteins common to all 7 tissues was the third largest portion.  

D-G Biological triplicates were correlated across 7 tissues at 6 months (D), 9 months (E), 12 months (F) 

and 15 months (G). 

 

Figure 2. Labeling efficiency of the 1st labeling via perfusion  

A. All the labeled peptides (light, heavy or both light and heavy) were counted as identified peptides for 

each tissue sample. The proportions of identified peptides that were labeled ranged from 38.01% (n = 

8,758) in brain to 51.20% (n = 10,779) in heart (blue). Diamonds indicate the relative proportion of 

proteins that were labeled. 

B. The proportions of lysine-containing peptides that were light-labeled were determined for each tissue. 

The proportions ranged from 91.5% (n = 5,583) in muscle to 97.5% (n = 10,745) in heart (pink). All tissue 

samples show a labeling efficiency of more than 90% for labeling via the perfusion method, while the 

number of light-labeled peptides were variable (blue). 

C, E. The tissue-specific labeled peptides (C)/proteins (E) (green/orange) and shared peptides/proteins 

(pale green/pale orange) were determined for each tissue sample.  

D, F. These bar graphs represent the contribution of each tissue to the total number of tissue-specific 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.542496doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542496


 18

labeled peptides (D)/proteins (F).  

 

Figure 3. Variability of the conformational changes depending on the tissues 

A. Two representative peptides (ILETQKQF and GIQKELQF) were shown representatively. The 

normalized values were utilized to fit spline models. The accessibility of each peptide for both NC (blue) 

and AD (red) exhibited significantly distinct patterns from 6 to 15 months (P-value < 0.05).  

B. Venn diagram shows the number of peptides exhibiting significant differences in the trend of 

accessibility changes between NC and AD. There were no peptides from AD that showed a significant 

difference in accessibility changes compared to NC in all 7 tissues during the period from 6 to 15 months. 

The value of zero was not indicated. 

C-H During AD progression, 10 common peptides exhibited distinct patterns in accessibility between NC 

and AD in different four tissues. The variabilities for the structural changes in each tissue were calculated 

based on the value of brain using the formula: (fold-change of other tissue - fold-change of brain) / fold-

change of brain at 6 mo (C), 9 mo (D), 12 mo (E), and 15 mo (F). Only the first three amino acids were 

shown. AGTAEAIKAL of Gatd3 (G) and GIQKELQF of Ldha (H) showed a difference in the magnitude 

of accessibility change in muscle and spleen compared to that in the brain as AD progressed.  

I. Enriched KEGG pathways with 10 proteins. 

 

Figure 4. Changes in the structures of proteins that are known to be associated with brain. 

A, B. Accessibility of 83 labeled peptides that mapped to 62 proteins were significantly changed. The 

accessibility values in AD groups decreased more steeply than those in NC groups (A). The proteins and 

peptides corresponding to each change in the accessibility are indicated (B). 

C, D, E. Cnp was more highly expressed in brain than in the other tissues (C). Two of the three peptides 

of Cnp share one lysine site, and variations in accessibility for these two peptides are represented. 

KIIPGSRADF (D) is located at 87-96 amino acid of Cnp and QYQVVLVEPKTAW (E) is located at 141-153 

amino acid of Cnp. While they exhibited a decreasing trend in AD, the accessibility values were lower in 

AD compared to NC, and the trend in AD was steeper than in NC. Blue indicates NC groups, pink 

indicates AD groups. Asterisk (*) denotes significance. 
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F. Expression of 60 brain proteins were compared to averaged expression in six other tissues (F). The 

minimum enrichment factor was 0.13 for Eef2 in NC at 15 mo and the maximum enrichment factor was 

1,232 for Tuba1b in NC at 12 mo. Expression of 6 proteins (Eef2, Gucy1b1, NARS1, Slc25a12, Wdr37, 

Ywhag) was lower in brain than the expression of the corresponding proteins in other tissues at all ages 

in NC and AD. The bar indicates the enrichment factor, with red indicating an enrichment factor more than 

1, and blue indicating an enrichment factor less than 1. Proteins enriched more than 70-fold are marked 

in red. 

 

Figure 5. The structural changes of the co-expressed proteins by WGCNA 

A. Four of the seven tissues (brain, kidney, muscle and spleen) showed significant correlated modules 

(R2 > 0.4, P-value <0.05).  

B. In module 3 (M3) of brain, the eigenprotein level between AD and NC was assessed, with dot colors 

indicating the age of the mice.  

C-E. The labeled peptides of M3 proteins were clustered based on the fold-change of the accessibility (C). 

Distribution of the fold-change of the accessibility of cluster 1 (D) and cluster 2 (E). Of 481 labeled 

peptides that mapped onto 174 proteins in M3, fold-change of accessibility of 268 peptides showed a 

consistent decrease in progressing AD in cluster 1 and fold-change of accessibility of 213 peptides in 

cluster 2 did not significantly change in progressing AD. *p < 0.05, **p < 0.005 and ****p < 0.0001 

F-I. The fold changes of the accessibility for Map1a (F), Psat (G), Mag (H), and Plp1 (I) are presented. 

The peptides in the bold box were included in cluster 1. Peptides in the bold box clearly decreased.  

 

Figure 6. The biological functions affected by structural changes of composed proteins.  

A-C. Structural changes of proteins enriched in generation of precursor metabolite and energy (A), 

carbon metabolism (B), and metal ion homeostasis (C) are shown. The heatmap (right) showed variations 

in the fold-change of the accessibility based on peptide sequence. The scatter plots (left) were plotted 

irrespective of peptide sequences.  

D-F. Expression change of proteins enriched in generation of precursor metabolite and energy (D), 

carbon metabolism (E), and metal ion homeostasis (F). The fold-changes of the expression level are 
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presented. 

*p < 0.05, **p < 0.005 and ****p < 0.0001 

 

Figure 7. The physical interactions of the proteins in M3 of brain 

A. Forty-five proteins in the brain dataset were physically interacted. Each node indicates a protein. The 

ring color of the node indicates the terms that the protein is associated with. The size of node represents 

the number of significantly changed lysine sites, with very small nodes indicating no significantly changed 

peptides, small nodes indicating one significantly changed peptide, medium nodes indicating 2-4 

significantly changed peptides, and large nodes indicating more than 4 significantly changed peptides.  

B. The structure of the Plp1-Mag complex was predicted using AlphaFold-Multimer. The structure in dark 

pink is Plp1 and the structure in light purple is Mag. FSKNYQDY of Plp1 and YFNSPYPKNYPPVVF of 

Mag were presented in green and red, respectively. The right panel is an enlarged view of the complex on 

the left. The distance between alpha-carbons of two lysine sites was 13.9 Å.  

C, D. Structural changes in adjacent peptide regions with potential binding, with variation of the 

accessibility of site in AD (pink) and NC (green) for FSKNYQDY (C) and YFNSPYPKNYPPVVF (D).  
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Figure S1. Abundance of the 100 most abundant proteins in each tissue. (A) Relative abundance of 

the 100 most abundant proteins in each tissue. Abundance calculation was based on protein intensity 

relative to the overall intensity. The sum of intensity of the top100 proteins contributed over 78.6% to the 

total intensity in muscle tissue. (B) Accumulation of top 100-protein abundance in the mouse tissues. 

Accumulation of protein mass are plotted for 7 tissues. Proteins are ranked by their intensity.  
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Figure S2. Normalized accessibility. The accessibility values of the peptides that were detected from all 

7 tissues were quantile-normalized to identify the distribution of the values across 7 tissues.   



 

 

Figure S3. Modularization of protein co-expression. A brain dataset shown representatively. Soft 

threshold power was determined using the pickSoftThreshold() function in the WGCNA package. The 

threshold value was selected when R2 reaches a plateau over 0.75, indicating that the network has achieved 

a scale-free topology (A). The cluster dendrogram (upper) and the co-expression modules (lower) were 

generated by hierarchical clustering (B). The branches of the dendrogram represent individual proteins. 

The height indicates the Euclidean distance. Each module that contains weighted co-expressed proteins is 

displayed with a distinct color. 
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Figure S4. Relationship between module and traits in brain (A), kidney (B), muscle (C), spleen (D), heart (E), liver (F), and thymus (G). In the 
first column of each heatmap, the correlation was calculated with all samples, and in the next four columns, the correlations were calculated with 
samples sub-divided by age.  
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Figure S5. Optimization of the number of clusters in unsupervised machine learning algorithms for 

the brain dataset. The number of clusters was determined in K-means clustering by evaluating the quality 

of the clustering results for different values of k (the number of clusters). The silhouette score (silhouette 

width) measures how similar the data is to its own cluster compared to other clusters. A score close to 1 

indicates that the data is well-matched to its own cluster. The k value that showed the highest score was 

selected per each tissue dataset and was determined to be 2 in the brain dataset. 

  



Figure S6. Overlapped proteins between two clusters in module 3 (M3) of brain. 

One hundred seventy-four of the 289 proteins of M3 were labeled with dimethylation, and the labeled 

peptides were clustered into two clusters. All the labeled peptides of 61 proteins were clustered into cluster 

1; all the labeled peptides of 51 proteins were clustered into cluster 2. 
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Figure S7. Frequency of labeled peptides per proteins in M3. 

Map1a showed the highest number of the labeled peptides (n = 20) per protein. Pkg1 and Mdh1 each 

contained 19 labeled peptides. 79 proteins included a single labeled peptide. 
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Figure S8. Clusters of the labeled peptides based on the fold-change of the accessibility for Kidney 

(A), Muscle (B), and Spleen (C). 

In the results of WGCNA analysis, two modules of kidney (M11 and M14), muscle (M2 and M5) and one 

module (M4) of spleen showed significant correlations with AD trait. Following that, the labeled peptides 

mapped to proteins in those modules were clustered by K-means clustering. For muscle, only 32 labeled 

peptides that mapped to 17 proteins were included in module 5 (M5), 7 peptides showed alterations in the 

fold-change of accessibility. GO enrichment analysis was not conducted with proteins of M5 due to the 

small number of peptides to be analyzed. 
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Figure S9. Ontology network of brain constructed by structurally changing proteins, and 

representative terms. Ontology networks were constructed using the proteins that harbored changed 

peptides in accessibility (cluster 1 of K-means clustering). Each node indicates the individual terms, and 

the node size represents the significance. All terms with the P-value less than 0.5 were enriched. The color 

reflects the membership of the clusters. The lower table presents the details of the representative nodes 

for each cluster.  

Node Number Ontology ID Ontology Name Category Number
measured P-value

107 GO:0006091 Generation of precursor metabolites and energy GO Biological Processes 15 1.78E-09
96 mmu01200 Carbon metabolism - Mus musculus (house mouse) KEGG Pathway 10 2.53E-09

105 GO:0006520 Cellular amino acid metabolic process GO Biological Processes 12 2.96E-08
108 GO:0055065 Metal ion homeostasis GO Biological Processes 12 7.57E-06
103 mmu00280 Valine, leucine and isoleucine degradation - Mus musculus (house mouse) KEGG Pathway 5 2.14E-05
102 GO:0000375 RNA splicing, via transesterification reactions GO Biological Processes 8 4.29E-05
97 R-MMU-2262752 Cellular responses to stress Reactome Gene Sets 11 5.72E-05
98 R-MMU-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) Reactome Gene Sets 3 1.06E-04

101 mmu05205 Proteoglycans in cancer - Mus musculus (house mouse) KEGG Pathway 7 2.16E-04
94 mmu01240 Biosynthesis of cofactors - Mus musculus (house mouse) KEGG Pathway 6 2.85E-04

104 GO:0005975 Carbohydrate metabolic process GO Biological Processes 10 3.24E-04
112 GO:0099623 Regulation of cardiac muscle cell membrane repolarization GO Biological Processes 3 4.70E-04
95 mmu00650 Butanoate metabolism - Mus musculus (house mouse) KEGG Pathway 3 5.27E-04
99 R-MMU-109582 Hemostasis Reactome Gene Sets 10 6.42E-04

106 GO:0071417 Cellular response to organonitrogen compound GO Biological Processes 11 6.43E-04
110 GO:0051260 Protein homooligomerization GO Biological Processes 6 7.83E-04
111 GO:1990778 Protein localization to cell periphery GO Biological Processes 7 1.04E-03
100 R-MMU-77289 Mitochondrial Fatty Acid Beta-Oxidation Reactome Gene Sets 3 1.24E-03
113 GO:2000191 Regulation of fatty acid transport GO Biological Processes 3 1.34E-03
109 GO:0032787 Monocarboxylic acid metabolic process GO Biological Processes 10 1.44E-03



Figure S10. Altered abundance of proteins. Heatmap were plotted with the fold-change of the 

abundance, which is the value of protein abundance in AD divided by that in NC to correct for an age effect; 

node 107 (A), node 96 (B), and node 108 (C). 
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Figure S11. Structural changes that precede expression changes in spleen. 

Fold changes of the accessibility (A, B) and fold change of the protein abundance (C, D) for neutrophil 

degranulation (A, C) and carbon metabolism (B, D). *p < 0.05, ****p < 0.0001 
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Node Number Ontology ID Ontology Name Category Number
measured P-value

151 R-MMU-6798695 Neutrophil degranulation Reactome Gene Sets 52 1.69E+24
150 R-MMU-8953854 Metabolism of RNA Reactome Gene Sets 45 2.79E+16
145 R-MMU-1280218 Adaptive Immune System Reactome Gene Sets 44 9.50E+13
147 mmu01200 Carbon metabolism - Mus musculus (house mouse) KEGG Pathway 19 4.11E+12
163 GO:0006457 protein folding GO Biological Processes 21 9.63E+11
149 R-MMU-109582 Hemostasis Reactome Gene Sets 35 8.76E+11
158 GO:0009117 nucleotide metabolic process GO Biological Processes 34 1.73E+11
154 GO:0006520 amino acid metabolic process GO Biological Processes 23 7.93E+09
146 WP662 Amino acid metabolism WikiPathways 14 1.02E+09
153 R-MMU-194315 Signaling by Rho GTPases Reactome Gene Sets 32 2.10E+08
159 GO:0006518 peptide metabolic process GO Biological Processes 31 8.61E+07
148 R-MMU-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand Reactome Gene Sets 10 7.60E+07
155 GO:0007229 integrin-mediated signaling pathway GO Biological Processes 12 5.78E+07
162 GO:0048524 positive regulation of viral process GO Biological Processes 11 5.72E+07
164 GO:0010035 response to inorganic substance GO Biological Processes 29 3.62E+07
161 GO:1903829 positive regulation of protein localization GO Biological Processes 29 3.62E+07
160 GO:2000147 positive regulation of cell motility GO Biological Processes 32 2.79E+07
156 WP310 mRNA processing WikiPathways 26 1.05E+07
152 R-MMU-437239 Recycling pathway of L1 Reactome Gene Sets 8 9.26E+06
157 GO:0009112 nucleobase metabolic process GO Biological Processes 8 7.31E+06

A.



 
 

 
 

  

B.

Node Number Ontology ID Ontology Name Category Number
measured P-value

112 GO:0006163 purine nucleotide metabolic process GO Biological Processes 27 1.33E-21
101 R-MMU-556833 Metabolism of lipids Reactome Gene Sets 25 3.83E-16
110 GO:0006091 generation of precursor metabolites and energy GO Biological Processes 20 2.03E-15
95 WP662 Amino acid metabolism WikiPathways 10 7.81E-11
99 mmu00010 Glycolysis / Gluconeogenesis - Mus musculus (house mouse) KEGG Pathway 8 2.18E-09
113 GO:0044282 small molecule catabolic process GO Biological Processes 13 1.73E-08
98 WP1269 Fatty acid beta-oxidation WikiPathways 6 2.13E-08
97 mmu00650 Butanoate metabolism - Mus musculus (house mouse) KEGG Pathway 5 2.63E-07
114 GO:0072350 tricarboxylic acid metabolic process GO Biological Processes 4 9.25E-07
111 GO:0046496 nicotinamide nucleotide metabolic process GO Biological Processes 6 1.78E-06
105 R-MMU-5362517 Signaling by Retinoic Acid Reactome Gene Sets 5 2.60E-06
104 mmu00620 Pyruvate metabolism - Mus musculus (house mouse) KEGG Pathway 5 3.30E-06
96 R-MMU-211859 Biological oxidations Reactome Gene Sets 8 1.08E-05
103 R-MMU-6798695 Neutrophil degranulation Reactome Gene Sets 12 1.86E-05
108 GO:0006066 alcohol metabolic process GO Biological Processes 9 2.71E-05
107 mmu00380 Tryptophan metabolism - Mus musculus (house mouse) KEGG Pathway 4 1.58E-04
102 R-MMU-196849 Metabolism of water-soluble vitamins and cofactors Reactome Gene Sets 5 2.60E-04
106 R-MMU-8979227 Triglyceride metabolism Reactome Gene Sets 3 2.60E-04
100 R-MMU-71291 Metabolism of amino acids and derivatives Reactome Gene Sets 7 3.39E-04
109 GO:0042180 cellular ketone metabolic process GO Biological Processes 4 1.08E-03



 

 
  

C.

Node Number Ontology ID Ontology Name Category Number
measured P-value

114 GO:0072521 purine-containing compound metabolic process GO Biological Processes 23 1.69E-17
99 mmu01200 Carbon metabolism - Mus musculus (house mouse) KEGG Pathway 13 1.19E-14
111 GO:0032787 monocarboxylic acid metabolic process GO Biological Processes 18 7.12E-11
101 mmu00010 Glycolysis / Gluconeogenesis - Mus musculus (house mouse) KEGG Pathway 8 7.87E-10
96 WP662 Amino acid metabolism WikiPathways 8 1.44E-08
115 GO:0044283 small molecule biosynthetic process GO Biological Processes 13 8.78E-08
100 WP1269 Fatty acid beta-oxidation WikiPathways 5 4.68E-07
102 R-MMU-2132295 MHC class II antigen presentation Reactome Gene Sets 7 1.30E-06
108 R-MMU-5362517 Signaling by Retinoic Acid Reactome Gene Sets 5 1.39E-06
106 mmu00620 Pyruvate metabolism - Mus musculus (house mouse) KEGG Pathway 5 1.76E-06
112 GO:0006730 one-carbon metabolic process GO Biological Processes 4 4.19E-06
109 mmu00280 Valine, leucine and isoleucine degradation - Mus musculus (house mouse) KEGG Pathway 5 6.47E-06
110 GO:0015908 fatty acid transport GO Biological Processes 5 1.79E-05
103 R-MMU-71291 Metabolism of amino acids and derivatives Reactome Gene Sets 8 1.99E-05
113 GO:0015849 organic acid transport GO Biological Processes 8 2.50E-05
97 R-MMU-211859 Biological oxidations Reactome Gene Sets 7 4.04E-05
104 GO:0006734 NADH metabolic process GO Biological Processes 3 6.15E-05
105 R-MMU-6798695 Neutrophil degranulation Reactome Gene Sets 9 6.82E-04
98 mmu01240 Biosynthesis of cofactors - Mus musculus (house mouse) KEGG Pathway 5 6.93E-04
107 R-MMU-9013405 RHOD GTPase cycle Reactome Gene Sets 3 1.41E-03



 

 
 
Figure S12. Ontology network of structural changes proteins per each dataset for spleen (A), M11 

of kidney (B), M13 of kidney (C), and muscle (D). 

 

D.

Node Number Ontology ID Ontology Name Category Number
measured P-value

GO:0098760 102 response to interleukin-7 GO Biological Processes 5 3.16E-09
GO:0006575 91 cellular modified amino acid metabolic process GO Biological Processes 9 2.04E-08
GO:0016188 103 synaptic vesicle maturation GO Biological Processes 4 2.97E-06

R-MMU-2262752 84 Cellular responses to stress Reactome Gene Sets 10 3.80E-06
GO:0003012 94 muscle system process GO Biological Processes 8 4.09E-06
GO:2001242 98 regulation of intrinsic apoptotic signaling pathway GO Biological Processes 6 4.85E-05

R-MMU-8957275 88 Post-translational protein phosphorylation Reactome Gene Sets 5 5.71E-05
R-MMU-499943 86 Interconversion of nucleotide di- and triphosphates Reactome Gene Sets 3 1.23E-04
R-MMU-3299685 85 Detoxification of Reactive Oxygen Species Reactome Gene Sets 3 2.26E-04

mmu03320 87 PPAR signaling pathway - Mus musculus (house mouse) KEGG Pathway 4 3.00E-04
GO:1903312 95 negative regulation of mRNA metabolic process GO Biological Processes 4 3.55E-04
GO:0010035 101 response to inorganic substance GO Biological Processes 8 5.48E-04
GO:0050821 97 protein stabilization GO Biological Processes 5 6.77E-04
GO:0061458 99 reproductive system development GO Biological Processes 6 9.87E-04
GO:0071470 92 cellular response to osmotic stress GO Biological Processes 3 1.14E-03
GO:1903828 96 negative regulation of protein localization GO Biological Processes 5 1.56E-03
GO:0008652 89 amino acid biosynthetic process GO Biological Processes 3 1.59E-03
GO:0097305 100 response to alcohol GO Biological Processes 5 1.91E-03
GO:0044262 90 cellular carbohydrate metabolic process GO Biological Processes 4 2.01E-03
GO:1901657 93 glycosyl compound metabolic process GO Biological Processes 3 2.33E-03
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Figure S13. Physical interactions of proteins and their associated functions for spleen (A), M11 of kidney (B), M13 of kidney 

(C), and muscle (D). The ring color of the node indicates the terms that the protein is associated with. The size of node 

represents the number of significantly changed lysine sites. 
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