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Abstract 
 
Tissue phenotyping is foundational to understanding and assessing the cellular aspects 
of disease in organismal context and an important adjunct to molecular studies in the 
dissection of gene function, chemical effects, and disease. As a first step toward 
computational tissue phenotyping, we explore the potential of cellular phenotyping from 
3-Dimensional (3D), 0.74 µm isotropic voxel resolution, whole zebrafish larval images 
derived from X-ray histotomography, a form of micro-CT customized for histopathology. 
As proof of principle towards computational tissue phenotyping of cells, we created a 
semi-automated mechanism for the segmentation of blood cells in the vascular spaces 
of zebrafish larvae, followed by modeling and extraction of quantitative geometric 
parameters. Manually segmented cells were used to train a random forest classifier for 
blood cells, enabling the use of a generalized cellular segmentation algorithm for the 
accurate segmentation of blood cells. These models were used to create an automated 
data segmentation and analysis pipeline to guide the steps in a 3D workflow including 
blood cell region prediction, cell boundary extraction, and statistical characterization of 
3D geometric and cytological features. We were able to distinguish blood cells at two 
stages in development (4- and 5-days-post-fertilization) and wild-type vs. polA2 huli 
hutu (hht) mutants. The application of geometric modeling across cell types to and 
across organisms and sample types may comprise a valuable foundation for 
computational phenotyping that is more open, informative, rapid, objective, and 
reproducible. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541939


 

1. Introduction: 
 
Structurally distinct microscopic characteristics of eukaryotic cells allow the recognition 
of cell types and the study of physiological and pathological change. The recognition of 
cellular pathology [Virchow, 1860], while largely qualitative and subjective, has played a 
critical role in patient care for over 100 years (Abbas et al., 2015). Light microscopy, 
whose resolution at commonly used magnifications is in the 0.5 to 1 micron range, has 
been the most common modality used for distinguishing cells and their features. 
Histological analysis allows for the characterization of normal and abnormal tissue 
structure including cellular-resolution scale features and the study of the arrangement of 
cells into epithelial, stromal, and other structures. 
 
Attempts to characterize these micron-scale structures in 3-Dimensional (3D) Euclidean 
space (Cheng et al., 2011) have included serial sectioning in a consistent plane of 
section (Hewitson & Darby, 2010). However, this approach is associated with sectioning 
artifact (Flaherty et al., 2001) (Arganda-Carreras et al., 2010). Ideally, 3D phenotyping 
would be done without physical sectioning to minimize sample distortion (Hillman, 2000) 
associated with cutting, tissue shrinkage associated with fixation, and differential 
expansion associated with floating sections on water (Kushida, 1962). In response to 
the growing need for 3D cellular-resolution imaging, modalities including electron 
microscopy, fluorescence imaging, magnetic resonance imaging (MRI), optical 
projection tomography, optoacoustic microscopy, and micro-computed tomography 
(micro-CT) have been applied towards closing the mesoscale imaging gap in model 
organisms such as zebrafish (Harris et al., 2006), (Frangioni, 2003), (Cramer & Rust, 
1986), (Metscher, 2009), (Vinegoni et al., 2009) (Zhang et al., 2006), (Cheng et al., 
2011). High resolution methods like serial-section electron microscopy (ssEM) can 
produce nanometer-scale slices that can be stacked into high-resolution 3D datasets, 
but are resource-heavy techniques that needs both a long time commitment as well as 
computer infrastructure capable of analyzing terabyte-scale data per scan (Hildebrand 
et al., 2017). In contrast, modalities like MRI or functional MRI are capable of scanning 
samples in minutes and generate significantly smaller datasets, but the lower resolution 
prevents cellular-level analysis (Dodd et al., 1999), (Flogel & Ahrens, 2016). To bridge 
this gap between resolution, field of view, and analytical feasibility, micro-CT, which can 
provide isotropic submicron-scale resolution (Mizutani et al., 2013), is necessary for 
millimeter to centimeter scale samples (Ding et al., 2019), (Yakovlev et al. 2022). 
 
Histotomography, a form of micro-CT customized for histopathology (Ding et al., 2019), 
is based on tomographic reconstructions from series of angular X-ray projections of 
metal-stained tissue samples, providing about 1000-fold higher resolution than clinical 
CT scans. Functionally important geometric characteristics of cells and tissue structures 
such as volume and 3D shape, are distinguishable from such X-ray histotomographic 
images at submicron voxel resolutions. In addition to addressing the need for micron-
scale imaging, micro-CT is a nondestructive imaging modality that allows rescanning of 
samples multiple times under different imaging conditions. Access to the entire tissue or 
animal sample ensures the preservation of all information inherently available in the 
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specimen but presents the issue of characterizing cytological details in datasets 
harboring upwards of thousands of cells. Whole-sample 3D imaging using 
histotomography avoids incomplete sampling and begins to make possible phenotyping 
of whole organisms. In earlier work, we were able to show visual differences in the 
phenotype of a mutant vs. wild-type zebrafish (Ding et al. 2019). Here, we begin to 
explore the potential of modeling cells to quantify geometric shape parameters of 
individual cell types from whole-organism histotomograms. 
 
The growing community demand to scan larger samples at finer levels of detail has 
facilitated the improvement of resolution and field of view in micro-CT imaging while 
simultaneously creating a need for better tools to interrogate large datasets. Image 
acquisition and data processing techniques such as phase-contrast imaging, mosaic 
spiral-CT acquisition, dual-energy scanning, and post-acquisition software-based 
processing tools such as distortion correction have allowed micro-CT imaging to 
overcome limitations of detector technologies through effective, but computationally 
expensive solutions (Barbone et al., 2021), (Silva et al., 2017), (Sawall et al., 2012), (Vo 
et al., 2015), (Pelt & Parkinson, 2018). Alternatively, the development of higher-
resolution, wider field-of-view optics systems achieves this imaging goal directly and 
independently of any of the previously mentioned unconventional acquisition 
approaches. Multiple research groups, including our own, have adapted commercial 
high-mega-pixel cameras alongside custom-built objective lenses for micro-CT, 
enabling centimeter scale imaging with micron-scale detail at resolution to field-of-view 
ratios of up to 1:10,000 (Umetani et al., 2020), (Yakovlev et al., 2022). As these 
methodologies develop to generate larger and larger 3D image datasets, the need for 
accessible tools capable of analyzing the data beyond visualization of representative 
slices proportionately increases. Likewise, the increase in data volume makes manual 
processes, such as manual segmentation of volumes of interest, prohibitive and time 
consuming. Automated tools and data pipelines have been developed to ease the 
barrier of entry to 3D analysis, but to date most methods are generalized machine-
learning applications that cannot separate background context from objects of interest, 
or custom-trained algorithms that require very large training sets (Lagree et al., 2021), 
(Stringer et al., 2021). Such enormous training data sets are not commonly available in 
either public or lab-curated micro-CT databases of specific millimeter to centimeter 
scale samples such as engineered materials, clinical biopsies, or human disease model 
organisms. 
 
Apart from being a commonly studied model for multiple genetically and environmentally 
induced diseases, zebrafish (Danio rerio) models are used for micro-CT-based cellular 
and organ level analyses due to their size. Developing fish require millimeter-to-
centimeter-scale fields of view to make it possible to image an entire animal in a single 
imaging session (Seo et al., 2015), (Babaei et al., 2016), (Hur et al., 2018), (Ding et al., 
2019). Zebrafish have been used to generate genetic and environmentally induced 
models for clinically significant human blood diseases (Jin and Zong, 2011) which, 
alongside normal development, have been investigated through methods describing 
genetic expression, qualitative cellular morphology, and in vivo blood distribution 
(Brownlie et al., 1998; Liao et al., 2000; Paw et al., 2003; Shafizadeh et al., 2002), 
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(Kemmler et al., 2023), (Varela et al., 2014)]. These advances, alongside future efforts 
to study zebrafish blood on a cellular level, would benefit from automated, quantitative 
characterization of a large proportion of the blood cells in a developing fish. Such an 
approach would add potentially meaningful detail to studies of normal and abnormal 
hematopoiesis, particularly in human blood disease models.   
 
As a step towards computational phenotyping, we present an automated workflow, that 
involves (1) the imaging of whole zebrafish using histotomography, (2) detection and 
boundary definition of blood cells (defined as erythrocytes, lymphocytes and 
thrombocytes) in fish, (3) computation of volumetric and geometric features of 
segmented cells, and (4) derivation of statistically relevant changes caused by 
experimental variables (Fig. 1). Our approach provides a framework that processes and 
automatically describes the cellular morphology for individual blood cells of whole 
organism zebrafish histotomograms, the spatial distribution of blood cells across the 
entire organism, and a system for quantitative comparison between samples. The most 
biologically compelling results are a comparison between Huli hutu (hht) mutant 
zebrafish (mutant in pola2, DNA polymerase alpha B subunit) (Lin et al., 2021) and wild-
type zebrafish, showing progressive degeneration of blood from 4-days-post-fertilization 
(dpf) to 5-dpf. The resulting contribution is a fully automated cell modeling workflow from 
3D micron-scale micro-CT scans of whole organisms. We demonstrate the paradigm 
using modeling of blood cells in whole zebrafish, and the analysis pipeline can be 
potentially adapted to modeling other cell types in zebrafish and to modeling cells in 
other whole organisms.  
 

2. Results 
 
2.1. Identification of Blood Cells in Developing Fish 
 
Blood cells in different stages of zebrafish development can be identified across multiple 
imaging modalities. To ensure that any quantitative characterization derived from micro-
CT datasets reflects biological shape details identified from higher-resolution 
information, we compared zebrafish micro-CT data to corresponding histology slices 
and ssEM scans (Fig. 2, Fig. 3). 5-micron thick hematoxylin and eosin-stained 
histological sections are commonly used to study and identify zebrafish tissues and 
cells, including blood cells. We approximated these conditions by creating a “virtual 
section”: a maximum-intensity projection of the micro-CT data, taken through 5 microns 
of tissue, at a similar angle to an existing histology slice (Fig. 3 A, B). Blood cells look 
similar in both modalities, including shape, size, contrast, and the clear visible presence 
of both a cytoplasm and a nucleus (Fig. 3 C, D). 
 
2.2. Automated Segmentation Pipeline 
 
Once blood cells were identified in micro-CT data, preliminary segmentation was done 
manually to characterize the shape statistics and distributions of normal cells. These 
validation sets were also used to both qualitatively and quantitatively test the degree of 
success of our automated segmentation pipeline. Automated segmentation of blood 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541939


cells was divided into several major components. A random forest classifier was trained 
with manual segmentation data (unrelated to the validation sets) to generate a 
probability map of the blood cells within every sample. This result was then multiplied by 
the original data to decrease the signal of background tissue such as muscle, brain, 
yolk, and everything else that is not a part of a blood cell. A pre-trained neural network 
(Cellpose) that was adapted to this type of data was then fed the processed image to 
segment out areas of high probability. All potential blood cell segmentations were 
filtered by requirements of shape statistics for normal cells derived from the manually 
segmented validation sets. 
 
Ilastik, an open-source random forest classifier was used to train a model for blood cell 
detection in developing zebrafish of various ages (Fig. 4). Datasets were divided into 9 
classes (Fig. 4A) that encompassed a variety of tissue and cellular textures, improving 
the classification of blood cell volumes over multiple training steps that each added 
more data for the model to learn from (Fig. 4A’, A’’, A’’’). This model outputs a 
probability map of values of 0 through 1 for each voxel of the dataset, for each trained 
class. The probability map for blood cells has concentrated higher values in the heart, 
as well as areas containing other blood cells or tissue resembling blood cells (Fig. 4 B, 
B’). This probability map of the blood cells is then multiplied by the original data, 
reducing the signal in background tissue while retaining the original intensity values of 
the volumes of interest (Fig. 4. C, C’). 
 
The processed image is then fed through a cell segmentation neural net (Cellpose) to 
identify the boundaries between individual cells for preliminary segmentation (Fig. 5, 6). 
The preprocessing step (Fig. 5A, B) allowed us to utilize a highly accurate but 
generalized segmentation model for a very specific application on a single cell type, in 
what would otherwise be a very high-background dataset with various other tissues and 
cell types dominating the analysis. The preliminary segmentation results (Fig. 5C, D) 
include volumes of high probability, which are not always blood cells but are on 
occasion spaces composed of cells and tissues that resemble blood cell morphology 
(Fig. 5B, C, D). These 3D objects are filtered using shape analysis: computational 
measures such as volume, elongation, flatness, equivalent spherical radius, and 
principal axis lengths derived from the manually curated manually segmented validation 
sets were used to remove instances of false positives (Fig. 5E). The removal of false 
positives is most apparent in a 3D rendering of the results before and after filtering (Fig. 
6). Post-filtering, blood cells are primarily retained in the expected regions, heart and 
dorsal aorta (Fig. 6A, B, Fig. 9). 
 
2.3. Segmentation Optimization and Validation 

The accuracy and precision of the automated segmentation results vary depending on 
parameters set during the formation of the pipeline and during data acquisition, and thus 
an F1 score-based method of validating various test results was used. This allowed us 
to compare different automated segmentation outputs with manually segmented 
validation sets to maximize the quality of segmentation for batch processing (Fig. 7). 
Volumes for validation sets contained several hundred cells and were taken from the 
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heart and dorsal aorta (Fig. 7A) to include signal heavy and background heavy data, 
respectively. Because our criteria for considering true positives involves not only 
detection of any individual cell in the same area as in the validation set, but also shape 
and volume characteristics, calculated using the Dice-Sorensen coefficient for each 
corresponding cell in the automatically- and manually-segmented sets. Overlap 
between individual cells in the automated and manual sets vary (Fig. 7B), and criteria 
for what is considered a true positive can change the F1 score significantly. Using a 
discrete cutoff value for what is considered a true positive and segregating all other 
instances into false positives and false negatives, an F1 score was generated for each 
integer cutoff ranging from 0 to 1 (Fig. 7C).  

 
Optimizing the pipeline (Fig. 8) and performing all the preprocessing steps described 
ensured a ~0.83-0.92 F1 score in both validation regions of the 5-dpf wt fish with little 
drop-off until a Dice-Sorensen cutoff of 0.5 (Fig. 7C). Optimization was performed for 
each variable in the pipeline, covering a range of values that increased, maximized, and 
then decreased F1 score (Fig. 8A, B). Variables optimized included filtered volume, 
elongation, flatness, principal axes lengths, intensity skewedness, and intensity kurtosis. 
After optimization of the pipeline, F1 score plots were compared to those generated by 
applying the Cellpose model to the raw, unprocessed micro-CT data in the same 
regions. Neither of these control groups generate an F1 score over 0.17 for either 
validation set comparison (Fig. 7C). A 3D render of the overlap between a single 
manually and automatically segmented, post-optimization cell is shown (Fig. 7D) in 
comparison to under and over segmented results. The renders visually confirm that the 
F1 score optimization is performing as expected on a cellular level; this step makes the 
automatically segmented cells better reflect the boundaries and shapes of the manually 
segmented cells (Fig. 8B).  
 
Our computational validation was confirmed by qualitative assessment of blood cell 
distribution within the sample (Fig 9). Blood cells, while distributed throughout the body, 
generally do not appear in predictable tissues lacking direct access by blood vessels at 
5-dpf in development such as the swim bladder muscle walls, brain regions occupied by 
neural nuclei, and the yolk sac (Fig. 9B-E). The largest concentration of blood cells is 
located within the heart and dorsal aorta, as well as various extending vessels 
appearing as lines of cells (Fig. 9A).  
 
These vessels were separately investigated for cellular detection which was confirmed 
in vessels running from the dorsal aorta into the eyes, brain, and adjacent to the yolk 
(Fig. 10). An advantage of isotropic 3D data is the ability to visualize particularly 
tortuous vessels (Fig. 10B) as straight tubes taken across one plane for quick visual 
confirmation of blood cell detection (Fig. 10C). Taken together, the detection and 
distribution of blood in expected structures, alongside the quantitative assessment of 
our automated segmentation method, illustrates the accuracy with which the automated 
algorithm can extract cells for shape characterization and further study via comparison 
to other similarly processed samples. 
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2.4. Characterization of Wild-Type Development and Comparison to 
hht 
 
Our analysis focuses on the commonly studied stages of development of 4-dpf and 5-
dpf, between normal wild-type growth and the degradation of the hht mutant. From our 
knowledge of striking differences in histological appearance between wild-type and 
mutant fish, we expect a large statistical difference between these two genetic 
backgrounds. Strong differences need to be seen in quantitative shape statistics in this 
setting if we are to be convinced that our approach can be useful for studying disease 
models. Because the hht mutant lacks a functional DNA polymerase pola2, it relies on 
its initial amount of maternally provided polymerase Lin et al. . This supply rapidly 
degrades, resulting in the fish starting development normally but quickly deteriorating on 
a cellular and organ level due to its inability to perform normal cell division during a time 
of growth. This is reflected in our findings, as the number of blood cells between wild-
type 4- and 5-dpf fish quadruple in number (from 1057 to 4491), while the 5-dpf hht 
sample contains approximately the same number of cells as its 4-dpf hht counterpart 
(from 714 to 882) [Tables 1-4].  
 
The difference in development between the genetic backgrounds is further observed in 
the corresponding blood cell shape statistics between the hht and wild-type datasets 
(Fig. 11). Visualization of the shape attributes reveals significant differences across 
sample groups, as genotypes are readily discernible by plotting cell volumes in a 
histogram (Fig. 11A). Wild-type cells have a significantly larger mean volume than hht 
mutant cells, even when controlling for age. Within genotype, wild-type cells increase in 
volume and quantity from 4- to 5-dpf age, supporting prior biological knowledge of 
zebrafish development (Ransom et al., 1996) (Fig. 11C). hht cells yield a different 
distribution of volume from 4- to 5-dpf, exhibiting a notably smaller mean volume and no 
clear increase in quantity. Further analysis of all shape statistics extracted through the 
pipeline provides a framework for further machine learning and statistical inference. 
Dimensionality reduction performed using linear discriminant analysis demonstrates the 
ability of the pipeline to segregate different cell phenotypes based on age and genetic 
background (Fig. 11B). Cells from each of the 4 groups analyzed in this pipeline are 
readily discernible when the data are plotted across the first 3 linear discriminants. 
Application of semi supervised learning approaches to the data yielded by this pipeline 
provide proof of concept in advancement towards computational phenomics, 
demonstrating the ability to separate segmentation results by age and genotype. 
 
These differences between the four genetic and development conditions can also be 
easily observed qualitatively (Fig. 12) in terms of blood cell distributions and gross 
anatomy. The wild-type and hht samples take on distinct body shapes, which diverge 
from the wild-type not only in cellular features but in organ size, shape, and distribution. 
The heart is pronounced and takes up much more space in the wild-type samples, 
compared to the underdeveloped and rapidly dying organ present in the hht fish that 
holds the highest concentration of blood cells (Fig. 12A-D). The shape and size 
differences are also apparent when the average principal axes lengths are used to 
approximate the average blood cell from each genetic background as an ellipsoid. 
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3. Discussion 
 
3.1. Model Confirmation and Blood Cell Development in Zebrafish 
 
As the interrogative power of imaging techniques increases both data quality and 
quantity for disease modelling, developmental studies, and clinical diagnosis, the need 
for automated analytical methods capable of processing 3D image datasets also 
increases. Here, we show the development and application of a segmentation and 
analysis pipeline that accurately characterizes and compares blood cells in micro-CT 
scans of developing zebrafish through an informed understanding of biologically 
constrained shape attributes. Our method accurately segmented blood cells from two 
distinct developmental stages and genetic backgrounds, extracted shape-defining 
statistics from all samples, and then was able to show differences between the datasets 
sufficient to classify new, unknown blood cells into these groups based on those same 
attributes.  
 
The segmentation and analysis of blood cells distributed across the whole-organism 
offers a set of unique advantages by providing cell count, cell characterization, and 
anatomical background for each sample analyzed. The difference in the distributions of 
the cellular attributes between the genetic backgrounds is supported by our finding that 
total cell count was increased between 4- and 5-dpf wild-type fish but not between 4- 
and 5-dpf hht samples, corresponding with what is known regarding hht degeneration 
during development; as the amount of pola2 decreases in the mutant and cells lose the 
ability to replicate, the number of cells and size of the fish should stop increasing and 
eventually cause death around 14-dpf. The visualizations of the original scanned fish 
data overlaid with the segmented blood cell data confirms this difference in anatomical 
shape and organ distribution and allows researchers to explore the full depth of both the 
masked cells as well as any background tissue of interest. Cellular counts, statistical 
shape analyses, and distribution of cells across the whole organism provides both a 
quantitative and qualitative method to confirm the presence of cells of interest in 
expected tissues, offers a comparison to samples from different experimental groups, 
and allows for discovery of cell distributions in unexpected locations. 
 
We anticipate that the most direct practical application for this approach is the 
confirmation of new and established zebrafish blood disease models. These include 
already generated mutations and environmentally induced phenotypes simulating 
conditions such as sickle cell anemia, hemolytic anemia, congenital dyserythropoietic 
anemia type II, hereditary spherocytosis, and congenital sideroblastic anemia 
(Shafizadeh et al., 2002), (Paw et al., 2003), (Liao et al., 2000), (Brownlie et al., 1998), 
(Williams-Pate & Gahr, 2019). Each of these models may benefit from showing 
quantitative cytological changes in red blood cells alongside anatomical background. 
This analysis, presented as is with no alteration, can be directly applied to such models 
to answer questions regarding the degree of change in blood cells compared to normal 
development while confirming that other cell types and organ systems remain 
unchanged or are altered as expected. This is accomplished by analyzing datasets with 
cell populations in the thousands, without resorting to extensive manual segmentation 
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work. Additionally, studies of other fish models such as teleost, carp, and tilapia could 
benefit from this analysis pipeline as their blood cells are also nucleated and resemble 
the zebrafish in shape, and size (Megarani et al., 2020). Taken together, our analysis 
pipeline and results represent a step towards comprehensive 3D computational 
phenotyping in whole vertebrate systems on a cytological scale. 
 
3.2. Generalizability of Segmentation Method for Sparse Datasets 
 
While the specific application of our segmentation method was focused on 
characterizing and comparing the blood cell populations of developing zebrafish, this 
study in conjunction with previous work (Ding 2019) shows flexibility of the general 
approach to more than a single cell and/or tissue type. The use of generalized and 
random forest classifier-based steps in the segmentation method (Ilastik, Cellpose) 
enables the same type of approach on other micro-CT datasets seeking to segment 
cellular and organ structures but lacking large training datasets. Random forest 
classifier frameworks can provide accurate classification-based masking from sparse 
training data, a necessary condition for the processing of most micro-CT datasets 
specific to a single organism and a single cell type. Open-source applications such as 
Ilastik allow for the generation of probability maps of as many classes of cells and/or 
organs as necessary, allowing for the training of all segmentation targets of interest in 
parallel on the same dataset. 
 
Masking out only the volumes containing the cells of interest via probability maps allows 
generalized approaches such as Cellpose to be used on each class, one at a time, 
focusing on the segmentation of cells within the pre-segmented data without contending 
with the biological background of the rest of the organism. Filtering preliminary results 
by shape statistics informed via established biological constraints limits the number of 
false positives within the detected objects. Finally, a comparison to manual 
segmentations established as ground truth within selected volumes of samples ensures 
accuracy of the approach and can inform the user of the requirement for a more robust 
training set. It is our hope that the generalizability of this approach will provide a 
pathway for extending it to other cell types within zebrafish and other organismal scans 
at different stages of development, and to clinical samples.  
 
3.3. Future Work  
 
The analysis framework applied to blood cells here can be extended to other biological 
imaging datasets and cell types. The detection and characterization of other cells, 
tissues, and model organisms will require customizations such as the selection of 
classes for segmentation and choice of shape statistics to measure and filter by. 
Additional procedures such as preliminary organ segmentation, using the same 
presented method on lower resolution images, can be implemented to restrict analysis 
to volumes of interest. Cell types with less defined borders than blood cells will pose a 
greater challenge to accurate segmentation. The ability to differentiate cell boundaries 
and cell types can be expected to be improved by increased resolution such as that 
which has recently become available using new micro-CT imaging systems (Yakovlev 
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2022). This work with blood cells in developing zebrafish provides a framework for 
commonly studied disease models that may benefit from automated segmentation and 
shape-based characterization of cells in their anatomically relevant context. Increasing 
accessibility to histotomographic imaging would allow computational phenomic 
approaches to evolve across model systems. 
 

4. Materials and Methods 
 
4.1. Key Resources Table 
 

Reagent 
type 

(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Strain 
(Danio rerio) 

Wild-type Ekkwill ZFIN ID: ZDB-GENO 
-990520–2 

  

Genetic 
reagent 
(Danio rerio) 

huli hutu Mohideen et al., 2003   

Software, 
algorithm 

Avizo Thermo Fisher Scientific SCR_014431 version 2021 

Software, 
algorithm 

Fiji/ImageJ2 https://fiji.sc/ SCR_002285  

Software, 
algorithm 

Ilastik Sommer et al., 2011 
(http://ilastik.org/) 

SCR_015246 version 1.3.3 

Software, 
algorithm 

ITK-SNAP Yushkevich et al., 2016 
(http://www.itksnap.org) 

SCR_002010 version 3.4 

Software, 
algorithm 

OpenSeaDragon https://openseadragon.github.io/   

Software, 
algorithm 

TomoPy Argonne National Labs 
(http://tomopy.readthedocs.io) 

SCR_021359  

Software, 
algorithm 

SimpleITK Yaniv et al., 2018 
Beare et al., 2018 
(https://simpleitk.org/) 

SCR_001149  

Software, 
algorithm 

Cellpose Stringer et al., 2021 
(https://www.cellpose.org/) 

SCR_021716 version 1.0.2 
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4.2 Zebrafish Husbandry and Sample Preparation 
 
Zebrafish were housed and raised in the Penn State Zebrafish Functional Genomics 
Core, which is equipped with 2 recirculating aquaria with 14:10 hour light:dark cycle and 
average temperature of 28°C. The wild-type zebrafish (Ekkwill strain) and hht mutant 
(Mohideen et al. 2003) were fed three times a day with diet consisting of brine shrimp 
and flake food. The hht mutants were maintained as heterozygous because the nature 
of the mutation is recessive larval-lethal. Zebrafish were set up for mating using Aquatic 
Habitat breeding tanks with dividers the afternoon prior to embryo collection. Once 
collected, the embryos were disinfected in 10% Ovadine (Syndel) for 2 min at room 
temperature followed by three washes with charcoal-filtered water. The embryos were 
incubated in 28°C incubator to maintain consistent development. Developmental staging 
series of fish were done based on Kimmel et al. (1995). Homozygous hht mutants were 
identified through gross phenotypes, including dorsally curved tail, small head and eyes, 
and enlarged yolk under stereomicroscopes at 2-dpf.  
 
Larval (2-, 3-, 4- and 5-dpf) zebrafish were euthanized in ice-buffered MS-222 (400 
mg/L) solution (Argent Chemical Laboratories, Redmond, WA). The fish were fixed in 
pre-chilled 10% neutral buffered formalin (NBF) (Fisher Scientific, Allentown, PA) 
overnight at room temperature (Lin et al. 2018). The fish were stained with 0.3% 
phosphotungstic acid (PTA) buffered in 100% ethanol for 24 hr at room temperature on 
a rotator and embedded as described in Lin et al. (2018). All procedures on live animals 
were approved by the Institutional Animal Care and Use Committee (IACUC) at the 
Pennsylvania State University, ID: PRAMS201445659, Groundwork for a Synchrotron 
MicroCT Imaging Resource for Biology (SMIRB). 
 
4.3 Micro-CT Image Reconstruction and Visualization 
 
All stained samples were imaged at the Argonne National Laboratory synchrotron 
facilities during two visits in 2011 and 2013 and reconstructed on site. Each individual 
scan was acquired as 1,501 400 ms projections over 180 degrees, in addition to dark-
field and white-field scans, using a 2048-by-2048pixel CoolSnap HQ CCD camera 
(Photometrics, AZ, USA) with a 10X objective lens. Projections were acquired at an 
energy of 13.8 keV for larval samples to maximize x-ray contrast for PTA-stained 
samples while compensating for sample thickness (Ding et al., 2019). A 30mm object-
scintillator distance was chosen for phase-contrast edge enhancement that most closely 
resembled contrast visible in histology. Reconstruction was done using the TomoPy 
toolkit (Gürsoy et al., 2014), including gain and dark-field correction and ring artifact 
reduction. Reconstruction yielded a 2048 x 2048 x 2048 voxel dataset at an isotropic 
pixel size of 0.743 µm for larval fish. Whole organism datasets were created by stitching 
multiple overlapping scans of the same sample. Visualization of data was performed on 
FIJI for slice-by-slice viewing and simple image transformations such as reslicing across 
variable angled planes. ITK-Snap was used to manually segment cells for validation 
sets, providing 3 orthogonal views for confirmation of boundaries as well as a 3D view 
of segmentations. Avizo was used for all other 3D renderings of datasets. 
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4.4 Blood Cell Identification, Manual Segmentation, and Visual 
Validation 
 
Blood cells were identified for segmentation by visually comparing micro-CT data to 
histology (Fig. 3). Even though our manual and automated segmentation pipelines 
focused on the detection of erythrocytes, the limits of micro-CT imaging resolution for 
whole zebrafish samples very likely includes lymphocytes and thrombocytes in our 
detected populations due to their similarity in shape and size. We use the term blood 
cells as the broadest representation of what is being segmented and characterized. 
Erythrocytes in zebrafish can be easily identified across either imaging modality, as they 
are nucleated, and appear as flat, elongated discs. When viewed in cross section, they 
can have a spear-shaped or spindled appearance. For manual validation sets, regions 
of interest were chosen based on the apparent variety of blood cell populations and 
density and included much variation in cell shape and background tissue. In wild-type 5-
dpf zebrafish, the heart and posterior dorsal aorta were chosen for these validation 
regions. Ages of fish were selected to show varying developmental stages and blood 
cell populations across wild-type and mutant individuals. 4- and 5-dpf wild-type fish 
were used to show general life stage cell populations. Scanned hht mutants at the same 
4- and 5-dpf stages were used to compare to the wild-type samples. The rapid cellular 
degradation of hht mutants was expected to manifest a difference in blood cell shape 
attributes. 

4- and 5-dpf wild-type fish are commonly studied developmental ages due to their size 
and complexity of tissues/cell types (Ronneberger et al., 2012), (Hu et al., 2000). As 
such, we chose to focus on these stages as a baseline to compare to other wild-type 
and mutant fish. Additionally, a 5-dpf zebrafish was the first zebrafish to be imaged with 
ssEM by Hildebrand et al (2017). Blood cells from this 1.7 TB dataset were segmented 
and used as a comparison for the micro-CT measurements in this study (Fig. 2), 
ensuring that any morphological metrics derived from the micro-CT data were accurate 
to their higher-resolution counterpart. 

Manual segmentations for automated pipeline validation were performed using the 
open-source software, ITK-SNAP version 3.8.0 (Yushkevich et al., 2016) 
(http://www.itksnap.org). Blood cells were segmented in each of three orthogonal views 
(sagittal, coronal, and axial). Contrast was adjusted in ITK-SNAP to make cell 
boundaries more visible and distinct from background noise and surrounding tissue.  
Each cell was segmented slice by slice in ITK-SNAP, and the Crosshair Mode tool was 
used to view individual cells in each plane. After completion, the segmentation was 
checked in each plane to evaluate border consistency and limit instances of “bleed-
over” inclusion of cells that were near the cell in question. The 3D viewer was used to 
visualize each cell to check overall shape. The same method was used for the 
Hildebrand EM cell segmentation. Two such comprehensively segmented manual sets 
were analyzed for the 5-dpf wild-type sample, to test variability in shape statistics and 
automatic segmentation accuracy across multiple sections of the zebrafish body. 
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4.5 Automated Blood Cell Segmentation 
 
For automated blood cell segmentation, our approach combines a random forest 
modeling framework, intensity-based nuclear detection, and a generalized neural net 
cellular segmentation method to accurately extract blood cells from micro-CT datasets 
of wild-type and mutant developing fish. 
 
4.5.1 Random Forest Classifier  
 
We utilized the open-source classification software Ilastik to generate a pixel 
classification model for blood cell detection (Berg et al., 2019). 3D micro-CT training 
datasets representative of typical scans were used as input data for development of the 
model. All possible intensity, edge, and texture features were enabled to be used for 
classification weighing by the algorithm. Training data was provided by manual 
segmentation of each class, including blood cells, neural nuclei, muscle, pharynx, 
cartilage, intercellular space, other general soft tissue, and background. Segmentations 
were added and the model corrected iteratively in real time as Ilastik’s live update 
feature allows for immediate feedback on changes in the output after any individual 
segmentation is performed. All data used to train the classifier was completely 
independent from validation data used to confirm accuracy of the automated 
segmentation pipeline. Qualitative observation was used to determine when the model 
was sufficiently developed for generalized blood cell detection from micro-CT images of 
zebrafish as a preliminary step, and further confirmed by quantitative validation (Fig. 4, 
Fig. 7, Fig. 8). The model generates a voxel-by-voxel probability map for each 
processed image, in which the sum of all possible class predictions for every voxel add 
up to 1. This model, trained on multiple samples, subsequently served as a 
comprehensive detection method, and was applied to all of the datasets presented in 
the paper, making use of their similar scanning and reconstruction parameters. This 
probability map is multiplied by the original data to conserve the intensity range of blood 
cells while removing background tissue from the image (Fig. 4, Fig. 5). 
 
4.5.2 Cellpose-Based Segmentation 
 
We adapted Cellpose v.1.0.2 (Stringer et al., 2021), a generalized cellular segmentation 
algorithm, for segmentation of a specific cell type by processing the input data as 
specified above. To focus the analysis on blood cells in what is otherwise a very 
background-heavy dataset (including other cell and tissue types not needed for 
segmentation and potentially interfering with Cellpose), the raw micro-CT data was 
multiplied by the probability map output from Ilastik before being fed into Cellpose. This 
retains the values of high probability blood cell volumes close to their original intensities 
while reducing the signal of other cell and tissue types. The Cellpose output is then 
further processed by prior biological knowledge through the removal of any segmented 
objects not fitting with the known shape statistics derived from manually segmented 
cells taken from validation sets, including volume, flatness, elongation, principal axes 
length ratios. 
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Using a Dice-Sorensen measure of overlap to compare to manually segmented sets, it 
was determined that performing this pre and post processing outperformed Cellpose 
results from the raw data with no further steps (Fig. 7). 
 
4.5.3 Shape Analysis and Evaluation Metrics 
 
Individual segmented cells were further interrogated by the computation of shape and 
intensity statistics for more accurate characterization of individual samples and 
comparisons between developmental stages and genetic conditions. The SimpleITK 
shape statistic image filter and intensity statistic image filter were used to generate 
metrics for each cell (Yaniv et al., 2018), (Beare et al., 2018), covering volume, 
elongation, flatness, equivalent spherical radius, and perpendicular principal 3D axes for 
shape statistics, as well as average intensity, intensity standard deviation, and intensity 
skewness for intensity statistics, as described: 
 
Volume: Total voxel count per individual cell label. 
 
Elongation: A ratio of the moments of every individual cell along the principal long and 
medium axes. 
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Where v is the total voxel volume of an individual cell, m is a mass constant for every 
individual voxel, r is the perpendicular distance from a voxel to the axis of rotation, and 
a1 and a2 are the longest and medium perpendicular axes of the cell, respectively. 
 
Flatness: The degree to which each label approximates a mathematical plane. 
Calculated as a ratio of the moments of every individual cell along the smallest and 
medium axes. 
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Where v is the total voxel volume of an individual cell, m is a mass constant for every 
individual voxel, r is the perpendicular distance from a voxel to the axis of rotation, and 
a2 and a3 are the medium and shortest perpendicular axes of the cell, respectively. 
 

Equivalent Radius: Radius of a sphere with the same volume as the cell label. 
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Where V is the total volume of the cell. 
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Perpendicular Axes: Lengths of the three perpendicular axes of each label that 
encompass the longest and shortest possible distance between points on the cell 
border. 
 
Intensity Mean: The average of the voxel intensities that comprise each label. 
 
Intensity STD: The standard deviation of the voxel intensities that comprise each label. 
 
Intensity Skewness: The skewness of the voxel intensities that comprise each label. 
 
These values were calculated for every automatically segmented cell and were 
subsequently compared to the limits of known values derived from manually segmented 
sets for each genetic and developmental condition, using the full range of obtained 
variables. All automatically segmented objects outside of these limits were removed as 
false positives. This ensures higher accuracy in detecting only normal cells across all 
test populations as high probability areas with unrealistic shapes and intensities are 
filtered out and additionally ensures consistent application of constraints across all 
samples. 
 
4.6 Segmentation Validation and Experimental Group Comparison 
 
As our analysis places emphasis on automated detection and classification of cells in 
the context of whole animal 3D datasets, validating the method against both manual 
sets as well as other methods of automated segmentation is necessary for showcasing 
utility. Additionally, to characterize blood development across multiple popularly studied 
stages in development as well as genetic backgrounds, we applied the finalized method 
to several groups of micro-CT datasets of similarly aged fish. We used the hht mutant 
as a control of abnormal blood development in which we expect heavy differences from 
the wild-type. 
 
4.6.1 Method Validation 
 
To compare automatically segmented datasets with manually processed data we used 
the Dice-Sorensen coefficient to calculate overlap between individual cells in the same 
automatically and manually segmented regions. Setting a threshold for a Dice 
coefficient between two cells to be considered valid, and treating the manually 
segmented set as ground truth, we can subdivide all cases of cell overlap between the 2 
sets into true positives (TP), false positives (FP), and false negatives (FN). Calculating 
precision and recall from these values allows for the generation of an F1 score that 
serves as an indicator of automated segmentation accuracy: 
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To validate our blood cell detection pipeline against other methods of cellular detection, 
we compared our automated segmentation results to output obtained from Cellpose, a 
generalized cell detection model trained on large datasets, run on the raw and unaltered 
data. All F1 scores were generated by comparing automated methods to manual 
segmentation, covering three volumes spread across different anatomical regions of the 
zebrafish we trained our model on, to prevent detection bias that could arise from 
analyzing only one section with a specific background. 
 
4.6.2 Comparison Methodology 
 
Our preliminary dataset consists of 4 samples, covering 4- and 5-dpf developmental 
stages as well as wild-type and hht genetic backgrounds. Shape analysis of 
segmentation results yielded tabular data for each sample (4-dpf wild-type, 4-dpf hht, 5-
dpf wild-type, and 5-dpf hht). These data were compiled into csv files with each feature 
(volume, intensity mean, etc.) as a column and each cell as a row. CSV files were then 
read into python as data frames using the pandas software package (McKinney, 2010). 
A label column was added to each cell denoting the genotype and age of each fish from 
which the cell segmentation mask was extracted. The volume measurement was used 
for basic data exploration prior to downstream machine learning analysis. Histograms of 
cell volume were generated with the seaborn package (Waskom, 2021). Blood cell 
measurement data was then pre-processed for machine learning steps using the 
standard scaler method in scikit learn. The label and radius columns were removed 
from the data frames prior to further analysis. The Intensity-associated columns were 
removed due to image acquisition differences and thus intensity variation between 
samples. All other measurements were included for linear discriminant analysis (LDA) 
with 3 components (Fig. 11). LDA was used to visualize and evaluate the ability of the 
pipeline to resolve different phenotypes.   

 
Data Availability Statement 
 
Digital histology is publicly available from our Zebrafish Lifespan Atlas (http://bio-
atlas.psu.edu) (Cheng, 2004). Raw reconstructed data and images processed through 
Ilastik, Cellpose, and filtering of the four zebrafish larvae involved in analysis, along with 
validation data, are available on Dryad (https://datadryad.org/). The used Ilastik model 
and scripts written for cell detection and characterization are also provided. Due to the 
large size of these files, image bit depth was scaled down from 32 bit to 8 bit in FIJI 
prior to uploading. Full bit-depth scans and images, including raw projection data, are 
available from researchers upon request as a download or transfer to physical media.  
 
The following dataset was generated: 
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Vanselow, Daniel et al. (2023), Quantitative Geometric Modeling of Blood Cells from X-
ray Histotomograms of Whole Zebrafish Larvae, Dryad, Dataset, 
https://doi.org/10.5061/dryad.f1vhhmh2d 
 
The following previously published datasets were used: 
Hildebrand, D. G. C., Cicconet, M., Torres, R. M., Choi, W., Quan, T. M., Moon, J., 
Wetzel, A. W., Scott Champion, A., Graham, B. J., Randlett, O., Plummer, G. S., 
Portugues, R., Bianco, I. H., Saalfeld, S., Baden, A. D., Lillaney, K., Burns, R., 
Vogelstein, J. T., Schier, A. F., … Engert, F. (2017). Whole-brain serial-section electron 
microscopy in larval zebrafish. Nature, 545(7654), 345–349. 
https://neurodata.io/data/hildebrand17/ 
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Figure 1: Data pipeline for automated segmentation and quantitative
characterization. Samples are fixed, stained with PTA, and embedded in resin prior to
scanning at synchrotron micro-CT facilities. Representative areas are selected for
manual segmentation, enabling machine learning algorithm training and the
establishment of ground truth validation sets. Whole unsegmented samples are
processed through the automated segmentation pipeline and compared to the manually
segmented volumes: cellular-level statistical shape and image intensity attributes are
extracted from both sets and confirmed in the same regions. Processing multiple mutant
and wild-type samples at different developmental stages allows for accurate blood cell
comparisons between experimental and control groups. 
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Figure 2: Comparison of slice images and 3D renders of blood cells acquired with
micro-CT and serial-section electron microscopy (ssEM). (A) Blood cells from our 5-
dpf dataset were compared to (B) a published SEM dataset of another 5-dpf fish. (C, D)
Both datasets were automatically segmented using Ilastik and rendered in 3D. Average
volumes of individual blood cells were compared between 3 manually segmented EM-
scanned cells and the manually segmented micro-CT validation set from the heart, with
the values differing by only 8 "µm3" (acquired using ITK-SNAP). 
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Figure 3: Blood cells were identified in micro-CT datasets based on their known
staining patterns in histology. (A) Hematoxylin and eosin stained 5-micron thick
slices of a normally developing 5-dpf zebrafish are compared to (B) a 5-micron thick
maximum intensity projection taken at a similar angle from a micro-CT scan of a similar,
normal 5 dpf fish. Staining patterns between histology and PTA-stained micro-CT
images show similar staining across anatomic regions, including the heart (C, D).
Individual nucleated blood cells can be distinguished across both imaging modalities for
segmentation. Physical cutting artifact in the histology section push certain features out
of the section (e.g. yolk in the bottom right of the zoom-in of the histology is partially
missing due to loss during floating of the tissue section, and is fully present not present
in the virtual section of the micro-CT dataset.) 
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Figure 4: An iterative, machine learning-based training approach was used to
isolate non-specific blood cell voxels for automated segmentation. (A) A 2D
example of random forest classifier-based iterative model development is presented on
a single slice of a wt 5 dpf fish dataset, where the pixel prediction of each tissue class
improves with additional data. (A’) A single annotated pixel per class can separate yolk
and empty background space but does not separate the tissues into distinct zones of
confidence and is highly error prone. A round of basic annotation (A’’) significantly
improves the result, but still shows classification issues in complex areas (e.g., brain
regions interpreted as muscle in the green box). Additional annotation specific to those
areas (A’’’) further refines the accuracy of the pixel classification. (B) Output from a
trained Ilastik model is in the form of a probability map for each class. The probability
map for blood cells in the same slice is shown as a heat map, and (B’) is overlaid back
onto the original data. (C) Input to Cellpose for automated segmentation of individual
cells was generated by multiplying the probability map by the original image, generating
a dataset that retains any cellular properties in the volumes of interest ((C’) in this case
intensity profiles of blood cells) while suppressing all other anatomic background. 
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Figure 5: Automated segmentation workflow visually confirms boundary
detection of cells and is further improved by shape statistic filtering. (A) A 2D slice
of micro-CT data from a 5 dpf fish is shown with the heart highlighted in red. (B) The
same region is presented as a result of the image multiplied by the corresponding
probability map. Arrows point to regions of high probability that resemble blood cells but
do not share the manually-derived blood cell shape statistics. (C) Initial segmentation
results identify these areas, despite (D) visually confirmed accurate boundary detection.
(E) Automated removal of any detected objects that do not fall within the known shape
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parameters of zebrafish blood cells removes these objects. The 3D render of 
segmented blood cells in entire region is shown in (F). 
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Figure 6: Filtering the preliminary cell segmentation results by biologically 
informed shape and intensity statistics removes false positives from the dataset 
while retaining segmented blood cells in expected regions. (A) Cellpose output of 
the processed Ilastik data filters cells from most areas of the body but leaves false 
positives in tissues that resemble blood cells in texture, such as neural nuclei in the 
brain and eye. (B) Filtering these preliminary results by known biological characteristics 
of blood cells, obtained from automated measurements of manually segmented 
validation sets, removes these false positives while retaining true positives within 
expected regions such as the heart and major vessels. 
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Figure 7: Degree of physical overlap, measured as an F1 score, between
automatically segmented blood cells and manual sets validates the accuracy of
our automated workflow. (A) Validation regions in 5dpf fish were taken from a section
of the dorsal aorta with few blood cells and abundant tissue background (a’), and the
heart, which is dense in blood cells and low in other biological background (a’’). This
allowed us to test automated segmentation accuracy in widely varied regions. (B) A
region used for validation is shown with various degree of overlap between manually
and automatically segmented cells. Arrows point to examples of clear false positives
(black arrow), clear false negatives (blue arrow) and potential true positives (white
arrow). (C) Optimizing similarity of automatically segmented cells to manual validation
sets was done quantitatively. F1 scores were generated using increasing Dice-
Sorensen coefficients as requirements for what degree of overlap between a manually
segmented and automatically segmented cell qualifies as a true positive. Pre-
processing the raw micro-CT data using the probability map and post-processing the
data by filtering cells using the known biological shape statistics of blood cells increased
the performance of the automated segmentation pipeline, both in validation regions of
the heart and aorta (blue arrows). (D) The overlap (D’’’) of a single cell, segmented
manually (D’) and automatically (D’’), is shown as a 3D render. Qualitative observation
of an optimized output shows a large degree of overlap (blue) between the segmented
data. 
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Figure 8: Automated segmentation pipeline was optimized through maximizing
Dice-Sorensen coefficients between automated results and manually segmented
validation sets. (A) Generated F1 scores for various Dice-Sorensen cutoffs are shown
for cells automatically segmented in the heart (a” in Figure 7). The pipeline was
adjusted to segment cells with a series of average diameters of 3 pixels (D3) through 9
pixels (D9). The closest computational similarity between automatically and manually
segmented cells was obtained for an average diameter of 6 pixels, which corresponds
to the average spherical radius of manually-segmented zebrafish blood cells. Visual
assessment for an individual cell in the center of the distribution illustrates this result
(B). The same cell is rendered as the manual segmentation from the validation set (red),
automated results (green), and volumes of overlap (blue) for diameters of 3 pixels (B’),
6 pixels (B’’), and 9 pixels (B’’’). Visual results confirm the highest Dice-Sorensen score
when using an expected diameter of 6 pixels. 

  

 

ng 
ed 

n 
as 
 9 
lly 
ds 
al 

ult 
d), 
’), 
re 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541939doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541939


Figure 9: Rendering of detected blood cells in context of original data. (A) All
detected blood cells in a 5-dpf zebrafish are shown overlaid onto a rendering of half of
the background anatomical data, cut sagittally. (B) A transversely cut, zoomed-in render
of the detected cells in the heart region of the 5-dpf fish is shown, illustrating a high
concentration of blood cells. A zoomed-in render of the raw zebrafish data with all
detected cells is provided across large areas of the (C) air bladder muscles, (D) brain
neural nuclei, and (E) yolk sack to emphasize the absence of detected blood cells in
regions expected to lack them. 
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Figure 10: The automated segmentation pipeline detects blood cells in thin blood
vessels. (A) A 5 µm thick MIP of a vessel approximately 10 µm in diameter running
adjacent to the yolk shows blood cells in various orientations. (B) A MIP of a thinner,
approximately 5 µm thick blood vessel running to the brain is presented with overlaid
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detected cells oriented in the same direction. A dotted line is shown between its two 
halves where the tortuous nature of the vessel travels out of slice. (C) The nature of 3D 
data allows the same vessel in (B) to be straightened out digitally for interrogation as a 
single line. (D) The walls of thin vessels with few blood cells are easier to visualize due 
to their high amount of empty space. 
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Figure 11: Comparison of blood cell shape statistics reveals distribution
differences between samples. (A) Distributions of wild-type (WT) and hht blood cell
volume measurements extracted from the automated segmentation pipeline are shown
plotted according to zebrafish sample. (B) Linear discriminant (LD) analysis applied to
shape attributes from each sample reveals separation of cells by genetic and age
phenotypes. (C) Distribution of cell volume within the wild-type genotype is shown
stratified by age. (D) Distribution of cell volume within the hht genotype is shown
stratified by age. 
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Figure 12: 3D renders of blood cell distributions in 4- and 5-dpf wt and hht mutant
fish. Blood cells (rendered in red) are shown overlaid onto a cut-in render of the
background datasets. Cellular distribution is visibly different across the widely varied
shapes of the WT and hht samples.  (A, C) The highest concentration of blood cells in
the 4- and 5-dpf WT fish can be seen in the heart and dorsal aorta, with various blood
cells distributed through vessels in the body. (B, D) This distribution is roughly
conserved in the hht samples, though the progressive degradation of the cells and
organs alters the heart shape, cell counts, and (E) cell shape between the 5-dpf
samples. 
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