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Time and effort are critical factors that are thought to be subjectively balanced during the1

planning of goal-directed actions, thereby setting the vigor of volitional movements. Theo-2

retical models predicted that the value of time should then amount to relatively high levels3

of effort. However, the time-effort tradeoff has so far only been studied for a narrow range4

of efforts. Therefore, the extent to which humans can invest in a time-saving effort remains5

largely unknown. To address this issue, we used a robotic exoskeleton which significantly6

varied the energetic cost associated with a certain vigor during reaching movements. In7

this situation, minimizing the time-effort tradeoff would lead to high and low human ef-8

forts for upward and downward movements respectively. Consistent with this prediction,9

results showed that all participants expended substantial amounts of energy to pull on the10

exoskeleton during upward movements and remained essentially inactive by harnessing11

the work of gravity to push on the exoskeleton during downwardmovements, while saving12

time in both cases. These findings show that a common tradeoff between time and effort13

can determine the vigor of reaching movements for a wide range of efforts, with time cost14

playing a pivotal role.15
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1 Introduction17

Most actions in daily life require us to select the speed or duration of goal-directed movements, that is, their18

vigor [1]. Thus, it is an ubiquitous feature of volitional actions, the setting of which is thought to be rooted in19

the basal ganglia [2, 3], in particular the striatum [4–10]. Current works suggest that vigor essentially reflects20

the internal value, or utility, of a given action [1, 11–13]. Numerous behavioral studies have shown that vigor21

is indeed modulated by the expected reward of the task at hand [14–19], with reward tending to be discounted22

over time [20–22]. However, if the modulation of vigor allows to modify the time needed to accomplish a task,23

it also affects the energy expenditure. Interestingly, reward has also been found to increase the propensity to24

put extra effort into a task [11, 23]. Therefore, movement vigor may generally result from the maximization of a25

capture rate, such as the sum of all rewards achieved minus all efforts expended, divided by the time. This global26
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tendency has been observed in humans and many other species in foraging-like tasks [24–27]. An alternative27

formulation considers vigor as the outcome of the minimization of a subjective weighting between a cost of time28

(CoT) and a cost of movement, modulated by the expected reward [20, 21], which is convenient to model vigor29

in reaching tasks [28, 29]. When reward is not explicit (e.g., pointing to a light spot), movement vigor could30

then be determined by a common tradeoff between time and effort, which could represent a trait-like feature of31

individuality [30–34]. Empirical evidence of such a subjectiveCoTwas recently reported in an isometric reaching32

task without explicit reward [35]. Based on this premise, several computational models were developed to account33

for the vigor of individuals during walking [34] and reaching [20,29,31,35,36], from a similar minimum time-effort34

(MTE) principle. Estimation of the underlying CoT in reaching was obtained from point-to-point movements of35

various amplitudes, using effort costs traditionally represented inmotor control [29,31], even though other factors36

such as accuracy or comfort may also modulate vigor in general [37–41].37

Interestingly, computational models revealed that the putative CoT should actually grow quickly to account38

for the vigor of self-paced pointing movements, such that time could amount to relatively high levels of effort. In39

other words, people could be prone to expend substantial energy to avoid excessively long movement times. Pre-40

vious paradigms did not allow to test this prediction because the energetic cost of actions was too small or varied41

marginally through the different conditions of the task [11, 20, 27, 31, 35, 36]. Furthermore, while moving faster42

requires more energy expenditure, it does not necessarily have to come from human muscles, as demonstrated43

by using an electric bike or cycling downhill for instance. Therefore, do people rely on a common time-effort44

tradeoff to set movement vigor when the effort term is broadly varied experimentally?45

Here, we designed an original experiment leveraging the versatility of a robotic exoskeleton to investigate this46

question. Two conditions requiring either a high or low energy expenditure to move with a similar vigor were47

implemented. The task consisted of performing vertical forearm movements to point-light targets while wear-48

ing the exoskeleton (Fig. 1A). During upward movements, the exoskeleton provided an assistance of duration49

Tj along a predefined human-like trajectory so that the participant could comfortably and accurately complete50

the task without any effort. Crucially, this duration could be significantly longer than the participant’s preferred51

movement duration in the task, Th,0. In this case, the MTE theory predicts that all participants should be prone52

to energize the movement by pulling on the exoskeleton (Fig. 1B). To induce high levels of effort, and strongly53

penalize potential time savings, the robot applied a viscous-like resistance proportional to the participants’ max-54

imum voluntary force as soon as they outpaced it. During downward movements, we took advantage of gravity55

to design a different assistance whereby saving a similar amount of time as for upward movements would instead56

require virtually no effort. In this case, the MTE theory predicts that all participants should remain practically57

inactive to behave optimally (Fig. 1C). This apparatus allowed for a significant departure from the MTE predic-58

tions depending on the participants’ choices. For instance, participants could choose to remain inactive in all59

conditions, thus failing to save time when relevant in the sense of the MTE theory. In contrast, participants could60

actively put energy into the task in all conditions, thus failing to save effort when relevant in the sense of the61

MTE theory. Thus, the results will determine whether vigor is the result of a common time-effort tradeoff dur-62

ing reaching movements whose energy cost for a certain duration varies greatly, or whether the MTE principle63

should be revised.64
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Figure 1: Illustration of theoretical predictions for an assistance 6x slower than the nominal vigor of the participant in
the task (i.e., Tj = 600%Th,0). A. Different input torques involved in the task. The term τj is the torque provided by the
robot as a biological movement assistance (here minimum jerk trajectory of duration Tj ) as long as the participant does not
outpace the planned trajectory. The term τh is the net torque produced by the human muscles (τh = 0 when the participant
is inactive). The term "pulling" (respectively "pushing") refers to a participant generating an upward/positive (respectively
downward/negative) torque τh. The term τv is a viscous-like torque applied by the robot, which is replacing τj as soon
as the participant choose to outpace the planned trajectory. F is the measured interaction force. B. Possible strategies
during upward movements in terms of effort and time costs (see Equation 8 for details regarding the cost function). The red
vertical line highlights the costs associated with the participant’s preferred duration Th,0. The blue vertical line highlights
the costs associated with the exoskeleton’s planned duration. The black disk represents the optimal strategy in the sense
of a MTE tradeoff. During upward movements, the participant could only save time by actively pulling on the exoskeleton
(i.e., τh > 0), which is represented by the shaded red area. The participant could also remain inactive and be moved by
the robot, which is represented by the vertical dashed black line (inactivity). Otherwise, the participant could actively
push against the exoskeleton (i.e., τh < 0), although it would mean voluntarily wasting both time and effort. C. Possible
strategies during downward movements in terms of effort and time costs. The pulling (shaded blue) and pushing (shaded
red) areas are different from panel B because both pushing and pulling can allow to save time in this condition (although
the latter strategy would be non-optimal from the MTE perspective). The critical difference for downward movements is
that participants could save time by simply dropping their forearm, thereby passively pushing on the exoskeleton thanks
to their own weight (dashed black line labelled inactivity). A strong deviation from this nearly optimal strategy could be
observed if participants use a fixed effort-based heuristic to save time, by either actively pulling (to compensate for a part
of the weight) or actively pushing on the exoskeleton.

2 Results65

In this experiment, we asked N = 12 participants to perform reaching movements to point-light targets at their66

preferred pace. The movements consisted of a discrete sequence of vertical elbow flexions and extensions. Both67

the target and a visual feedback of the participant’s current position were displayed on a large screen in front of68

the participant. Our experiment was divided in two sessions. In the first session (baseline), the exoskeleton was69

controlled in transparent mode, that is, no assistance was provided by the robot that compensated for its own70

dynamics and minimized interaction efforts [42,43]. In this session, before being installed in the exoskeleton, the71

participants also performed a maximum isometric voluntary force (MVF) test, performed using an 1-axis force72

transducer (the reader is deferred to theMethods section for details regarding the procedure). Themain objectives73

of the baseline session were to estimate the nominal vigor of the participants (i.e., their preferred movement74

duration in the task) and their maximal force characteristics. This allowed to design a subject-specific assistance,75
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which was normalized with respect to time and effort for the subsequent test session. Knowing the nominal vigor76

of the participants in the task further allowed us to infer the CoT for the optimal control simulations [29, 35]. In77

the second session (test), we asked the same participants to perform similar movements but with a personalized78

assistance provided by the robot. To this aim, we programmed the exoskeleton to followminimum jerk trajectories79

of different durations, ranging from the participant’s preferred vigor (Tj = 100%Th,0) to a 6x slower vigor (Tj =80

600%Th,0). Participants could decide to outpace the planned trajectory at any time during the movement. For81

upwardmovements, this required an active effort from the participant but, for downwardmovements, the planned82

trajectory could be outpaced by simply remaining inactive due to the effects of gravity. For both movement83

directions, when the planned trajectory was outpaced, the robot applied a viscous-like resistance proportional to84

the participant’s MVF (see Equation 3). The reader is deferred to the Materials and Methods section for more85

details about all the procedures.86

2.1 Baseline session87

In the baseline session, participants performed self-paced vertical pointing movements of four different ampli-88

tudes without active assistance/resistance from the robot. Qualitatively, the velocity profiles were overall bell-89

shaped as it is commonly observed for unrestrained point-to-point movements of this type (see Figures 2A,B,D,E).90

The only exception was for the largest movement amplitude which tended to exhibit a correction near the end of91

themovement (see Figures 2B,E). Importantly for our purpose, we observed the classical affine amplitude-duration92

relationship that characterizes the vigor of self-paced reaching movements [31, 33, 44, 45]. This relationship was93

observed at both individual and population levels, for upward and downward movements separately (see Figures94

2C,F). These findings are consistent with results from previous studies with the same exoskeleton [42, 46].95
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Figure 2: General kinematics averaged across all participants in the transparent exoskeleton for both upward and downward
movements. A,D.Averaged positions for upward (A) and downward (D) movements across population. Standard deviations
are depicted as shaded areas. B,E. Averaged velocities for upward (B) and downward (E) movements across population.
Standard deviations are depicted as shaded areas. C,F.Amplitude-movement duration linear regressions for each participant
(grey) for upward (C) and downward movements (F). The averaged behavior of the population is given in black. The average
and standard deviation of the correlation coefficient across the population are given on their respective graphs.

The average affine fits across participants for upward and downward movements (black lines in Fig. 2C,F),96

which were used to compute the vigor scores with respect to the population average for each participant and97

each direction (see Equation 4), were as follows:98 {
T (A)= 2.8A+ 0.37 for upward movements
T (A)=2.29A+ 0.52 for downward movements. (1)
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Figure 3: Individual vigor scores and consistency between upward and downward directions. A. Individual vigor scores for
upward movements, sorted from lowest to highest. B. Individual vigor scores for downward movements, sorted from lowest
to highest. C. Correlation analysis showing the consistency of vigor scores with regard to movement direction (Pearson
correlation test).

The spreading of individual vigor scores was shown to follow the same trend as in previous studies [32, 33],99

which was verified both for upward and downward movements (see Figures 3A,B). Moreover, the vigor scores of100

participants exhibited a strong consistency across directions (r = 0.89, p < 10−3, Fig. 3C). This analysis justifies a101

posteriori the use of the average amplitude-duration relationship of each participant to design the subject-specific102

assistive control law of the test session.103

2.2 Test session104

In the test session, two amplitudes (17.5◦, small amplitude (SA); 35◦, large amplitude (LA)) and four assistance du-105

rations (Tj = 100%Th,0, 200%Th,0, 400%Th,0 and 600%Th,0) were considered. The assistance was self-triggered106

by pressing a button with the left hand such that the participant could easily synchronize with the exoskeleton107

at the beginning of each movement. The assistance followed a minimum jerk velocity profile (see Equation 2 and108

[47, 48]). For upward movements, the planned trajectory was accurately followed if the participants remained109

inactive. For downward movements, the planned trajectory was followed only if the participants accompanied110

the robot’s movement by carrying their weight. Importantly, the participants could actively pull (τh > 0) or111

actively push (τh < 0) on the exoskeleton at any time during the movement. When they outpaced the planned112

trajectory, the exoskeleton applied a resistance proportional to the difference between the minimum jerk velocity113

and the actual velocity (see Equation 3). This resistance was calibrated on the basis of theMVF of the participant.114

It is worth noting that no resistance was applied to the participant if the actual velocity profile corresponded to115

the minimum jerk profile. Moreover, independently of the participant’s behavior, the exoskeleton was position-116

programmed near the target to remove any possible confound between minimizing time or preserving accuracy117

[37,41,49]. The experimental data were eventually compared to optimal control simulations according to theMTE118

theory, with the cost of time identified in the baseline session. We also compared these results to fixed-time sim-119

ulations performed with the preferred duration of the average participant (Th,0) and with the assistance planned120

duration (Tj), which can be seen as two extreme non-MTE strategies. The reader is deferred to the Materials and121

Methods for details.122

Qualitatively, the experimental results indicated that the participants systematically saved time compared to123

the planned duration of the assistance (see velocity profiles in Figure 4 for LA and supplementary Figure S.1 for124

SA). Overall, these velocity profiles exhibited one main acceleration and one main deceleration even though they125

were less smooth than minimum jerk velocity profiles due to interaction with the robot. Peak velocities were126

larger than those of the assistance and movement durations were shorter. Noticeably, the MTE simulations were127

generally better at predicting the observed velocity profiles than simulations performed in fixed duration Tj or128

Th,0.129
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Figure 4: Average velocity profiles measured for the large amplitude (LA) and for each assistance duration. In green the
average recorded velocity profiles and their standard deviation as a green shaded area, in black the optimal time-effort com-
promise, in blue the minimum jerk planned by the assistance and in red the constant time strategy. A. Upward movements.
B. Downward movements.

Quantitatively, the participants’ behavior was described by three main parameters in this task: 1) the move-130

ment duration relative to the preferred movement duration (MD), 2) the maximum interaction force between131

the participant and the exoskeleton in percentage of the MVF from the agonist muscle group (i.e., flexors when132

moving upwards and extensors when moving downwards) and 3) the work of the interaction force. The first two133

of these parameters are normalized by individual data in agreement with the design of the experiment. The work134

is used as an absolute estimation of the additional energy expended by the participant to modulate the execution135

of the task (and possibly save time).136

Movement duration The MD measured during the experiment for the different assistance conditions, direc-137

tions and amplitudes is depicted in Figures 5A,B,D,E.138
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Figure 5: Chosen relative movement duration (MD) of participants when assisted by the exoskeleton with different Tj .
Average data are represented by green lines with standard deviation represented by green shaded areas. Outputs of different
simulated motor strategies are depicted as follows: 1) in blue: simulation results withMD= Tj , 2) in red: simulation results
with MD= Th,0 and 3) in black: simulation results under a MTE hypothesis. A,B. Relative movement duration of upward
movements for the small amplitude (SA, A.) and the large amplitude (LA, B.). C. Averaged absolute errors (AAE) of the
different modeled strategies for both SA and LA for upward movements. D,E. Relative movement duration of downward
movements for the small amplitude (SA, D.) and the large amplitude (LA, E.). F. Averaged absolute errors (AAE) of the
different modeled strategies for both SA and LA for downward movements.

The results show that participants moved much faster than Tj in the 200%, 400% and 600% conditions. This139

behavior was visible during movements of both SA and LA without any noticeable difference, and independently140

of movement direction (upward or downward). Nevertheless, participants did not return to their nominal MD141

in the task (Th,0, measured during the baseline session). Indeed, MD tended to increase as Tj increased for both142

amplitudes and both directions. The increase in MD tended to be higher for upward than for downward move-143

ments. In the 100% condition, participants were on average slightly faster than during the baseline experiment,144

thereby suggesting that they were not completely passive and spent some effort to save even a little time.145

These qualitative trends were confirmed by statistical Friedman tests. In particular, a main effect of the condi-146

tion (W = 0.72,Q3 = 25.9, p < 10−4) and amain effect of the direction (W = 0.69,Q1 = 8.33, p = 0.0039) were147

observed. These tests also confirmed that movement amplitude has no effect on the normalizedMD (W = 0.11,148

Q1 = 1.33 and p = 0.25).149

Wilcoxon-Nemenyi pairwise comparisons were used as post-hoc tests to assess the most salient differences150

between conditions. First, upward movements of SA were significantly slower in the 200%, 400% and 600%151
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conditions than in the 100% condition (in all cases: p ⩽ 9.7 × 10−5, D ⩾ 1.66 where D was Cohen’s D). The152

same trend was observed for downward movements of SAwith movements performed in 200%, 400% and 600%153

conditions being significantly slower than in the 100% condition (in all cases: p ⩽ 0.012, D ⩾ 1.22). Second,154

upward movements of LA were significantly slower in the 200%, 400% and 600% conditions than in the 100%155

condition (in all cases: p ⩽ 3.7 × 10−5, D ⩾ 1.83). Upward movements of LA were also significantly slower156

in the 400% condition than in the 200% condition (p = 0.01, D = 1.08). Finally, downward movements of157

LA were shown to be significantly slower in the 200%, 400% and 600% conditions than in the 100% condition158

(in all cases: p ⩽ 0.02, D ⩾ 1.14) and those performed in the 600% condition were significantly slower than159

those performed in the 200% condition (p = 0.03, D = 1.05). In sum, these comparisons across conditions160

show that MD tended to increase as Tj increased, independently of the direction and amplitude. Furthermore,161

comparisons were performed to analyze differences between upward and downward movements. Results were162

that MD was significantly lower for downward movements than for upward movements in LA in the 200%163

condition (p = 0.002, D = 1.43), in both SA and LA in the 400% condition (for both amplitudes: p ⩽ 0.002,164

D ⩾ 1.38) and only in SA for the 600% condition (p = 0.004, D = 1.12). In sum, upward movements were165

overall slower than downward movements in our task.166

Overall, the MTE model replicated well the observed movement durations with the CoT identified during167

the baseline session. We evaluated the model predictions in terms of average absolute errors on MD (AAE, see168

Figure 5C,F). In agreement with the qualitative velocity profiles, the error of the MTEmodel was lower than those169

obtained when simulating movements with MD=Tj (i.e., with the planned MD) or with MD=Th,0 (i.e. with the170

preferred MD of the average participant). The only notable exception was the AAE observed for downward171

movements in SA because the MTE prediction slightly overestimated movement duration in this condition.172

Maximum interaction force To understand the behavior of the participants in terms of effort, the maximum173

interaction force between the human and the exoskeleton relative to theMVF of the agonist group was analyzed174

(Figs. 6A,B,D,E). A positive value of this parameter means that the participant pulled on the exoskeleton (which175

is necessarily done actively) and a negative value means that the participant pushed on the exoskeleton (which176

can be done either passively –due to gravity– or actively).177
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Figure 6: Maximum interaction force when the participant is assisted by the exoskeleton with different Tj . Average data are
represented by green lines and standard deviations as green shaded areas. Outputs of different simulated motor strategies
(based on the dynamics from Equations 7 and 9, see Methods) are depicted as follows: 1) in blue: simulation results with
MD= Tj , 2) in red: simulation results with MD= Th,0 and 3) in black: simulation results under a MTE hypothesis. A,B.
Maximum interaction force during upward movements for the small amplitude (SA, A.) and the large amplitude (LA, B.).
C. Average absolute error (AAE) of the different modeled strategies for both SA and LA for upward movements. D,E.
Maximum interaction force during downward movements for the small amplitude (SA, D.) and the large amplitude (LA,
E.). F. Average absolute error (AAE) of the different modeled strategies for both SA and LA for downward movements.

The results show that, on average, participants tended to pull more and more on the exoskeleton as Tj in-178

creased (Figs. 6A,B). Moreover, when moving upward in the 100% condition, the maximum interaction force179

between the participants and the exoskeleton was around zero on average. This means that participants tended180

to synchronize with the exoskeleton rather than being completely passive. Interestingly, their behavior was181

different during downward movements for which the maximum interaction force was globally constant and in-182

dependent of Tj (Figs. 6D,E). These trends were statistically confirmed by Friedman tests. In particular, a main183

effect of the assistance condition (W = 0.79, Q3 = 28.3, p < 10−5) and a main effect of the direction (W = 1,184

Q1 = 12, p < 10−3) were observed. Once again, movement amplitude did not seem to have a significant effect on185

the employed motor strategy, showing the robustness of the observations (W = 0.03, Q1 = 0.33 and p = 0.56).186

Wilcoxon-Nemenyi pairwise comparisons on SA upward movements showed that participants applied sig-187

nificantly more force to pull the robot in the 200%, 400% and 600% conditions than in the 100% condition (in188
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all cases: p ⩽ 0.005, D ⩾ 1.37). The participants also applied significantly more force to pull the robot in the189

400% condition than in the 200% condition (p = 0.022, D = 0.87). On the contrary, no significant difference190

was found between the forces applied on the exoskeleton during downward movements. The same trends were191

observed during LA upward movements for which the participants applied significantly more force to pull the192

robot in the 400% and 600% conditions than in the 100% condition (in both cases: p ⩽ 7.3× 10−4, D ⩾ 1.75).193

The participants also applied significantly more force to pull on the robot in the 600% condition than in the 200%194

condition (p = 0.0035, D = 1.27). As for SA, no significant difference was found between the forces applied on195

the exoskeleton during downward movements for LA. In summary, the participants applied an increasing maxi-196

mal force on the exoskeleton as Tj increased for upward movements. For downward movements, they applied a197

constant maximal force, independent of Tj .198

Furthermore, participants applied significantly different forces (in terms of absolute values) on the exoskeleton199

between upward and downward movements for all the conditions and for both SA (in all cases: p ⩽ 2.46×10−4,200

D ⩾ 1.85) and LA (in all cases: p ⩽ 0.0011, D ⩾ 1.58). Overall, the constant force applied when moving201

downwards (i.e., −8.59 ± 0.84 %FExt
max) was remarkably close to the maximal effect of the weight of the human202

forearm and hand as estimated from anthropometric tables (i.e., −8.62 %FExt
max). In summary, this suggests that203

participants were able to take advantage of gravity to save time when moving downwards.204

Finally, we evaluated the model predictions in terms of maximum interaction force with the same error crite-205

rion as forMD (see Figure 6C,F). For this parameter, the MTE theory provided clearly the best results compared to206

alternative fixed-time strategies. On the one hand, simulations performed with MD=Tj consistently resulted in207

a maximal interaction force whose sign was opposite to the measures. On the other hand, simulations performed208

with MD=Th,0 overestimated the interaction force that participants were apparently willing to use during the209

experiment. In contrast, the MTE theory correctly predicted the experimental trends across assistance durations,210

amplitudes and movement directions.211

Work of interaction force To get an absolute estimation of the total energy input (in Joules) from the par-212

ticipants onto the exoskeleton, we analyzed the work of the measured interaction force. A negative value for213

this parameter means that the interaction force mainly worked in the direction opposite to the motion. On the214

contrary, a positive value would reflect that the measured interaction force worked in the same direction as215

the motion. In particular, if a participant remains inactive during downward movements, this parameter should216

remain positive and approximately constant across assistance conditions for a given amplitude since the work217

of weight only depends on motion amplitude. The work of interaction force during the different experimental218

conditions is reported in Figures 7A,B,D,E.219
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Figure 7: Work of the interaction force when the participant is assisted by the exoskeleton with different Tj , average data
are represented by green lines and standard deviations as green shaded areas. Outputs of different simulatedmotor strategies
are depicted as follows: 1) in blue: simulation results with MD= Tj , 2) in red: simulation results with MD= Th,0 and 3) in
black: simulation results under a MTE hypothesis. A,B. Work for upward movements for the small amplitude (SA, A.) and
the large amplitude (LA, B.). C. Average absolute error (AAE) of the different modeled strategies for both SA and LA for
upward movements. D,E. Work for downward movements for the small amplitude (SA, D.) and the large amplitude (LA,
E.). F. Average absolute error (AAE) of the different modeled strategies for both SA and LA for downward movements.

The average work in Joules turned out to be very similar to what was observed in terms of maximum interac-220

tion force. For upward movements, there was an increase in the human energy input to displace the robot when221

Tj increased for both movement amplitudes. On the contrary, the work of interaction force was almost constant222

across conditions when moving downward. Overall, the energy input to the robot was higher for LA compared to223

SA movements, which was expected given the previous results on MD, maximum interaction force and the fact224

that work depends on the length of the trajectory. These trends were confirmed by Friedman tests that revealed225

significant main effects of assistance duration (W = 0.8,Q3 = 28.9, p ⩽ 10−5), movement direction (W = 0.69,226

Q1 = 8.33, p = 0.004) and amplitude (W = 1,Q1 = 12, p ⩽ 10−3). Since themain effect of movement amplitude227

could be expected for the work, the associated post-hoc tests will not be described hereafter.228

Wilcoxon-Nemenyi pairwise comparisons revealed that, for upward movements in SA, the participants ex-229

pended more energy in the 200%, 400% and 600% conditions than in the 100% condition (in all cases: p ⩽230

7.31 × 10−4, D ⩾ 1.66). Moreover, participants expended significantly more energy in the 400% and 600%231
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conditions than in the 200% condition (in both cases: p ⩽ 0.017, D ⩾ 1.06).232

The same trends were observed for upward movements for LA. Participants expended significantly more233

energy in the 200%, 400% and 600% conditions than in the 100% condition (in all cases: p ⩽ 0.046, D ⩾ 0.98).234

Furthermore, participants expended significantly more energy in the 600% condition than in the 200% and 400%235

conditions (in both cases: p ⩽ 0.02, D ⩾ 1.11). Furthermore, there was no significant effect of the assistance236

condition on the energy expended when moving downwards for both amplitudes. In sum, participants were237

willing to expend more and more energy as Tj increased for upward movements. For downward movements, the238

work remained nearly constant, as did the maximum of the applied force.239

The analyses conducted on the effect of direction revealed that the work of interaction force was higher240

for downward movements than for upward movements performed in SA in the 100% condition (p = 0.0086,241

D = 1.26). On the contrary, the work was always significantly higher for upward movements than for downward242

movements in the 400% condition (for both amplitudes: p ⩽ 0.0051, D ⩾ 1.42) and in the 600% condition (for243

both amplitudes: p ⩽ 0.0051, D ⩾ 1.36).244

Interestingly, the nearly constant work of interaction force measured during downward movements (i.e.,245

0.68 ± 0.15 J for SA and 1.14 ± 0.17 J for LA) was remarkably close to the work of the human forearm’s246

weight for both amplitudes (i.e., 0.71 J for SA and 1.42 J for LA using anthropometric tables [50]). This is247

in agreement with the previous observations made on the relative maximum force applied by the participants.248

Therefore, this result confirms that the participants took advantage of gravity-related efforts to accelerate the249

exoskeleton during downward movements, without actively producing work. Indeed, since the exoskeleton was250

controlled to never miss the target at the end of the motion, participants did not even have to expend energy to251

decelerate the system when approaching the target.252

Finally, we evaluated the model predictions regarding the work of interaction force with the AAE, as for253

the other two parameters (Fig. 7C,F). Here again, the MTE theory provided the bests results in terms of AAE on254

work predictions. In particular, simulations performed with MD=Tj consistently resulted in a negative work of255

interaction force, meaning that the simulated participant either actively pulled (i.e., τh > 0 in these downward256

simulations) or passively pushed (i.e., the negative work is mainly due to weight in these upward simulations)257

against the exoskeleton. Furthermore, simulations performed with MD=Th,0 systematically overestimated the258

energy expenditure of the participants during the real experiment. In contrast, the MTE theory predicted well259

the work of interaction force across assistance durations Tj , amplitudes and movement directions.260

3 Discussion261

In the present paper, we examined the extent to which participants rely on a common time-effort tradeoff under262

conditions that induce low or high energy costs to move with a certain vigor. To manipulate the usual relation-263

ship between vigor and effort, we used a robotic exoskeleton that could either assist or resist the participant’s264

motion. During upward movements, the results indicated that all participants saved time compared to the dura-265

tion planned by the robotic assistance, thereby demonstrating a high propensity to expend energy to save time.266

During downward movements, a similar time saving was achieved by switching to a low effort strategy, thereby267

showing that participants did not mechanically associate saving time with expending more energy. Overall, the268

observed behavior was consistent with the minimization of a time-effort tradeoff.269

Indeed, all participants consistently expended substantial amounts of energy to save time during upward270

movements but did not return to their nominal vigor in the task. The reason is likely that, when outpacing the271

reference trajectory of the robot, a viscous resistance was applied. Consequently, returning to the nominal vigor272

would have been admittedly possible but extremely expensive from an energetic point of view. For example, the273

work required to move with their nominal vigor would have been about 12 J per movement for the 600% and274

LA condition, Fig. 7B). Nevertheless, the energy expenditure consented by the participants remained high during275

upward movements, with an average work of 7.05 ± 1.78 J when pulling on the exoskeleton in this condition,276
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which corresponds to an average work rate of 4.28±2.08 J/s. For the sake of comparison, the work of the limb’s277

weight when performing an unconstrained elbow flexion of amplitude LA (accounting for most of the energy278

cost in these self-paced movements) was around 1.42 J, which amounts to an average work rate of 1.21 J/s with279

the mean vigor of our participants. Overall, these findings demonstrate that participants were willing to produce280

at least 3.6× their original work rate and spend about 5× their usual energy expenditure to get closer to their281

nominal vigor in the task.282

This observation suggests that a cost growing quickly with time must be represented in the planning of such283

goal-directed actions. Otherwise, it seems difficult to explain why participants would expend so much energy284

to increase vigor of such point-to-point movements. Clearly, this additional human effort was not dedicated to285

control the final accuracy since it was always handled by the robot itself near the target. Moreover, participants286

started to energize the motion since its beginning. An alternative argument could be that participants just im-287

plemented a simple heuristic to solve the task at hand, without optimizing a genuine time-effort compromise.288

The rationale could be that it is a natural strategy because people are used to expend energy to produce move-289

ment. However, duration, interaction force and work systematically tended to increase with the robot’s planned290

duration during upward movements, which agrees with previous results obtained in an isometric task involving291

virtual movements [35]. The slower the assistance, the more participants pulled on the robot while consent-292

ing to reduce their vigor. This confirms that neither effort nor time were preserved or minimized alone across293

conditions. Interestingly, this energy expenditure pattern was very different for downward movements. Indeed,294

although MD followed a similar evolution, the energy expended by the participants was consistently very low295

across all assistance durations and significantly lower than for upward movements. Interestingly, the interaction296

measured in terms of force and work was indistinguishable from that of an inactive participant using only their297

weight to energize the motion planned by the exoskeleton. This capacity to exploit gravity is reminiscent of other298

results showing that the brain can optimally harness the effects of gravity to reduce effort during vertical arm299

movements [51–56].300

Incidentally, this observation suggests that the strategy exhibited by participants during upward movements301

was not simply guided by a reluctance to inactivity. Nevertheless, in this task without explicit reward, it is302

unclear whether the hypothesized CoT only represents the temporal discounting of reward or not. Any type303

of cost growing with time could actually produce the same behavior. However, other authors have extensively304

studied how reward can affect movement vigor [14–19] and it is thus possible to assume that an implicit reward305

was associated with task achievement. By saving time on each trial, participants could leave the experiment306

earlier, which may be seen as a global reward as well. Since we did not explicitly manipulate reward in the task,307

we assumed that it was constant across conditions, which was reflected in our choice to use the same CoT in the308

model. Specifically, our paradigm modified the vigor-effort relationship by associating large or low effort costs309

to the nominal vigor of each participant in the task. This paradigm, together with the simulation results, provide310

evidence for the minimization of a common time-effort tradeoff across a wide range efforts, ranging from very311

active to mostly passive behaviors.312

To derive our results, it is worth noting that we normalized the task to each nominal participant’s vigor and313

maximal voluntary force. Indeed, it is known that there is a large inter-individual variability on these parameters314

[16, 17, 30, 31, 33, 35]. Interestingly, we found no correlation between the maximum force and the nominal vigor315

in our participants (R = −0.12, p = 0.59). Without normalization, the results might have been more variable316

across participants in the test session. For instance, vigorous participants could have been more prone to expend317

significant amounts of energy to save time. However, what is considered a significant amount of energy may318

also depend on the strength of the participant. To avoid such complications, we opted for a normalization in319

terms of time and effort. Other analyses (not shown) revealed that the inter-individual differences were not320

consistent across conditions in the test session. Moreover, no correlation was found between the three main321

parameters under investigation and the nominal vigor of participants. Finally, one limitation of our study is that322

the conclusions were drawn from a relatively small number of participants. However, the statistical effect sizes323

were generally high (in most cases D > 1), meaning that our results reach a strong level of confidence. As324
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expected, a post-hoc power analysis confirmed these conclusions by reaching a power of 0.93 for the smallest325

reported Cohen’s D (i.e., D = 0.98) and a power above 0.95 for all the other comparisons (i.e., with D ⩾ 1.05).326

Beyond that limitation, we believe that there are several interesting implications of the present results. In327

particular, with the emergence of new technologies for assisting human movement such as exoskeletons or co-328

bots, vigor may become a key factor to induce a more symbiotic interaction, whether it be for neurorehabilitation329

or for the prevention of musculoskeletal disorders at work [57–61]. Yet, current assistive robots can be relatively330

slow for safety concerns or computational reasons. This may cause unanticipated effects if, as predicted by the331

MTE theory, humans prefer to expend energy to save time when interacting with a too slow robot. The present332

study suggests that even a small reduction of vigor could lead the participants to attempt to strongly energize333

the motion if possible or reject the technology otherwise. Although the present paper does not allow to assess334

how the participants would actually behave during more complex tasks, for example involving more degrees335

of freedom or strong accuracy constraints, it still provides an interesting piece of information for the field of336

human-robot interaction.337

Finally, understanding the invigoration of human movements is also essential for a better understanding338

of Parkinson’s disease, as underlined by several studies [62–65]. While bradykinesia is often associated with339

a misestimation of effort [62, 63], it could be equivalently explained by a misestimation of time [66]. One may340

speculate that the modulation of the basal ganglia’s input signals, which are known to determine movement vigor341

as a result of a dopamine/serotonin equilibrium [6,8,64,65,67–71], could regulate the interplay between time and342

effort via the direct and indirect pathways. Further analyses of the neural substrates involved in the time-effort343

tradeoff would help to clarify the mechanisms involved in action selection, in particular when it comes to set344

movement invigoration.345

4 Materials and Methods346

4.1 Participants and materials347

Participants A total ofN = 12 participants (7 females) were involved in the experiment (mean age 28±6 years348

old, mean height 1.72±0.07 m, mean weight 64±12 kg, mean flexorsMVF 236.5±93.4 N and mean extensors349

MVF173.4±67.4N). All the participants were healthy, right-handed adults without known neurological disorder350

or injury that could have impacted the experiment. The participants gave their written informed consent as351

required by the Helsinki declaration to participate to the experiment, which was approved by the local ethical352

committee for research (CER-Paris-Saclay-2021-048).353

MVF bench test Individual MVF was measured on a custom H-shaped test bench made of aluminum profile354

and screwed into the ground to prevent any unwanted movement. A force transducer (SPEC) was mounted on the355

bench. This transducer was turned upwards for tests conducted on elbow extensors and downwards for elbow356

flexors.357

Kinematics Three-dimensional kinematics were measured by means of an optoelectronic motion capture de-358

vice (10Oqus 500+ infrared cameras, 100 Hz; Qualisys, Gothenburg, Sweden). The device tracked the position of359

twelve 10mm reflective markers taped on the robot and seven 10mm reflective markers taped on the participant.360

The markers taped on the participant were used to control the posture a posteriori. All the kinematic analyses361

were conducted on the recorded data of the marker taped at the end-effector of the robot. These analyses were362

equivalent to use the markers taped on the participant given that the position of each participant with respect to363

the exoskeleton was constant in the tested motion range [72].364

Exoskeleton The ABLE exoskeleton used in the experiment is an active upper-limb exoskeleton [73]. This ex-365

oskeleton was designed to be particularly compliant, which allowed to reach high levels of transparency [42,74].366
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This exoskeleton replicates the three shoulder rotations (internal/external, adduction/abduction, flexion/exten-367

sion) and the elbow flexion/extension of the human arm. The investigations here were restricted to the elbow368

joint of the exoskeleton for simplicity and the other joints were thus mechanically locked. Furthermore, the phys-369

ical interfaces used to connect the human arm to the exoskeleton have been designed to maximize comfort and370

minimize unwanted interaction efforts [75, 76]. These developments were particularly important in the present371

context because the efforts transitioning at the level of the wrist interface could be intense, depending on the372

participant’s will to move fast.373

Interaction efforts A force-torque (FT) sensor (1010 Digital FT, ATI, maximum sample rate 7 kHz) was placed374

at the level of the wrist human-exoskeleton interface. This FT sensor could measure the six components (three375

forces and three torques) of the interaction efforts. During the present study, only the normal component of the376

interaction efforts was analyzed since it was the only one kinematically admissible by the human and exoskeleton377

elbow joints.378

4.2 Experimental protocols379

The baseline session was introduced to estimate the participants’ nominal vigor and their MVF. This was used380

to design the subject-specific assistive control law and identify the average cost of time of the participants in381

the task. The test session was introduced to assess the extent to which participants implemented a MTE when382

interacting with an assistive exoskeleton programmed to move at different speeds.383

4.2.1 Protocol of the baseline experiment384

Before performing the pointing task with a transparent exoskeleton, the participants were asked to perform 6385

trials of maximum isometric voluntary force (MVF) of 5 s each. Half of these trials were used to assess theMVF386

of the elbow flexors (mainly the biceps brachii and the brachioradialis) and the other half were used to assess the387

MVF of the elbow extensors (mainly the different heads of the triceps brachii). The participants pushed against a388

force transducer while their arm was vertical and their forearm horizontal. The contact between the participant389

and the force transducer was made of a foam-covered part to minimize discomfort and was located just behind390

the styloid process of the radius (flexorsMVF tests) or the styloid process of the ulna (extensorsMVF tests). The391

MVF was defined as the maximum force measured during the three tests.392

Then, the participants were placed inside the exoskeleton and stood on a height-adjustable platform so that393

the position of the exoskeleton was always the same regardless of the height of the participant. They were394

asked to perform 32 flexions and 32 extensions of the elbow of an amplitude A ∈ {35◦, 26.25◦, 17.5◦, 8.75◦} (8395

flexions and 8 extensions per amplitude) with the exoskeleton set in transparent mode (i.e. controller minimizing396

interaction efforts based on previous works [42,43,76]). Since only elbow flexions and extensions were required,397

the shoulder joints of the exoskeletonweremechanically locked. The target to reach to was defined as a green disk398

(4 cm diameter) displayed on a vertical screen and visual feedback of the current hand position was continuously399

displayed as a red disk cursor (1 cm diameter). The screenwas placed at 1m of the (fixed) elbow of the exoskeleton.400

The cursor position was updated in real-time to give a visual feedback of the current hand’s position, defined at401

the interaction between the line of the exoskeleton forearm segment and the plane defined by the screen. In all402

cases, the participants were instructed to execute those visually-guided movements at their preferred velocity.403

Throughout themovement, the target to reachwas continuously displayed and it disappeared once the participant404

had stayed within it for 2 s with a velocity below 1 mm.s−1. The subsequent target was then displayed and so405

on, thereby alternating upward and downward movements.406
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4.2.2 Protocol of the test session407

In the test session, the participants performed a total of 4 blocks of 100 trials while the exoskeleton provided an408

assistance. Each block tested one of two amplitudes (i.e. A ∈ {35◦, 17.5◦}) with the same initial posture qi. Each409

block was divided in two sub-blocks of 25 trials testing different Tj . The order of occurrence of the amplitudes and410

Tj was pseudo-randomized across participants. Importantly, at the beginning of each sub-block, the participants411

were asked to relax using a message displayed on the screen for the first flexion and the first extension of each412

Tj . This allowed to let the participant feel which movement was planned by the robot and the kind of assistance413

they could receive when remaining inactive.414

The assistive control law was designed via a proportional-integral (PI) controller, the gains of which were415

set to allow the exoskeleton to track the reference trajectory in presence of the participant, when the switch to416

a viscous resistance was deactivated. The robot reference trajectory was derived from a minimum jerk model417

[47, 48]. This model is commonly accepted to generate smooth and bell-shaped velocity profiles. Despite known418

limits to capture velocity asymmetries observed due to gravity or accuracy [49,77], this model was sufficient here419

to provide a human-like reference trajectory to be tracked by the PI controller. Precisely, the exoskeleton was420

controlled in position to minimize the tracking error e = qj − q, where q is the actual joint position of the robot421

and qj (i.e., the desired robot trajectory) is defined as follows:422

qj(t) = qi +A
(
10(t/Tj)

3 − 15(t/Tj)
4 + 6(t/Tj)

5
)

(2)

with qi the initial joint position of the robot, Tj the robot’s movement duration determined after identification of423

the individual preferred duration Tn for amplitude A (with A ∈ {35◦, 17.5◦})).424

Once the assistance allowed the participant to reach to the target while remaining passive and without al-425

lowing the exoskeleton to switch its control mode, we considered the case where the participant could accelerate426

the motion, whether it be passively (with weight) or actively (meaning τh ̸= 0). Since the gains of the PI con-427

troller were high enough to ensure a good tracking of the minimum jerk trajectory with the user inside the428

exoskeleton, the participant would not be able to significantly deviate from that trajectory without implementing429

an additional control mechanism. Therefore, to test our hypothesis, we introduced a criterion to detect when a430

participant overtook the robot and then switched to a viscous-like resistance while deactivating the PI controller.431

The viscous-like torque resisting the human input was proportional to difference between the measured ve-432

locity (q̇) and the reference jerk velocity (q̇j). This viscous resistance was standardized according to the MVF of433

each participant, which resulted in the following expression:434

τv=σαMVF(q̇ − q̇j) if σ(q − qj) > δ
=0 otherwise (3)

where δ = 0.02 rad is the deviation from the planned jerk trajectory in the direction of the movement (σ = 1 and435

σ = −1 for flexions and extensions respectively) and α = 0.1 is the resistance’s strength set to 10% of theMVF.436

The deviation δ was chosen so that weight was sufficient to outpace the exoskeleton for downward movements.437

Near the end of each movement, the robot was position controlled to ensure that the target was always accurately438

reached. This allowed to remove accuracy concerns for the participant and to minimize endpoint variance by439

design, thereby avoiding any unwanted speed-accuracy trade-off which could influence movement duration [37,440

41, 49].441

4.3 Data analysis442

Kinematics Three-dimensional position data of the marker placed on the exoskeleton’s end-effector were used443

to assess the movement kinematics. Position data from the other markers was used as control to monitor residual444

motions. Position data were filtered (low-pass Butterworth, 5 Hz cutoff, fifth-order, zero-phase distortion, butter445

function from the scipy package) as in previous studies [55,72,77]. Then, velocity and acceleration were obtained446
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by numerical differentiation. Movements were segmented using a threshold set at 5% of the peak velocity of the447

considered movement.448

For each participant, a vigor score (vgn) was computed following pre-existing methods based on movement449

durations [31, 35], as follows:450

vgn =

∑4
i=1 T (Ai)

2∑4
i=1 Tn(Ai)T (Ai)

(4)

where T (Ai) is the average duration computed from the population-based Equation 1 for amplitude Ai, and451

Tn(Ai) is the averaged movement duration of the nth participant for amplitude Ai. If the computed vgn is above452

1, it means that the concerned participant moved overall faster than the population average. On the contrary, if453

the computed vgn is below 1, it means that the concerned participant moved overall slower than the population454

average.455

Interaction efforts As previously stated, the normal component of the interaction efforts was used to assess456

the force applied by the participants on the robot. These efforts were filtered (low-pass Butterworth, 5 Hz cutoff,457

fifth-order, zero-phase distortion, butter function from the scipy package) and segmented on the basis of the458

kinematic segmentation.459

4.4 Statistical analysis460

The statistical analyses were conducted using custom Python 3.8 scripts and the Pingouin package [78]. The461

normality (Shapiro-Wilk [79]) and sphericity (Mauchly’s [80]) of the data distribution were first verified. Since462

the results of these verification were not positive, Friedman tests were performed to check for possible main463

effects of the condition, the direction and the amplitude of movement. The significance level of the Friedman464

tests was set at p < 0.05.465

Post-hoc comparisons were performed by means of non parametric pairwise Wilcoxon-Nemenyi compar-466

isons. Their significance level was set at p < 0.05 and for each test the Cohen’s D was computed to analyze the467

effect size.468

Finally, for information, a post-hoc power analysis was performed using the G∗Power software (version469

3.1.9.7, [81, 82]) in post-hoc mode with α = 0.05 and with the Cohen’s D reported in the paper.470

4.5 Optimal control simulations471

4.5.1 CoT estimation472

TheCoTwas identified on the basis of the averaged linear amplitude-duration relationship across all participants473

and directions (i.e. T (A) = 2.545A + 0.445, r2 = 0.99). The following model of the interaction dynamics was474

used when the robot was controlled in transparent mode:475

Jhq̈ = τh − lhmhg cos(q)−Bhq̇ (5)

where Jh = 0.043 kg.m2 was the human inertia, mh = 1.42 kg was the human forearm plus hand mass,476

lh = 0.17 m the distance between the elbow and the center of gravity of the forearm plus hand ensemble477

(these three population-average parameters were computed on the basis of anthropometric tables [50]) and478

Bh = 0.05 Nm.s.rad−1 was the viscous coefficient of the elbow (this value was obtained in a previous study479

[83]). The joint position (respectively velocity and acceleration) was denoted by q (respectively q̇, q̈). The as-480

sumption of perfect transparency was coherent with previous control developments [42, 43, 76], which allowed481

to cancel the significant effects of the exoskeleton on movement duration and peak velocity.482
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The minimum commanded torque change model was used in the present paper to predict human movement483

[84]. As a consequence, the state was defined as x = (q, q̇, τh)
⊤ and the control variable was defined as uh = τ̇h.484

The cost function used to simulate movements from a starting state xi = (qi, 0,mhgl cos(qi))
⊤ to a final state485

xf = (qf , 0,mhgl cos(qf ))
⊤ in transparent mode and identify the CoT was as follows:486

C(uh) =

∫ T

0
uh(t)

2 dt (6)

where T was estimated from the averaged amplitude-duration relationship for a given amplitude A = |qf − qi|.487

Then the procedure described by Equations S.1–S.3, based on the deterministic optimal control theorywas applied488

to identify the CoT [29,85]. After this procedure, our model was able to predict the nominal vigor of the average489

individual. Indeed, the addition of the CoT to the movement cost C(uh) yielded exactly the optimal duration490

corresponding to the experimental one for a movement joining xi to xf .491

4.5.2 Simulations of possible behaviors with the assistance492

Our experiment induced two main scenarios: one in which it was only possible to save time at the cost of an493

important energy expenditure (upward movements) and one in which being essentially inactive was sufficient to494

save time (downward movements). These two configurations were simulated separately given they suppose quite495

different interaction dynamics. Furthermore, each of these main configurations induced three possible scenarios:496

1) actively pulling or pushing in the direction of the target (red shaded areas in Figures 1B,C), 2) remaining inactive497

(which is passively pushing, black dotted lines in Figures 1B,C) and 3) actively pushing or pulling in the opposite498

direction to the target (blue areas in Figures 1B,C). The latter scenario was unlikely from the MTE viewpoint and499

hardly doable in practice during upward movements because the assistance was performed by a relatively strong500

position control of the robot.501

Prediction of human behavior when saving time is energetically expensive First, the behavior of partic-502

ipants in a situation that did not allow saving time without expending energy was simulated (which corresponds503

to the red area in Figure 1B). This scenario was tested during upward movements with the jerk assistance in the504

present experiment. If the participant wanted to save time in this case, they needed to take control of both their505

own and the exoskeleton’s dynamics while counteracting the viscous resistance. The system dynamics was thus506

formulated as in Equation 7, and simulated from an initial state xi = (qi, 0, (lhmh + lrmr)g cos(qi))
⊤ to a final507

state xf = (qf , 0, (lhmh + lrmr)g cos(qf ))
⊤.508

Jtotq̈ = τh −Btotq̇ − ⌊τv⌋+ − (lhmh + lrmr) g cos(q) (7)
where τh is the human torque, Jtot = Jh + Jr is the total inertia of the coupled system, Btot = Bh + Br is509

the total viscous torque of the human and exoskeleton elbows respectively and (lhmh + lrmr) is the total mass-510

length product inducing gravity related torques. The values of human parameters were the same as in Equation511

5. The values of robot parameters were Jr = 0.3 kg.m2, Br = 0.12 Nm.s.rad−1 and lrmr = 0.26 kg.m, which512

were identified following a preexisting procedure [42]. Finally, ⌊τv⌋+ denotes that only the positive part of the513

viscous resistance is taken into account to prevent it from becoming an assistance at the end of the simulated514

movements (when q̇ < q̇jerk, see the end of velocity profiles when Tj ̸= 100%Th,0 in Figure 4A).515

In the 100% condition simulations, participants tended to synchronize with the exoskeleton. Therefore, the516

torque applied by the assistance τj was added to Equation 7. In the other conditions, this torque was not taken into517

account in the dynamics because participants systematically moved faster than the assistance, which deactivated518

it. Instead, the cost of following the assistance was computed separately (see blue vertical dotted line in Figure519

1B for an illustration).520

Finally, all these simulations were performed in free time (i.e. final time T ∈ (0, Tj ]) using an objective cost521

function that minimizes a compromise between time and effort as in Equation 6, using the previously identified522
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CoT. This leads to an optimal movement time, illustrated by the black disk in Figure 1B). This cost function was523

as follows,524

C(uh) =

∫ T

0
uh(t)

2 dt+

∫ T

0
g(t) dt (8)

The MTE compromise computed with Equation 8 was then compared to the cost of following the assistance,525

which outputs are represented in blue in Figures 5–7, and to the cost of always moving at the preferred velocity,526

which outputs are represented in red in Figures 5–7.527

Prediction of human behavior when saving time while being inactive is possible Second, the behavior528

of participants when saving time was not necessarily energetically expensive was simulated (which corresponds529

to both the red area and black dotted line in Figure 1D). This case corresponded to downward movements with530

the jerk assistance in the present experiment. In this scenario, the weight of the participant and of the exoskeleton531

was helping to save time and naturally counterbalancing the viscous resistance. Moreover, the position control532

implemented at the beginning and end of movements allowed participants to be completely relieved of weight533

control if they wished to. In that case, only the inertia and natural viscosity of the human and robot segments534

and joints were handled by the participant. The system dynamics was thus simulated as in Equation 9, from an535

initial state xi = (qi, 0, 0)
⊤ to a final state xf = (qf , 0, 0)

⊤.536

Jtotq̈ = τh −Btotq̇ + ⌊τv − (lhmh + lrmr) g cos(q)⌋+ (9)

During simulations of downward movements, and contrary to those predicting upward movements, gravity537

related torques were directly compared to the viscous resistance and only positive values were taken into account538

in the dynamics. This simulated a natural compensation of all or a part of the viscous resistance by weight if539

participants pushed downwards or remained inactive (which corresponds to both the red area and black dotted540

line in Figure 1D). The simulations were then performed in free final time (i.e. T ∈ (0, Tj ]) using the same541

objective cost function as for upward movements (see Equation 8).542

Finally, the case of participants pulling upwards in the opposite direction to the target was only simulated543

for a duration corresponding to Tj as an illustration (represented in blue in Figures 5–7). Indeed, the cost of544

movement is trivially higher in that case given it induces an increase in both the cost of effort and the CoT (see545

dashed and dotted curves in the blue area in Figure 1D).546

All the simulation parameters reported in the present paper were either direct results of the optimal control547

problem (relative movement duration) or computed using classical dynamics (interaction forces and work). All548

the simulations were performed using the Matlab (MathWorks) version of gpops2 [86–88], which is a software549

based on an orthogonal collocation method relying on the SNOPT solver to solve the nonlinear programming550

problem [89].551
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