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Abstract: Skeletal muscle regeneration is driven by the interaction of myogenic and non-18 

myogenic cells. In aging, regeneration is impaired due to dysfunctions of myogenic and non-19 

myogenic cells, but this is not understood comprehensively. We collected an integrated atlas of 20 

273,923 single-cell transcriptomes from muscles of young, old, and geriatric mice (~5, 20, 26 21 

months-old) at six time-points following myotoxin injury. We identified eight cell types, including T 22 

and NK cells and macrophage subtypes, that displayed accelerated or delayed response 23 

dynamics between ages. Through pseudotime analysis, we observed myogenic cell states and 24 

trajectories specific to old and geriatric ages. To explain these age differences, we assessed 25 

cellular senescence by scoring experimentally derived and curated gene-lists. This pointed to an 26 

elevation of senescent-like subsets specifically within the self-renewing muscle stem cells in aged 27 

muscles. This resource provides a holistic portrait of the altered cellular states underlying skeletal 28 

muscle regenerative decline across mouse lifespan.  29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2023. ; https://doi.org/10.1101/2023.05.25.542370doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542370
http://creativecommons.org/licenses/by-nc-nd/4.0/


EXTENDED SUMMARY 30 

 31 

Skeletal muscle regeneration relies on the orchestrated interaction of myogenic and non-32 

myogenic cells with spatial and temporal coordination. The regenerative capacity of skeletal 33 

muscle declines with aging due to alterations in myogenic stem/progenitor cell states and 34 

functions, non-myogenic cell contributions, and systemic changes, all of which accrue with age. 35 

A holistic network-level view of the cell-intrinsic and -extrinsic changes influencing muscle 36 

stem/progenitor cell contributions to muscle regeneration across lifespan remains poorly 37 

resolved. To provide a comprehensive atlas of regenerative muscle cell states across mouse 38 

lifespan, we collected a compendium of 273,923 single-cell transcriptomes from hindlimb muscles 39 

of young, old, and geriatric (4-7, 20, and 26 months-old, respectively) mice at six closely sampled 40 

time-points following myotoxin injury. We identified 29 muscle-resident cell types, eight of which 41 

exhibited accelerated or delayed dynamics in their abundances between age groups, including T 42 

and NK cells and multiple macrophage subtypes, suggesting that the age-related decline in 43 

muscle repair may arise from temporal miscoordination of the inflammatory response. We 44 

performed a pseudotime analysis of myogenic cells across the regeneration timespan and found 45 

age-specific myogenic stem/progenitor cell trajectories in old and geriatric muscles. Given the 46 

critical role that cellular senescence plays in limiting cell contributions in aged tissues, we built a 47 

series of tools to bioinformatically identify senescence in these single-cell data and assess their 48 

ability to identify senescence within key myogenic stages. By comparing single-cell senescence 49 

scores to co-expression of hallmark senescence genes Cdkn2a and Cdkn1a, we found that an 50 

experimentally derived gene-list derived from a muscle foreign body response (FBR) fibrosis 51 

model accurately (receiver-operator curve AUC = 0.82-0.86) identified senescent-like myogenic 52 

cells across mouse ages, injury time-points, and cell-cycle states, in a manner comparable to 53 

curated gene-lists. Further, this scoring approach pinpointed transitory senescence subsets within 54 

the myogenic stem/progenitor cell trajectory that are related to stalled MuSC self-renewal states 55 

across all ages of mice. This new resource of mouse skeletal muscle aging provides a 56 

comprehensive portrait of the changing cellular states and interaction network underlying skeletal 57 

muscle regeneration across mouse lifespan.  58 
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INTRODUCTION 59 

 60 

Skeletal muscle is heterogeneously composed of interacting immune, stromal, and myogenic cells 61 

that contribute to the maintenance and regeneration of muscle by regulating muscle stem cell 62 

(MuSC) quiescence, proliferation, and differentiation.1 MuSCs are found between the basal 63 

lamina and the plasma membrane of myofibers and are essential for the initial development of 64 

muscle and in muscle regeneration.2,3 The MuSC population is maintained across multiple cycles 65 

of growth and regeneration by asymmetrical division which generates additional MuSCs and 66 

Myod1+ myoblasts.2,3 Myoblasts further expand, differentiate, and fuse to form new Myog+ 67 

myocytes.2,3 The paired box protein 7 (Pax7) transcription factor, predominantly expressed in 68 

MuSCs, regulates the expression of myogenic regulatory factors such as Myf5 and Myod1.3  69 

 During homeostasis, the skeletal muscle microenvironment maintains signals to keep 70 

MuSCs in a non-cycling state and resident mast cells and macrophages monitor for damage.1,4  71 

Following muscle injuries, the mature myofibers undergo necrosis and the individual myonuclei 72 

undergo apoptosis.5,6 Once damage is detected by resident immune cells, inflammatory cells like 73 

neutrophils and macrophages are recruited to the damaged site.1,2 First, resident macrophages 74 

release Cxcl1 and Ccl2, neutrophil chemoattractants, to signal for neutrophils to invade.1,4 75 

Neutrophils reach their maximum abundance in the damaged muscle between 12-24 hours post-76 

injury, after which they quickly return to basal levels.4 Resident Cd8+ T cells also respond early 77 

to muscle injury by producing Ccl2 and recruiting macrophages to the injured muscle.4 Circulating 78 

monocytes and macrophages enter the muscle environment which is enriched with pro-79 

inflammatory cytokines that activate macrophages.1,4 These activated macrophages clear cellular 80 

debris and promote myogenic cell proliferation.1,5 The active phagocytic macrophages peak in 81 

abundance at 2 days post-injury (dpi) and they are replaced by non-phagocytic macrophages that 82 

peak in abundance at 4-7 dpi.4 The non-phagocytic macrophages help maintain myogenic cell 83 

differentiation, resolve inflammation, and support the production of connective tissue.1,4,5 If 84 

macrophages do not clear cellular debris and promote myogenic cell proliferation and 85 

differentiation, the muscle remains inflamed and there are repeated cycles of necrosis and 86 

regeneration.5 The damaged myofibers are then replaced with adipose tissue, fibrotic tissue, or 87 

bone, instead of new myofibers.5 A prior study found that there was an increase in the number of 88 

anti-inflammatory macrophages which can contribute to an increase in fibrosis in aged muscle.7 89 

It remains controversial how monocytes and macrophages should be classified and whether 90 

broad pro- and anti-inflammatory definitions should be used or whether more varied phenotypic 91 
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identities better capture their molecular and functional plasticity.8 In this work, we sought to 92 

distinguish monocyte/macrophage populations by markers and by resident status.   93 

 Prior studies have found that both CD8+ and CD4+, especially FoxP3+ regulatory T cells, 94 

infiltrate and help repair damaged muscle.9 In aging, there is a decline in new naive T cells 95 

released from the Thymus.10 To compensate for this loss, CD4+ T cells in the periphery proliferate 96 

resulting in a shift towards more memory T cell populations throughout aging.9 Within the memory 97 

T cell population, an increase in senescent and exhausted T cells is observed in aging.9 98 

 In addition to resident immune cells, fibro-adipogenic progenitors (FAPs), bipotent 99 

progenitor cells that can differentiate into fibroblasts and adipocytes, are a part of the skeletal 100 

muscle microenvironment.1 FAPs are quiescent during homeostasis and activate upon injury.4 101 

There is some evidence that in the early stages of injury response FAPs control immune infiltration 102 

and in later stages FAPs control muscle remodeling.11 They reach peak abundance at 3 dpi and 103 

return to homeostatic levels by 14 dpi.4 The expansion and decline of FAPs is regulated by 104 

myeloid cells and FAPs that are activated to the fibrogenic phenotype are regulated by anti-105 

inflammatory macrophages.4 Fibrogenic FAPs are the primary producers of connective tissue in 106 

injured muscle.4  107 

 Multiple factors that contribute to the reduced functionality of MuSCs in aged tissues have 108 

been reported, including an excess of FAPs and fibroblasts, misbalanced cell division, and the 109 

establishment of senescent MuSCs.2,4,12,13 Senescence is characterized by a combination of 110 

hallmarks. These include prolonged DNA damage response activation, upregulation of the cell 111 

cycle inhibitors p16INK4a (encoded by Cdkn2a and referred to as p16 hereafter) and p21Cip1 112 

(encoded by Cdkn1a and referred to as p21 hereafter) and anti-apoptotic BCL-2 proteins, an 113 

increase in reactive oxygen species levels and of senescence-associated-β-galactosidase (SA-114 

β-gal), and a senescence-associated secretory phenotype (SASP).14 Prior studies have used the 115 

cell cycle proteins p16, p21, p53, and Rb to differentiate between dividing and non-diving cells, 116 

but the non-diving cells can include senescent cells and quiescent cells.15 SA-β-gal is also 117 

commonly used to identify senescent cells, but it is also detected in quiescent cells and in stressed 118 

cells.15 Because these markers are not unique to senescent cells and because senescent cells 119 

are heterogeneous, it has been challenging to identify biomarkers that can accurately and 120 

consistently identify senescent cells.16  121 

There are extrinsic changes, such as an increase in FAPs, and intrinsic factors, such as 122 

a reduction in asymmetrical self-renewal and an increase in senescent MuSCs, that disrupt 123 

skeletal muscle homeostasis and regeneration in aging.2 Aged MuSCs exhibit a decline in self-124 

renewal and ability to differentiate, thus reducing the MuSC pool.2,4,12,13 Compared to young 125 
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MuSCs, fewer aged MuSCs are found in quiescence, due to either elevated activation or entering 126 

a pre-senescent state.12,13 It remains unclear how these extrinsic and intrinsic changes are 127 

integrated systematically and how heterogeneities related to cellular senescence within both 128 

myogenic and non-myogenic cell populations contribute, in part due to a paucity of holistic 129 

analyses of these alterations. Further, it has been posited that temporal and spatial 130 

discoordination between the dynamics in key cell types during the repair process leads to 131 

inefficient outcomes.2   132 

 Single-cell methods have been used previously to understand skeletal muscle 133 

homeostasis and regeneration at various ages.11,17–32 Recent reports have provided insights into 134 

MuSC dysfunction with aging. A recent human skeletal muscle study observed a decline in the 135 

proportion of MuSCs with age and that IGFN1, which is needed for myoblast fusion and 136 

differentiation, is decreased in old (~75 years old) muscle.28 This report found no difference in 137 

Cdkn2a expression by age, but did identify a senescent myonuclei population that expressed 138 

Cdkn1a that was more frequent in old than young human samples.28 A recent study on mouse 139 

skeletal muscle aging based on mass cytometry observed that CD47hi MuSCs occur with a higher 140 

frequency in aged mice and exhibit poor regenerative capacity.33 Another report demonstrated 141 

that quiescent MuSCs in aged mice have reduced expression of Cyclin D1, which is needed for 142 

proper MuSC activation and muscle regeneration.34 143 

To evaluate the factors that contribute to the age-related decline in skeletal muscle 144 

regeneration in a more comprehensive manner, we have generated a new single-cell RNA 145 

sequencing (scRNA-seq) analysis of uninjured (day 0) and myotoxin-injured (days 1, 2, 3.5, 5, 146 

and 7) tibialis anterior (TA) muscles from young, old, and geriatric mice. We identified a total of 147 

29 cell types, 8 of which had a significant difference in their abundances throughout regeneration 148 

by age. We confirmed changes in age-specific T cell abundance by immunohistochemistry and 149 

flow cytometry. Given the role that cellular senescence plays in limiting cell contributions in aged 150 

tissues, we tested a series of tools to bioinformatically identify senescence in these single-cell 151 

data and found a transfer-learning based scoring approach accurately classified senescent-like 152 

myogenic cells across ages and cell cycling states. This scoring approach revealed that 153 

senescent-like subsets exist at key transitional self-renewal states within the myogenic 154 

stem/progenitor cell pseudotime trajectory across all ages but are elevated in aged muscles. This 155 

resource of mouse skeletal muscle aging provides a more comprehensive portrait of the changing 156 

cellular states underlying skeletal muscle regeneration across mouse lifespan. 157 
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RESULTS 158 

 159 

Single-cell RNA-sequencing analysis of skeletal muscle regeneration across mouse 160 

lifespan. To comprehensively evaluate skeletal muscle homeostasis and regeneration 161 

throughout aging, we performed single-cell RNA sequencing (scRNA-seq) on 65 mouse skeletal 162 

muscle samples with the 10x Chromium v2 and v3 platforms. Muscle damage was induced in 163 

young (4-7 months-old [mo]), old (20 mo), and geriatric (26 mo) C57BL/6J mice by injecting the 164 

tibialis anterior (TA) muscles with notexin. The injured and uninjured muscles were collected at 165 

six time points (days 0, 1, 2, 3.5, 5, and 7) (Figure 1A, B). Together, these 65 scRNA-seq 166 

samples, newly reported here and from our two prior reports20,35, contained a total of 365,710 cell 167 

barcodes prior to quality control and filtering (Supplementary Figure 1A, Extended Data File 168 

1). All samples were processed by aligning sequencing reads to the mm10 mouse reference 169 

genome, removing ambient RNA signatures with SoupX36, removing low quality cells, and 170 

identifying and removing doublets with DoubletFinder37 (Figure 1C, Supplementary Figure 1). 171 

The samples were integrated with Harmony38 to correct for batch effects (Figure 1C). The final 172 

dataset contained 273,923 cells. We observed that the cell number was relatively evenly 173 

distributed across the three age groups (Figure 1D,G), and within each age group, the number 174 

of cells from each time point was relatively consistent (Figure 1E). 175 

 176 

Multi-step identification of diverse cell types by clustering. After data integration, shared 177 

nearest neighbor (SNN) clustering was performed, and canonical marker genes were used to 178 

manually identify cell types. The initial clustering resulted in 24 clusters that each received a 179 

unique cell type annotation. Of these, nine were myeloid cell clusters (monocytes, macrophages, 180 

dendritic cells, and neutrophils) that exhibited similar expression profiles. To further clarify the 181 

myeloid cells found in the final dataset, the 9 myeloid cell clusters were subset out, re-clustered, 182 

and re-embedded (Supplementary Figure 2A-C). This resulted in 15 clusters that each received 183 

a unique cell type annotation based on known myeloid markers (Supplementary Figure 2C-D). 184 

Although this re-clustering did not further clarify the monocyte and macrophage annotations, it did 185 

help to identify more specific dendritic cell and T cell subtypes (Supplementary Figure 2C-D). 186 

The dendritic cell and T cell subtype annotations were transferred from the myeloid subset back 187 

to the final dataset based on the cell barcode. The monocyte and macrophage annotations were 188 

not changed based on the myeloid subset. With the additional myeloid subset annotations, we 189 

identified 29 distinct cell types in the final dataset (Figure 1F, Supplementary Figure 3). 190 
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Compared to prior scRNA-seq and snRNA-seq skeletal muscle studies we identified similar broad 191 

cell types and we identified more specific endothelial, FAP, and immune cell subsets.11,18–30  192 

 Lymphoid cell types were 5 of the 17 immune cell clusters. We identified a rare B cell 193 

cluster (0.47% of the final dataset) that expressed Cd19, Cd22, and Ms4a1 (Supplementary 194 

Figure 3A). We identified a natural killer (NK) cell cluster that expressed Nkg7, Gzma, Klra4, and 195 

Klre1 but, importantly, did not express T cell markers (Supplementary Figure 3A). We identified 196 

three T cell clusters all of which expressed Cd8a and Cd8b1. One of the T cell populations more 197 

strongly expressed Cd4 while the other two T cell populations expressed Cd3e. One of the Cd3e+ 198 

clusters also strongly expressed the cycling markers Cdk1 and Hmgb2 and were thus identified 199 

as cycling Cd3e+ T cells (Supplementary Figure 3A). The other Cd3e+ T cell population appears 200 

to be non-cycling. The B cells, NK cells, and the non-cycling Cd3e+ T cells were identified as 201 

unique clusters in the initial clustering of the final dataset. The Cd4+ and cycling Cd3e+ T cells 202 

were identified when we subset and re-clustered the myeloid populations (Supplementary 203 

Figures 2C-D and 3A). 204 

 Although we incubated the single-cell suspension in erythrocyte lysis buffer, we did see a 205 

small (0.42% of the final dataset) erythrocyte cluster that uniquely and strongly expressed a 206 

variety of hemoglobin genes, including Hba-a1 and Hbb-bs (Supplementary Figure 3A). 207 

Erythrocytes are not a native cell type in skeletal muscle, so we have excluded them from the cell 208 

type dynamics analysis. 209 

 We identified three FAPs populations (adipogenic, pro-remodeling, and stem), a tenocytes 210 

population, and a Schwann and neural/glial cell population. All three of the FAPs populations 211 

expressed Pdgfra and Col3a1 (Supplementary Figure 3B). The adipogenic FAPs also 212 

expressed Adam12, Bmb5, Myoc, Col1a1, Dcn, Mmp2, and Apod. The pro-remodeling FAPs 213 

uniquely expressed cycling genes like Cdk1 and Tyms in addition to other FAPs markers like 214 

Tnfalp6, Il33, Adam12, Bgn, and Hdlbp. The stem FAPs also expressed Igfbp5, Dpp4, Cd34, Gsn, 215 

and Mmp2. The tenocyte population expressed some FAPs markers like Col1a1, Dcn, and Apod 216 

and they expressed tenocyte-specific markers Tnmd and Scx. The Schwann and neural/glial cell 217 

cluster expressed Ptn and Mpz (Supplementary Figure 3B).  218 

 We identified a pericytes and smooth muscle cells cluster which expressed the pericyte-219 

specific gene Rgs5 and Acta2, Myl9, and Myh11 (Supplementary Figure 3C).39 Four endothelial 220 

clusters were identified, and they shared strong expression of Cdh5 and Pecam1 221 

(Supplementary Figure 3C). The arterial endothelial cells uniquely expressed Alpl and Hey1, the 222 

capillary endothelial cells strongly expressed Lpl, and the venous endothelial cells expressed Vwf, 223 

Hlf1a, Icam1, Lrg1, and Aplnr (Supplementary Figure 3C). The fourth endothelial cluster 224 
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expressed endothelial markers like Cdh5 and Pecam1 and myeloid markers like S100a8/9, Csf1, 225 

and Itgam (Supplementary Figure 3C). This cluster was small (0.073% of the final dataset) and 226 

was made up of cells from multiple replicates from the three ages at 0-2 dpi (Supplementary 227 

Figure 5E). Because this cluster was not unique to a single replicate, or single age, or single time 228 

point, we have maintained it in our analysis. 229 

 230 

Comparison of cell type dynamics in skeletal muscle regeneration across mouse ages. For 231 

each time point independent of age, we calculated the percent of cells from each cell type. In 232 

agreement with previous findings, uninjured skeletal muscle (day 0) was mainly composed of 233 

endothelial cells (49.2%), FAPs (20.4%), and myonuclei (15.1%) and there were small 234 

populations of immune cells (2.7%) and MuSCs and progenitors (2.0%) (Supplementary Figure 235 

4A, Supplementary Table 1A).20,40 Of the endothelial cells at day 0, the most prominent subtype 236 

were the capillary endothelial cells (42.4%) (Supplementary Figure 4B, Supplementary Table 237 

1B). The FAPs present at day 0 were mainly adipogenic FAPs (15.6%) (Supplementary Figure 238 

4B, Supplementary Table 1B). Of the immune cells present at day 0, there were a variety of 239 

monocytes and macrophages (47.2%), B cells (14.6%), non-cycling Cd3e+ T cells (11.6%), 240 

Cd209a+ Dendritic cells (10.6%), and Neutrophils (9.3%) (Supplementary Figure 4D, 241 

Supplementary Table 1D).40  242 

 Following injury (days 1, 2, 3.5, and 5), the most abundant general cell type was the 243 

immune cells (60.9%, 79.7%, 75.2%, 63.2%, respectively) (Figure 2K, Supplementary Figure 244 

4B, Supplementary Table 1B). As in previous studies20,40, non-immune cells like endothelial 245 

cells, FAPs, and myonuclei were present following injury, but at transiently lower relative 246 

abundances. As expected, the most abundant immune cells immediately after injury (day 1) were 247 

neutrophils (32.0%), Ccr2+ monocytes/macrophages (19.7%), and Ctsa+ patrolling 248 

monocytes/macrophages (13.7%) (Supplementary Figure 4C, Supplementary Table 1C).20,40 249 

Immediately following injury (days 1 and 2), there was a more pro-inflammatory environment, as 250 

evident by the abundance of Ccr2+ monocytes/macrophages. This was followed by a shift at days 251 

3.5 and 5 to a more anti-inflammatory cell population, as evident by the peak in abundance of 252 

Cx3cr1+ monocytes/macrophages at day 5 (28.7%) (Supplementary Figure 4C, 253 

Supplementary Table 1C).20,40 By day 7 the cell type abundances were returning to the 254 

abundances observed at day 0, but there was still a substantial immune cell population (32.1%) 255 

(Supplementary Figure 4A, Supplementary Table 1A). The immune population at day 7 mainly 256 

consists of Cx3cr1+ monocytes/macrophages (24.1%), Ctsa+ patrolling monocytes/macrophages 257 
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(13.2%), and non-cycling Cd3e+ T cells (17.8%) (Supplementary Figure 4D, Supplementary 258 

Table 1D). 259 

 We next conducted an analysis of cell-type dynamics across age groups by comparing 260 

the abundance of a given cell type over the entire injury time course. Of the 28 cell types, eight 261 

were identified as having significantly different cell type dynamics across the three ages using a 262 

non-linear modeling approach with multiple hypotheses correction (Figure 2J, Supplementary 263 

Table 2). In response to injury, we first observed an increase in neutrophils which peaked in 264 

abundance at day 1 and returned to day 0 levels by day 3.5 (Supplementary Figure 5N). We 265 

also observed a peak in the abundance of the Ccr2+ monocytes/macrophages at days 1 and 2 266 

(Figure 2A) while the cycling monocytes/macrophages peaked in abundance at day 3.5 (Figure 267 

2D) and the Cx3cr1+ monocytes/macrophages peaked in abundance at days 3.5 and 5 (Figure 268 

2C). We observed two monocyte/macrophage populations, Mrc1+ and Ctsa+ 269 

monocytes/macrophages, that responded early to injury (day 2) and remained high through day 270 

5 (Figure 2B,E). The geriatric Mrc1+ monocytes/macrophages maintained a higher abundance 271 

from day 2 to day 7 compared to the young and old cells (Figure 2B,J). Additionally, some 272 

lymphoid cell types like NK cells, Cd3e+ non-cycling T cells, and B cells started to increase in 273 

abundance at day 2, day 3.5, and day 5, respectively (Figure 2F-H). We observed a similar 274 

pattern when looking at all three T cell populations combined (Supplementary Figure 5T). The 275 

geriatric NK cells did not increase in abundance within the 7-day time course, unlike the young 276 

and old cells (Figure 2F).  277 

 When looking at all three T cell populations combined, we detected very few T cells and 278 

no age-specific differences in abundance at day 0.  However, at day 5 we observed a higher 279 

abundance of T cells in old samples, with a significant difference between the old and geriatric 280 

samples (Figure 2L; Student’s t-test, p-value = 0.01*). To confirm this, we performed 281 

immunohistochemistry on sectioned TA muscles and observed that CD3+ T cells are detected 282 

more abundantly at day 5 compared to day 0 in the TAs of young, old, and geriatric mice (Figure 283 

2M). We further used flow cytometry to quantify CD45+CD11c–CD11b–TCRβ+ T cells at days 0 284 

and 5 from dissociated TA muscles of young, old, and geriatric mice (Figure 2N). We detected a 285 

low abundance of TCRβ+ T cells out of all CD45+ hematopoietic cells at day 0, but still detected 286 

a significantly higher T cell abundance in old mice compared to young (Figure 2O; Student’s t-287 

test, p-value = 0.02*). Further, we observed an increase in T cell abundance from day 0 to day 5 288 

and a significant difference between the old and young samples at 5 dpi (Figure 2O; Student’s t-289 

test, p-value = 0.03*). Together, these results suggest the abundance of the T cell pool is elevated 290 

specifically in older muscles (20-months of age), but not preserved in geriatric ages. 291 
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 Independent of age, we detected few MuSCs and progenitors immediately following injury 292 

(days 1 and 2; 2.1%, 1.1%, respectively) and the abundance of MuSCs and progenitors peaked 293 

at day 5 (9.7%) (Supplementary Figure 4A, Supplementary Table 1A). This was in agreement 294 

with previous studies.20,40 The peak in MuSCs and progenitors abundance did vary by age with 295 

the young cells peaking at day 5, the old cells peaking at day 3.5, and the geriatric cells peaking 296 

at day 7 (Figure 2I). This difference in peak abundance did not result in a statistically significant 297 

difference in the MuSCs and progenitors dynamics by age, but it did demonstrate a delayed 298 

response by the geriatric MuSCs and progenitors. Independent of age, we detected the most 299 

Myonuclei at days 0 and 7 (15.1%, 10.6%, respectively) (Supplementary Figure 4A, 300 

Supplementary Table 1A). The Myonuclei dynamics were very similar between the three ages, 301 

but we detected more Myonuclei in old and geriatric samples at both days 0 and 7 compared to 302 

young (Figure 2J, Supplementary Figure 5M). 303 

 304 

Senescence scoring based on single-cell transcriptomic signatures. Next, we sought to 305 

investigate age-specific differences in senescence within skeletal muscle regeneration. Hallmarks 306 

of mammalian aging include stem cell exhaustion, altered cellular communication, and cellular 307 

senescence.41 Identifying senescent cells in scRNA-seq data is challenging because the markers 308 

traditionally used to identify senescent cells are either lowly expressed, expressed in select cell 309 

types in single-cell data, and/or assayed in terms of cellular localization and enzymatic function 310 

(Figure 3A).42 For example, senescent cells are commonly identified by persistent expression of 311 

cell cycle regulators p16 (Cdkn2a), p21 (Cdkn1a), p53, and/or Rb.15 Senescent cells are also 312 

marked by the senescent associated secretory phenotype (SASP) which includes 313 

proinflammatory cytokines and chemokines, growth modulators, angiogenic factors, and matrix 314 

metalloproteinases (e.g., Mmp3).43 To examine individual gene signatures of senescence, we 315 

quantified the abundance of Cdkn2a (encodes p16), Cdkn1a (encodes p21), Mmp3 (a 316 

senescence-associated matrix metalloproteinase), Glb1 (encodes senescence-associated b-317 

galactosidase) across all cell types and ages.  318 

Expression of these genes depended more on cell type than age, when considering all 319 

time-points and samples together (Figure 3A). Given Cdkn1a, Mmp3, and Glb1 were widely 320 

expressed across many cell types, we focused on the common senescence hallmark gene 321 

Cdkn2a. Cdkn2a transcripts were rarely detected, in agreement with previous observations in the 322 

Tabular Muris Senis project17, and primarily observed in the MuSCs/progenitors, cycling T cells, 323 

and FAPs. We observed age-associated changes in the relative abundance of Cdkn2a+ cells 324 

within any given cell type infrequently significant (Figure 3B-D). There was no significant 325 
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difference in the fraction of Cdkn2a+ MuSCs and progenitors by age or in the fraction of Cdkn2a+ 326 

cycling T cells by age (Figure 3B-C). However, we did observe a significant difference in the 327 

fraction of Cdkn2a+ adipogenic FAPs between the young and geriatric ages (Figure 3D; Student’s 328 

t-test, p-value = 0.03*).  329 

 Within the MuSCs and progenitors, we observed an increase in the fraction of cells that 330 

co-expressed Cdkn2a and Cdkn1a from day 0 to day 3.5, after which it returned to near day 0 331 

levels (Figure 3E). Although there was no significant difference by age in the abundance of these 332 

double-positive cells across all timepoints, there was a significant difference at day 3.5 between 333 

the young and old ages (Student’s t-test, p-value = 0.03*) and the young and geriatric ages 334 

(Student’s t-test, p-value = 0.01*) (Figure 3E-F). Although Cdkn2a and Cdkn1a are both cell cycle 335 

inhibitors and senescent markers, their expression was not correlated in MuSCs and progenitors 336 

at day 3.5 on the individual cell level in this dataset, possibly due to transcript detection dropout 337 

(Figure 3G). We considered the double-positive Cdkn2a+ and Cdkn1a+ cells as candidate 338 

senescent MuSCs/progenitors and performed Gene Set Enrichment Analysis (GSEA) on day 3.5 339 

at their peak abundance. GSEA found that double-positive MuSCs/progenitors are enriched for 340 

gene-sets associated with muscle weakness and various mitosis-related processes but 341 

diminished in muscle contraction and cytoskeletal processes (Figure 2H). Collectively, these 342 

GSEA results suggest that double-positive MuSCs/progenitors have signatures of dysregulated 343 

muscle function and stalled cell cycle-related gene expression. 344 

 We then used the Cdkn2a+ Cdkn1a+ MuSCs/progenitors as a candidate cell population 345 

to evaluate broader senescence signatures at the single-cell level. We tested two senescence 346 

scoring methods44,45 and ten senescence-signature (SenSig) gene lists44,46–49 (Extended Data 347 

File 2). We refer to the first method as the Two-way Senescence Score (Sen Score) because it 348 

calculates a score based on a list of up- and down-regulated genes. Within this method we tested 349 

six gene lists that were generated from bulk RNA-seq datasets comparing cells with senescence 350 

conditions or markers to control cells from various tissues and cell types.44,46 We refer to the 351 

second method as the One-way Sen Score because it calculates a score based on a list of up-352 

regulated genes. Within this method we tested four gene lists, three of which were taken from 353 

gene-ontology databases or curated in other reports.47–49 We refer to the Methods, 354 

Supplementary Figure 7, and Extended Data File 2 for more details on these two methods and 355 

the gene lists. We note that two of these gene lists are derived from bulk RNA-seq differential 356 

expression analyses of p16+ and p16– cells selected based on transgenic reporter status. One 357 

gene list (“FBR”) was generated by Cherry et al from p16+ versus p16– CD29+ cells isolated from 358 

a foreign body response-driven skeletal muscle fibrosis model in adult p16-CreERT2;Ai14 reporter 359 
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mice.44 A second gene list (“Aged Chondrocytes”) was generated from p16+ versus p16– 360 

Aggrecan+ chondrocytes isolated from 20-mo p16-tdTom;Aggrecan-CreERT2;Ai6 mice (B.O. 361 

Diekman, personal communication).50–52 To compare how the choice of gene list and method 362 

impacted senescence scoring across different cell types, we examined the FBR two-way and one-363 

way scores in the final scRNA-seq dataset. The Two-way FBR scores were more consistently low 364 

across most cell clusters and exhibited high scores most notably in the FAP and MuSC clusters 365 

(Figure 3I,K). The One-way FBR scores had broader distribution, with many more cell types 366 

exhibiting high scores, including FAP, MuSCs, endothelial cell, pericytes and smooth muscle cell, 367 

and monocytes/macrophages clusters (Figure 3J,L). Whereas the Two-way FBR scores were 368 

mean-centered around zero from each cell type cluster due to their z-scored counts (Figure 3K), 369 

One-way FBR scores had varied cell type averages (Figure 3L). These differences complicate 370 

establishing threshold for senescence positivity between cell types in the one-way scores.  371 

We established a scoring approach calibrated for sensitivity and specificity in 372 

discriminating Cdkn2a+ Cdkn1a+ MuSCs/progenitors across all ages and timepoints and present 373 

the results in receiver-operator curves with performance reported using an area-under-the-curve 374 

(AUC) metric (Figure 3M-O). Between the two senescence scoring methods and the ten SenSig 375 

gene sets, the One-way FBR method performed the best of any experimentally derived approach 376 

(AUC = 0.86), and was comparable to the ontology-curated One-way GO: SASP approach (AUC 377 

= 0.88; Figure 3M-N). Notably, it performed far better than the recently described SenMayo list 378 

while using the same ssGSEA method (AUC = 0.63). Moreover, the One-way FBR score 379 

accurately discriminated double-positive senescent-like MuSCs across all three ages (AUCs = 380 

0.85-0.88), suggesting it captures common features of senescence irrespective of age (Figure 381 

3O). We concluded that the One-way FBR method was able to accurately identify senescent-like 382 

cells in a manner that is not biased by a highly curated gene list.  383 

 384 

Refined analysis of myogenic subsets. In the final dataset, we identified two broad myogenic 385 

clusters (Figure 1F). We observed a cluster of MuSCs and progenitors that expressed the 386 

myogenic transcription factor Pax753 and a cluster of myonuclei that expressed Acta1, Myh1, and 387 

Myh4, genes critical for the contractile function of mature skeletal muscle cells54 (Supplementary 388 

Figure 3C). We subsetted out these myogenic clusters and re-clustered and re-embedded the 389 

cells, resulting in nine distinct sub-clusters for refined annotation (Figure 4A-B). We identified 390 

four progenitor populations that expressed Pax7, Myf5, Myod1, Myog, Mymk, and Mymx and 391 

three myonuclei subtypes (IIx, IIb, IIx/IIb) that expressed Acta1, Ckm, and Tnnt3.54 We observed 392 

two transcriptomically variant clusters, which expressed both myogenic markers and either 393 
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endothelial cell markers like Cd34, Cdh5, and Pecam1 or monocyte and macrophage markers 394 

like Ccr2 and C1qa (Supplementary Figure 8). We suspected these clusters were dominated by 395 

doublets. The first doublet sub-cluster contained cells that co-expressed Pax7 and Pecam1, 396 

suggesting that these were MuSCs/progenitors and endothelial cell doublets (Supplementary 397 

Figure 8A). The second doublet sub-cluster contained cells that co-expressed Acta1 and C1qa, 398 

suggesting that these were myonuclei and monocyte/macrophage doublets (Supplementary 399 

Figure 8B). We designated these sub-clusters as ‘Doublets 1’ and ‘Doublets 2’, respectively, and 400 

excluded them from subsequent analyses involving the myogenic subset. 401 

 The type IIx cluster expressed Myh1, the type IIb cluster expressed Myh4, and the type 402 

IIx/IIb cluster expressed both Myh1 and Myh4 (Figure 4B, Supplementary Figure 9A-G).55 A 403 

previous study also identified a myonuclei cluster that expressed both Myh1 and Myh4, but this 404 

studied concluded that this cluster represented cells with high metabolic activity, not cells that 405 

represent a transitional state between types IIx and IIb.18 We interpret that the type IIx/IIb cluster 406 

identified here represents a transitional state between types IIx and IIb because 39% of the cells 407 

in this cluster co-express Myh1 and Myh4 and because this cluster does not differentially express 408 

markers of high metabolic activity (Tnnc2, Tnni2, Mb, Cox6a2, Cox6c, Atp5e, Atp5g1) 409 

(Supplementary Figure 9F-H).18,56,57 Additionally, this transitional fiber type is the most common 410 

transitional fiber type in rat and mouse muscle fibers.58,59 Notably, the type IIx/IIb cluster had a 411 

lower percentage of mitochondrial reads than the type IIx and type IIb clusters, indicating that 412 

these cells were not clustering together due to being lower quality (Supplementary Figure 9I). 413 

We did not identify a cluster of neuro-muscular junction or myotendinous junction cells due to a 414 

lack of Chrne or Col22a1 expression (Supplementary Figure 9H).18,29  415 

 We then re-embedded the myogenic subset using PHATE60 and these embeddings were 416 

used by Monocle361–63 to organize the cells in pseudotime (Figure 4B-C). The pseudotime values 417 

were grouped into 25 bins that contain approximately equal numbers of cells. As the cells 418 

progressed through pseudotime, the order in which myogenic markers were expressed followed 419 

a typical trajectory of myogenesis. Early pseudotime bins had predominant expression of Pax7 420 

and Myf5, but no strong expression of activation markers (Supplementary Figure 10A-F). 421 

Further in the pseudotime progression, cells still expressed Pax7 and Myf5, but they also 422 

expressed cycling markers such as Cdk1/4. In later pseudotime bins, cells expressed Myod1, 423 

Myog, Mymx, and Mymk, markers of committed and fusing progenitors. In the latest pseudotime 424 

bins, cells expressed Acta1, Ckm, Myh1, and Myh4, markers of myogenic maturation.  425 

 426 
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Pseudo-temporal analysis of myogenesis progression across mouse age and injury time. 427 

To directly compare myogenesis in regeneration responses, we assembled an annotated 428 

“cartography” of myogenic progression arrayed across both day post-injury and myogenic 429 

pseudotime. We first examined the percent of cells that fell within each of the 25 initial pseudotime 430 

bins by time-point and age, and then used expression frequency of myogenic marker genes to 431 

inform myogenic cell-state annotations (Supplementary Figure 10A-H). Pseudotime bins 1-6 432 

exhibited age-specific cell abundances, with bins 1-2 predominantly containing cells from young 433 

mice, bin 3 from young and old mice, bin 4 contained cells from old mice, bin 5 from old and 434 

geriatric mice, and bin 6 from geriatric mice only. Bins 1-6 cells expressed Pax7 and Myf5, which 435 

we annotated as MuSCs (with sub-stages 1-6 preserved). Bins 7-13 at 0 dpi expressed Pax7, 436 

Myf5, and Myod1 and lowly expressed cycling markers Cdk1 and Cdk4, which we annotated as 437 

Non-cycling MPCs. Cells in bin 7 and dpi 1-3.5 and cells in bins 8-11 and dpi 1-7 expressed 438 

Myod1 and cycling markers Cdk1 and Cdk4, which we annotated as Cycling MPCs. Cells in bin 439 

12 at dpi 0-7 and cells in bin 13 at dpi 1-2 have diminishing expression of Myf5, Cdk1 and Cdk4, 440 

and increasing expression of Myog and Mymk, which we annotated as Committing MPCs. Cells 441 

in pseudotime bin 13 and dpi 3.5-7 highly expressed Myog and Mymk and lowly expressed Cdk1 442 

and Cdk4, which we annotated as Fusing Myocytes. Cells in pseudotime bins 14-25 and dpi 0-7 443 

expressed Acta1, which we annotated as Myonuclei. These pseudotime-informed myogenic cell 444 

stage aggregates (summarized in Supplementary Figure 10I) were used in subsequent 445 

analyses. 446 

 To infer the cell-cycle phases, we first assigned each myogenic cell S-phase and G2M-447 

phase scores using Seurat’s standard Cell-Cycling Scoring method64 (Figure 4D). We treated 448 

these scores as polar coordinates, which were converted to cartesian coordinates and normalized 449 

to be within a range from 0 to 1 (“normalized theta”; Figure 4E-G, Supplementary Figure 11A-450 

B). We assessed all myogenic cells within this cell cycle progression from a normalized theta of 451 

0 to 1, corresponding to the continuum of G1–S–G2M stages (Figure 4E, Supplementary Figure 452 

11A-B). When considering all MuSCs/progenitors, the distribution of normalized theta values 453 

increased from day 0 to day 3.5 and nearly returned to day 0 levels by day 7 in all age groups, 454 

suggesting a return to quiescence as expected (Supplementary Figure 11E). We observed a 455 

shift to higher normalized theta values at 1 dpi in the geriatric samples compared to the young 456 

and old myogenic cells, suggesting an age-skewed cell-cycle induction in early injury-response 457 

that may represent a precocious activation phenotype. Differences by age group were minimal 458 

after 3.5 dpi. When examining all myogenic cells by the 25 pseudotime bins, we observed a shift 459 

in normalized theta values at bin 7 persisting through bin 13 (Supplementary Figure 11F). 460 
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Notably, pseudotime bins 7-13 also highly expressed the cycling markers Cdk1 and Cdk4 461 

(Supplementary Figure 10G-H). 462 

We then found that Cdk1 and Cdk4 are more highly expressed in cells predicted to be in 463 

S or G2M than in cells predicted to be in G1 (Figure 4F-G). Seurat’s standard G1 cutoff is at a 464 

normalized theta value of 0.25. Based on the expression of cycling markers Cdk1 and Cdk4 and 465 

the distribution of cells across the normalized theta values, we extended the G1 cutoff to 0.375 466 

for this analysis (Figure 4F-G, Supplementary Figure 11C-D). For simplicity, cells with a 467 

normalized theta below and above 0.375 were classified as “G1” and “Non-G1” (S/G2/M), 468 

respectively (Supplementary Figure 11C-D).  469 

 We then calculated the percent of cells within each myogenic cell stage and time-point by 470 

age group. Within the MuSC 1-6 stages at 0-1 and 5-7 dpi, we observed high levels of Pax7 471 

(Figure 4H). We also detected a high fraction of Non-G1 cells in MuSCs 1-6, especially at 1-3.5 472 

dpi in the old and geriatric mice (Figure 4K). This suggested that more of the old and geriatric 473 

MuSCs were actively cycling post-injury compared to the young MuSCs. We compared the 3.5 474 

dpi cells in the MuSC 1 and MuSC 2-6 stages by differential gene expression and found that the 475 

quiescence-associated genes Cdkn1c (encoding p57Kip2) and Socs3 were upregulated in MuSCs 476 

1 and numerous translation-associated genes such as Rps29 were upregulated in MuSCs 2-6 477 

(Figure 4L). These expression profiles suggest that MuSCs 1 cells are in a less activated state 478 

MuSCs 2-6 cells. 479 

 We observed an inverse relationship between the average Myog expression and the 480 

fraction of Non-G1 cells in the Cycling MPCs, Committing MPCs, and Fusing Myocytes, as 481 

expected for differentiating myogenic cells (Figure 4I,K). In all ages we detected the highest 482 

average expression of Myog in the Fusing Myocytes population (Figure 4I). We detected 483 

Myonuclei in all ages and at every dpi, but there were fewer Myonuclei with lower average 484 

expression of Acta1 at dpi 1-3.5 in the geriatric mice compared to the young and old mice (Figure 485 

4J). Together, these results present an integrated cellular cartography of myogenic trajectories 486 

through regeneration, which exhibits age-associated cellular trajectories, particularly within the 487 

MuSC pool. 488 

 489 

Scoring cell senescence across the myogenic cell cycle. To explore how cellular senescence 490 

manifests within this organized cartography of myogenesis, we focused on the One-way FBR Sen 491 

Score which performed well across ages (Figure 3O). To identify cells with senescence-like 492 

identities, we defined a threshold within the One-way FBR Sen Score based on its relationship 493 

with Cdkn2a and Cdkn1a expression which exhibited correlation (Supplementary Figure 11G-494 
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H). We set a One-way FBR score threshold at 2412, where 50% of cells above this value co-495 

expressed Cdkn2a and Cdkn1a, and classified cells above this threshold as ‘Sen Score high’ and 496 

senescence-like (Figure 5A). We further observed through ROC analysis that the One-way FBR 497 

Sen Score could accurately identify double-positive Cdkn2a and Cdkn1a cells from both the G1 498 

and Non-G1 fractions of MuSCs/progenitors (Figure 5B). 499 

 We aimed to quantify the prevalence of cellular senescence within the cartography of 500 

myogenesis by age using both double-positive expression status and Sen Score, reasoning that 501 

the scores might capture a more expansive set of senescence-like cells. We observed a 502 

correspondence between the fraction of cells that co-express Cdkn2a and Cdkn1a and the 503 

fraction of cells that have a high Sen Score in most ages, cell stages, and timepoints (Figure 5C-504 

D). Focusing on 3.5 dpi, we found a significantly higher fraction of Cdkn2a+ and Cdkn1a+ cells in 505 

both the old and geriatric MuSCs 1 compared to young MuSCs 1 (Student’s t-tests, p-values = 506 

0.02* and 0.003*, respectively; Figure 5E). We did not observe age-specific differences in the 507 

fraction of Cdkn2a+ and Cdkn1a+ in MuSCs 2-6 (Figure 5F). We found a significantly higher 508 

fraction of Cdkn2a+ and Cdkn1a+ in both old and geriatric MPCs (from both Cycling and 509 

Committing stages) compared to young MPCs (Student’s t-tests, p-values = 0.04* and 0.02*, 510 

respectively; Figure 5G). Likewise, we observed a similar pattern in the fraction of One-way FBR 511 

Sen Score high cells, with significantly higher frequencies in the old compared to young MuSCs 512 

1 (Student’s t-test, p-value = 0.002*; Figure 5H). We did not observe age-specific differences in 513 

the fraction of Sen Score high MuSCs 2-6 or MPCs (Figure 5I-J). Together, these observations 514 

point to a transitory senescent-like cell population that is abundant at the self-renewing MuSC 1 515 

stage across all ages, but increases in older mice, potentially underlying a stalled stem-cell self-516 

renewal in mouse muscle aging.  517 
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DISCUSSION 518 

 519 

We utilized the profiling depth and complexity of scRNA-seq and associated computational 520 

analyses to generate a comprehensive compendium of 273,923 single-cell transcriptomes from 521 

regenerating tibialis anterior muscles throughout mouse lifespan. To date, our dataset is the most 522 

comprehensive portrait of muscle repair at the single-cell level, as it includes three ages (young, 523 

old, and geriatric), six time points (days 0, 1, 2, 3.5, 5, and 7), and includes 29 different cell type 524 

clusters (Figure 1, Supplementary Figures 1 and 3). Additionally, compared to previous scRNA-525 

seq and snRNA-seq skeletal muscle studies, we have identified more specific endothelial, FAPs, 526 

and immune cell sub-types.11,18–30 527 

 The immune, stromal, and myogenic cells found in skeletal muscle contribute to muscle 528 

maintenance and regeneration by regulating MuSC quiescence, proliferation, and differentiation.1 529 

It has been shown that an imbalance in immune cell populations during injury response can 530 

disrupt proper muscle repair.1,2 To investigate this we compared the change in cell type 531 

abundances over our regeneration time course between young, old, and geriatric muscles. As 532 

expected, Neutrophils are one of the first immune cell types to peak in abundance  533 

(Supplementary Figure 5L).4  We also observe monocyte and macrophage populations that 534 

express pro-inflammatory markers like Ccr2 and patrolling markers like Ctsa responding soon 535 

after injury (days 1-2) when we expect the muscle environment to be enriched with pro-536 

inflammatory cytokines (Figure 2A,E).1,4 Monocytes and macrophages that express pro-537 

inflammatory markers clear cellular debris and promote myogenic cell proliferation.1,5  There 538 

should be a shift to monocytes and macrophages that express anti-inflammatory marker C1qa at 539 

4-7 dpi (Figure 2B-C, Supplementary Figure 3A).4  We do broadly observe a shift from 540 

monocytes and macrophages that express pro-inflammatory markers to anti-inflammatory 541 

markers, but there are significant differences by age (Figure 2A-E). This difference in monocyte 542 

and macrophage dynamics could explain the age-related decline in muscle repair because if 543 

macrophages do not clear cellular debris or promote myogenic cell proliferation and 544 

differentiation, the muscle remains inflamed and there are repeated cycles of necrosis and 545 

regeneration.5  The damaged myofibers are then replaced with adipose tissue, fibrotic tissue, or 546 

bone, instead of new myofibers.5     547 

 In addition to age-specific differences in the dynamics of the monocyte and macrophage 548 

populations, we observe age specific differences in the T cell dynamics (Figure 2L-O, 549 

Supplementary Figure 5T). It has previously been shown that Treg cells, marked by Cd4 and 550 

Foxp3, accumulate in injured muscle and to peak in abundance at day 4.4 We detected Foxp3 551 
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expression in a few T cells, specifically in the T cell (Cycling) and T cell (Non-Cycling) populations 552 

which both highly express Cd3e (Supplementary Figure 3A). Although we cannot confidently 553 

identify any of our three T cell populations as Tregs, we do observe a peak in T cell abundances 554 

at days 5 and 7 (age-specific). There is miscoordination of T cell response which in turn could 555 

impact the ability of aged muscle to repair itself. 556 

 One factor that has been shown to contribute to the reduced functionality of MuSCs in 557 

aged tissues is the establishment of senescent MuSCs.2,13 Prior studies have used the cell cycle 558 

proteins p16, p21, p53, and Rb to differentiate between dividing and non-diving cells, but the non-559 

diving cells can include senescent cells and quiescent cells.15 SA-β-gal is also commonly used to 560 

identify senescent cells, but it is also detected in quiescent cells and in stressed cells.15,65 Because 561 

these markers are not unique to senescent cells and because senescent cells are heterogeneous, 562 

it has been challenging to identify biomarkers that can accurately and consistently identify 563 

senescent cells across species, tissues, and conditions.16 Indeed, recent large consortia have 564 

been established to develop new tools to detect and bioinformatically identify senescent cells with 565 

robustness and precision throughout mammalian tissues and lifespans.66 Given the role that 566 

cellular senescence plays in limiting cell contributions in aged tissues, we tested a series of tools 567 

to bioinformatically identify senescence in these single-cell data and found a transfer-learning 568 

based scoring approach accurately classified senescent-like myogenic cells across ages and cell 569 

cycling states. The approach described here to quantitatively assess various senescence scoring 570 

approaches and reference gene lists in discriminating senescent or senescent-like cells (Figures 571 

3 and 5) may provide a template for future studies using single-cell data. Notably, here we 572 

concluded that a skeletal muscle FBR gene list more accurately and robustly discriminated 573 

senescent-like Cdkn2a+ and Cdkn1a+ MuSC/progenitors in these muscle regeneration datasets 574 

than did a variety of experimental and curated gene lists, including the recently described 575 

SenMayo list.47 In particular, at day 3.5 post-injury, we observed a significantly higher fraction of 576 

Cdkn2a+ and Cdkn1a+ cells in the aged and geriatric MuSCs associated with a self-renewing cell 577 

stage (MuSC stage 1; Figure 5E,G). Likewise, we observed a similar pattern in the fraction of 578 

One-way FBR Sen Score high cells, with significantly higher frequencies in the old compared to 579 

young MuSCs 1 (Figure 5H). These observations point to a transitory senescence-like cell 580 

population that is abundant at the self-renewing MuSC stage across all ages, but increases in 581 

older mice, potentially underlying a stalled stem-cell self-renewal in mouse muscle aging.  582 
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METHODS 583 

 584 

Mouse muscle injury and single-cell isolation. Muscle injury was induced in young (4-7 585 

months-old [mo]), old (20 mo), and geriatric (26 mo) C57BL/6J mice (Jackson Laboratory # 586 

000664; NIA Aged Rodent Colonies) by injecting both tibialis anterior (TA) muscles with 10 µl of 587 

notexin (10 µg/ml; Latoxan, France). The mice were sacrificed, and TA muscles were collected at 588 

0, 1, 2, 3.5, 5, and 7 days post-injury (dpi). Each TA was processed independently to generate 589 

single cell suspensions. At each time point, the young and old replicates are biological replicates, 590 

and the geriatric replicates are two pairs of technical replicates (n = 3-4). Muscles were digested 591 

with 8 mg/ml Collagenase D (Roche, Basel, Switzerland) and 10 U/ml Dispase II (Roche, Basel, 592 

Switzerland) and then manually dissociated to generate cell suspensions. Myofiber debris was 593 

removed by filtering the cell suspensions through a 100 µm and then a 40 µm filter (Corning 594 

Cellgro # 431752 and # 431750). After filtration, erythrocytes were removed by incubating the cell 595 

suspension in erythrocyte lysis buffer (IBI Scientific # 89135-030). 596 

 597 

Single-cell RNA-sequencing library preparation. After digestion, the single-cell suspensions 598 

were washed and resuspended in 0.04% BSA in PBS at a concentration of 106 cells/ml. A 599 

hemocytometer was used to manually count the cells to determine the concentration of the 600 

suspension. Single-cell RNA-sequencing libraries were prepared using the Chromium Single Cell 601 

3’ reagent kit v3 (10x Genomics, Pleasanton, CA) following the manufacturer’s protocol.67 Cells 602 

were diluted into the Chromium Single Cell A Chip to yield a recovery of 6,000 single-cell 603 

transcriptomes with <5% doublet rate. Libraries were sequenced on the NextSeq 500 (Illumina, 604 

San Diego, CA).68 The sequencing data was aligned to the mouse reference genome (mm10) 605 

using CellRanger v5.0.0 (10x Genomics).67 606 

 607 

Preprocessing and batch correction of single-cell RNA sequencing data. From the gene 608 

expression matrix, the downstream analysis was carried out in R (v3.6.1). First, ambient RNA 609 

signal was removed using the default SoupX (v1.4.5) workflow (autoEstCounts and adjustCounts; 610 

github.com/constantAmateur/SoupX).36 Samples were then preprocessed using the standard 611 

Seurat (v3.2.3) workflow (NormalizeData, ScaleData, FindVariableFeatures, RunPCA, 612 

FindNeighbors, FindClusters, and RunUMAP; github.com/satijalab/seurat).64 Cells with fewer 613 

than 200 genes, with fewer than 750 UMIs, and more than 25% of unique transcripts derived from 614 

mitochondrial genes were removed. After preprocessing, DoubletFinder (v2.0.3) was used to 615 

identify putative doublets in each dataset.37 The estimate doublet rate was 5% according to the 616 
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10x Chromium handbook. The putative doublets were removed from each dataset. Next, the 617 

datasets were merged and then batch-corrected with Harmony 618 

(github.com/immunogenomics/harmony) (v1.0).38 Seurat was then used to process the integrated 619 

data. Dimensions accounting for 95% of the total variance were used to generate SNN graphs 620 

(FindNeighbors) and SNN clustering was performed (FindClusters). A clustering resolution of 0.8 621 

was used resulting in 24 initial clusters. 622 

 623 

Cell type annotation in single-cell RNA sequencing data. Cell types were determined by 624 

expression of canonical genes. Each of the 24 initial clusters received a unique cell type 625 

annotation. The nine myeloid clusters were challenging to differentiate between, so these clusters 626 

were subset out (Subset) and re-clustered using a resolution of 0.5 (FindNeighbors, FindClusters) 627 

resulting in 15 initial clusters. More specific myeloid cell type annotations were assigned based 628 

on expression of canonical myeloid genes. This did not help to clarify the monocyte and 629 

macrophage annotations, but it did help to identify more specific dendritic cell and T cell subtypes. 630 

These more specific annotations were transferred from the myeloid subset back to the complete 631 

integrated object based on the cell barcode.  632 

 633 

Analysis of cell type dynamics. We generated a table with the number of cells from each sample 634 

(n = 65) in each cell type annotation (n = 29). We removed the erythrocytes from this analysis 635 

because they are not a native cell type in skeletal muscle. Next, for each sample, we calculated 636 

the percent of cells in each cell type annotation. The mean and standard deviation were calculated 637 

from each age and time point for every cell type. The solid line is the mean percentage of the 638 

given cell type, the ribbon is the standard deviation around the mean, and the points are the 639 

values from individual replicates. We evaluated whether there was a significant difference in the 640 

cell type dynamics over all six time points using non-linear modeling. The dynamics for each cell 641 

type were fit to some non-linear equation (e.g., quadratic, cubic, quartic) independent and 642 

dependent on age. The type of equation used for each cell type was selected based on the 643 

confidence interval and significance (p < 0.05) for the leading coefficient. If the leading coefficient 644 

was significantly different from zero, it was concluded that the leading coefficient was needed. If 645 

the leading coefficient was not significantly different than zero, it was concluded that the leading 646 

coefficient was not needed, and the degree of the equation went down one. No modeling equation 647 

went below the second degree. The null hypothesis predicted that the coefficients of the non-648 

linear equation were the same across the age groups while the alternative hypothesis predicted 649 

that the coefficients of the non-linear equation were different across the age groups. We 650 
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conducted a likelihood ratio test to see if the alternative hypothesis fits the data significantly better 651 

than the null hypothesis and we used FDR as the multiple comparison test correction. 652 

 653 

Muscle immunohistochemical analysis. Muscle injury was induced in young, old, and geriatric 654 

C57BL/6J mice by injecting both TA muscles with 10 µl of notexin (10 µg/ml; Latoxan, France). 655 

The mice were sacrificed, and TA muscles were collected at 0 and 5 dpi. The TA muscles were 656 

coated in Tissue-Tek O.C.T. Compound (Sakura Finetek # 4583), snap-frozen in liquid nitrogen 657 

cooled isopentane (Thermo Scientific Chemicals # AA19387AP), and then stored at -80C. Frozen 658 

TA muscles were sectioned with a cryostat transversely at 5 µm thickness and section slides were 659 

stored at –20C until stained. Sections were fixed with 4% PFA (Electron Microscopy Sciences # 660 

15710) for 10 minutes, washed with 1X PBS, and blocked with 3% BSA (Rockland 661 

Immunochemicals # RLBSA50) at room temperature for 1 hour. Sections were washed with 1X 662 

PBS and then stained with rat anti-mouse CD3 (eBiosciences # 14-0032-82) at 1:100 dilution in 663 

blocking buffer overnight at 4C. Sections were then washed and stained with Alexa Fluor Plus 664 

750 Phalloidin (Life Technologies # A30105) at 1:500 dilution and goat anti-rat 488 (Invitrogen # 665 

A-11006) at 1:250 dilution in blocking buffer for 1 hour at room temperature protected from light. 666 

Sections were then washed with 1X PBS and stained with 5 mg/mL DAPI (Life Technologies # 667 

D3571) at 1:1000 dilution. Slides were mounted with Glycergel mounting medium (Agilent # 668 

C056330-2) and stored at 4C before imaging. Images were acquired using a Nikon Eclipse Ti-E 669 

microscope (Micro-Video Instruments, Inc.), and were analyzed using NIS Elements 5.11.03 670 

software and ImageJ 2.1.0. 671 

 672 

Immune cell flow cytometric analysis. Single cell suspensions of uninjured day 0 and injured 673 

day 5 TAs and gastrocnemius muscles were collected in the same way as the single cell 674 

suspensions for scRNA-seq library preparation. However, the single cells were suspended in 90% 675 

FBS and 10% DMSO and frozen at –80C. When ready to use, the single cell suspensions were 676 

thawed in a 37C water bath and then transferred to 15 mL conical tubes. The cells were washed 677 

with staining buffer (1X PBS + 0.5% BSA + 2 mM EDTA) before being spun at 500g for three 678 

minutes and transferred to a 96 well round bottom plate. Cells were incubated with FC block 679 

(TruStain FcX PLUS (anti-mouse CD16/32), Biolegend # 156604) at 4C for five minutes. Cells 680 

were then washed with staining buffer, spun at 500g for three minutes, and incubated with viability 681 

dye (Fixable viability dye APCe780, eBiosciences # 65-0865-14) and surface antibody (see 682 

antibody table) in BSB (Brilliant Stain Buffer Plus, BD Biosciences # 566385) and staining buffer 683 

for 30 minutes at 4C in the dark. Aliquots of cell samples were counted on a MoxiZ Mini Automated 684 
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Cell Counter. After incubating we followed the manufacturer's protocol (FOXP3 Transcription 685 

factor fixation/permeabilization kit, eBioscience # 00-5521-00) and cells were washed with 686 

staining buffer, spun, and resuspended in FoxP3 1x perm solution (10x Permeabilization buffer, 687 

Invitrogen # 00-8333-56) and incubated for 30 minutes at 4C in the dark. Cells were washed with 688 

1x perm solution, spun twice, and resuspended in an intracellular antibody stain. Cells were 689 

incubated in intracellular antibody stain for 30 minutes at 4C in the dark. Cells were washed with 690 

1x perm and spun twice before being resuspended in staining buffer and transferred to 40 µM 691 

blue capped flow tubes. FMO controls were prepared using a mixture of young, old, and geriatric 692 

uninjured and injured TA and gastrocnemius muscles. Flow cytometry was performed using a 693 

FACSymphony A3 (BD) and data was analyzed in FlowJo 10.5.3. Gates were determined using 694 

FMO controls. 695 

 696 

Flow cytometry antibodies 697 

Antibody Clone Fluorophore Manufacturer catalog 

CD45 30-F11 PECy7 Invitrogen # 25-0451-82 

CD11b M1/70 BUV395 BD Biosciences # 563553 

CD11c N418 PerCPCy5.5 Invitrogen # 45-0114-82 

TCRβ H57-597 APC eBiosciences # 17-5961-82 

CD19 1D3 BV650 BD Biosciences # 563235 
 698 

Senescence scoring. We tested two senescence scoring methods along with ten senescence 699 

gene lists (Extended Data File 2) to identify senescent-like cells within the scRNA-seq dataset. 700 

The Two-way senescence score was calculated using a transfer-learning method developed by 701 

Cherry et al 2023.44 For this score, all genes in a cell type cluster (Figure 1F) were z-scored. The 702 

provided senescence gene list was split into genes that are up- and down-regulated in p16+ cells. 703 

The scale.data slot, which contains the z-scored counts, was extracted from the full dataset. The 704 

genes that were in the up- and down-regulated gene lists were identified and subset out of the 705 

extracted scale.data matrix. Two scores were calculated, one being the sum of the z-scored 706 

counts of the down-regulated genes multiplied by negative one and the other score being the sum 707 

of the z-scored counts of the up-regulated genes. The overall score is the sum of the down-708 

regulated gene score and the up-regulated gene score scaled by the length of the gene set. With 709 

this method we tested six gene lists: Stimulation Independent, Replicative, Oncogene, Ion-710 
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Radiation Induced, Aged-Chondrocyte, and Two-way foreign body response (FBR). The gene 711 

lists were the result of differential expression analysis of bulk RNA-seq experiments comparing 712 

p16+ to p16– cultured fibroblasts (Stimulation Independent, Replicative, Oncogene, and Ion-713 

Radiation Induced)46, uninjured aged chondrocytes (Aged-Chondrocytes) (B.O. Diekman, 714 

personal communication).50–52, and CD29+ cells from a FBR model (Two-way FBR)44. 715 

 The One-way Senescence Score was calculated using Single-Sample GSEA as per Saul 716 

et al., 2022.47 This method uses the raw counts of genes that are upregulated in p16+ cells. With 717 

this method we tested four gene lists: One-way FBR, SenMayo, GO: Senescence, and GO: 718 

SASP. The One-way FBR gene list contains only the upregulated genes found in the Two-way 719 

FBR gene list.44 The SenMayo gene list is a literature-curated list of genes commonly used to 720 

identify senescent cells.47 The GO: Senescence gene list is the GO: 721 

FRIDMAN_SENESCENCE_UP48 gene list and the GO: SASP gene list is the GO: 722 

REACTOME_SENESCENCE_ASSOCIATED_SECRETORY_PHENOTYPE_SASP49 gene list. 723 

 We evaluated the ability of the two methods and the ten gene lists to accurately identify 724 

senescent-like MuSCs and progenitors by calculating a receiver operator characteristic (ROC) 725 

curve. For each MuSCs and progenitor cell, we evaluated whether it expressed both Cdkn2a and 726 

Cdkn1a. For each method and gene list, the scores were ranked from highest to lowest and then 727 

grouped into 100 bins with approximately the same number of MuSCs and progenitors. We 728 

evaluated the specificity and the sensitivity in each bin where a true positive expresses both 729 

Cdkn2a and Cdkn1a and has a high senescent score. This analysis was done for all MuSCs and 730 

progenitors (Figure 3M-N), MuSCs and progenitors split by age (Figure 3O, Supplementary 731 

Figure 7A-F), and MuSCs and progenitors split by G1-Status (Figure 5B, Supplementary 732 

Figure 7G-J). The area under the curve (AUC) was calculated for each ROC curve (Figures 3M-733 

O and 5B, Supplementary Figure 7K). 734 

Given that the One-way Senescence Score with the FBR gene list performed the best 735 

(AUC = 0.86), we focused on that for further analyses. We next set a threshold of senescence 736 

based on the One-way FBR. We ranked the MuSCs and progenitors from highest to lowest One-737 

way FBR Sen Score and then grouped the cells into 100 bins with approximately the same number 738 

of MuSCs and progenitors. Within each bin we calculated the fraction of MuSCs and progenitors 739 

that co-express Cdkn2a and Cdkn1a. The One-way FBR Sen Score where 50% of the MuSCs 740 

and progenitors with at least that score co-express Cdkn2a and Cdkn1a was set as the 741 

senescence threshold. For the One-way FBR Sen Score, MuSCs and progenitors with a score 742 

>= 2412.562 were called “senescent-like” while all other cells were called “not senescent-like” 743 

(Figure 5A, Supplementary Figure 11G-H). 744 
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 745 

Cell cycle scoring. To each cell in the final dataset, we assigned an S phase score, a G2M phase 746 

score, and a discrete phase classification (G1/S/G2M) using Seurat’s standard Cell-Cycling 747 

Scoring method.64 We have treated the S phase and G2M phase score as polar coordinates to 748 

help us visualize how cells are progressing through the cell cycle (Figure 4D). We have converted 749 

the polar coordinates to cartesian coordinates and normalized the theta values so that they range 750 

from 0 to 1 so that cells in G1 have the lowest theta values followed by cells in S and G2M (Figure 751 

4E, Supplementary Figure 11A-B). This enables us to see how cells are progressing linearly 752 

through the cell cycle. Seurat’s standard cutoff between cells classified as G1 versus cells 753 

classified as S is at the normalized theta value of 0.25. Looking at the distribution of cells across 754 

the normalized theta values as well as the expression of cell cycle markers Cdk1 and Cdk4, we 755 

decided to extend the G1 to S cutoff to 0.375 (Figure 4E-G, Supplementary Figure 11C-D). 756 

Cells with a normalized theta value >= 0.375 are considered Non-G1 (S/G2/M). 757 

 758 

Myogenic cell subsets. From the final dataset, the cells with the cell type IDs ‘MuSCs and 759 

progenitors’ and ‘Myonuclei’ were subset out and the Seurat workflow was partially re-run 760 

(ScaleData, FindVariableFeatures, RunPCA, FindNeighbors, FindClusters, and RunUMAP). 761 

Dimensions accounting for 95% of the total variance were used to generate SNN graphs 762 

(FindNeighbors) and SNN clustering was performed (FindClusters).64 A clustering resolution of 763 

0.7 was used resulting in 9 clusters. These 9 clusters were assigned general cell type IDs based 764 

on canonical myogenic markers. Of the 9 clusters, 4 were progenitor subtypes, 3 were myonuclei 765 

subtypes, and 2 were doublets (Figure 4A). 766 

 To more specifically ID the doublet clusters we looked at the co-expression of myogenic 767 

and non-myogenic markers (Supplementary Figure 8). Using GetAssayData, we extracted the 768 

log-normalized expression values of Pax7, Pecam1, Acta1, and C1qa in each cell in the 9 769 

myogenic clusters. For each of the 9 clusters, we plotted cells by their expression values of Pax7 770 

and Pecam1 and by their expression values of Acta1 and C1qa. A density plot was plotted along 771 

the x- and y-axes using ggmarginal(type = “density”) (Supplementary Figure 8). The two clusters 772 

identified as doublets were excluded from the remaining myogenic subset analyses. 773 

 To identify the myonuclei clusters more specifically, we looked at the expression of 774 

myonuclei markers, markers of high metabolic activity, and the percent of unique transcripts 775 

derived from mitochondrial genes (Supplementary Figure 9). Using GetAssayData, we extracted 776 

the log-normalized expression values of Myh1 and Myh4 in each cell in the three myonuclei 777 

clusters. For every cell, as defined by the cell barcode, we determined whether the expression 778 
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value equaled zero (no expression) or exceeded zero (expression) for both Myh1 and Myh4 779 

independently. For each of the three myonuclei clusters, the fraction of cells that expressed Myh1 780 

and Myh4, only Myh1, only Myh4, and neither Myh1 nor Myh4 were calculate by dividing the 781 

number of cells that expressed Myh1 and Myh4, only Myh1, only Myh4, and neither Myh1 nor 782 

Myh4 by the total number of cells within each myonuclei cluster (Supplementary Figure 9D-G). 783 

 Harmony embedding values from the dimensions accounting for 95% of the total variance 784 

were used for further dimensional reduction with PHATE, using phateR (v1.0.7) (Figure 4B-C).60 785 

The PHATE embedding values were used by monocle3 (v1.0.0).61–63 The normal monocle3 786 

workflow was used (cluster_cells, estimate_size_factors, learngraph, order_cells) where 787 

L1.sigma = 0.4 and the root cell was in the Progenitor 1 cluster. The pseudotime values for each 788 

cell as defined by monocle3 were transferred from the monocle3 CDS object to the myogenic 789 

cells only Seurat object by cell barcode. The pseudotime values were divided into 25 bins with 790 

approximately equal numbers of cells (1089-1090 cells per bin) (Figure 4C).  791 

 We assigned myogenic cell type IDs based on known myogenic marker expression in 792 

each pseudotime bin and dpi. We visualized this with dot plots where the size of the dot 793 

corresponds to the percent of cells in each pseudotime bin and dpi normalized by the dpi. The 794 

color of the dots corresponds to the average log-normalized expression of a select myogenic 795 

marker in each pseudotime bin and dpi (Supplementary Figure 10A-H). Cells in pseudotime bin 796 

1 and dpi 0, 1, 2, 3.5, 5, and 7 were classified as ‘MuSCs 1’, cells in pseudotime bin 2 and dpi 0, 797 

1, 2, 3.5, 5, and 7 were classified as ‘MuSCs 2’, cells in pseudotime bin 3 and dpi 0, 1, 2, 3.5, 5, 798 

and 7 were classified as ‘MuSCs 3’, cells in pseudotime bin 4 and dpi 0, 1, 2, 3.5, 5, and 7 were 799 

classified as ‘MuSCs 4’, cells in pseudotime bin 5 and dpi 0, 1, 2, 3.5, 5, and 7 were classified as 800 

‘MuSCs 5’, and cells in pseudotime bin 6 and dpi 0, 1, 2, 3.5, 5, and 7 and cells in pseudotime bin 801 

7 and dpi 5 and 7 were classified as ‘MuSCs 6’ based on expression of Pax7 and Myf5 802 

(Supplementary Figure 10A-B,I). Cells in pseudotime bins 7-13 and dpi 0 were classified as 803 

‘Non-Cycling MPCs’ based on the expression of Pax7, Myf5, and Myod1 and the lack of 804 

expression of cycling markers Cdk1 and Cdk4 (Supplementary Figure 10A-C,G-I). Cells in 805 

pseudotime bin 7 and dpi 1, 2, and 3.5 and cells in pseudotime bins 8-11 and dpi 1, 2, 3.5, 5, and 806 

7 were classified as ‘Cycling MPCs’ based on the expression of Myod1 and cycling markers Cdk1 807 

and Cdk4 (Supplementary Figure 10C,G-I). Cells in pseudotime bin 12 and dpi 0, 1, 2, 3.5, 5, 808 

and 7 and cells in pseudotime bin 13 and dpi 1 and 2 were classified as ‘Committing MPCs’ based 809 

on the low expression of Myod1, Myog, Mymk and the still high expression of cycling markers 810 

Cdk1 and Cdk4 (Supplementary Figure 10C-E,G-I). Cells in pseudotime bin 13 and dpi 3.5, 5, 811 

and 7 were classified as ‘Fusing Myocytes’ based on the high expression of Myog and Mymk and 812 
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low expression of cycling markers Cdk1 and Cdk4 (Supplementary Figure 10D-E,G-I). Cells in 813 

pseudotime bins 14-25 and dpi 0, 1, 2, 3.5, 5, and 7 were classified as ‘Myonuclei’ based on the 814 

expression of Acta1 (Supplementary Figure 10F,I). 815 

 We focused on dpi 3.5 and compared the cells in MuSCs 1, MuSCs 2-6, and all MPCs 816 

(this includes cells classified as Cycling MPCs and cells classified as Committing MPCs). For 817 

each sample, we calculated the fraction of cells that had log-normalized Cdkn2a and Cdkn1a 818 

counts greater than 0 (Figure 5E-G). Within these same groupings we also calculated the fraction 819 

of cells that had a One-Way FBR score greater than 2412.562 (Figure 6H-J). We conducted 820 

unpaired, two-sided Student’s t-tests to evaluate whether there was a significant difference 821 

between ages. 822 

 823 

Differential expression analysis and pre-ranked Gene Set Enrichment Analysis. For select 824 

comparisons we used Seurat’s FindAllMarkers() function to identify genes that were differentially 825 

expressed between groups. In the myogenic subset with all ages at day 3.5, we did this analysis 826 

between the cells in ‘MuSCs 1’ and the cells in ‘MuSCs 2-6’ (Figure 4L). In the MuSCs and 827 

progenitors with all ages at day 3.5, we did this analysis between cells that co-expressed Cdkn2a 828 

and Cdkn1a (we refer to these cells as ‘Double positive’) and all other cells (we refer to these 829 

cells as ‘other’). Genes that had an FDR-corrected p-value <=0.05 were ranked by average log2 830 

fold change and used in a Gene Set Enrichment Analysis (GSEA, v4.1.0). The gene set databases 831 

used included h.all.v2023.1.Hs.symbols.gmt, c2.all.v2023.1.Hs.symbols.gmt, 832 

5.all.v2023.1.Hs.symbols.gmt, and c8.all.v2023.1.Hs.symbols.gmt. Significant GO Terms (FDR 833 

q-value <= 0.25) were ranked by the normalized enrichment score (enrichment scores normalized 834 

by the size of the gene set) (Figure 3H). 835 

 836 

Key resource availability. A complete list of metadata and GEO accessions for the scRNA-seq 837 

data can be found in Extended Data File 1. Previously published scRNA-seq data are deposited 838 

in GEO under accessions GSE143437, GSE159500, and GSE162172. Newly collected scRNA-839 

seq data from young (4.7 mo; days 1 and 3.5) and geriatric (26 mo) mice are deposited in GEO 840 

under accession GSE232106. Fully processed Seurat objects for the final dataset (Figure 1) and 841 

the myogenic subset (Figures 4 and 5) will be available for download on Dryad upon publication. 842 

Gene lists used in the Senescence Scoring analysis are compiled in the Extended Data File 2. 843 

All newly developed code (Senescence Scoring, Cell Cycle Scoring, Pseudotime Binning) will be 844 

available on Github upon publication.  845 
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Figure 1: Assembly of scRNA-seq atlas of skeletal muscle regeneration across mouse 1028 

aging. (A-B) Overview of experimental design. 3’ scRNA-seq (10X Chromium v2 and v3) was 1029 

performed on dissociated tibialis anterior (TA) muscles from young (4-7 mo), old (20 mo), and 1030 

geriatric (26 mo) mice (both sexes) 0-7 days post-notexin injury (dpi) with n = 3-4 replicates per 1031 

age and dpi (B). (C) Processing workflow. Each scRNA-seq sample was aligned to the mm10 1032 

mouse reference genome, ambient RNA was removed by SoupX, low quality cells were identified 1033 

and removed, and doublets were identified and removed. All samples were then integrated with 1034 

Harmony, resulting in a final dataset containing 273,923 cells from 65 samples. See 1035 

Supplementary Figure 1 and Extended Data File 1 for additional detail. (D) Fraction of cells 1036 

from each age group. (E) Fraction of cells from each dpi within each age group. (F-G) UMAP 1037 

representations of the final dataset. Cells colored by manually assigned cell type IDs based on 1038 

the expression of hallmark skeletal muscle genes (see Supplementary Figures 2 and 3) (F). 1039 

Cells are colored by age group, with all other cells in gray (G). 1040 
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Figure 2: Age-related changes to cell dynamics during skeletal muscle regeneration. (A-I) 1042 

Line plots showing cell type relative abundance as a fraction of total cells from 0-7 days post injury 1043 

(dpi). For each sample, the number of cells of the reported type was divided by the total number 1044 

of cells (excluding erythrocytes). Points are each sample (n = 3-4). Ribbon is the standard 1045 

deviation. Statistical significance of age-specific cell type dynamics was evaluated using non-1046 

linear modeling and FDR-corrected p-values are reported (see Supplementary Figure 6). (J) 1047 

Statistical significance of age-specific cell type dynamics differences as reported by FDR-1048 

corrected p-values from non-linear modeling (see Supplementary Figure 6). Red line denotes 1049 

the FDR-adjusted p = 0.05 threshold. (K) Stacked bar plot of the fraction of cell types across all 1050 

dpis. All 17 immune cell clusters were grouped into a unified "Immune cells (17 CTs)" cluster, 1051 

which is separated out in Supplementary Figure 4. (L) Scatter plots of the fraction of all T cells 1052 

(3 CTs) at 0 and 5 dpi from the scRNA-seq data. For each sample, the number of all T cells (3 1053 

CTs) was divided by the total number of cells (excluding erythrocytes). Points are each sample 1054 

(n = 3-4). Line is the mean for each age group. Significance was evaluated using the Student’s t-1055 

test. (M) Immunohistochemical analysis of CD3+ T cells (green) at day 0 and day 5 post-injury in 1056 

tibialis anterior (TA) muscles from young (5 mo), old (20 mo), and geriatric (26 mo) mice with 1057 

DAPI (blue) as a nuclear counterstain and Phalloidin-750 (pink) as myofiber counterstain. Scale 1058 

bar, 50 µm. Arrow denotes CD3+ T cell. (N) Flow cytometric analysis of TCRβ+ T cells. After 1059 

gating single viable cells by FSC/SSC and a fixable viability dye (not shown), CD45+ 1060 

hematopoietic cells, CD11b- CD11c- non-myeloid cells, and TCRβ+ CD19- T cells were gated 1061 

sequentially. (O) Scatter plots of the fraction of TCRβ+ cells out of all CD45+ cells at 0 and 5 dpi. 1062 

Points are each sample (n = 2-7). Line is the mean for each age group. Significance was evaluated 1063 

using the Student’s t-test. 1064 
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Figure 3: Identification of senescent-like cells using an informatic scoring approach. (A) 1066 

Dot plot showing the expression frequency and average expression level of select senescence-1067 

associated genes by cell type and age (across all time-points). (B-D) Scatter plots of the fraction 1068 

of Cdkn2a+ cells within the MuSCs and progenitors (B), T cells (Cycling; Cd3e+) (C), and FAPs 1069 

(Adipogenic) (D) across all samples within each age group (n = 20-24). Points are the fraction for 1070 

each sample. Horizontal line is the median for each age group. Significance was evaluated using 1071 

the Student’s t-test. (E) Line plot of the fraction of MuSCs and progenitors that co-express Cdkn2a 1072 

and Cdkn1a from 0-7 days post injury (dpi). Points are the fraction for each sample (n = 4). Ribbon 1073 

is the standard deviation. Statistical significance of age-specific dynamics was evaluated using 1074 

non-linear modeling and the FDR-corrected p-values is reported. (F) Scatter plot of the fraction of 1075 

MuSCs and progenitors at 3.5 dpi that co-express Cdkn2a and Cdkn1a by age. Points are the 1076 

fraction for each sample (n = 4). Horizontal line is the median for each age group. Significance 1077 

was evaluated using the Student’s t-test. (G) Scatter plot of the normalized expression level of 1078 

Cdkn2a and Cdkn1a transcripts in all individual MuSCs and progenitors at 3.5 dpi. The density is 1079 

shown on the top and to the right of the plot. Blue line represents the linear trend. Ribbon is the 1080 

confidence interval. The inset contains the Pearson correlation coefficient and its statistical 1081 

significance. (H) Significantly up- or down-regulated gene ontology terms between Cdkn2a+ and 1082 

Cdkn1a+ (Double Positive) and all other (Other) MuSCs and progenitors at day 3.5. The 1083 

normalized enrichment score and the FDR-corrected q-values were obtained from gene set 1084 

enrichment analysis (GSEA). (I-J) Feature plots of the final dataset with the cells colored by the 1085 

re-scaled Two-way FBR senescence score (I) and the re-scaled One-way FBR senescence score 1086 

(J). The cells are randomly plotted. (K-L) Violin plots of the Two-way (K) and One-way (L) FBR 1087 

senescence scores in select cell types. (M-O) Receiver Operator Characteristic (ROC) curves 1088 

based on the co-expression of Cdkn2a and Cdkn1a for the six Two-way senescence scores (M), 1089 

the four One-way senescence scores (N), and for each age group using the One-way FBR 1090 

senescence score (O). The area under the curve (AUC) is reported for each ROC curve. 1091 
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Figure 4: Age-specific trajectories through myogenesis following injury. (A-C) Pseudotime 1093 

organization of the myogenic cell subset after re-clustering. Myogenic cells were re-embedded 1094 

with UMAP (A) and with PHATE (B) and are colored by general myogenic IDs. PHATE 1095 

embeddings were used by Monocle3 to organize the cells in pseudotime where the earliest 1096 

pseudotime is in the upper left corner and the latest pseudotime in the upper right corner. 1097 

Myogenic cells were organized into 25 approximately equal bins of increasing pseudotime values 1098 

(C). (D) Each cell was assigned an S phase score and a G2M phase score using Seurat’s Cell 1099 

Cycle Scoring method. Scatter plot of the two scores with the cells colored by the predicted cell 1100 

cycle phase based on the two scores. (E-G) Polar coordinates (in D) were converted to cartesian 1101 

coordinates and rescaled to fit in a range from 0 to 1. Cells are colored by the predicted cell cycle 1102 

phase based on the two scores (E) and by the log-normalized expression of Cdk1 (F) and Cdk4 1103 

(G). (H-K) Dot plots of the average log-normalized expression of Pax7 (H), Myod1 (I), and Acta1 1104 

(J) and by the fraction of non-G1 (S, G2, and M) cells (K) in each day post injury (dpi) and 1105 

pseudotime-based myogenic cell state bin. The size of the circle is the percent of cells in each 1106 

pseudotime-based myogenic cell state bin for each age and dpi combination. (L) Top 40 1107 

differentilally up- and down-regulated genes between cells in MuSCs 1 and MuSCs 2-6 at day 1108 

3.5. All genes highlighted here have an FDR-corrected q-value < 0.05.  1109 
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Figure 5: Aging-associated accumulation of senescent-like cells at critical transitory 1113 

myogenic cell states. (A) Scatter plot of the normalized cartesian coordinate Cell Cycle Scores 1114 

and the One-way FBR senescence score in all MuSCs and progenitors. Cells colored in red co-1115 

express Cdkn2a and Cdkn1a. All other cells in gray. The vertical line is the G1 cutoff, and the 1116 

horizontal line is where 50% of the cells above this line co-express Cdkn2a and Cdkn1a. (B) 1117 

Receiver Operator Characteristic (ROC) curves based on the co-expression of Cdkn2a and 1118 

Cdkn1a in the MuSCs and progenitors (all ages and days post-injury (dpi)) in G1 and non-G1 (S, 1119 

G2, and M) when using the One-way FBR senescence score. Area under the curve is reported 1120 

for each ROC curve. (C-D) Dot plots of the fraction of cells that co-express Cdkn2a and Cdkn1a 1121 

(C) and the fraction of One-way FBR senescence score-high cells (D) in each dpi and pseudotime-1122 

based myogenic cell state bin. The size of the circle is the percent of cells in each pseudotime-1123 

based myogenic cell state bin for each age and dpi combination. (E-G) Scatter plot of the fraction 1124 

of MuSCs 1 (E), MuSCs 2-6 (F), and all MPCs (G) at 3.5 dpi that co-express Cdkn2a and Cdkn1a 1125 

by age. Points are the fraction for each sample (n = 2-4) and the horizontal line is the median for 1126 

each age group. Significance was evaluated using the Student’s t-test. (H-J) Scatter plot of the 1127 

fraction of MuSCs 1 (H), MuSCs 2-6 (I), and all MPCs (J) at 3.5 dpi that are One-way FBR 1128 

senescence score high by age. Points are the fraction for each sample (n = 2-4) and the horizontal 1129 

line is the median for each age group. Significance was evaluated using the Student’s t-test. 1130 
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Supplemental Figure 1: Evaluating sample quality. (A-C) Quality control workflow and 1132 

resulting UMAPs with cells colored by manually assigned cell type IDs based on the expression 1133 

of hallmark skeletal muscle genes. Prior to any quality-control there were 365,710 cells and 24 1134 

cell types were identified, including 6 low-quality (LQ) clusters (A). After ambient RNA removal 1135 

with SoupX, 23 cell types were identified, including 5 LQ clusters (B). After ambient RNA removal 1136 

with SoupX and removal of LQ cells based on the number of genes and UMIs and the percent of 1137 

mitochondrial reads, there were 286,273 cells and 24 cell types were identified, including two 1138 

doublet clusters (C). (D) This is the same UMAP as in (B), but the cells are colored by quality 1139 

status. Cells that had <200 genes, <750 UMIs, and >25% mitochondrial reads are considered LQ. 1140 

All other cells are considered high-quality (HQ). (E) This is the same UMAP as in (C), but the cells 1141 

are colored by doublet status as determined by DoubletFinder using an estimated doublet rate of 1142 

5%. (F) For every cell type cluster in (C), the fraction of singlets and doublets was calculated. (G-1143 

I) Violin plots of the number of genes (G), the number of UMIs (H), and the percent of 1144 

mitochondrial reads (I) in each sample. 1145 
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Supplemental Figure 2: Identifying additional immune cell types when focusing on just the 1147 

myeloid cells. (A) Workflow to clarify the myeloid cell types. The 9 myeloid clusters based on 1148 

broad cell type IDs were subset from the final dataset, re-clustered, and re-embedded. More 1149 

specific cell type IDs were manually assigned using genes known to mark myeloid cell types. 1150 

Some of these more specific cell type IDs from the myeloid subset were transferred back to the 1151 

final dataset (Figure 1F) based on the cell barcodes. (B-C) UMAPs of the myeloid subset after 1152 

re-embedding, the cells are colored by the broad cell type IDs originally identified in the final 1153 

dataset (B). After re-clustering, re-embedding, and re-annotating based on known immune cell 1154 

markers, the cells are colored by the more specific cell type IDs (C). If the same cell type is in (B) 1155 

and (C), it has the same color designation in both UMAPs. (D) Dot plot showing the expression 1156 

frequency and magnitude of genes used to manually assign the more specific cell type IDs as 1157 

shown in (C). 1158 
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Supplemental Figure 3: Identifying cell types in skeletal muscle during homeostasis and 1159 

regeneration. (A-C) Dot plots showing the expression frequency and magnitude of genes used 1160 

to manually assign cell type IDs, including the more specific immune cell type IDs. We identified 1161 

17 immune cell clusters (A), 5 FAPs, Tenocytes, and Neural cell clusters (B), and 7 myogenic, 1162 

pericyte/skeletal muscle, and endothelial cell clusters (C). 1163 
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Supplemental Figure 4: Determining the cell type composition in each day post injury. (A-1164 

B) Stacked bar plots of the percent of each cell type found at a given day post injury (dpi). The 1165 

three endothelial populations were combined into “Endo (3 CTs)”, the three FAPs populations 1166 

were combined into “FAPs (3 CTs)”, and the 17 immune populations were combined into “Immune 1167 

cells (17 CTs)” (A). Only the 17 immune populations are combined into “Immune cells (17 CTs)” 1168 

(this plot is the same as in Figure 2K) (B). (C-D) Stacked bar plots of the percent of each immune 1169 

cell type out of all immune cells at a given dpi. The four dendritic cell populations were combined 1170 

into “Dendritic cells (4 CTs)” and the three T cell populations were combined into “T cells (3 CTs)” 1171 

(C). All individual immune cell type IDs (D). 1172 
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Supplemental Figure 5: Cell type dynamics (those that are not in main Figure 2). (A-T) Line 1174 

plots for the remaining cell types not shown in Figure 2 showing cell type relative abundance as 1175 

a fraction of total cells from 0-7 days post injury (dpi). For each sample, the number of cells of the 1176 

reported type was divided by the total number of cells (excluding erythrocytes). Points are each 1177 

sample (n = 3-4). Ribbon is the standard deviation. Statistical significance of age-specific cell type 1178 

dynamics was evaluated using non-linear modeling and FDR-corrected p-values are reported 1179 

(see Supplementary Figure 6).  1180 
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1182 

Supplemental Figure 6: Cell type dynamics non-linear modeling. (A-B) Plots of the fraction 1183 

of MuSCs and progenitors from 0-7 days post injury (dpi) by age. For each sample, the number 1184 

of cells was divided by the total number of cells (excluding erythrocytes). The points are the 1185 

fraction for each sample (n = 3-4) and the ribbon is the confidence interval. The black line is the 1186 

non-linear model independent of age (A) and the three colored lines are the non-linear model 1187 

dependent on age (B). Whether there was a significant difference in the non-linear models 1188 

independent of and dependent on age was determined using a likelihood ratio test (ANOVA) and 1189 

the p-values were corrected with FDR. (C-D) Same as in (A-B) but with NK cells. 1190 
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Supplemental Figure 7: Evaluation of accuracy of senescence scoring methods. (A-F) 1192 

Receiver Operator Characteristic (ROC) curves based on the co-expression of Cdkn2a and 1193 

Cdkn1a for the six Two-way senescence scores (A-C) and the four One-way senescence scores 1194 

(D-F) split into young (A, D), old (B, E), and geriatric (C, F) MuSCs and progenitors. (G-J) ROC 1195 

curves based on the co-expression of Cdkn2a and Cdkn1a for the six Two-way senescence 1196 

scores (G-H) and the four One-way senescence scores (I-J) split into G1 (G, I) and non-G1 (S, 1197 

G2, and M) (H, J) MuSCs and progenitors. (K) Table of the area under the curve (AUC) for each 1198 

ROC curve. (L-M) Venn diagrams of the unique and shared up-regulated genes found in the Two-1199 

way senescence scores (L) and the One-way senescence scores (M).  1200 
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Supplemental Figure 8: Identified two doublet clusters in the myogenic subset that were 1201 

not identified by DoubletFinder. (A-B) Scatter plots of the log-normalized expression levels of 1202 

Pax7 and Pecam1 (A) and Acta1 and C1qa (B) by broad myogenic IDs as defined in Figure 4A. 1203 

A density curve is plotted on each axis. 1204 
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Supplemental Figure 9: Identifying a transitional myonuclei state. (A-C) Same UMAP of the 1205 

myogenic subset as in Figure 4A colored by broad myogenic IDs (A) and colored by the log-1206 

normalized expression of Myh1 (B) and Myh4 (C). (D-F) Scatter plots of the log-normalized 1207 

expression levels of Myh1 and Myh4 in the myonuclei clusters Type IIx (D), Type IIb (E), and Type 1208 

IIx/IIb (F). The dotted-line boxes highlight the cells that express the marker(s) that should be 1209 

expressed in each myonuclei cluster. (G) Stacked bar plot of the fraction of cells within each 1210 

myonuclei cluster that express a combination of Myh1 and Myh4. (H) Violin plots of the log-1211 

normalized expression levels of markers of high metabolic rate (Tnnc2, Tnni2, Mb, Cox6a2, 1212 

Cox6c, Atp5e, Atp5g1) and myonuclei (Ckm, Myh2, Myh1, Myh4, Chrne, Col22a1) in each 1213 

myonuclei cluster. (I) Violin plot of the percent of mitochondrial reads in each myonuclei cluster. 1214 
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Supplemental Figure 10: Myogenic subset pseudotime analysis. (A-H) Dot Plots of the 1216 

average log-normalized expression of Pax7 (A), Myf5 (B), Myod1 (C), Myog (D), Mymk (E), Acta1 1217 

(F), Cdk1 (G), and Cdk4 (H) in each day post injury (dpi) and pseudotime bin. The size of the 1218 

circle is the percent of cells in each pseudotime bin for each age and dpi combination. (I) 1219 

Schematic of newly assigned myogenic IDs (referred to as ‘pseudotime-based myogenic cell state 1220 

bin’) based on the expression of known myogenic markers in each dpi and pseudotime bin.1221 
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Supplemental Figure 11: Cell cycle workflow. (A-C) The polar coordinates in Figure 4D were 1223 

converted to cartesian coordinates (A) and rescaled to fit in a range from 0 to 1 (this plot is the 1224 

same as in Figure 4E) (B). The cells are colored by the predicted cell cycle phase based on the 1225 

two scores (A-B) and G1 status (C). (D) Distribution of MuSCs and progenitors across the 1226 

normalized theta values. The black line represents the standard Seurat G1 cutoff (normalized 1227 

theta = 0.25), and the red line represents our extended G1 cutoff (normalized theta = 0.375). (E) 1228 

Violin plot of the distribution of the normalized theta values in MuSCs and progenitors split by age 1229 

and days post injury (dpi). (F) Violin plot of the distribution of the normalized theta values in 1230 

MuSCs and progenitors split by pseudotime bin. (G-H) Scatter plot of the normalized theta values 1231 

and the One-way FBR senescence score in MuSCs and progenitors. The cells are colored by log-1232 

normalized Cdkn2a expression (G) and by Cdkn1a expression (H). The vertical line is the 1233 

extended G1 cutoff, and the horizontal line is where 50% of the cells above this line co-express 1234 

Cdkn2a and Cdkn1a.  1235 
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Supplementary Table 1: Determining the cell type composition in each day post injury. (A-1237 

B) Percent of each cell type found at a given day post injury (dpi). The three endothelial 1238 

populations were combined into “Endo (3 CTs)”, the three FAPs populations were combined into 1239 

“FAPs (3 CTs)”, and the 17 immune populations were combined into “Immune cells (17 CTs)” (A). 1240 

Only the 17 immune populations are combined into “Immune cells (17 CTs)” (B). (C-D) Percent 1241 

of each immune cell type out of all immune cells at a given dpi. The four dendritic cell populations 1242 

were combined into “Dendritic cells (4 CTs)” and the three T cell populations were combined into 1243 

“T cells (3 CTs)” (C). All individual immune cell type IDs (D). 1244 
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Supplementary Table 2: Cell type dynamics statistics summary. For all cell types, listed the 1245 

equation type used in the non-linear modeling, the unadjusted p-value, and the FDR adjusted p-1246 

value. The adjusted p-values that are significant (<0.05) are in red.  1247 
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EXTENDED DATA FILES 1248 

 1249 

Extended Data File 1: Summary of single-cell RNA-sequencing samples in this study.  1250 

 1251 

Extended Data File 2: Lists of senescence gene signatures used in this study. 1252 
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