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Abstract

The brain is a complex system from which cognition is thought to arise as an emergent behavior, but the
mechanisms underlying such processes remain unclear. We approached this problem based on the
recognition of the two primary organizational architectures of the brain—large-scale networks and
oscillatory synchrony—and their fundamental importance in cognition. Here, we applied high-definition
alpha-frequency transcranial alternating-current stimulation (HD a-tACS) in a sustained attention task
during functional resonance imaging (fMRI) to causally elucidate organizing principles of these major
architectures (particularly, the role of alpha oscillatory synchrony) in cognition. We demonstrated that a-
tACS both increased electroencephalogram (EEG) alpha power and improved sustained attention, degrees
of which were positively correlated. Using Hidden Markov Modeling (HMM) of fMRI timeseries, we further
uncovered five functionally important brain states (defined by distinct activity patterns of large-scale
networks) and revealed the regulation of their temporal dynamics by a-tACS such that a Task-Negative
state (characterized by activation of the default mode network/DMN) and Distraction state (with activation
of the ventral attention and visual networks) was suppressed. These findings confirm the role of alpha
oscillations in sustained attention, and more importantly, they afford a complex systems account that
sustained attention is underpinned by multiple transient, recurrent brain states, whose dynamical balances
are regulated by alpha oscillations. The study also highlights the efficacy of non-invasive oscillatory
neuromodulation in probing the operation of the complex brain system and encourages future clinical

applications to improve neural system health and cognitive performance.

Significance Statement

The brain operates a well-organized complex system to support mental activities. Along with well-known
fluctuations in attention, we uncovered that the brain undergoes dynamic vacillations of functional states
that are organized through large-scale neural networks and regulated by neural oscillations. We showcased
that during sustained attention over an extended period time, the brain maintains a tug-of-war between
functional “on” and “off” states. Applying a-tACS, we further demonstrated that the brain self-organizes this
complex system through alpha oscillations, regulating the balance of such dynamic states in the upkeeping

of cognitive performance.


https://doi.org/10.1101/2023.05.27.542583
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.27.542583; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Introduction

The human brain is an advanced complex system, and two mechanisms—Ilarge-scale neural networks and
long-range oscillatory neural synchrony—are thought to serve as the primary organizational architectures
of this system (1-4). Important insights into this organization in the human brain have emerged from
functional magnetic resonance imaging (fMRI) and electro/magnetoencephalography (EEG/MEG) research
through the identification of reliable intrinsic connectivity networks (such as the default mode network/DMN)
and robust canonical oscillations (such as the alpha oscillation). Importantly, growing fMRI and EEG/MEG
evidence converges to support the inherent synergy between the two organizational architectures such that
the integration of large-scale neural networks both mediates (5) and is mediated by synchronized

oscillations over multiple frequency bands (2-4).

Characteristic of a complex system, the brain is highly dynamical. The past few years have withessed a
major advance in characterizing the spatiotemporal dynamics of the brain in general and the large-scale
networks and long-range synchrony specifically (1, 6). Beyond conventional analyses that assume
stationarity and provide static (time-averaged) depictions of neural networks and oscillations, this rapidly
developing research has identified transient and non-stationary recurring patterns of organized activity in
the brain (known as “brain states”), both at rest and during task performance, and demonstrated their
relevance to cognition and neuropsychiatric disorders (7-14). The reliable observation of the brain’s
dynamic states notwithstanding, mechanistic understanding of the cause and regulation of such dynamics

is largely unclear.

Dynamic fluctuations are also ubiquitous in cognitive processing and behavioral performance (15).
Cognition requires the cooperation among distributed networks and is thought to arise as an emergent
behavior of the brain’s complex system (6, 16). Correlational observations have implicated the dynamic
brain states in various cognitive processes (17, 18) such as working memory (12, 13) and memory replay
(8). Sustained attention (also known as vigilant attention or tonic alertness) is particularly characterized by
substantial fluctuations over time and involves a distributed network of brain areas (19). Moreover, the

neural mechanism underlying sustained attention is thought to fluctuate intrinsically (20). Specifically,
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engagement and lapses of sustained attention have been associated with the intrinsic dynamic rivalry of
opposing neural networks—the central executive network (CEN; alternatively, the frontoparietal network)
and the task-negative network (dominated by the default mode network/DMN) (14, 21-23). In addition,
neural synchrony in the alpha frequency has been associated with sustained attention and tonic alertness
(20, 21, 24-28), and accordingly, alpha-frequency transcranial alternating current stimulation (a-tACS) that
augmented alpha power has also been shown to enhance sustained attention (29). The foregoing thus
suggests that sustained attention would provide an ideal model for the study of dynamic brain states, which,
conversely, will offer novel systems-level insights into the neural underpinning of this important cognitive

process.

Here, we approached these problems by leveraging the inherent coupling of alpha oscillations and large-
scale neural network activity and manipulating the former to perturb brain state dynamics. Particularly, brain
state dynamics characterized by DMN activity fluctuations have been repeatedly associated with the
presence of strong alpha oscillations in humans (8, 30, 31). This potential synergy between the DMN and
alpha oscillations aligns with a solid body of conventional (static) studies linking these two processes (32-
39). Recently, experimental manipulations using a-tACS have further established that augmenting alpha
oscillations would enhance both DMN fMRI functional connectivity (40) and DMN alpha oscillations (based
on EEG source-level analysis, including both power (31) and connectivity (40)). Notably, to date, such
changes have only been measured offline, and aftereffects of tACS could stem from different processes,
precluding a direct inference of the coupling between the DMN and alpha oscillations. Nonetheless, a new
rodent study applied simultaneous fMRI and theta-frequency optogenetic modulation and demonstrated the
direct effect of theta oscillations in driving dynamic brain states (41), lending credence to such cooperation
in humans and compelling the adoption of online brain recordings with brain stimulation in humans to

approach such problems.

Therefore, we recorded fMRI simultaneously with high-definition (HD) a-tACS and combined it with a
concurrent sustained attention task (the continuous performance task/CPT; Fig. 1A). Besides the DMN, we

also incorporated other major cognitive networks (CEN and salience network/SN) (13), in addition to the
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visual network (VN), given the visual task. Using hidden Markov Modelling (HMM) of fMRI timeseries from
hubs of these large-scale networks (42), we extracted brain states and characterized their temporal
dynamics over the 20-minute task (supplemental Fig. S1). After confirming its effects on static brain
networks and CPT performance as previously reported (29, 31, 40), we tested the hypothesis that a-tACS
would modulate the dynamics of brain states (i.e., upregulating task-positive and downregulating task-

negative states) in the service of sustained attention.

RESULTS

a-tACS target engagement validation

As reported in (40), participants were randomly assigned to receive 20-minute active or sham HD a-tACS
targeting the primary cortical source of alpha oscillations—the occipitoparietal cortex. We confirmed a-tACS
-related alpha modulation as evinced by significant increase in both posterior alpha power and long-range
posterior-to-frontal (P->F) alpha connectivity (measured with Granger causal/GC connectivity) in the Active
(vs. Sham) group. This change was specific to the alpha frequency and absent in other frequencies. A
separate, independent experiment including an active control group receiving a-tACS at random
frequencies (1-200 Hz) replicated these effects while ruling out general frequency-non-specific effects.

More details are provided in (40).

Behavioral effects: a-tACS improved high-load CPT performance

During the (active or sham) stimulation, participants completed the 20-minute CPT consisting of two
cognitive load levels (low load: a single letter; high load: five letters). Hit rate was submitted to a repeated
measures analysis of variance (ANOVA) of Load (high/low) and Group (Active/Sham), which confirmed a
load effect: hit rate was significantly higher in the low- than high-load condition, F(1,35) = 62.54, p <.001,
ne? = .64. Importantly, as we predicted, there was a Group (i.e., tACS) effect: F(1,35) = 3.19, p = .042 one-
tailed, np? = .08. Notably, as illustrated in Fig. 1B Left, this group effect was present primarily in the high
load condition (1(33.22) = 1.79, p = .042 one-tailed), presumably due to a ceiling effect in the low load

condition (t(19.75) = 1.07, p = .149 one-tailed). Further linking this behavioral improvement to a-tACS, we
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confirmed a positive correlation between alpha power increase (Post — Pre tACS) and overall or high-load

hit rate (r/r = .36/.36, p = .039/.037; Fig. 1B Right).

We also examined CPT performance based on the variability (the coefficient of variance/CV) of reaction
times (RT) throughout the task. A similar ANOVA confirmed the effect of Load, F(1,35) = 73.16, p < .001,
ne? = .68; RT was more variable in the high- vs. low-Load condition. Confirming the association between
RT variability and sustained attention, higher CV of RT was associated with lower hit rate (r = -.57, p <.001).

However, there were no Group or Load-by-Group effects on RT variability (p’s > .66).

fMRI effects

Conventional (static) network analysis

As introduced above, fMRI was recorded during the CPT concurrently with stimulation, and timeseries data
was drawn from 15 a priori regions of interest (ROIs) encompassing the hubs of DMN, CEN, SN, and VN.
For validation, we first confirmed previous findings of a-tACS enhancing resting-state static connectivity in
the DMN (40). Static (conventional time-averaged) DMN connectivity in the low load condition, which closely
approximated a resting state given its minimal cognitive demand, was augmented relative to the pre-tACS
baseline in the Active (vs. Sham) group (Fig. 1C Lower Left). For comparison, exploratory analyses outside
the DMN discovered no connectivity change, highlighting the selective association between the DMN and
alpha oscillations. Additionally, in the high load condition (Fig. 1C Upper Right), which clearly departed from

a resting state, the group effect was not clearly present. More details are provided in SI Appendix.

Hidden brain states in sustained attention

fMRI timeseries from the ROIs were further submitted to hidden Markov modeling (HMM) to identify
dynamic brain states (7, 42). We tested HMMs across a range of one to thirty states. Based on free energy
(combined with the “kneedle” method (31, 43)), the 8-state HMM was determined as the optimal model
(Supplemental Fig. S1; see more details in SI Appendix). This solution accords with previous studies that

converged on HMMs of 8-12 states (7, 11, 30, 42).
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Five of the eight states exhibited moderate-to-strong activation/deactivation (hence denoted as “active”
states) in the networks while the other three showed minimal activation/deactivation (i.e., “non-active”
states; Fig. 2). Based on their specific activation patterns (Fig. 2) and combined with the probabilistic time
course and transition paths (Fig. 3), the five active states were labeled as: 1) “Initiation” state for the clear
activation of CEN nodes (and moderate activation of the SN nodes) and the reliable emergence at the onset
of (but rarely during) the task blocks (Fig. 3B), representative of an alert, active engagement state often
observed at the beginning of a task or block; 2) “Task Positive” state for clear activation of the CEN nodes
(and moderate activation of the SN nodes) and deactivation of the DMN nodes, consistent with a
prototypical task-positive state; 3) “Task Negative” state for the clear activation of the DMN nodes and
deactivation of the CEN (barring moderate activation of the left dIPFC) and SN nodes, consistent with a
prototypical resting/task-negative state; 4) “Switch” state for the clear activation of dJACC (and moderate
DMN activation) and deactivation of the CEN nodes, resembling a transition zone between the task-
negative and task-positive states (also see transition paths below); and 5) “Distraction” state for the strong
right V2 activation, moderate right insula activation, and moderate posterior parietal cortex/PPC activation,
which, together, resembled activation of the right-hemisphere dominant ventral attention network (44).
Combined with the DMN deactivation, this state was thus characterized as the Distraction state, potentially

induced by visual distractors in the high-load condition (see more discussion below).

This activation-based characterization of the states is confirmed by the state transition paths (Fig. 3C&D).
Particularly, the Switch state appeared to be the transition hub among the active states, serving as the
primary transition target for Task Negative state and Distraction state (transition probability = 54%/39%,
respectively). While Task Positive state primarily transitioned to Distraction state (reflective of attention
deterioration; transitional probability = 41%), its secondary transition target was Switch state (transitional
probability = 28%). For outgoing transitions, Switch state transitioned primarily to Task Positive state and
Task Negative state (transition probability = 35%/32%, respectively). Finally, the Initiation state exhibited
low incoming transition probabilities, akin to its dominance at the beginning of each block. To further qualify
and quantify these state transitions, we performed graph theoretical analysis of the transitional probabilities

across participants (Fig. 3D). The degree centrality index for each state was computed for each subject
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and submitted to an ANOVA, which showed a significant effect of state (F(1,27) = 7.28, p < 0.001, np? = .20).
Akin to its rather exclusive presence at the beginning of each block, the Initiation state had the lowest
degree centrality among all states (FDR p’s <0.045 ). In addition, the Switch state had numerically the
highest degree centrality, which was statistically significantly higher than that of the Task Negative state

(FDR p = 0.025).

Temporal dynamics of hidden brain states

We quantified the temporal dynamics of the five active states using two key metrics: fractional occupancy
(FO; the percentage of the entire timeseries visited by a state, reflective of the prevalence of that state) and
mean lifetime (ML; the average duration of a state visit, reflective of general durability). We then submitted
these metrics for each state to separate ANOVAs (Load by Group) to examine the effect of a-tACS on these

brain states.

Cognitive load modulated state dynamics

The manipulation of cognitive load significantly affected the FO and ML of the Task Negative state: high
(vs. low) load reduced both the FO and ML of this state, F(1,27) = 15.88, p < .001 and F(1,27) = 13.24, p
= .001, respectively (Fig. 4A&B). Cognitive load also affected the FO (albeit not ML) of the Task Positive
state: FO was higher in the low (vs. high) load, F(1,27) = 4.61, p = .041. Other states did not exhibit effects
of cognitive load (p’s > .26). Therefore, high cognitive load appeared to disrupt the Task Negative state by
reducing its overall prevalence and durability and weaken the Task Positive state by reducing its overall

prevalence.

a-tACS modulated state dynamics

The ANOVAs also revealed Group effects on state dynamics. In the Task Negative state, we observed a
simple effect of Group on both FO and ML, F(1,27) = 4.37,p = .047 and F(1,27) = 7.36,p = .012,
respectively, reflecting reduced FO and ML in the Active (vs. Sham) group (Fig. 4A&B). Furthermore, in
the Distraction state, we observed an interaction between Group and Load on both FO and ML, F(1,27) =

4.66, p = .040 and F(1,27) = 4.98, p = .034, respectively. Specifically, as illustrated in Fig. 4, high load
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increased the FO of the Distraction state in the Sham group (t(14) = 2.10, p = .055), but not in the Active
group (p = .348). Similarly, ML of the Distraction state was lower for the Active (vs. Sham) group in the high
load, t(26) = 2.10, p =.003, but equivalent for the groups in the low load (p = .348). These results suggest
that tACS strengthened resistance to distractors in the high load condition. Other states did not exhibit any
effects of Group either independently (p’s > .09) or interactively with Load (p’s > .19). Therefore, a-tACS

suppressed Task Negative and Distraction states, especially at high cognitive load.

DISCUSSION

Combining HD a-tACS, simultaneous fMRI, and a sustained attention task (at low and high load) and
applying HMM of fMRI timeseries in major large-scale networks, we uncovered a set of dynamical,
functionally relevant brain states and revealed their responses to cognitive load and alpha modulation.
Specifically, we delineated the temporal dynamics of Task Positive state, Task Negative state, and
Distraction state, known to facilitate and interfere with sustained attention, respectively, providing
mechanistic insights into this important cognitive process and its characteristic fluctuations. Critically,
transcranial upregulation of alpha oscillations via a-tACS resulted in the suppression of the interfering states
(i.e., Task Negative and Distraction states) and improvement in task performance, especially at high load,
highlighting the role of alpha oscillations in regulating dynamics of neural networks and sustained attention.
These findings provide causal insights into the operation of the brain’s complex system while shedding light
on systems-level mechanisms underlying cognition. Finally, that a-tACS selectively modulated two of the
dynamic states highlights its dependence on and/or selectivity of ongoing brain states, bearing relevance

to future closed-loop applications to optimize tACS.

Our a-tACS manipulation led to significant augmentation in alpha oscillations (both alpha power and long-
range connectivity; as detailed in (40)). Here, we further demonstrated that it also increased hit rate in the
sustained attention task (especially at high load), replicating a prior a-tACS study using a comparable task
(29). Moreover, the degree of alpha augmentation positively predicted hit rates, directly linking a-tACS and
the behavioral improvement. These findings add to the growing evidence for the active role of alpha

oscillations in cognition (vs. the traditional view of cognitive disengagement or “idling”), particularly for
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sustained attention and tonic alertness (20, 21, 24-28). Our conventional (static) functional connectivity
analysis also revealed that a-tACS strengthened connectivity within (but not outside) the DMN, albeit only
in the low load condition that closely approximated a resting state with its minimal cognitive demand. This
online effect of a-tACS corroborates previously reported offline (Post — Pre) resting-state connectivity
increase in the DMN (40), ruling out rebound effects for the offline finding and highlighting a direct, selective,

and enduring effect of a-tACS on intrinsic DMN connectivity.

Our HMM analysis further identified five functionally relevant brain states during the sustained attention
task and provided a cohesive depiction of their temporal dynamics. Critically, a-tACS modulated these
dynamics, particularly in the high load condition, coinciding with the behavioral improvement at this load. It
is worth noting the value and utility of such dynamic analysis, which was able to capture neural effects at
high load that evaded the static analysis. Specifically, similar to an earlier study with interleaved low- and
high-load blocks (13), we uncovered a state that emerged at the onset of every block, which was
characterized by strong CEN and moderate SN activation, akin to the initiation (and transition) of the task
(and load). In addition, attention engagement and lapses have been associated with the involvement of the
CEN (aka, frontoparietal network) and the DMN, respectively (22), and indeed, we not only identified a Task
Positive state (characterized by CEN activation and DMN deactivation) and a Task Negative state
(characterized by DMN activation and CEN deactivation) but also revealed their responsiveness to cognitive
load. Specifically, the load effect on the DMN-dominant (Task Negative) state (i.e., higher FO/ML at low
than high load) corroborated the notion that the DMN is activated during rest and low-load tasks and de-

activated during effortful tasks (45).

Furthermore, the brain vacillated between these two states via a Switch state. In keeping with this, the
Switch state was more visited than other states, i.e., with greater FO than all other states (p’s < .02) except
for the Distraction state (p = .13; Fig. 3C&D). This frequent transition between Task-Positive and Negative
states accords with constant fluctuations characteristic of sustained attention. It has been postulated that
the vacillation between Task Positive and Task Negative states may reflect an adaptive process to prevent

over-engagement of the CEN and over-disengagement of the DMN, which could undermine performance
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(22). Therefore, attention fluctuation (especially, over an extended period of sustained attention) may reflect
the rhythmicity of attention that is cognitively beneficial (46). Conversely, the absence of such fluctuating
(or even labile) states (the perpetuation of a certain state thereof) would cause neural avalanches, resulting
in cognitive impairments and even neuropsychiatric disorders (4). For instance, entanglement between the
DMN and SN (14, 47) and low neural variability in all four networks (48) in attentional disorders (e.g.,
attention deficit hyperactivity disorder) could reflect disruptions in the dynamical fluctuation of brain states,
underpinning its attentional impairments. In keeping with that, we observed that while improving the CPT
accuracy, a-tACS did not reduce variability (CV of RT) of the performance. Consistently, we observed no
effect of a-tACS on the transition rate of the brain states (p’s >.10). That is, while altering the balance
between functionally beneficial and detrimental states (as discussed below), a-tACS preserved neural

fluctuation (or rhythmicity) throughout the task.

Finally, we observed a Distraction state that was particularly pronounced at high load (characterized by the
presence of distractors) in the Sham group. Interestingly, the Task Positive state was likely to transition into
this Distraction state, which further transitioned into the Switch state or defaulted into the Task Negative
state (Fig. 3C&D; Fig. 4). This suggests that attention lapses could arise as the Task Positive state is
hijacked by distracting input. Importantly, both the Task-Negative and Distraction states were suppressed
by a-tACS (Fig. 4), in keeping with the behavioral improvement it induced. It is also worth noting that efficacy
of a-tACS has been shown to be state-dependent (49), and a study examining its aftereffect on dynamic
brain states indicated that it primarily affected a DMN-dominant state (31). Therefore, the current finding
underscores this state-dependent quality of alpha stimulation and its close association with DMN
functioning, and thus promotes the application of closed-loop a-tACS to fully capitalize upon its

neuromodulatory capacity.

The static and dynamic effects of a-tACS together causally illuminate how the brain’s complex system
operates on its primary architectures—Ilarge-scale networks and neural synchrony. Specifically, we surmise
that at rest, alpha oscillations upkeep intrinsic DMN integrity whereas during task, they regulate the dynamic

balance (“on” and “off”) of large-scale neural networks that are conducive or disruptive to task performance.
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This notion resonates with increasing recognition of the multifaceted, sometimes paradoxical, functions of
alpha oscillations (27, 50). The former (supporting intrinsic DMN functioning at rest) features alpha
oscillations as a “long-range communicator” (27, 50). That is, as reported in (40), the strengthening of
intrinsic DMN connectivity via a-tACS was mediated by frontal-posterior alpha synchrony (indexed by
posterior-to-frontal alpha-frequency Granger causality) but not by local alpha activity (indexed by alpha
power). In comparison, the latter (regulating brain state dynamics during task, particularly sustained
attention) exemplifies local modulation by alpha oscillations as a “sensory inhibitor” (that suppresses
distracting information and thus a Distraction state) and a “vigilance maintainer” (that fends off a Task
Negative state) (27, 50). In keeping with this latter function, we observed that not only task performance
but also the durability (i.e., ML) of Distraction state was predicted by posterior alpha power (r = -.42, p
= .037; see Sl Appendix). Moreover, the strong right V2 activation in the Distraction state aligns with the
right-hemisphere lateralization of local alpha inhibition of the sensory cortex (51). Consistent with previous
combined EEG-fMRI studies (52, 53), this transient activation of the right V2 in the Distraction state likely
reflects evasion from alpha inhibition (i.e., failed sensory gating or filtering), resulting in increased response
to distracting visual stimuli. Together, behavioral and neural (static and dynamic) effects a-tACS coalesce

to highlight and harmonize the complex functions of alpha oscillations.

In summary, current findings provide new insights into the dynamical organization of the brain activity that
underpins cognition. Specifically, it presents a complex system perspective of the mechanism underlying
sustained attention: the engagement of a tug-of-war between Task Positive and Task Negative brain states
(along with resulting frequent switching between them) and the interception of the Task Positive state by
distractors. Critically, alpha oscillations play a modulatory role in such dynamics of brain states, effectively
shifting the balance in the tug-of-war (favoring beneficial over detrimental states). Consequent to the fine

tuning of brain state dynamics, sustained attention performance would improve.

Materials and Methods

Participants
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Forty-one healthy volunteers (24 females, 20.8 £+ 3.2 years of age) participated in the experiment
as a part of a large study (40). Participants reported no history of neurological or psychiatric disorders,
current use of psychotropic medications, and had normal or corrected-to-normal vision. Participants were
randomly and blindly assigned to the Active group (n = 21) or the Sham group (n = 20). Two participants
(Active n =2) terminated the experiment due to discomfort in the MRI scanner. fMRI data were collected
during the CPT from twenty-nine participants, and one Sham participant was excluded from analysis due
to excessive motion, resulting in 28 participants for fMRI analysis (Active n = 13, Sham n = 15). Two Active
participants were excluded for behavioral recording errors and failure to follow instructions, respectively,
resulting in 37 participants for behavioral analyses (Active n = 17, Sham n = 20). The two groups did not
differ in age or gender (p's > .5). Experimental protocol was approved by Florida State University’s

Institutional Review Board.

Experimental Design

Participants performed a sustained attention task for 20 mins while fMRI data was collected and
tACS or sham stimulation was delivered (Fig. 1A). Eyes-open resting state EEG and fMRI data were
collected before and after the task as reported in (40).
Continuous Performance Task (CPT)

The continuous performance task (CPT) has been widely used to study sustained attention (54,
55). In this study, the CPT task included two conditions, a low-load condition (a single letter at center of the
screen) and a high-load condition (5 equidistant letters encircling a central fixation point; Fig. 1A), each
presented in two blocks in alternating orders counterbalanced across participants and groups. Each block
consisted of 300 trials, each lasting 1000 ms for a total of five minutes. Participants were instructed to press

a button when the letter “X” appeared on screen, which occurred on 12.5% of the trials in each block.

tACS

Alpha-frequency stimulation was administered for the entire 20 minutes of the CPT. A £2 mA
sinusoidal current oscillating at 10 Hz was applied using an MR-compatible High-Definition (HD) tACS

system in a 4 x 1 montage over midline occipitoparietal sites, which were selected to maximally target the
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primary cortical source of alpha oscillations—occipitoparietal cortex. Sham stimulation was similarly
applied, but the current was on for the first and last 30 seconds of the 20-minute task. Blindness of group

assignment were confirmed through a systematical assessment. More details are provided in (40).

MRI Acquisition and Preprocessing
Gradient-echo T2-weighted echoplanar images were acquired on a 3T Siemens Prisma MRI
scanner using a 64-channel head coil with axial acquisition. Imaging parameters and preprocessing

protocols were the same as described in (40).

Regions of Interest (ROIs)

The three major cognitive neural networks—DMN, CEN, and SN—and the visual network (VN)
were included. A total of 15 regions of interest (ROIs) representing hub regions of the four networks were
included. Specifically, the DMN ROlIs included midline (medioprefrontal cortex/mPFC, ventral and dorsal
posterior cingulate cortex/VPCC & dPCC) and lateral (left and right angular gyrus/AG) hubs of the DMN;
CEN ROIs included the left/right dorsolateral prefrontal cortex (dIPFC) and the left/right posterior parietal
cortex (PPC); the SN ROls included dorsal anterior cingulate cortex (dACC) and left/right anterior insula
(Al); and the VN ROls included V1 and left/right V2. The CEN SN, and frontal and lateral DMN ROIs were
defined by the Willard Atlas (56). The PCC subdivisions were individually defined using the Brainnetome

Atlas (57). The VN ROIs were defined by a probabilistic atlas of the visual cortex (58, 59).

Hidden Markov Modeling (HMM)
Preprocessed fMRI timeseries from the entire task were drawn from the ROIs and submitted to

modeling via the HMM-MAR toolbox (https://github.com/OHBA-analysis/HMM-MAR). From our models

generated with between 1 and 30 states, we determined that the 8-state model optimally represented the
data. The model fit was indexed by the free energy, Akaike Information Criterion (AIC), Bayesian
information criterion (BIC), and integrated complete likelihood (ICL) metrics. More details are provided in

S| Appendix.
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Graph theoretical analysis
Graph theoretical analysis was performed on transition probabilities of the five “active” states using the

Brain Connectivity Toolbox (https://github.com/brainlife/BCT) and visualized in Gephi (60). To examine

centrality of the five states, we calculated degree Z-score for each of the states in each participant and

submitted the values to statistical analysis.

Statistical analysis

Target engagement of tACS (increased alpha power and P->F alpha connectivity) was validated in
(40). We then confirmed the previously reported effect of tACS in improving sustained attention (29) using
conducting repeated measures analyses of variance (ANOVASs) of Load (high/low) and Group (active/sham)
on CPT accuracy and coefficient of variance (CV) of RT, respectively. For this confirmatory analysis,
statistical significance was set at p < .05 one-tailed. Other than confirmatory analyses on the DMN
connectivity (see Sl Appendix), we applied false discovery rate/FDR correction on tests for all other
connections. For hypothesis testing (regarding the dynamics of brain states), we conducted similar
ANOVAs (Load by Group) on the FO and ML on the identified states, respectively. Statistical significance

was set at p < .05 two-tailed.
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Figure Captions

Figure 1. Methods. A) Experimental Paradigm. Top: a-tACS or sham stimulation was delivered with
simultaneous fMRI recordings while participants performed a sustained attention task. The task
(Continuous Performance Task/CPT) consisted of four 5-minute blocks alternating between high and low
load conditions (order of the conditions was counterbalanced across participants). Below: Example trials of
the task. B) CPT performance. Left: The high load condition had lower hit rate than the low load condition
in general, but a-tACS (vs. sham control) improved hit rate in the high load condition. Center red lines
represent the mean values, with the pink and blue boxes representing the mean +/- 1.96 SEM and the
mean +/- 1.5 SD, respectively. Right: alpha change (Post — Pre) predicted performance (hit rate) in both
the high load (Top) and overall task (Bottom). Active and Sham groups are represented by filled and opened
bars and dots, respectively. Dotted pink lines represent 95% confidence interval of least-squares regression
line.* = p < 0.05; ** p = < 0.001. C) Conventional network analysis. Differential (Active — Sham) static
functional connectivity (Fisher Z-transformed correlations)] matrix for the 15 a priori ROIs in low (Lower
Left) and high (Upper Right) load conditions. Confirmatory analysis of default mode network (DMN)
connectivity demonstrated strengthened connectivity in the DMN for the Active (vs. Sham) group, albeit in
the low (but not high) load only. By contrast, significant group effects were absent outside the DMN,
highlighting the selective association between the DMN and alpha oscillations. DMN includes mPFC
(medial prefrontal cortex), vPCC (ventral posterior cingulate cortex), dPCC (dorsal posterior cingulate
cortex), and I/r AG (left/right angular gyrus); CEN (central executive network) includes I/r dIPFC(left/right
dorsolateral prefrontal cortex), and I/r PPC (left/right posterior parietal cortex); SN (salience network)
includes dACC (dorsal anterior cingulate cortex) and I/r Al (left/right anterior insula); and VN (visual network)

incudes V1 and I/r V2. . = p < .05, uncorrected; .. = p < .01, uncorrected; ** = p < .01, FDR corrected.

Figure 2. Dynamic brain states during the CPT. A) Average activation of each ROI (hub region) of the
four networks within each state during the CPT. Positive and negative values indicate higher and lower
average BOLD intensities within a given state relative to mean BOLD intensity for the entire CPT, reflecting

relative activation and deactivation, respectively. Eight states were identified, including five states with clear
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ROI activation/deactivation and three states with minimal ROI activation/deactivation. The five (“active”)
states were labeled according to their activation/deactivation patterns (as well as transition paths; detailed
in Fig. 3). B) Normalized activation patterns of the five (“active”) states. Radial plots (Top) and brain models
(Bottom) illustrate normalized activation/deactivation levels, i.e., the percent change from baseline of each
ROl relative to its maximal activation or deactivation across states. States are color-coded (and henceforth).
Top row of brain models is lateral view, and bottom row is medial view. Spheres represent centroids of the

anatomical masks of ROls.

Figure 3. Temporal dynamics of the brain states. A) Time courses of all eight states for each participant
(based on Viterbi decoding). The onset of each block is marked by a vertical dashed line. B) Consistency
of state expression across participants for the five (“active”) states. Values indicate the proportion of
participants exhibiting the dominant state (based on Viterbi decoding) within a window of 10 TRs (11).
Vertical dashed lines represent onset of task blocks. Horizontal dashed lines represent chance level, i.e., 1
of 8 states (12.5%) being predominantly expressed. C) Transition (to and from) probabilities (adjusted for
the five active states) for each of the five states, averaged across all participants and task blocks. D) (Left)
Graph of transition paths between states. Node size represents the fractional occupancy (FO; reflective of
overall prevalence of a given state across the duration of the CPT) of each of the five states. Edge thickness
represents the transition probabilities. The Switch state was the state with not only the highest FO but also
strongest edges. The Task Negative (“Task —”) state tended to transition to the Switch state while the Task
Positive (“Task +”) state primarily transitioned to the Distraction state, which then transitioned to the Switch
or the Task Negative state. The weakest decile of transition probabilities is not shown. (Right) Centrality
(Degree Z-score) of states in the transition graph at individual and group levels. As with edge thickness,
the Initiation state had the lowest degree centrality while the the Switch state and, to some extent, the
Distraction state had the highest degree centrality, reflective of their roles in mediating state transitions.
Each dot represents an individual participant, and center red lines represent the mean values, with the grey

box and the encompassing box representing the mean +/- 1.96 SEM and the mean +/- 1 SD, respectively.
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Figure 4. Effects of a-tACS on temporal dynamics of the states. A) Fractional occupancy (FO) and B)
Mean lifetime (ML) for the five “active” states of the Active (closed circles and boxes) and Sham (open
circles and boxes) groups. Cognitive load reduced the FO and ML of the Task Negative (“Task —") state
and the FO of the Task Positive (“Task +”) state. Importantly, a-tACS reduced the FO and ML of the Task
Negative state, regardless of load levels. Furthermore, interaction effects of Group and Load on FO and
ML of the Distraction state indicate that a-tACS downregulated this state in the high load. Center red lines
represent the mean values, with the grey box and the encompassing box representing the mean +/- 1.96

SEM and the mean +/- 1 SD, respectively. * p < 0.05; * p < 0.01; T p<0.1.
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Figure 1. Methods. A) Experimental Paradigm. Top: a-tACS or sham stimulation was delivered with
simultaneous fMRI recordings while participants performed a sustained attention task. The task
(Continuous Performance Task/CPT) consisted of four 5-minute blocks alternating between high and low
load conditions (order of the conditions was counterbalanced across participants). Below: Example trials of
the task. B) CPT performance. Left: The high load condition had lower hit rate than the low load condition
in general, but a-tACS (vs. sham control) improved hit rate in the high load condition. Center red lines
represent the mean values, with the pink and blue boxes representing the mean +/- 1.96 SEM and the
mean +/- 1.5 SD, respectively. Right: alpha change (Post — Pre) predicted performance (hit rate) in both
the high load (Top) and overall task (Bottom). Active and Sham groups are represented by filled and opened
bars and dots, respectively. Dotted pink lines represent 95% confidence interval of least-squares regression
line.* = p < 0.05; ** p = < 0.001. C) Conventional network analysis. Differential (Active — Sham) static
functional connectivity (Fisher Z-transformed correlations)] matrix for the 15 a priori ROIs in low (Lower
Left) and high (Upper Right) load conditions. Confirmatory analysis of default mode network (DMN)
connectivity demonstrated strengthened connectivity in the DMN for the Active (vs. Sham) group, albeit in
the low (but not high) load only. By contrast, significant group effects were absent outside the DMN,
highlighting the selective association between the DMN and alpha oscillations. DMN includes mPFC
(medial prefrontal cortex), vPCC (ventral posterior cingulate cortex), dPCC (dorsal posterior cingulate
cortex), and I/r AG (left/right angular gyrus); CEN (central executive network) includes I/r dIPFC(left/right
dorsolateral prefrontal cortex), and I/r PPC (left/right posterior parietal cortex); SN (salience network)
includes dACC (dorsal anterior cingulate cortex) and I/r Al (left/right anterior insula); and VN (visual network)

incudes V1 and I/r V2. . = p <.05, uncorrected; .. = p < .01, uncorrected; ** = p < .01, FDR corrected.
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Figure 2. Dynamic brain states during the CPT. A) Average activation of each ROI (hub region) of the
four networks within each state during the CPT. Positive and negative values indicate higher and lower
average BOLD intensities within a given state relative to mean BOLD intensity for the entire CPT, reflecting
relative activation and deactivation, respectively. Eight states were identified, including five states with clear
ROI activation/deactivation and three states with minimal ROI activation/deactivation. The five (“active”)
states were labeled according to their activation/deactivation patterns (as well as transition paths; detailed
in Fig. 3). B) Normalized activation patterns of the five (“active”) states. Radial plots (Top) and brain models
(Bottom) illustrate normalized activation/deactivation levels, i.e., the percent change from baseline of each

ROl relative to its maximal activation or deactivation across states. States are color-coded (and henceforth).
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Top row of brain models is lateral view, and bottom row is medial view. Spheres represent centroids of the

anatomical masks of ROls.
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Figure 3. Temporal dynamics of the brain states. A) Time courses of all eight states for each participant
(based on Viterbi decoding). The onset of each block is marked by a vertical dashed line. B) Consistency
of state expression across participants for the five (“active”) states. Values indicate the proportion of
participants exhibiting the dominant state (based on Viterbi decoding) within a window of 10 TRs (11).
Vertical dashed lines represent onset of task blocks. Horizontal dashed lines represent chance level, i.e., 1
of 8 states (12.5%) being predominantly expressed. C) Transition (to and from) probabilities (adjusted for
the five active states) for each of the five states, averaged across all participants and task blocks. D) (Left)
Graph of transition paths between states. Node size represents the fractional occupancy (FO; reflective of
overall prevalence of a given state across the duration of the CPT) of each of the five states. Edge thickness
represents the transition probabilities. The Switch state was the state with not only the highest FO but also
strongest edges. The Task Negative (“Task —”) state tended to transition to the Switch state while the Task

Positive (“Task +”) state primarily transitioned to the Distraction state, which then transitioned to the Switch
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or the Task Negative state. The weakest decile of transition probabilities is not shown. (Right) Centrality
(Degree Z-score) of states in the transition graph at individual and group levels. As with edge thickness,
the Initiation state had the lowest degree centrality while the the Switch state and, to some extent, the
Distraction state had the highest degree centrality, reflective of their roles in mediating state transitions.
Each dot represents an individual participant, and center red lines represent the mean values, with the grey

box and the encompassing box representing the mean +/- 1.96 SEM and the mean +/- 1 SD, respectively.
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Figure 4. Effects of a-tACS on temporal dynamics of the states. A) Fractional occupancy (FO) and B)
Mean lifetime (ML) for the five “active” states of the Active (closed circles and boxes) and Sham (open
circles and boxes) groups. Cognitive load reduced the FO and ML of the Task Negative (“Task —") state
and the FO of the Task Positive (“Task +”) state. Importantly, a-tACS reduced the FO and ML of the Task

Negative state, regardless of load levels. Furthermore, interaction effects of Group and Load on FO and
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ML of the Distraction state indicate that a-tACS downregulated this state in the high load. Center red lines
represent the mean values, with the grey box and the encompassing box representing the mean +/- 1.96

SEM and the mean +/- 1 SD, respectively. * p < 0.05; * p <0.01; t p<0.1.
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