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55 Abstract

56 Background: Our understanding of SARS-CoV-2 evolution and mutation rate is limited. The 

57 rate of SARS-CoV-2 evolution is minimized through a proofreading function encoded by NSP-

58 14 and may be affected by patient comorbidity. Current understanding of SARS-CoV-2 

59 mutational rate is through population based analysis while intra-host mutation rate remains 

60 poorly studied.

61

62 Methods: Viral genome analysis was performed between paired samples and mutations 

63 quantified at allele frequencies (AF) ≥0.25, ≥0.5 and ≥0.75. Mutation rate was determined 

64 employing F81 and JC69 evolution models and compared between isolates with (ΔNSP-14) and 

65 without (wtNSP-14) non-synonymous mutations in NSP-14 and by patient comorbidity.

66

67 Results: Forty paired samples with median interval of 13 days [IQR 8.5-20] were analyzed.  The 

68 estimated mutation rate by F81 modeling was 93.6 (95%CI:90.8-96.4], 40.7 (95%CI:38.9-42.6) 

69 and 34.7 (95%CI:33.0-36.4) substitutions/genome/year at AF ≥0.25, ≥0.5, ≥0.75 respectively. 

70 Mutation rate in ΔNSP-14 were significantly elevated at AF>0.25 vs wtNSP-14. Patients with 

71 immune comorbidities had higher mutation rate at all allele frequencies. 

72

73 Discussion: Intra-host SARS-CoV-2 mutation rates are substantially higher than those reported 

74 through population analysis. Virus strains with altered NSP-14 have accelerated mutation rate at 

75 low AF. Immunosuppressed patients have elevated mutation rate at all AF. Understanding intra-

76 host virus evolution will aid in current and future pandemic modeling.
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77 Background:

78 Since the introduction of the SARS-CoV-2 pandemic in 2020, over 102 million cases have been 

79 reported within the United States (1). During this time, multiple variants have emerged 

80 associated with alteration in clinical outcomes, disease severity and transmission dynamics (2). 

81 SARS-CoV-2 rate of mutation are commonly estimated through inferring substitution rate matrix 

82 based on phylogenetic tree using maximum likelihood methods through analysis of global 

83 databases comprised of unrelated virus sequences submitted ad hoc(3,4) .This population-based 

84 rate began at a modest 21.9 substitutions/genome/year in the initial months but has steadily risen 

85 over the course of the pandemic where it is now estimated at ~28.4 substitutions/genome/year 

86 (5). However, viral mutation rate during the course of the infection remains poorly understood 

87 with few studies describing intra-host kinetics. 

88 Analysis of SARS-CoV-2 mutations within a host during the course of an infection have been 

89 highly variable and are affected by sequencing protocols and data analysis parameters( i.e. 

90 variant-calling) (6,7). The mutation rate of SARS-CoV-2 genome is slower than most RNA 

91 viruses predominantly through the action of nonstructural protein 14 (NSP-14) (8). NSP-14 is 

92 present in all coronaviruses and contains an N‐terminal ExoN domain providing replication 

93 fidelity for the RNA dependent RNA polymerase important for viral replication and transcription 

94 (9–11). Mutagenesis of NSP-14 enzymatic activity is thought to have significant impact on 

95 increased genomic mutation diversity (12). ExoN inactivation was shown to create a “mutator 

96 phenotype,” leading to a 15‐ to 21‐fold rise in mutations during replication in cell culture but 

97 may adversely affect viral fitness (10).Additionally, viral mutagenesis is reported to be 
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98 influenced by host comorbidities (13). Subsequently, there is concern that novel variants eliciting 

99 immune escape emerge within immunocompromised hosts following prolonged infection (7).

100 To better understand the mutation capacity of SARS-CoV-2, we perform analysis of paired 

101 samples and calculate the intra-host mutation rate with further examination of the effects of 

102 altered NSP-14 and host comorbidity.  Better insight on this viruses ability to evolve has 

103 importance for both current and future coronavirus pandemics (14).

104 Methods:

105 Sample Identification and collection

106 Patient samples were identified through The Cleveland Clinic Pathology and Laboratory 

107 Medicine Institute (PLMI) SARS-CoV-2 variant surveillance project(2).  Selected samples 

108 focused on the period of the initial pandemic wave between 3/17/2020 and 5/27/2020. This 

109 period was chosen as treatment was limited and immune-preventative strategies (e.g. 

110 immunizations, monoclonal antibodies) against SARS-CoV-2 were not available. Additionally, 

111 SARS-CoV-2 re-infection was unlikely during this period. Hence, the mutation rate analysis is 

112 unlikely to be influenced by these external factors.

113 Adults age ≥ 18 years with multiple positive nasopharyngeal samples occurring within 5 to 60 

114 days of initial screening were identified. This interval time frame was selected to prevent 

115 skewing of model results from short sampling intervals while further minimizing chance of re-

116 infection with different SARS-CoV-2 strains (15,16). Only pairings where initial and subsequent 

117 samples had cycle threshold (CT) ≤ 30 were included to ensure high quality genomic 

118 sequencing. Children <18 years were excluded as identification of SARS-CoV-2 in children 
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119 during the first wave was minimal. Those specimens with an indeterminate result, obtained from 

120 locations other than the nasopharynx, or whose samples contained discordant viral lineages 

121 (suggesting reinfection) were also excluded.

122 Patient comorbidities were identified through the COVID-19 registry (17). Patients were 

123 classified into four comorbidity categories: Endocrine (obesity and diabetes mellitus), cardiac 

124 (hypertension and coronary artery disease), pulmonary (asthma, obstructive sleep apnea and 

125 COPD) and immunologic (autoimmune diseases, history of prior/ current cancer and current 

126 immunosuppression therapy). Sample collection and medical review is approved by the Internal 

127 Review Board at Cleveland Clinic. 

128 Library preparation and sequence data analysis: 

129 Following patient identification, initial and subsequent nasopharyngeal samples were retrieved 

130 from Biobank freezers housed at PLMI and processed for viral genome analysis though next 

131 generation sequencing (NGS). Total nucleic acids were purified from each specimen and subjected 

132 to reverse transcription (RT), NGS library preparation, sequencing, and data analysis according to 

133 the manufacturer’s recommendation (Paragon Genomics, Hayward CA). Briefly: Total RNA from 

134 SARS-CoV-2 was converted into complementary deoxyribonucleic acid (cDNA) synthesis via RT 

135 in 20 μL reactions (10 minutes at 8°C and 80 minutes at 42°C). The derived panel of 343 amplicons 

136 utilized for SARS-CoV-2 enrichment covers 99.7% of the viral genome 

137 (MN908947/NC_045512.2) with 92 bases uncovered at each end. Purified cDNA was subject to 

138 multiplex PCR (10 minutes at 95°C, followed by 10 cycles at 98 °C for 15 seconds each and 60 

139 °C for 5 minutes). Excess primers and oligos were subsequently removed from the purified PCR 

140 products, after which a second round of PCR to append indexing primers was performed (initial 
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141 denaturation, 10 minutes at 95°C, followed by 24 cycles of 98°C for 15 seconds and 60°C for 75 

142 seconds). Sequencing libraries were then prepared and quality was assessed visually using an 

143 Agilent® 2100 Bioanalyzer® (Agilent, Santa Clara CA). The presence of a ~275 bp peak indicated 

144 successful amplification and these libraries were then sequenced using a MiSeq instrument 

145 (Illumina, San Diego, CA). Raw fastq reads was extracted by Illumina bcl2fastq (v2.20.0) and 

146 mapped to the reference genome Wuhan-Hu- 1 (NC_045512.2) using BWA program (18). 

147 Variants were called using FreeBayes program (19) and filtered at 5% and 10% allele fractions for 

148 insertion or deletion (INDEL) and single nucleotide variants (SNV), respectively. Amino acid 

149 changes were annotated using snpEff (v4.5) program (20). All variant data was visually examined 

150 in Integrative Genome Browser (IGV, version 2.11.0) (21) to eliminate artifacts. Quality was 

151 ensured by monitoring mapping quality, phred score, and manual review. 

152 Variant Calling

153 Variant calling methodology is strongly dependent on the library protocol and sequencing 

154 technology and requires tuning of parameters to distinguish true variants from false positive calls 

155 (22) . Variant calling was expanded from established WHO criteria (23) and was performed by 

156 manual review of each SNV by three independent investigators through IGV (21).  We used a 

157 minimum depth of ≥100 reads at each position for all samples and quantified SNV at 3 separate 

158 allele frequencies (AF ≥0.25, AF ≥0.5, and AF ≥0.75). AF was defined as the proportion of SNV 

159 in the sample reads. Mutation change represents the discordance in SNVs between initial and the 

160 subsequent samples at each AF.  In addition, SNVs below 0.25 AF and those mutations where 

161 investigator consensus was not achieved were excluded from the analysis to ensure no 

162 overestimation of mutation rate. Following classification of mutation (missense, silent, nonsense, 
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163 INDEL) and location within the genome, isolates with non-synonymous mutations of NSP-14 

164 were identified and placed in the ΔNSP-14 group. As our understanding of SARS-CoV-2 NSP-

165 14 is evolving, no weight was given to mutation types (Missense vs frameshift vs nonsense) or 

166 location within NSP-14 (active vs structural site). Changes in genome between initial and 

167 subsequent samples were quantified for each pair and used for calculation of mutation rate 

168 (standardized to mutations/genome/year) through both F81 and JC69 models (below). 

169 Calculation of Genome Mutation rate: 

170 We chose two mutation models (F81 and JC69) in calculating the overall substitution rates 

171 between samples (24,25) as sample size was limited and both models assume equal mutation 

172 rates across different nucleotides allowing for a smaller number of model parameters. JC69 also 

173 assumes equal base frequencies, whereas F81 allows for variable base frequencies with equal 

174 substitutions providing a more realistic calculation of the mutation rate. For both models, 

175 mutation rates were estimated by the use of maximum likelihood algorithms. Hereafter, the 

176 results detail findings from the F81 model while results detailing findings from the JC69 analysis 

177 appear in the supplementary materials.

178 F81 model derivation:

179 For each of the n patients, we obtained two virus specimens at different time points and the time 

180 interval is denoted as tk for patient k. To obtain the maximum likelihood estimate of the mutation 

181 rate based on the evolutionary model F81, we assume all the patients are independent. Therefore, 

182 the likelihood of the data (L) is the product of the likelihood (Lk) of each patient k, measuring the 

183 probability of observing the sequence evolving over time tk. Because for each patient, both initial 
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184 and subsequent sequences were available, under the assumption that all the nucleotides are 

185 independent, the probability Lk is the product of the probability over all nucleotides. Under the 

186 model F81, the probability that a nucleotide i (i ∈{A, T, G, C}) remains unchanged over time t is 

187 𝑃𝑖𝑖(𝜇𝑡) =  𝑒―𝜇𝑡 + 𝑝𝑖 (1 ―  𝑒―𝜇𝑡)

188 and the probability of a nucleotide i to change to a nucleotide j over time t is

189 𝑃𝑖𝑗(𝜇𝑡) = 𝑝𝑗 (1 ―  𝑒―𝜇𝑡)

190 where u is the mutation rate per nucleotide per year, and 𝑝𝑖  is the frequency of nucleotide i. Let 

191 l(ij),k denote the number of nucleotide i changed to nucleotide j for patient k (in the case of i is the 

192 same as j, the nucleotide remains unchanged), the overall likelihood can thus be represented as

193 𝐿 =
𝑛

𝑘=1
𝐿𝑘  =   

𝑛

𝑘=1

𝑇

𝑖 = 𝐴

𝑇

𝑗=𝐴

[𝑝𝑖𝑘.𝑃𝑖𝑗(𝜇𝑡𝑘)  ]𝑙(𝑖𝑗),𝑘  

194 where 𝑝𝑖𝑘 is the frequency of nucleotide i in the first specimen of the kth patient (in practice, these 

195 frequencies are very similar to the frequencies from the SARS-CoV2 reference sequence). The 

196 log likelihood is  

197 𝑙 = 𝑙𝑜𝑔(𝐿) =  𝐶 +
𝑛

𝑘=1

𝑇

𝑖=𝐴

𝑇

𝑗=𝐴
 𝑙(𝑖𝑗),𝑘𝑙𝑜𝑔(𝑃𝑖𝑗(𝜇𝑡𝑘))] 

198 The maximum likelihood estimate cannot be obtained analytically. We relied on the Newton-

199 Raphson method (26), which iteratively updates the new value of the mutation rate u until 

200 convergence. 
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201 The detailed derivations for both F81 and JC69 models can be found in the supplementary 

202 methods. 

203

204 Statistical analysis

205 Continuous variables were described using median and range; categorical variables were 

206 described using frequency and percentage. Demographics and variant characteristics were 

207 compared between patients in different virus groups by using ANOVA or Wilcoxon rank sum 

208 tests for continuous variables and Fisher’s exact or Pearson’s chi-square tests for categorical 

209 variables. The estimated mutation rates from two different groups are compared using the t-test, 

210 assuming the maximum likelihood estimates follow approximately a normal distribution. The 

211 confidence interval of the estimated mutation rate is calculated based on the maximum likelihood 

212 estimate following approximately a normal distribution N(u, 1/I(u)) , where u is the true value, 

213 and I(u) is the Fisher information. PRISM software (version 8.4.3, GraphPad Software, San 

214 Diego, CA) and Python (version 3.7.4) with statsmodel package (version 0.13.2, for construction 

215 of ML models) was used for analysis.

216 Results:

217 From 3/17/2020 through 5/27/2020, a total of 40 paired nasopharyngeal samples (initial and 

218 subsequent) from acutely infected individuals with SARS-CoV-2 were identified and retrieved 

219 from the COVID19 biobank. Median days between paired tests was 13 days [IQR 8.5-20]. 

220 Median patient age was 54 years [IQR 31, 66] and included 20/40(50.0%) males with 26/40 

221 (67.0%) being white, and with 28/40 (70.0%) having at least one comorbidity (table 1). 
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222 Comorbidities included endocrine 23/40 (57.5%), cardiac 17/40 (42.5%), pulmonary 8/40 

223 (20.0%) and Immune/Oncologic 6/40 (15.0%).

224 SARS-CoV-2 genomes of each pair were sequenced and mapped against the reference Wuhan 

225 strain (Wuhan-Hu-1, NC_045512.2). SNVs were identified for each pairing through IGV and 

226 filtered at allele frequencies (AF) ≥0.25, ≥0.5 and ≥0.75. A total of 120 SNVs changes between 

227 initial and subsequent samples were identified at AF ≥0.25, 53 at AF ≥0.5 and 33 at AF ≥0.75 

228 (table 2). The majority of SNV changes were gained over the course of the infection (93/120 

229 (77.5%), 32/53 (60.4%), 18/33 (54.8%) at AF ≥0.25, ≥0.5, ≥0.75 respectively) with the 

230 remainder being lost (27/120 (22.5%), 21/53 (39.6%), 15/33 (45.2%) at AF ≥0.25, ≥0.5, ≥0.75). 

231 Predominant SNVs were missense with most occurring in the ORF1a/b region and the spike 

232 protein region. While more SNVs were gained at low AF, there was no substantial difference 

233 between SNV types or gene location among different AF. 

234 We identified 12/40 (30.0%) pairs with a non-synonymous mutation in NSP-14 (ΔNSP-14) while 

235 28/40 patients (70.0%) did not (wtNSP-14). Median age, gender, race and comorbidities were 

236 similar between both groups. For both ΔNSP-14 and wtNSP-14 groups, the majority of SNVs 

237 were gained over the course of infection in both groups. Mutation types and locations were 

238 similar between groups (supplementary table 1 and 2). 

239 Mutation rates were calculated through the F81 and JC69 models (figure 1, supplementary figure 

240 1 for JC69). Focusing on F81 modeling, the mutation rate from all samples was found to be 93.6 

241 substitutions/genome/year [95%CI 90.8-96.4] at AF ≥0.25, 40.7 [95% CI 38.9-42.6] at AF ≥0.5 

242 and 34.7 [95%CI 33.0-36.4] at AF ≥0.75. Mutation rate of ΔNSP-14 were significantly higher at 

243 low AF compared to wtNSP-14 group (109.4 [95%CI 99.7-119.1] vs 86.0 [95%CI 82.1-89.9] 
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244 substitutions/genome/year, p-value <0.001). Surprisingly, mutation rate was lower in ΔNSP-14 

245 compared to wtNSP-14 both at AF ≥0.5 (32.0 [95% CI 26.8-37.2] vs 44.9 [95% CI 42.1-47.7] 

246 substitutions/genome/year, p-value <0.001) and at AF ≥0.75 (16.0 [95% CI 7.0-25.1] vs 39.8 

247 [95% CI 25.0-54.5] substitutions/genome/year, p-value <0.001).

248 Lastly, patients with underlying immunologic/oncologic comorbidities had a substantially higher 

249 mutation rate than other comorbidities at all three AF (figure 2, supplementary figure 2 for 

250 JC69). Mutation rate in patients with immunologic/oncologic comorbidities was 160 [95% CI 

251 136.2-183.7] vs 81.2 [95% CI 78.1- 84.2] substitutions/genome/year at AF ≥0.25, 137.9 [95% CI 

252 115.8-160.0] vs 22.6 [95% CI 21.0-24.2] at AF ≥0.5 and 126.9[95% CI 105.7-148.0] vs 17.4 

253 [95%CI 16.0-18.9] at AF ≥0.75. Overall mutation rates calculated through JC69 modeling were 

254 comparable to those with F81 at all three AF (supplementary figure 3). Results based on JC69 

255 modeling are presented in Supplementary Figures 1 and 2.

256 Discussion:

257 The dynamics of SARS-CoV-2 evolution remain poorly understood. The virus continues to 

258 change leading to the emergence of new variants adversely affecting pandemic response (27). 

259 The mutation rate commonly cited is calculated through analysis of unrelated regional and global 

260 sequences. These population based rates have ranged from 21.6 to 28.4 

261 substitutions/genome/year (5). The rate of evolution of SARS-CoV-2 for much of 2020 was 

262 consistent with the virus acquiring approximately two mutations per month (28,29). However, 

263 recently the viral mutation rate has accelerated and now lies at its fastest point with the 

264 emergence of the Omicron variant (30).
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265 Here, we analyze intra-host mutation rate at multiple allele frequencies to better characterize and 

266 understand the capacity for SARS-CoV-2 to evolve following its initial introduction and prior to 

267 external influence by antivirals, vaccinations and prior immunity. While intra-host mutation 

268 dynamics have been previously described (31), the intra-host mutation rate over the course of an 

269 infection, important for predicting future variant development has been poorly studied. We find 

270 the intra-host mutation rate is over 50% greater than what was reported through population based 

271 surveillance at AF ≥0.75 (the WHO standard). Additionally, if low frequency SNVs (<0.75) act 

272 as a reservoir for further generation of dominant mutations, the mutation rate can be up to 80% 

273 higher at AF ≥0.5 and nearly 350% greater at AF ≥0.25. Recognition of this mutation potential 

274 aids in our understanding of current evolutionary patterns and provides useful clues for future 

275 coronavirus pandemics (32,33).

276 By analyzing the genomic changes at lower AF, our study provides a better appreciation of intra-

277 host SARS-CoV-2 biodiversity. We find the highest diversity at lowest AF (≥0.25) 

278 demonstrating that potential SNVs occur nearly 4 times higher than commonly reported. Fitness 

279 of these low frequency SNVs and their effect on transmission remains poorly understood. 

280 Current literature is skeptical of significant person to person spread of low AF SNVs and report 

281 only rare transmission recognized among individuals within the same household (6,7,34). 

282 However, it is reported that accelerated episodic increase in mutation rate (~ 4 fold higher than 

283 the background substitution rate) drive the emergence of variants of concerns(35). We 

284 hypothesize that low AF SNVs may play a role in such a process.  

285 Prior studies report that alteration in NSP-14 is associated with increased mutation load across 

286 the genome compared to other NSP changes (36). NSP-14 is vital for survival of various 
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287 coronaviruses including SARS-CoV-2 (37).  Inactivating NSP-14‐ExoN in murine hepatitis virus 

288 (MHV‐CoV) significantly altered recombination patterns and decreased recombination 

289 frequency compared with wild‐type MHV‐CoV (10). While virus diversity has been found to 

290 contribute to disease severity in coronaviruses including SARS-CoV-1 and MERS-CoV (32), 

291 further studies showed ExoN knockout mutants of MERS-CoV and SARS-CoV-2 are nonviable, 

292 suggesting excess mutation may have a deleterious effect (11,38). Our findings are consistent 

293 with this. While the mutation rate is significantly higher in ΔNSP-14, such change occurs only at 

294 low AF. This suggests SARS-CoV-2 viruses with altered NSP-14 may be less fit (37). As such, 

295 SARS-CoV-2 NSP-14 is being evaluated as a potential therapeutic target (10,12). 

296 Lastly, SARS-CoV-2 genetic diversity and clinical outcome are influenced by host effects (33). 

297 High rates of mutation over short time periods have been seen in previous studies of 

298 immunosuppressed individuals chronically infected with SARS-CoV-2. (39–41). Additionally, 

299 prolonged viral shedding can occur in the immunocompromised population allowing for 

300 increased time to generate fit mutations (42). In one example, SARS-CoV-2 shedding was 

301 observed for as long as 471 days from the upper respiratory tract of a patient suffering from 

302 advanced lymphocytic leukemia and B-cell lymphoma. Throughout the course of this infection 

303 the accumulation of an unusually high number of immune escape mutations was detected and the 

304 mutation rate was calculated at 35.6 (95% CI: 31.6-39.5) substitutions per year through the 

305 Bayesian Skyline Model (43). In our study, we  included patients with several comorbidities, 

306 only viruses originating from hosts with immune comorbidities were found to have significantly 

307 accelerated mutation rate (44) . This adds to the growing understanding that a patient’s immunity 
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308 profile impacts viral evolution over the course of the infection (43). Better delineation of specific 

309 immune factors associated with alteration of evolutionary rate are needed.

310

311 There are several limitations to this study. First, while our investigation of 40 SARS-CoV-2 

312 patient pairs demonstrated substantially higher mutation rate than commonly reported, further 

313 analysis with larger cohorts would improve accuracy.  Similarly, patients were grouped in broad 

314 comorbidity categories rather than by more specific underlying disease. Studies with greater 

315 characterization of underlying comorbidities, particularly immune, will provide a better picture 

316 of host factors associated with alteration in SARS-CoV-2 mutation (42,45). While a cutoff AF ≥ 

317 0.75 was based on WHO guide for global variant surveillance, the significance of lower 

318 frequency SNVs remains unclear. This study sheds more light on the virus diversity identified at 

319 lower AF thresholds. By focusing analysis on viral isolates originating from the initial pandemic 

320 wave, ours is the first study to determine the intra-host mutation rate of SARS-CoV-2 prior to the 

321 influence of many external factors (e.g. antiviral medications, monoclonal antibody therapy, 

322 immunization, and natural immunity from prior infection). Determining the effect of 

323 pharmacologic interventions, immunization and previous infection on the mutation rate of 

324 subsequent SARS-CoV-2 isolates is a logical next step.  Additionally, analysis of subsequent 

325 SARS-CoV-2 variants (Alpha, Delta, and Omicron) with parameter rich models such as HKY or 

326 GTR are currently being planned. Lastly, placement of patients within wt and ΔNSP-14 groups 

327 occurred without association to gene location or type. It is possible that several NS mutations 

328 placed in this group did not substantially affect NSP-14 function.  Further study focusing on 

329 those SNVs with a defined effect on NSP-14 activity are needed (45). 
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330 Conclusion:

331 Our study demonstrates the intra-host mutation rate of SARS-CoV-2 is substantially higher than 

332 previously reported through population based analysis. In addition, low frequency intra-host 

333 mutations may be an important reservoir contributing to possible future variant emergence. 

334 SNVs in NSP-14 were found to have increased mutation rate but only at low AF. Conversely, we 

335 find enhanced mutation rate in immunocompromised patients while no elevation was observed in 

336 patients with underlying cardiac, pulmonary or endocrine comorbidities. SARS-CoV-2 intra-host 

337 dynamics have crucial implications on current and future pandemic planning, development of 

338 vaccines, and antiviral therapy.

339
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463

464

465

466

467 Figure Legends:

468 Figure 1. F81 Mutation Modeling by Allele Frequency with and without alteration in NSP-

469 14. Graphic representation of F81 evolution modeling at AF ≥0.25, ≥0.5, ≥0.75 of A) total 

470 patient sample and B) comparison between wt and ΔNSP-14. Bars represent 95%CI. Table 

471 displaying data for F81 modeling is displayed below. P-values displayed represent comparison of 

472 wt and ΔNSP-14 groups.

473 Figure 2. F81 Mutation Clock Modeling by Allele Frequency with Respect to Age and 

474 Comorbidity. Graphic representations of mutation rates at AF ≥0.25, ≥0.5, ≥0.75 for A) age and 

475 comorbidities and B) those with and without immunologic/oncologic comorbidity. Bars 

476 represent 95%CI. Table displaying data for F81 modeling is displayed below.
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