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Abstract 

The continuous evolution of new SARS-CoV-2 variants with enhanced immune evasion capacity suggests the 

entire population is and will continue to be potentially vulnerable to infection despite pre-existing immunity. 

The ability of each new variant to evade host humoral immunity is the focus of intense research across the 

globe. Each variant may also harbor unique replication capabilities relevant for disease and transmission. Here 

we demonstrate the utility of a new approach to assessing viral replication kinetics using Real Time Cell 

Analysis (RTCA). Virus induced cell death is measured in real time by the detection of electrical impedance 

through cell monolayers. Using this system, we quantified replication kinetics of five clinically important viral 

variants; USA WA1/2020 (an A1 ancestral lineage isolate), Delta, and Omicron subvariants BA.1, BA.4, and 

BA.5. We identified multiple kinetic measures that proved useful in variant replication comparisons including 

time (in hours) to the maximum rate of cell death at each log10 viral dilution and the slope at the maximum rate 

of cell death. We found that WA1/2020 and Delta were the most rapid but in distinct ways. While WA1/2020 

induced cell death most rapidly after inoculation, Delta was slightly slower to reach cell death, it appeared to 

kill cells faster once cytotoxic effects began. Interestingly, BA.1, showed substantially reduced replication 

kinetics relative to all other variants. Together, these data show that real time analysis of cell death is a robust 

method to assess replicative capacity of any given SARS-CoV-2 variant rapidly and quantitatively, which may 

be useful in assessment of newly emerging variants. 
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Introduction 

The recently emerged coronavirus, SARS-CoV-2, has been responsible for the ongoing pandemic since 2019.  

Since its initial emergence, it has continuously evolved, fueled by immune pressure from vaccination and 

natural infection in the human population.  From the early widely circulating strain, deemed WA1/2020 in the 

United States [1], variants have included the first D614G mutant [2,3], Alpha (B.1.1.7) [4,5], Beta (B.1.351) [6], 

Gamma (P.1) [7,8], Delta (B.1.617.2) [9,10], Lambda (C.37) [11], and Mu (B.1.621) [12].  Since it was first 

detected in November of 2021, the variant of concern termed Omicron has spawned multiple sub-lineages, 

many of which show substantial variation relative to the original Omicron variant from which they evolved 

[13,14].  New variants/sub-variants are routinely discovered, such as Omicron XBB.1.5 [15] and BQ.1.1 [16], due 

to recombination within hosts, immune evasion, and spread within populations. 

 

New variants rapidly spread through populations and often become dominant before declining in frequency and 

being replaced by a new variant, often with even greater antibody escape capacity [9,10,14,17,18].  This has 

resulted in monoclonal antibody therapeutics and infection-derived antibodies becoming ineffective as the 

pandemic has continued, due to the highly specific nature of antibody binding [16,19-22].  Vaccines are affected 

as well, though often to a lesser degree [6,13,23-27].  Immunity generated by the widely used mRNA vaccines 

also shows decreased neutralizing capacity for variants relative to the ancestral variant, with serum from 

vaccinees having up to 3-fold decreased neutralization for the Delta variant [28] and far greater reductions in 

neutralization of omicron and its subvariants.  Variants may evade cellular immunity as well [29] though this 

appears to be less widespread than evasion of humoral immunity.   

 

In addition to immune escape, mutations in newly emerged variants may also impact viral infection, replication, 

and transmission. Mutations within the receptor binding domain (RBD) of the spike protein may modify 

binding and uptake of virus while spike mutations outside the RBD may alter aspects of replication in other 

ways favorable for intrahost viral dynamics. Altered replication dynamics may also impact disease severity and 

inter-host transmission [3,17,30].  In prior work, Omicron showed reduced viral replication kinetics in cell 

culture, potentially due to a reduced ability to antagonize the interferon response as compared to Delta [31], 

which may be associated with the reduced severity of disease associated with the Omicron variant.  Mutations 

underlying these altered kinetics may lie outside of spike in structural or nonstructural proteins [32].  Altogether, 

these findings highlight the importance of robust characterization of viral kinetics in live, whole virus assays. 

 

A technology utilized in the cancer biology space that has expanded into virology laboratories in recent years, 

termed Real-Time Cell Analysis (RTCA) using the Agilent xCELLigence eSight system, has the potential to 

rapidly assess viral replication kinetics and other important parameters. This technology is based upon real time 
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measurements of electrical impedance of a cell monolayer [33-38].  The impedance is a correlate of monolayer 

integrity, with impedance falling as cells are destroyed, including as a result of lytic viral infection.  This is 

reflected in a unitless value termed cell index, which can be monitored on a per-well basis over the course of 

multiple days and combined with visual monitoring of the monolayer using an integrated microscope and 

camera. We herein describe the use this technology as a platform for detailed examination of the in vitro 

kinetics of replication of multiple SARS-CoV-2 variants of concern.  We show RTCA to be an ideal tool for 

viral characterization that can aid in elucidation of unique aspects of emerging variants during a rapidly 

evolving pandemic. 

 

Materials and Methods 

Virus and Cells 

Multiple SARS-CoV-2 variants were used to infect Vero-TMPRSS2 cells (# JCRB1819, JCRB Cell Bank). 

Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS) and 1% Anti-Anti additionally supplemented with 2% G418 Sulfate Solution. 

 

The following viruses were received from BEI: NR-54001, icSARS-CoV-2-WT (WA1/2020); hCoV-

19/USA/MD-HP20874/2021 WCCM (Omicron BA.1): NR-58620, hCoV-19/USA/COR-22-063113/2022 

WCCM (Omicron BA.5); and NR-56806, hCoV-19/USA/MD-HP30386/2022 WCCM (Omicron BA.4); NR-

55672, hCoV-19/USA/MD-HP05647/2021 (Delta B.1.617.2). Virus was propagated in Vero-TMPRSS2 cells to 

create stocks. Sequences of new stocks were confirmed by  Ilumina sequencing as previously described. 

Genome assembly and variant analysis was performed using DRAGEN COVID Lineage pipeline as an Illumina 

BaseSpace App following standard protocol, except for a custom primer BED file containing the SWIFT 

primers [39]. 

 

TCID50 

Median Tissue Culture Infectious Dose (TCID50) was performed on each stock to quantify the amount of active, 

replication competent virus. Vero TMPRSS2 cells were plated in 48-well tissue culture treated plates to be 

subconfluent at time of assay. Cells were washed with serum free DMEM and 50uL of virus was allowed to 

adsorb onto the cells for 1 hour at 37°C and 5% CO2. After adsorption, cells were overlayed with DMEM 

containing 2% FBS and 1% Anti/Anti (#15240062, Thermo Scientific, USA). Plates were incubated for 7–10 

days before being observed for cytopathic effect (CPE). Any CPE observed relative to control wells was 

considered positive and used to calculate TCID50 by the Reed and Muench method [40]. 

 

Real Time Cell Analysis assay setup and data analysis  
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Vero TMPRSS2 cells were plated in 96-well tissue culture treated E-Plate VIEW plates (#300-601-020, 

Agilent) to be subconfluent at time of assay. Viral strains were each diluted with DMEM containing 2% FBS 

and 1% Anti/Anti to the same starting concentration of 1e5 TCID50 followed by 1:10 serial dilutions for a total 

of seven dilutions. Media was removed from the wells of the 96 well plate, and 100uL of virus samples were 

added. 100uL of 2% FBS 1% Anti/Anti DMEM were added to the negative control wells. The plates were then 

placed on the xCELLigence RTCA eSight impedance and imaging cradles (cradles 1-3). The plate layouts and 

experiment schedule were defined in the Esight software. Impedance measurements for each well were 

collected every 15 minutes and images for each well collected every 60 minutes over the course of 5 days. 

 

Cell index values over time were graphed in the xCELLigence software. Graphs for all plates were then 

normalized at the same timepoint (11.76 hours) with the delta cell index function to add a constant to the cell 

index of each well. Area Under the Curve (AUC) for each replicate was calculated using the Area Under the 

Curve analysis function in the Prism software. The AUC baseline parameters were set based on the lowest delta 

cell index (impedance) value for each replicate. Kruskal-Wallis test was then performed to compare the total 

AUC of variants at each concentration.  

 

Slope values over time were graphed in the xCELLigence software and normalized to the same timepoint 

(11.76 hours) prior to exporting data. The lowest slope (steepest downward slope) value of each replicate was 

identified as the “max slope”. The time at which each replicate reached the max slope was also recorded. 

Kruskal-Wallis test was then performed to compare the value and time of max slopes of each variant at each 

concentration.  

 

Results 

Cell index patterns differ between variants 

Vero/TMPRSS2 cells were inoculated with multiple SARS-CoV-2 variants of concern to characterize the viral 

ability to infect and destroy the monolayer, by near-continuous monitoring of the monolayer impedance to 

electricity as a correlate of cellular death.  Readings of the monolayer impedance were taken every fifteen 

minutes over the course of five days in order to generate impedance curves (Fig. S1).  Various characteristics of 

these curves were analyzed, including time to maximum (max) slope, value of max slope, and area under the 

curve (AUC) of the impedance drop.  These were performed using multiple dilutions of virus in order to 

characterize differences at a range of infectious doses.  The specifics of these patterns and their differences by 

variant are captured in this manner. 

 

Slope characteristics differ between variants 
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The time taken to reach the max slope was the first metric used to assess replication kinetics of the different 

variants across a range of dilutions.  In all dilutions, WA1/2020 reached max slope more quickly than all other 

variants, save for Delta at 1e4 and 1e3 TCID50, though the trend persisted with those comparisons as well.  

BA.1 was the slowest at reaching max slope across dilutions, though not all pairwise comparisons reached 

statistical significance.  BA.4, BA.5 and Delta were not significantly different from each other across dilutions 

(Fig 1A). 

 

The area under the cell index curve (AUC) was next analyzed for each variant and dilution.  WA1/2020 had the 

lowest AUC across all dilutions, being significantly lower than BA.1, BA.4, and BA.5 at various dilutions, but 

never reaching significance compared to Delta.  BA.1 had the highest AUC of the variants at all dilutions, being 

significantly higher than Delta at 3 of 4 dilutions and higher than WA1/2020 at all dilutions (Fig. 1B). 

 

The absolute value of the slope generated by each variant was also assessed.  A clear pattern emerged wherein 

Delta exhibited the steepest absolute slope while BA.1 exhibited the least steep slope (Figure 2A). Statistical 

analyses validated these observations. Delta generated the steepest slope of all variants across all dilutions, 

being significantly different than BA.1, BA.4 and BA.5 at some dilutions, though never reached significance 

compared to WA1/2020 due to a slightly higher standard error.  BA.1 had the least steep slope at all dilutions.  

At the two highest viral inputs, 1e5 and 1e4 TCID50, WA1/2020 had a steeper slope than BA.1, though the trend 

did not continue for the lower dilutions (Fig. 2B). 

 

AUC relationships correlate with slope characteristics and concentration of viral inoculum 

Comparisons of slope characteristics reveal relationships between various aspects of the cell index curves.  The 

input virus concentration does not appear to correspond with the value of max slope, except for Delta at 1e3 to 

1e5 TCID50 dilutions.  Relationships do exist between concentration and time to max slope, as well as 

concentration and AUC, with both time and AUC falling as viral input concentration increases (Fig. 3A). 

 

Time to max slope does correlate with AUC across all dilutions, with 1e4 and 1e2 TCID50 input concentrations 

having the highest correlations, at 0.9289 and 0.9132, respectively.  All p values were below 0.0001, indicating 

a high degree of correlation (Fig. 3B).  The AUC and value of the max slope are fairly related, with clustering 

occurring among variants.  The exception to this is Delta, with only small clustering at the highest viral input, 

and very little among other dilutions (Fig. S2).  Time to max slope and value of max slope are somewhat similar 

overall to the AUC/max slope value relationship.  Variants other than Delta cluster together, giving the 

impression of some degree of interrelatedness (Fig. S3). 
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Trends in slope characteristics follow visually captured cell death 

Images of each monolayer at the same spot in each well were captured at 60-minute intervals over the course of 

the experimental period allowing for generation of time lapse videos.  This enables cytopathic effect (CPE) to 

be interpreted visually during viral infection with each variant.  At 1e5 TCID50 input, WA1/2020 reaching 

widespread cytotoxicity can be seen before other variants, with BA.1 showing the slowest progression.  The 

progression of Delta can be seen as a slow initial development of CPE, followed by a rapid progression across 

the monolayer once CPE begins.  Overall, Delta is most similar to BA.4 and BA.5 visually, with WA1/2020 and 

BA.1 being the most rapid and most slow, respectively.  This trend mirrors that seen in the slope characteristics 

(Fig. S4).  Comparisons between variants taken at the same point, 5 hours prior to the max slope timepoint, 

show a contrast between Delta and other variants.  At concentrations of 1e4 and 1e5, the effect of cellular fusion 

appears evident from visual inspection of the monolayer (Fig. 4). The effect is less apparent but still visible at 

lower concentration (Fig. S5). 

 

Discussion 

Here we investigated the differences in the replication kinetics of multiple SARS-CoV-2 variants of concern via 

the surrogate cell index method that measures electrical impedance of a cell monolayer.  This correlates to 

monolayer integrity that is altered by viral replication and cytopathic effect.  We utilized this technique to 

quantify multiple aspects of the cell index curves generated over a time course of monolayer infection with 

known viral input concentrations, including AUC, time to max slope, and value of max slope. 

 

Cell index patterns over time as monolayer infection progresses can be seen as a decrease in impedance, or the 

ability of the monolayer to resist current.  The patterns here, such as the slope of that decrease, can be 

characterized in order to determine differences in viral kinetics of replication.  WA1/2020 reached max slope 

more quickly than other variants, indicating that it reaches a point during replication of cellular destruction on a 

wide scale more quickly than others.  BA.5 was the closest to this rapid pace, and BA.1 was the slowest. These 

data suggest that mutations accumulated or lost in BA.5 relative to BA.1 explain this kinetic difference and may 

indicate selection to regain a greater level of replicative ability lost in the BA.1 variant. Whether these changes 

have any impact on pathogenicity is difficult to address. Indeed, if any of the newly emerging subvariants of 

Omicron have recapitulated the pathogenicity of earlier, pre-Omicron variants, this effect might be masked in 

humans by the high global incidence of prior vaccination or infection, particularly with the BA.1 variant, which 

has led to very high levels of global immunity, which undoubtedly reduces disease and death associated with 

subsequent infection with any variant. Thus, any increase in pathogenicity associated with specific variants 

should be rigorously addressed in animal models.  
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The absolute value of the slope correlates to how quickly the monolayer is losing its ability to resist current, 

indicating viral destruction of the monolayer.  Delta was the highest variant, by far, for this metric, indicating 

that it rapidly destroys the monolayer, despite its delay reaching that slope as compared to WA1/2020.  As 

before, BA.1 was the slowest here, indicating a slower replication potential. It is intriguing to speculate what 

might explain Delta’s uniqueness in this measure. Other studies have indicated that Delta replicates faster than 

other variants using different measures than we used here [41] but those measures may fail to identify the 

nuanced difference between Delta and the ancestral WA1/2020 that RTCA captures in our assays. When Delta 

was initially detected, there was much research into identifying mutations that might have led to its increased 

replicative capacity and possibly pathogenicity. One mutation in particular, spike P681R, was shown to increase 

both fusogenicity and pathogenicity in hamsters [42,43]. Whether this mutation underlies the effects we have 

identified remains to be seen but could be tested.  

 

Total area under the curve, indicating the total amount of time of replication in the monolayer, was the highest 

for BA.1, reinforcing the slow replication profile.  WA1/2020 was the most rapid overall, with BA.5 being 

closely followed by Delta, indicating Delta doesn’t match WA1/2020 despite its rapid pace of monolayer 

destruction once initiated. 

 

Our data reveal or confirm several aspects of viral replication that may shed light on the ongoing COVID-19 

pandemic. First, we found that the Omicon subvariant BA.5 recapitulates most replicative features of the 

ancestral WA1/2020 variant, suggesting selection to regain features missing in the BA.1 variant. Second, our 

data reveal a unique replication profile for the Delta variant, which has been shown to induce greater 

pathogenicity in animal models and possibly in humans as well. Finally, and perhaps most importantly, our data 

add to a large body of work demonstrating that the original Omicron variant, now termed BA.1, was 

demonstrably and significantly less fit in terms of replicative ability than any other tested variant, which very 

well may correlate with the clearly reduced pathogenicity of this variant. That this variant swept the globe, 

infecting far more people than all other variants, likely suggests that its immense immune evasion capacity far 

outweighed its reduced replicative ability allowing for widespread infection including in those with pre-existing 

immunity.  

 

Together, the work described here further elucidates the patterns of replication exhibited by each variant of 

SARS-CoV-2, with added clarity of real time cell analysis allowing us greater insight into potential replication 

kinetics across time points not typically examined.  Real time cell analysis is a robust method that, in 

conjunction with established tools including qPCR, genomics, animal modeling and public health surveillance, 

will give us greater insight into the unique nature of newly emerging variants. 
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Figure Legends 

 

Fig. 1.  Kinetic Comparisons of Vero/TMPRSS2 cells inoculated with multiple SARS-CoV-2 Variants of 

Concern 

(A) Time to reach max slope of inoculated cells and (B) Area under the curve of cell index.  Data is 

represented as mean with SEM.  Groups were compared via Kruskal-Wallis test. (*, p<0.05; **, p<0.01; 

***, p<0.001; ****, p<0.0001). 

 

Fig. 2.  Cell Index over time and slope of Vero/TMPRSS2 monolayers inoculated with SARS-CoV-2 

Variants  

.  Cell index was determined every 15s over the course of 5 days. Data was normalized at 11.756h. (A) The 

time taken to reach each variant’s max slope across multiple viral concentrations graphed as averages with 

SEM and (B) Value of max slope.  Groups were compared via Kruskal-Wallis test. (*, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001). 

 

Fig. 3. Slope and AUC Relationships of SARS-CoV-2 Variants 

(A) Relationships between Time to max slop, value of max slope, and AUC with varying viral 

concentrations applied to cell monolayers.  (B) Relationship between AUC and time to reach max slope 

for each variant.  P value represents Spearman correlation. 

 

Fig. 4. Monolayers visualized during replication 

Images of monolayers taken 5 hours prior to each variant’s maximum slope time point for Vero/TMPRSS2 

inoculated with (A) 1e5 TCID50 or (B) 1e4 TCID50 SARS-CoV-2. 
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