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Abstract 

The brain is a complex system from which cognition is thought to arise as an emergent behavior, but the 

mechanisms underlying such processes remain unclear. We approached this problem based on the 

recognition of the two primary organizational architectures of the brain—large-scale networks and 

oscillatory synchrony—and their fundamental importance in cognition. Here, we applied high-definition 

alpha-frequency transcranial alternating-current stimulation (HD α-tACS) in a sustained attention task 

during functional resonance imaging (fMRI) to causally elucidate organizing principles of these major 

architectures (particularly, the role of alpha oscillatory synchrony) in cognition. We demonstrated that α-

tACS both increased electroencephalogram (EEG) alpha power and improved sustained attention, degrees 

of which were positively correlated. Using Hidden Markov Modeling (HMM) of fMRI timeseries, we further 

uncovered five functionally important brain states (defined by distinct activity patterns of large-scale 

networks) and revealed the regulation of their temporal dynamics by α-tACS such that a Task-Negative 

state (characterized by activation of the default mode network/DMN) and Distraction state (with activation 

of the ventral attention and visual networks) was suppressed. These findings confirm the role of alpha 

oscillations in sustained attention, and more importantly, they afford a complex systems account that 

sustained attention is underpinned by multiple transient, recurrent brain states, whose dynamical balances 

are regulated by alpha oscillations. The study also highlights the efficacy of non-invasive oscillatory 

neuromodulation in probing the operation of the complex brain system and encourages future clinical 

applications to improve neural system health and cognitive performance. 

 

Significance Statement 

 

The brain operates a well-organized complex system to support mental activities. Along with well-known 

fluctuations in attention, we uncovered that the brain undergoes dynamic vacillations of functional states 

that are organized through large-scale neural networks and regulated by neural oscillations. We showcased 

that during sustained attention over an extended period time, the brain maintains a tug-of-war between 

functional “on” and “off” states. Applying α-tACS, we further demonstrated that the brain self-organizes this 

complex system through alpha oscillations, regulating the balance of such dynamic states in the upkeeping 

of cognitive performance.   
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Introduction 

 

The human brain is an advanced complex system, and two mechanisms—large-scale neural networks and 

long-range oscillatory neural synchrony—are thought to serve as the primary organizational architectures 

of this system (1-4). Important insights into this organization in the human brain have emerged from 

functional magnetic resonance imaging (fMRI) and electro/magnetoencephalography (EEG/MEG) research 

through the identification of reliable intrinsic connectivity networks (such as the default mode network/DMN) 

and robust canonical oscillations (such as the alpha oscillation). Importantly, growing fMRI and EEG/MEG 

evidence converges to support the inherent synergy between the two organizational architectures such that 

the integration of large-scale neural networks both mediates (5) and is mediated by synchronized 

oscillations over multiple frequency bands (2-4).  

 

Characteristic of a complex system, the brain is highly dynamical. The past few years have witnessed a 

major advance in characterizing the spatiotemporal dynamics of the brain in general and the large-scale 

networks and long-range synchrony specifically (1, 6). Beyond conventional analyses that assume 

stationarity and provide static (time-averaged) depictions of neural networks and oscillations, this rapidly 

developing research has identified transient and non-stationary recurring patterns of organized activity in 

the brain (known as “brain states”), both at rest and during task performance, and demonstrated their 

relevance to cognition and neuropsychiatric disorders (7-14). The reliable observation of the brain’s 

dynamic states notwithstanding, mechanistic understanding of the cause and regulation of such dynamics 

is largely unclear.  

 

Dynamic fluctuations are also ubiquitous in cognitive processing and behavioral performance (15). 

Cognition requires the cooperation among distributed networks and is thought to arise as an emergent 

behavior of the brain’s complex system (6, 16). Correlational observations have implicated the dynamic 

brain states in various cognitive processes (17, 18) such as working memory (12, 13) and memory replay 

(8). Sustained attention (also known as vigilant attention or tonic alertness) is particularly characterized by 

substantial fluctuations over time and involves a distributed network of brain areas (19). Moreover, the 

neural mechanism underlying sustained attention is thought to fluctuate intrinsically (20). Specifically, 
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engagement and lapses of sustained attention have been associated with the intrinsic dynamic rivalry of 

opposing neural networks—the central executive network (CEN; alternatively, the frontoparietal network) 

and the task-negative network (dominated by the default mode network/DMN) (14, 21-23). In addition, 

neural synchrony in the alpha frequency has been associated with sustained attention and tonic alertness 

(20, 21, 24-28), and accordingly, alpha-frequency transcranial alternating current stimulation (α-tACS) that 

augmented alpha power has also been shown to enhance sustained attention (29). The foregoing thus 

suggests that sustained attention would provide an ideal model for the study of dynamic brain states, which, 

conversely, will offer novel systems-level insights into the neural underpinning of this important cognitive 

process. 

 

Here, we approached these problems by leveraging the inherent coupling of alpha oscillations and large-

scale neural network activity and manipulating the former to perturb brain state dynamics. Particularly, brain 

state dynamics characterized by DMN activity fluctuations have been repeatedly associated with the 

presence of strong alpha oscillations in humans (8, 30, 31). This potential synergy between the DMN and 

alpha oscillations aligns with a solid body of conventional (static) studies linking these two processes (32-

39). Recently, experimental manipulations using α-tACS have further established that augmenting alpha 

oscillations would enhance both DMN fMRI functional connectivity (40) and DMN alpha oscillations (based 

on EEG source-level analysis, including both power (31) and connectivity (40)). Notably, to date, such 

changes have only been measured offline, and aftereffects of tACS could stem from different processes, 

precluding a direct inference of the coupling between the DMN and alpha oscillations. Nonetheless, a new 

rodent study applied simultaneous fMRI and theta-frequency optogenetic modulation and demonstrated the 

direct effect of theta oscillations in driving dynamic brain states (41), lending credence to such cooperation 

in humans and compelling the adoption of online brain recordings with brain stimulation in humans to 

approach such problems.  

 

Therefore, we recorded fMRI simultaneously with high-definition (HD) α-tACS and combined it with a 

concurrent sustained attention task (the continuous performance task/CPT; Fig. 1A). Besides the DMN, we 

also incorporated other major cognitive networks (CEN and salience network/SN) (13), in addition to the 
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visual network (VN), given the visual task. Using hidden Markov Modelling (HMM) of fMRI timeseries from 

hubs of these large-scale networks (42), we extracted brain states and characterized their temporal 

dynamics over the 20-minute task (supplemental Fig. S1). After confirming its effects on static brain 

networks and CPT performance as previously reported (29, 31, 40), we tested the hypothesis that α-tACS 

would modulate the dynamics of brain states (i.e., upregulating task-positive and downregulating task-

negative states) in the service of sustained attention. 

 

RESULTS 

 

α-tACS target engagement validation  

As reported in (40), participants were randomly assigned to receive 20-minute active or sham HD α-tACS 

targeting the primary cortical source of alpha oscillations—the occipitoparietal cortex. We confirmed α-tACS 

-related alpha modulation as evinced by significant increase in both posterior alpha power and long-range 

posterior-to-frontal (P→F) alpha connectivity (measured with Granger causal/GC connectivity) in the Active 

(vs. Sham) group. This change was specific to the alpha frequency and absent in other frequencies. A 

separate, independent experiment including an active control group receiving α-tACS at random 

frequencies (1-200 Hz) replicated these effects while ruling out general frequency-non-specific effects. 

More details are provided in (40). 

 

Behavioral effects: α-tACS improved high-load CPT performance 

During the (active or sham) stimulation, participants completed the 20-minute CPT consisting of two 

cognitive load levels (low load: a single letter; high load: five letters). Hit rate was submitted to a repeated 

measures analysis of variance (ANOVA) of Load (high/low) and Group (Active/Sham), which confirmed a 

load effect: hit rate was significantly higher in the low- than high-load condition, F(1,35) = 62.54, p <.001, 

ηp
2 = .64. Importantly, as we predicted, there was a Group (i.e., tACS) effect: F(1,35) = 3.19, p = .042 one-

tailed, ηp
2 = .08. Notably, as illustrated in Fig. 1B Left, this group effect was present primarily in the high 

load condition (t(33.22) = 1.79, p = .042 one-tailed), presumably due to a ceiling effect in the low load 

condition (t(19.75) = 1.07, p = .149 one-tailed). Further linking this behavioral improvement to α-tACS, we 
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confirmed a positive correlation between alpha power increase (Post – Pre tACS) and overall or high-load 

hit rate (r/r = .36/.36, p = .039/.037; Fig. 1B Right). 

 

We also examined CPT performance based on the variability (the coefficient of variance/CV) of reaction 

times (RT) throughout the task. A similar ANOVA confirmed the effect of Load, F(1,35) = 73.16, p < .001, 

ηp
2 = .68; RT was more variable in the high- vs. low-Load condition. Confirming the association between 

RT variability and sustained attention, higher CV of RT was associated with lower hit rate (r = -.57, p < .001). 

However, there were no Group or Load-by-Group effects on RT variability (p’s > .66). 

 

fMRI effects 

Conventional (static) network analysis 

As introduced above, fMRI was recorded during the CPT concurrently with stimulation, and timeseries data 

was drawn from 15 a priori regions of interest (ROIs) encompassing the hubs of DMN, CEN, SN, and VN. 

For validation, we first confirmed previous findings of α-tACS enhancing resting-state static connectivity in 

the DMN (40). Static (conventional time-averaged) DMN connectivity in the low load condition, which closely 

approximated a resting state given its minimal cognitive demand, was augmented relative to the pre-tACS 

baseline in the Active (vs. Sham) group (Fig. 1C Lower Left). For comparison, exploratory analyses outside 

the DMN discovered no connectivity change, highlighting the selective association between the DMN and 

alpha oscillations. Additionally, in the high load condition (Fig. 1C Upper Right), which clearly departed from 

a resting state, the group effect was not clearly present. More details are provided in SI Appendix. 

 

Hidden brain states in sustained attention 

fMRI timeseries from the ROIs were further submitted to hidden Markov modeling (HMM) to identify 

dynamic brain states (7, 42). We tested HMMs across a range of one to thirty states. Based on free energy 

(combined with the “kneedle” method (31, 43)), the 8-state HMM was determined as the optimal model 

(Supplemental Fig. S1; see more details in SI Appendix). This solution accords with previous studies that 

converged on HMMs of 8–12 states (7, 11, 30, 42). 
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Five of the eight states exhibited moderate-to-strong activation/deactivation (hence denoted as “active” 

states) in the networks while the other three showed minimal activation/deactivation (i.e., “non-active” 

states; Fig. 2). Based on their specific activation patterns (Fig. 2) and combined with the probabilistic time 

course and transition paths (Fig. 3), the five active states were labeled as: 1) “Initiation” state for the clear 

activation of CEN nodes (and moderate activation of the SN nodes) and the reliable emergence at the onset 

of (but rarely during) the task blocks (Fig. 3B), representative of an alert, active engagement state often 

observed at the beginning of a task or block; 2) “Task Positive” state for clear activation of the CEN nodes 

(and moderate activation of the SN nodes) and deactivation of the DMN nodes, consistent with a 

prototypical task-positive state; 3) “Task Negative” state for the clear activation of the DMN nodes and 

deactivation of the CEN (barring moderate activation of the left dlPFC) and SN nodes, consistent with a 

prototypical resting/task-negative state; 4) “Switch” state for the clear activation of dACC (and moderate 

DMN activation) and deactivation of the CEN nodes, resembling a transition zone between the task-

negative and task-positive states (also see transition paths below); and 5) “Distraction” state for the strong 

right V2 activation, moderate right insula activation, and moderate posterior parietal cortex/PPC activation, 

which, together, resembled activation of the right-hemisphere dominant ventral attention network (44). 

Combined with the DMN deactivation, this state was thus characterized as the Distraction state, potentially 

induced by visual distractors in the high-load condition (see more discussion below). 

 

This activation-based characterization of the states is confirmed by the state transition paths (Fig. 3C&D). 

Particularly, the Switch state appeared to be the transition hub among the active states, serving as the 

primary transition target for Task Negative state and Distraction state (transition probability = 54%/39%, 

respectively). While Task Positive state primarily transitioned to Distraction state (reflective of attention 

deterioration; transitional probability = 41%), its secondary transition target was Switch state (transitional 

probability = 28%). For outgoing transitions, Switch state transitioned primarily to Task Positive state and 

Task Negative state (transition probability = 35%/32%, respectively). Finally, the Initiation state exhibited 

low incoming transition probabilities, akin to its dominance at the beginning of each block. To further qualify 

and quantify these state transitions, we performed graph theoretical analysis of the transitional probabilities 

across participants (Fig. 3D). The degree centrality index for each state was computed for each subject 
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and submitted to an ANOVA, which showed a significant effect of state (F(1,27) = 7.28, p < 0.001, ηp
2 = .20). 

Akin to its rather exclusive presence at the beginning of each block, the Initiation state had the lowest 

degree centrality among all states (FDR p’s <0.045 ). In addition, the Switch state had numerically the 

highest degree centrality, which was statistically significantly higher than that of the Task Negative state 

(FDR p = 0.025).  

 

Temporal dynamics of hidden brain states 

We quantified the temporal dynamics of the five active states using two key metrics: fractional occupancy 

(FO; the percentage of the entire timeseries visited by a state, reflective of the prevalence of that state) and 

mean lifetime (ML; the average duration of a state visit, reflective of general durability). We then submitted 

these metrics for each state to separate ANOVAs (Load by Group) to examine the effect of α-tACS on these 

brain states. 

 

Cognitive load modulated state dynamics  

The manipulation of cognitive load significantly affected the FO and ML of the Task Negative state: high 

(vs. low) load reduced both the FO and ML of this state, F(1,27) = 15.88, p < .001 and F(1,27) = 13.24, p 

= .001, respectively (Fig. 4A&B). Cognitive load also affected the FO (albeit not ML) of the Task Positive 

state: FO was higher in the low (vs. high) load, F(1,27) = 4.61, p = .041. Other states did not exhibit effects 

of cognitive load (p’s > .26). Therefore, high cognitive load appeared to disrupt the Task Negative state by 

reducing its overall prevalence and durability and weaken the Task Positive state by reducing its overall 

prevalence. 

 

α-tACS modulated state dynamics 

The ANOVAs also revealed Group effects on state dynamics. In the Task Negative state, we observed a 

simple effect of Group on both FO and ML, F(1,27) = 4.37, p = .047 and F(1,27) = 7.36, p = .012, 

respectively, reflecting reduced FO and ML in the Active (vs. Sham) group (Fig. 4A&B). Furthermore, in 

the Distraction state, we observed an interaction between Group and Load on both FO and ML, F(1,27) = 

4.66, p = .040 and F(1,27) = 4.98, p = .034, respectively. Specifically, as illustrated in Fig. 4, high load 
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increased the FO of the Distraction state in the Sham group (t(14) = 2.10, p  = .055), but not in the Active 

group (p = .348). Similarly, ML of the Distraction state was lower for the Active (vs. Sham) group in the high 

load, t(26) = 2.10, p  = .003, but equivalent for the groups in the low load (p = .348). These results suggest 

that tACS strengthened resistance to distractors in the high load condition. Other states did not exhibit any 

effects of Group either independently (p’s > .09) or interactively with Load (p’s > .19). Therefore, α-tACS 

suppressed Task Negative and Distraction states, especially at high cognitive load. 

 

DISCUSSION 

 

Combining HD α-tACS, simultaneous fMRI, and a sustained attention task (at low and high load) and 

applying HMM of fMRI timeseries in major large-scale networks, we uncovered a set of dynamical, 

functionally relevant brain states and revealed their responses to cognitive load and alpha modulation. 

Specifically, we delineated the temporal dynamics of Task Positive state, Task Negative state, and 

Distraction state, known to facilitate and interfere with sustained attention, respectively, providing 

mechanistic insights into this important cognitive process and its characteristic fluctuations. Critically, 

transcranial upregulation of alpha oscillations via α-tACS resulted in the suppression of the interfering states 

(i.e., Task Negative and Distraction states) and improvement in task performance, especially at high load, 

highlighting the role of alpha oscillations in regulating dynamics of neural networks and sustained attention. 

These findings provide causal insights into the operation of the brain’s complex system while shedding light 

on systems-level mechanisms underlying cognition. Finally, that α-tACS selectively modulated two of the 

dynamic states highlights its dependence on and/or selectivity of ongoing brain states, bearing relevance 

to future closed-loop applications to optimize tACS. 

 

Our α-tACS manipulation led to significant augmentation in alpha oscillations (both alpha power and long-

range connectivity; as detailed in (40)). Here, we further demonstrated that it also increased hit rate in the 

sustained attention task (especially at high load), replicating a prior α-tACS study using a comparable task 

(29). Moreover, the degree of alpha augmentation positively predicted hit rates, directly linking α-tACS and 

the behavioral improvement. These findings add to the growing evidence for the active role of alpha 

oscillations in cognition (vs. the traditional view of cognitive disengagement or “idling”), particularly for 
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sustained attention and tonic alertness (20, 21, 24-28). Our conventional (static) functional connectivity 

analysis also revealed that α-tACS strengthened connectivity within (but not outside) the DMN, albeit only 

in the low load condition that closely approximated a resting state with its minimal cognitive demand. This 

online effect of α-tACS corroborates previously reported offline (Post – Pre) resting-state connectivity 

increase in the DMN (40), ruling out rebound effects for the offline finding and highlighting a direct, selective, 

and enduring effect of α-tACS on intrinsic DMN connectivity.  

 

Our HMM analysis further identified five functionally relevant brain states during the sustained attention 

task and provided a cohesive depiction of their temporal dynamics. Critically, α-tACS modulated these 

dynamics, particularly in the high load condition, coinciding with the behavioral improvement at this load. It 

is worth noting the value and utility of such dynamic analysis, which was able to capture neural effects at 

high load that evaded the static analysis. Specifically, similar to an earlier study with interleaved low- and 

high-load blocks (13), we uncovered a state that emerged at the onset of every block, which was 

characterized by strong CEN and moderate SN activation, akin to the initiation (and transition) of the task 

(and load). In addition, attention engagement and lapses have been associated with the involvement of the 

CEN (aka, frontoparietal network) and the DMN, respectively (22), and indeed, we not only identified a Task 

Positive state (characterized by CEN activation and DMN deactivation) and a Task Negative state 

(characterized by DMN activation and CEN deactivation) but also revealed their responsiveness to cognitive 

load. Specifically, the load effect on the DMN-dominant (Task Negative) state (i.e., higher FO/ML at low 

than high load) corroborated the notion that the DMN is activated during rest and low-load tasks and de-

activated during effortful tasks (45).  

 

Furthermore, the brain vacillated between these two states via a Switch state. In keeping with this, the 

Switch state was more visited than other states, i.e., with greater FO than all other states (p’s < .02) except 

for the Distraction state (p = .13; Fig. 3C&D). This frequent transition between Task-Positive and Negative 

states accords with constant fluctuations characteristic of sustained attention. It has been postulated that 

the vacillation between Task Positive and Task Negative states may reflect an adaptive process to prevent 

over-engagement of the CEN and over-disengagement of the DMN, which could undermine performance 
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(22). Therefore, attention fluctuation (especially, over an extended period of sustained attention) may reflect 

the rhythmicity of attention that is cognitively beneficial (46). Conversely, the absence of such fluctuating 

(or even labile) states (the perpetuation of a certain state thereof) would cause neural avalanches, resulting 

in cognitive impairments and even neuropsychiatric disorders (4). For instance, entanglement between the 

DMN and SN (14, 47) and low neural variability in all four networks (48) in attentional disorders (e.g., 

attention deficit hyperactivity disorder) could reflect disruptions in the dynamical fluctuation of brain states, 

underpinning its attentional impairments. In keeping with that, we observed that while improving the CPT 

accuracy, α-tACS did not reduce variability (CV of RT) of the performance. Consistently, we observed no 

effect of α-tACS on the transition rate of the brain states (p’s >.10). That is, while altering the balance 

between functionally beneficial and detrimental states (as discussed below), α-tACS preserved neural 

fluctuation (or rhythmicity) throughout the task. 

 

Finally, we observed a Distraction state that was particularly pronounced at high load (characterized by the 

presence of distractors) in the Sham group. Interestingly, the Task Positive state was likely to transition into 

this Distraction state, which further transitioned into the Switch state or defaulted into the Task Negative 

state (Fig. 3C&D; Fig. 4). This suggests that attention lapses could arise as the Task Positive state is 

hijacked by distracting input. Importantly, both the Task-Negative and Distraction states were suppressed 

by α-tACS (Fig. 4), in keeping with the behavioral improvement it induced. It is also worth noting that efficacy 

of α-tACS has been shown to be state-dependent (49), and a study examining its aftereffect on dynamic 

brain states indicated that it primarily affected a DMN-dominant state (31). Therefore, the current finding 

underscores this state-dependent quality of alpha stimulation and its close association with DMN 

functioning, and thus promotes the application of closed-loop α-tACS to fully capitalize upon its 

neuromodulatory capacity. 

 

The static and dynamic effects of α-tACS together causally illuminate how the brain’s complex system 

operates on its primary architectures—large-scale networks and neural synchrony. Specifically, we surmise 

that at rest, alpha oscillations upkeep intrinsic DMN integrity whereas during task, they regulate the dynamic 

balance (“on” and “off”) of large-scale neural networks that are conducive or disruptive to task performance. 
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This notion resonates with increasing recognition of the multifaceted, sometimes paradoxical, functions of 

alpha oscillations (27, 50). The former (supporting intrinsic DMN functioning at rest) features alpha 

oscillations as a “long-range communicator” (27, 50). That is, as reported in (40), the strengthening of 

intrinsic DMN connectivity via α-tACS was mediated by frontal-posterior alpha synchrony (indexed by 

posterior-to-frontal alpha-frequency Granger causality) but not by local alpha activity (indexed by alpha 

power). In comparison, the latter (regulating brain state dynamics during task, particularly sustained 

attention) exemplifies local modulation by alpha oscillations as a “sensory inhibitor” (that suppresses 

distracting information and thus a Distraction state) and a “vigilance maintainer” (that fends off a Task 

Negative state) (27, 50). In keeping with this latter function, we observed that not only task performance 

but also the durability (i.e., ML) of Distraction state was predicted by posterior alpha power (r = -.42, p 

= .037; see SI Appendix). Moreover, the strong right V2 activation in the Distraction state aligns with the 

right-hemisphere lateralization of local alpha inhibition of the sensory cortex (51). Consistent with previous 

combined EEG-fMRI studies (52, 53), this transient activation of the right V2 in the Distraction state likely 

reflects evasion from alpha inhibition (i.e., failed sensory gating or filtering), resulting in increased response 

to distracting visual stimuli. Together, behavioral and neural (static and dynamic) effects α-tACS coalesce 

to highlight and harmonize the complex functions of alpha oscillations.  

 

In summary, current findings provide new insights into the dynamical organization of the brain activity that 

underpins cognition. Specifically, it presents a complex system perspective of the mechanism underlying 

sustained attention: the engagement of a tug-of-war between Task Positive and Task Negative brain states 

(along with resulting frequent switching between them) and the interception of the Task Positive state by 

distractors. Critically, alpha oscillations play a modulatory role in such dynamics of brain states, effectively 

shifting the balance in the tug-of-war (favoring beneficial over detrimental states). Consequent to the fine 

tuning of brain state dynamics, sustained attention performance would improve.  

 

Materials and Methods 

 

Participants 
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 Forty-one healthy volunteers (24 females, 20.8 ± 3.2 years of age) participated in the experiment 

as a part of a large study (40).  Participants reported no history of neurological or psychiatric disorders, 

current use of psychotropic medications, and had normal or corrected-to-normal vision. Participants were 

randomly and blindly assigned to the Active group (n = 21) or the Sham group (n = 20). Two participants 

(Active n =2) terminated the experiment due to discomfort in the MRI scanner. fMRI data were collected 

during the CPT from twenty-nine participants, and one Sham participant was excluded from analysis due 

to excessive motion, resulting in 28 participants for fMRI analysis (Active n = 13, Sham n = 15). Two Active 

participants were excluded for behavioral recording errors and failure to follow instructions, respectively, 

resulting in 37 participants for behavioral analyses (Active n = 17, Sham n = 20). The two groups did not 

differ in age or gender (p’s > .5). Experimental protocol was approved by Florida State University’s 

Institutional Review Board. 

 

Experimental Design 

Participants performed a sustained attention task for 20 mins while fMRI data was collected and 

tACS or sham stimulation was delivered (Fig. 1A). Eyes-open resting state EEG and fMRI data were 

collected before and after the task as reported in (40).  

Continuous Performance Task (CPT) 

 The continuous performance task (CPT) has been widely used to study sustained attention (54, 

55). In this study, the CPT task included two conditions, a low-load condition (a single letter at center of the 

screen) and a high-load condition (5 equidistant letters encircling a central fixation point; Fig. 1A), each 

presented in two blocks in alternating orders counterbalanced across participants and groups. Each block 

consisted of 300 trials, each lasting 1000 ms for a total of five minutes. Participants were instructed to press 

a button when the letter “X” appeared on screen, which occurred on 12.5% of the trials in each block. 

 

tACS 

Alpha-frequency stimulation was administered for the entire 20 minutes of the CPT. A ±2 mA 

sinusoidal current oscillating at 10 Hz was applied using an MR-compatible High-Definition (HD) tACS 

system in a 4 × 1 montage over midline occipitoparietal sites, which were selected to maximally target the 
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primary cortical source of alpha oscillations—occipitoparietal cortex. Sham stimulation was similarly 

applied, but the current was on for the first and last 30 seconds of the 20-minute task. Blindness of group 

assignment were confirmed through a systematical assessment. More details are provided in (40). 

 

MRI Acquisition and Preprocessing 

Gradient-echo T2-weighted echoplanar images were acquired on a 3T Siemens Prisma MRI 

scanner using a 64-channel head coil with axial acquisition. Imaging parameters and preprocessing 

protocols were the same as described in (40). 

 

Regions of Interest (ROIs) 

 The three major cognitive neural networks—DMN, CEN, and SN—and the visual network (VN) 

were included. A total of 15 regions of interest (ROIs) representing hub regions of the four networks were 

included. Specifically, the DMN ROIs included midline (medioprefrontal cortex/mPFC, ventral and dorsal 

posterior cingulate cortex/vPCC & dPCC) and lateral (left and right angular gyrus/AG) hubs of the DMN; 

CEN ROIs included the left/right dorsolateral prefrontal cortex (dlPFC) and the left/right posterior parietal 

cortex (PPC); the SN ROIs included dorsal anterior cingulate cortex (dACC) and left/right anterior insula 

(AI); and the VN ROIs included V1 and left/right V2. The CEN  SN, and frontal and lateral DMN ROIs were 

defined by the Willard Atlas (56). The PCC subdivisions were individually defined using the Brainnetome 

Atlas (57). The VN ROIs were defined by a probabilistic atlas of the visual cortex (58, 59). 

 

Hidden Markov Modeling (HMM) 

 Preprocessed fMRI timeseries from the entire task were drawn from the ROIs and submitted to 

modeling via the HMM-MAR toolbox (https://github.com/OHBA-analysis/HMM-MAR). From our models 

generated with between 1 and 30 states, we determined that the 8-state model optimally represented the 

data. The model fit was indexed by the free energy, Akaike Information Criterion (AIC), Bayesian 

information criterion (BIC), and integrated complete likelihood (ICL) metrics. More details are provided in 

SI Appendix. 
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Graph theoretical analysis 

Graph theoretical analysis was performed on transition probabilities of the five “active” states using the 

Brain Connectivity Toolbox (https://github.com/brainlife/BCT) and visualized in Gephi (60). To examine 

centrality of the five states, we calculated degree Z-score for each of the states in each participant and 

submitted the values to statistical analysis. 

 

Statistical analysis 

Target engagement of tACS (increased alpha power and P→F alpha connectivity) was validated in 

(40). We then confirmed the previously reported effect of tACS in improving sustained attention (29) using 

conducting repeated measures analyses of variance (ANOVAs) of Load (high/low) and Group (active/sham) 

on CPT accuracy and coefficient of variance (CV) of RT, respectively. For this confirmatory analysis, 

statistical significance was set at p < .05 one-tailed. Other than confirmatory analyses on the DMN 

connectivity (see SI Appendix), we applied false discovery rate/FDR correction on tests for all other 

connections. For hypothesis testing (regarding the dynamics of brain states), we conducted similar 

ANOVAs (Load by Group) on the FO and ML on the identified states, respectively. Statistical significance 

was set at p < .05 two-tailed.   
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Figure Captions 

 

Figure 1. Methods. A) Experimental Paradigm. Top: α-tACS or sham stimulation was delivered with 

simultaneous fMRI recordings while participants performed a sustained attention task. The task 

(Continuous Performance Task/CPT) consisted of four 5-minute blocks alternating between high and low 

load conditions (order of the conditions was counterbalanced across participants). Below: Example trials of 

the task. B) CPT performance. Left: The high load condition had lower hit rate than the low load condition 

in general, but α-tACS (vs. sham control) improved hit rate in the high load condition. Center red lines 

represent the mean values, with the pink and blue boxes representing the mean +/- 1.96 SEM and the 

mean +/- 1.5 SD, respectively. Right: alpha change (Post – Pre) predicted performance (hit rate) in both 

the high load (Top) and overall task (Bottom). Active and Sham groups are represented by filled and opened 

bars and dots, respectively. Dotted pink lines represent 95% confidence interval of least-squares regression 

line.* = p < 0.05; *** p = < 0.001. C) Conventional network analysis. Differential (Active – Sham) static 

functional connectivity (Fisher Z-transformed correlations)] matrix for the 15 a priori ROIs in low (Lower 

Left) and high (Upper Right) load conditions. Confirmatory analysis of default mode network (DMN) 

connectivity demonstrated strengthened connectivity in the DMN for the Active (vs. Sham) group, albeit in 

the low (but not high) load only. By contrast, significant group effects were absent outside the DMN, 

highlighting the selective association between the DMN and alpha oscillations. DMN includes mPFC 

(medial prefrontal cortex), vPCC (ventral posterior cingulate cortex), dPCC (dorsal posterior cingulate 

cortex), and l/r AG (left/right angular gyrus); CEN (central executive network) includes l/r dlPFC(left/right 

dorsolateral prefrontal cortex), and l/r PPC (left/right posterior parietal cortex); SN (salience network) 

includes dACC (dorsal anterior cingulate cortex) and l/r AI (left/right anterior insula); and VN (visual network) 

incudes V1 and l/r V2. . = p < .05, uncorrected; .. = p < .01, uncorrected; ** = p < .01, FDR corrected. 

 

Figure 2. Dynamic brain states during the CPT. A) Average activation of each ROI (hub region) of the 

four networks within each state during the CPT. Positive and negative values indicate higher and lower 

average BOLD intensities within a given state relative to mean BOLD intensity for the entire CPT, reflecting 

relative activation and deactivation, respectively. Eight states were identified, including five states with clear 
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ROI activation/deactivation and three states with minimal ROI activation/deactivation. The five (“active”) 

states were labeled according to their activation/deactivation patterns (as well as transition paths; detailed 

in Fig. 3). B) Normalized activation patterns of the five (“active”) states. Radial plots (Top) and brain models 

(Bottom) illustrate normalized activation/deactivation levels, i.e., the percent change from baseline of each 

ROI relative to its maximal activation or deactivation across states. States are color-coded (and henceforth). 

Top row of brain models is lateral view, and bottom row is medial view. Spheres represent centroids of the 

anatomical masks of ROIs. 

 

Figure 3. Temporal dynamics of the brain states. A) Time courses of all eight states for each participant 

(based on Viterbi decoding). The onset of each block is marked by a vertical dashed line. B) Consistency 

of state expression across participants for the five (“active”) states. Values indicate the proportion of 

participants exhibiting the dominant state (based on Viterbi decoding) within a window of 10 TRs (11). 

Vertical dashed lines represent onset of task blocks. Horizontal dashed lines represent chance level, i.e., 1 

of 8 states (12.5%) being predominantly expressed. C) Transition (to and from) probabilities (adjusted for 

the five active states) for each of the five states, averaged across all participants and task blocks. D) (Left) 

Graph of transition paths between states. Node size represents the fractional occupancy (FO; reflective of 

overall prevalence of a given state across the duration of the CPT) of each of the five states. Edge thickness 

represents the transition probabilities. The Switch state was the state with not only the highest FO but also 

strongest edges. The Task Negative (“Task –”) state tended to transition to the Switch state while the Task 

Positive (“Task +”) state primarily transitioned to the Distraction state, which then transitioned to the Switch 

or the Task Negative state. The weakest decile of transition probabilities is not shown. (Right) Centrality 

(Degree Z-score) of states in the transition graph at individual and group levels. As with edge thickness, 

the Initiation state had the lowest degree centrality while the the Switch state and, to some extent, the 

Distraction state had the highest degree centrality, reflective of their roles in mediating state transitions. 

Each dot represents an individual participant, and center red lines represent the mean values, with the grey 

box and the encompassing box representing the mean +/- 1.96 SEM and the mean +/- 1 SD, respectively. 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.27.542583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.27.542583
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4. Effects of α-tACS on temporal dynamics of the states. A) Fractional occupancy (FO) and B) 

Mean lifetime (ML) for the five “active” states of the Active (closed circles and boxes) and Sham (open 

circles and boxes) groups. Cognitive load reduced the FO and ML of the Task Negative (“Task –”) state 

and the FO of the Task Positive (“Task +”) state. Importantly, α-tACS reduced the FO and ML of the Task 

Negative state, regardless of load levels. Furthermore, interaction effects of Group and Load on FO and 

ML of the Distraction state indicate that α-tACS downregulated this state in the high load. Center red lines 

represent the mean values, with the grey box and the encompassing box representing the mean +/- 1.96 

SEM and the mean +/- 1 SD, respectively. * p < 0.05; ** p < 0.01; † p < 0.1. 
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Figure 1. Methods. A) Experimental Paradigm. Top: α-tACS or sham stimulation was delivered with 

simultaneous fMRI recordings while participants performed a sustained attention task. The task 

(Continuous Performance Task/CPT) consisted of four 5-minute blocks alternating between high and low 

load conditions (order of the conditions was counterbalanced across participants). Below: Example trials of 

the task. B) CPT performance. Left: The high load condition had lower hit rate than the low load condition 

in general, but α-tACS (vs. sham control) improved hit rate in the high load condition. Center red lines 

represent the mean values, with the pink and blue boxes representing the mean +/- 1.96 SEM and the 

mean +/- 1.5 SD, respectively. Right: alpha change (Post – Pre) predicted performance (hit rate) in both 

the high load (Top) and overall task (Bottom). Active and Sham groups are represented by filled and opened 

bars and dots, respectively. Dotted pink lines represent 95% confidence interval of least-squares regression 

line.* = p < 0.05; *** p = < 0.001. C) Conventional network analysis. Differential (Active – Sham) static 

functional connectivity (Fisher Z-transformed correlations)] matrix for the 15 a priori ROIs in low (Lower 

Left) and high (Upper Right) load conditions. Confirmatory analysis of default mode network (DMN) 

connectivity demonstrated strengthened connectivity in the DMN for the Active (vs. Sham) group, albeit in 

the low (but not high) load only. By contrast, significant group effects were absent outside the DMN, 

highlighting the selective association between the DMN and alpha oscillations. DMN includes mPFC 

(medial prefrontal cortex), vPCC (ventral posterior cingulate cortex), dPCC (dorsal posterior cingulate 

cortex), and l/r AG (left/right angular gyrus); CEN (central executive network) includes l/r dlPFC(left/right 

dorsolateral prefrontal cortex), and l/r PPC (left/right posterior parietal cortex); SN (salience network) 

includes dACC (dorsal anterior cingulate cortex) and l/r AI (left/right anterior insula); and VN (visual network) 

incudes V1 and l/r V2. . = p < .05, uncorrected; .. = p < .01, uncorrected; ** = p < .01, FDR corrected. 
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Figure 2. Dynamic brain states during the CPT. A) Average activation of each ROI (hub region) of the 

four networks within each state during the CPT. Positive and negative values indicate higher and lower 

average BOLD intensities within a given state relative to mean BOLD intensity for the entire CPT, reflecting 

relative activation and deactivation, respectively. Eight states were identified, including five states with clear 

ROI activation/deactivation and three states with minimal ROI activation/deactivation. The five (“active”) 

states were labeled according to their activation/deactivation patterns (as well as transition paths; detailed 

in Fig. 3). B) Normalized activation patterns of the five (“active”) states. Radial plots (Top) and brain models 

(Bottom) illustrate normalized activation/deactivation levels, i.e., the percent change from baseline of each 

ROI relative to its maximal activation or deactivation across states. States are color-coded (and henceforth). 
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Top row of brain models is lateral view, and bottom row is medial view. Spheres represent centroids of the 

anatomical masks of ROIs. 

 

 

 

Figure 3. Temporal dynamics of the brain states. A) Time courses of all eight states for each participant 

(based on Viterbi decoding). The onset of each block is marked by a vertical dashed line. B) Consistency 

of state expression across participants for the five (“active”) states. Values indicate the proportion of 

participants exhibiting the dominant state (based on Viterbi decoding) within a window of 10 TRs (11). 

Vertical dashed lines represent onset of task blocks. Horizontal dashed lines represent chance level, i.e., 1 

of 8 states (12.5%) being predominantly expressed. C) Transition (to and from) probabilities (adjusted for 

the five active states) for each of the five states, averaged across all participants and task blocks. D) (Left) 

Graph of transition paths between states. Node size represents the fractional occupancy (FO; reflective of 

overall prevalence of a given state across the duration of the CPT) of each of the five states. Edge thickness 

represents the transition probabilities. The Switch state was the state with not only the highest FO but also 

strongest edges. The Task Negative (“Task –”) state tended to transition to the Switch state while the Task 

Positive (“Task +”) state primarily transitioned to the Distraction state, which then transitioned to the Switch 
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or the Task Negative state. The weakest decile of transition probabilities is not shown. (Right) Centrality 

(Degree Z-score) of states in the transition graph at individual and group levels. As with edge thickness, 

the Initiation state had the lowest degree centrality while the the Switch state and, to some extent, the 

Distraction state had the highest degree centrality, reflective of their roles in mediating state transitions. 

Each dot represents an individual participant, and center red lines represent the mean values, with the grey 

box and the encompassing box representing the mean +/- 1.96 SEM and the mean +/- 1 SD, respectively. 

 

Figure 4. Effects of α-tACS on temporal dynamics of the states. A) Fractional occupancy (FO) and B) 

Mean lifetime (ML) for the five “active” states of the Active (closed circles and boxes) and Sham (open 

circles and boxes) groups. Cognitive load reduced the FO and ML of the Task Negative (“Task –”) state 

and the FO of the Task Positive (“Task +”) state. Importantly, α-tACS reduced the FO and ML of the Task 

Negative state, regardless of load levels. Furthermore, interaction effects of Group and Load on FO and 
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ML of the Distraction state indicate that α-tACS downregulated this state in the high load. Center red lines 

represent the mean values, with the grey box and the encompassing box representing the mean +/- 1.96 

SEM and the mean +/- 1 SD, respectively. * p < 0.05; ** p < 0.01; † p < 0.1. 
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