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Abstract 

Mind-wandering is typically characterized by the common experience wherein attention veers off into 

thoughts unrelated to the task at hand. Recent research highlights the intentionality dimension of mind-

wandering as a key predictor of adverse functional outcomes with intentional and unintentional task-

unrelated thought (TUT) differentially linked to neural, behavioral, clinical, and functional correlates. 

We here aimed to elucidate the electrophysiological underpinnings of intentional and unintentional TUT 

by systematically examining the individual and collective discriminative power of a large set of EEG 

markers to distinguish between attentional states. Univariate and multivariate analyses were conducted 

on 54 predefined markers belonging to four conceptual families: ERP, spectral, information theory and 

connectivity measures, extracted from scalp EEG recordings prior to multidimensional reports of 

ongoing thought from participants performing a sustained attention task. We report here that on-task, 

intentional and unintentional TUT exhibit distinct electrophysiological signatures in the low frequency 

range. More specifically, increased features of the theta frequency range were found to be most 

discriminative between on-task and off-task states, while features within the alpha band were 

characteristic of intentional TUT when compared to unintentional TUT. This result is theoretically well 

aligned with contemporary accounts describing alpha activity as an index of internally oriented attention 

and a potential mechanism to shield internal processes from sensory input. Our study verifies the 

validity of the intentionality dimension of mind-wandering and represents a step forward towards real-

time detection and mitigation of maladaptive mind-wandering. 
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Introduction 

Mind-wandering refers to the familiar experience wherein attention is engaged with thoughts that 

are uncoupled from current external stimuli or demands (Smallwood & Schooler, 2015). Estimated to 

occupy anywhere between 20% to 50% of waking mental activity (Killingsworth & Gilbert, 2010; Seli, 

Beaty, et al., 2018), mind-wandering has been found to predict a wide range of functional outcomes in 

both the laboratory and daily life (Mooneyham & Schooler, 2013). Although mind-wandering is known 
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to purport benefits by promoting creativity, planning and problem solving (Chaieb et al., 2019), failure 

to appropriately suppress it has been linked to poor executive cognitive control (Unsworth & McMillan, 

2014) and performance errors (Smallwood & Schooler, 2006) causing problems in educational 

(Smallwood et al., 2007), occupational (McVay et al., 2009) and operational settings (Baldwin et al., 

2017). Given its ubiquity and link to a wide array of functional outcomes, understanding the nature of 

mind-wandering as a cognitive state, its neural basis and causal profile has emerged as a central goal 

within cognitive and clinical neuroscience (Christoff et al., 2016; Mittner et al., 2016; Seli, Kane, et al., 

2018; Smallwood & Schooler, 2015).  

 

While the definition of mind-wandering remains a matter of contention (Christoff et al., 2016; Seli, 

Kane, et al., 2018), the current work conceptualizes it as a hypernym for a phenomenologically diverse 

set of experiences, and as task-unrelated thought (TUT) when it occurs in the context of an explicit task. 

Mind-wandering is an intrinsically covert state with few, if any, overt behavioral markers, posing a 

unique set of challenges to scientific inquiry as well as real-time mitigation. To gain insight, researchers 

have leveraged the human capacity for introspection by asking participants to report on their experience. 

These ‘experience sampling’ approaches, range from the binary (i.e., asking participants to report being 

on- or off-task), to more granular approaches inquiring about multiple aspects of ongoing thought (for 

a review see (Weinstein, 2018)). The body of work that resulted from these approaches have exposed 

how mind-wandering experiences vary along several phenomenological and cognitive dimensions, such 

as metacognition (Christoff et al., 2009), emotional valence (Banks et al., 2016), or motivation (Robison 

et al., 2020).  

A recent distinction with relevant practical and clinical applications concerns whether mind-wandering 

is engaged in with or without intention. While some have argued that TUTs primarily occur due to 

unintentional failures of executive control (McVay & Kane, 2009), prior work suggests that mind-

wandering can, and does, occur with some intention (Seli et al., 2016). Intentionality refers to the degree 

to which mind-wandering results from a volitional reallocation of attention from the ongoing task 

towards TUT as opposed to mind-wandering ensuing from a dwindling of externally directed attention 

(El Haj et al., 2019; Grodsky & Giambra, 1990; Robison & Unsworth, 2018; Seli et al., 2013, 2014; 

Seli, Kane, et al., 2018; Seli, Maillet, et al., 2017; Seli et al., 2016; Seli, Smallwood, et al., 2015). The 

intentionality dimension of mind-wandering has recently emerged as a key factor with great explanatory 

power as supported by differential associations with specific content, neural, behavioral and clinical 

correlates (El Haj et al., 2019; Golchert et al., 2017; Martínez-Pérez et al., 2021; Seli, Ralph, et al., 

2017; Seli et al., 2016; Seli, Smallwood, et al., 2015).  

 

The “gold-standard” of experience sampling, online thought-probes, intermittently and 

unpredictably interrupt the task participants are engaged in and prompt them to classify their 

immediately preceding thoughts. Despite being the best method currently available to assess covert 

mental states and the advantages of providing an unmediated account of an individual’s attentional state, 

variability in individuals’ introspective ability as well as personal, contextual and motivational biases 

have raised doubts over its validity (Konishi & Smallwood, 2016; Seli, Jonker, et al., 2015; Weinstein 

et al., 2018). Additional issues relate to the modest-to-weak correlations between TUT rates in 

laboratory tasks and daily-life (Kane et al., 2017; McVay et al., 2009) and the widespread use of 

dichotomous thought-probes (Weinstein, 2018), i.e., simply contrasting on- and off-task, which have 

been found to inflate off-task reports (Seli, Beaty, et al., 2018). Several approaches have been attempted 

to remedy these limitations. Researchers have worked on refining subjective measures by leveraging 

the heightened metacognitive ability of expert meditators (Ellamil et al., 2016), by expanding thought-

probes categories to include more dimensions (e.g. Robison et al., 2020) or confidence ratings (Seli, 

Jonker, et al., 2015), by testing the construct validity of experience sampling (Kane et al., 2021) or by 
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identifying the optimal thought-probe frequency (Welhaf et al., 2022). Nevertheless, thought sampling 

requires interruptions of the task, which can increase participants’ meta-awareness about the content of 

their thoughts (Zedelius et al., 2015) and alters TUT reports and rates (Seli et al., 2013). A novel 

approach has hence been proposed that aims at curbing the reliance on thought sampling by 

corroborating self-reports with objective measures, e.g., errors and reduction in response variability 

(Smallwood & Schooler, 2015) via a “triangulation” process between several markers of TUTs (Konishi 

& Smallwood, 2016). Based on the assumption that objective measures are ideal markers of cognitive 

processes (Andrews-Hanna et al., 2018), numerous studies have investigated the behavioral and 

physiological correlates of mind-wandering. Previous work identified behavioral markers of mind-

wandering, e.g., response time (McVay & Kane, 2009)), task-related measures such as driving 

performance (Baldwin et al., 2017), and physiological measures, including skin conductance 

(Smallwood et al., 2004) and pupillometry (Groot et al., 2021). Although these findings show promise 

for objective measures to complement or replace self-reports, these markers remain heavily reliant on 

specific tasks or contexts, require specialized equipment or setups, and mostly fail to inform on the 

brain dynamics underlying TUTs. In comparison, neural measures provide a direct window into the 

dynamics of the neurocognitive processes underlying covert mental states such as mind-wandering. 

Based on robust markers, the exquisite temporal resolution inherent to electromagnetic measures of 

brain activity allows for the real-time detection of mental states, opening avenues for the online 

mitigation of adverse outcomes linked to mind-wandering (Gouraud et al., 2021) and ultimately, the 

obviation of subjective methods. 

Electrophysiological markers of mind wandering 

 

Identifying electrophysiological correlates of mind-wandering has long been a goal within the 

field with early scalp EEG studies mainly investigating event-related potentials (ERPs). Early potentials 

such as P1 and N1, which reflect evoked responses to sensory stimuli, have been found to decrease 

when participants reported being engaged in TUT (Baird et al., 2014; Dong et al., 2021; Gouraud et al., 

2021; Julia W. Y. Kam et al., 2010; Martel et al., 2019). The amplitude of the P3, which indexes the 

general level of cognitive processing or allocation of attentional resources (Polich, 2007), has also been 

observed to be reduced during TUTs in various studies (Baldwin et al., 2017; Dias da Silva et al., 2022; 

Gouraud et al., 2021; Groot et al., 2021; Kam et al., 2010; Smallwood et al., 2008). In line with the 

perceptual decoupling hypothesis of mind-wandering (Smallwood & Schooler, 2015), these findings 

suggest a strong link with a general attenuation in cortical processing of external stimuli causing a drop 

in short-term performance (Mooneyham & Schooler, 2013; Randall et al., 2014) and overall vigilance 

(Braboszcz & Delorme, 2011).  

In addition to ERP activity, multiple studies have investigated the relationship between mind-

wandering and EEG oscillatory activity. Analyses of the time-frequency decomposed signal within 

canonical frequency bands (i.e., delta (1-4Hz), theta (4- 8Hz), alpha (8-14Hz), beta (15-30Hz), and 

gamma (30-50Hz)) have yielded even more variable results compared to ERP studies (for a review see 

Kam et al., 2022). Alpha oscillations centered at 10Hz, are the most prominent rhythm in the healthy 

brain and have long been associated with mental states cognate to mind-wandering. For example, while 

alpha-band activity is reduced in response to increased attentiveness and perceptual stimulation (Thut 

et al., 2006), it is increased during waking eyes-closed compared to eyes-open conditions (Adrian & 

Matthews, 1934), during rest (Compton et al., 2011), and during attentional lapses (Macdonald et al., 

2011; Martel et al., 2014; O’Connell et al., 2009). Greater alpha-band activity has also been linked with 

internally oriented attention (Benedek et al., 2014; Ceh et al., 2020; Hanslmayr et al., 2011), mental 

imagery (N. R. Cooper et al., 2003) and activity in the default mode network (Knyazev et al., 2011).  
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Overall, there is substantial evidence for the key role alpha oscillations play in gating 

information flow throughout the brain (Jensen & Mazaheri, 2010; Klimesch, 2012), and as a top-down 

inhibitory control mechanism to maintain task performance by suppressing task-irrelevant information 

(Händel et al., 2011). Numerous studies have reported greater alpha power over frontal, central, parietal 

and occipital scalp areas during periods of TUT (Arnau et al., 2020; Baldwin et al., 2017; Ceh et al., 

2020; Compton et al., 2019; Dias da Silva et al., 2022; Groot et al., 2021; Hanslmayr et al., 2011; Jin et 

al., 2019; Macdonald et al., 2011; Martel et al., 2019), positioning it as a promising EEG signature of 

mind-wandering despite some evidence to the opposite (Baird et al., 2014; Braboszcz & Delorme, 

2011). 

Together with the attenuation in ERP amplitudes, greater alpha-band activity suggests a drop in the 

cortical processing of the external environment as attention is redirected internally during TUT. This is 

consistent with the executive function model of mind-wandering (Smallwood & Schooler, 2006, 2015), 

which argues that executive resources need to be decoupled from sensory input during mind-wandering 

to shield internal processes from interferences and permit TUTs to unfold uninterrupted (Smallwood, 

2013). Thus far, only two studies have examined EEG differences between intentional and unintentional 

TUTs. These found ERPs and in particular the P3 component to be diminished during off-task states 

when compared to on-task while greater alpha activity was found to be linked with more intentional 

forms of TUT (Kam et al., 2021; Martel et al., 2019). 

While increased alpha oscillations during TUT is a relatively consistent finding, patterns of activity in 

the theta band have shown more variability, with some studies observing greater theta activity during 

TUTs compared to on-task states (Arnau et al., 2020; Martel et al., 2019; Polychroni et al., 2022; van 

Son, De Blasio, et al., 2019) and others reporting the opposite pattern (Kirschner et al., 2012; Wamsley 

& Summer, 2020). Ample evidence suggests that theta rhythms within and across brain regions subserve 

executive control (Cavanagh & Frank, 2014) and attentional functions (Helfrich et al., 2018) with some 

studies reporting increased frontal theta power when participants performed tasks imposing demands 

on externally oriented attention (Clayton et al., 2015; Kubota et al., 2001).  

Detection of task-unrelated thoughts 

Altogether, findings from electrophysiological studies point towards a reliable EEG signature 

for TUTs which can be readily exploited with machine learning techniques. Accordingly, recent 

research demonstrates the possibility of predicting the occurrence of TUTs based on EEG measures 

(Chen et al., 2020; Dhindsa et al., 2019; Dong et al., 2021; Jin et al., 2019; Polychroni et al., 2022). 

Different classification approaches have been utilized on varied features of EEG and despite some 

variations, certain features appear most characteristic of TUTs, e.g., P3 and alpha (Dong et al., 2021; 

Groot et al., 2021; Polychroni et al., 2022), corroborating electrophysiological studies. 

In this study, we aim at disentangling the EEG signatures of intentional and unintentional TUTs 

and determine whether they differ from on- and off-task. To this end, we assessed the overall 

discriminative ability of a wide range of putative EEG markers by performing a large-scale analysis on 

a range of predefined EEG features and testing their individual and collective ability to discriminate 

between both on- and off-task activity, as well as iTUT and uTUT.  

The approach used has been developed and successfully employed to robustly extract 

electrophysiological markers of consciousness across contexts and protocols identifying features in the 

alpha and theta band as indexes of consciousness (Engemann et al., 2018; Sitt et al., 2014). Given that 

mind-wandering states are closely linked to conscious content (Schooler, 2002; Smallwood & Schooler, 

2015) and to conscious access (Dias da Silva et al., 2022), we are extending this feature-extraction tool 

to TUT. Applying this approach to an EEG dataset recorded during a standard test of sustained attention 

represents the first attempt at systematically investigating the discriminative features of intentional and 
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unintentional TUT. As such, we expected to identify ERP markers, e.g., P3, as most discriminative 

between on- and off-task states, and for markers in the alpha band to distinguish intentional from 

unintentional TUT.  

 

Materials & Methods 

Dataset 

Twenty-six participants (12 females, age M: 25 SD: 4.3) with normal or corrected-to-normal 

vision and no history of neurological or psychiatric disease, volunteered or received partial course 

credits to participate in the study. All procedures were approved by Trinity College Dublin ethics 

committee and conducted with adherence to the Declaration of Helsinki. Participants were informed 

extensively about the experiment, and all gave written consent.  

Task stimuli and paradigm 

Participants were seated in a soundproof, electrically shielded, dimly lit room and performed a 

fixed version of the sustained attention to response task (SART (Robertson et al., 1997)). The fixed 

SART used here is a computerized go/no-go task requiring participants to withhold behavioral response 

to infrequent no-go targets (no-go: 6) presented amongst a background of frequent and sequentially 

presented non-targets (go: 1 to 5 and 7 to 9). A monitor at a viewing distance of approximately 70 cm, 

sequentially and centrally displayed digits from 1 to 9 for 250 ms with an inter-stimulus interval (ISI) 

of 2316.5 ms (see Fig. 1). This ISI optimizes for the tradeoff between inducing a maximum number of 

mind-wandering episodes while not exacerbating the task’s difficulty by being too monotonous and 

imposing excessive demands on attentional resources. Stimuli were presented at a font size of 140 in 

Arial font using the Presentation software package v19.0 (www.neurobs.com). Participants were 

instructed to button press as fast as possible to the go digits and lock their response to the offset of the 

stimulus, a response strategy that has been successfully applied to minimize both the inter-individual 

variability in response times and speed-accuracy tradeoffs (O’Connell et al., 2009). The SART was 

composed of three blocks of a duration for a minimum of 8 min and a maximum of 15 min, thus, the 

total running time of the task ranged from 24 min to 45 min. The task was composed of between 800 

and 1200 trials approximately. The duration of each SART block was relative to participants' answers 

to the self-reports with each block lasting for at least 8 min or until three reports for each of the main 

categories of interest were given (on-task, TUTs). The task took on average 38.7 min (SD:  4.8) with an 

average of 65.3 thought probes (SD:  31.2) of which 71.4 % were of the self-caught variant. 

 

Throughout the SART participants were prompted to report on their attentional state in two different 

ways: Probe-caught and self-caught thought probes. Probe-caught probes would intermittently and 

pseudo-randomly interrupt the task every 12, 18, 24, 30, 36, 42, or 48 trials, on average every 30 trials 

(~ 28s, 42s, 56s, 76s, 83s, 97s, 111s, on average every 76s). Upon interruption participants were asked 

the question “Where was your mind just now?” and prompt them to classify their ongoing thoughts 

prior to the interruption according to five categories:  

1. on task (focused attention) 

2. about the task (task-related thoughts) 

3. distracted (internal or external interference) 
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4. on future plans or memories (intentional TUT) 

5. daydreaming (unintentional TUT) 

In parallel, participants were instructed to trigger a self-caught probe by pressing the space bar whenever 

they realized that they were no longer on-task. While participants were instructed to only report being 

on-task during probe-caught reports, the ‘on-task’ option remained available during self-caught probes 

to account for accidental button presses. Participants were trained in the correct categorization of 

attentional states prior to the start of the experiment, with different examples for each category and a 

quiz to test their understanding. For convenience and to avoid confusion, the categories for intentional 

and unintentional TUT were named ‘on future plans or memories’ and ‘daydreaming’, respectively. To 

isolate TUT from other forms of mind-wandering, participants who found themselves having task-

related thoughts, e.g., thoughts about their response strategy, were instructed to choose the ‘about task’ 

category (Stawarczyk et al., 2013). Similarly, when thoughts were related to internal sensations or 

external distractions, e.g., an itch or a noise in the environment, participants were instructed to report 

the ‘distracted’ category.   

 

 
Figure 1. Sustained-Attention-to-Response Task (SART) featuring thought probes. Participants observed a continuous 

sequence of single digits, pressing a button for each digit except the number 6 (targets). Attentional state was assessed 

intermittently through probe-caught probes (occurring on average every 30 trials) or self-caught probes initiated by pressing 

the space bar.  

EEG acquisition and preprocessing 

The EEG was recorded from 64 active channels placed on a cap according to the international 

10-20 reference system, using the BioSemi ActiveTwo system (www.biosemi.com). Continuous EEG 

data were amplified and digitized at 512 Hz, and bandpass filtered between 0.5 and 45 Hz. To assess 

eye movements and blinks, 4 electrooculography channels (EOGs) were used; two placed above and 

beneath the left eye and one on the outside of each eye. The preprocessing of EEG was performed with 

the MNE-python software package(Gramfort et al., 2014) (www.mne.tools). EEG data was down-
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sampled to 250 Hz before being high-pass filtered at 0.5 Hz and low-pass filtered at 45 Hz. Channels 

with excessively noisy signals were removed. Following Sitt et al.(Sitt et al., 2014), the EEG data was 

segmented into epochs spanning -200 ms to 600 ms relative to SART stimuli and baseline corrected 

with respect to the pre-stimulus period (-200 to 0 ms). Noisy epochs were removed automatically with 

the Autoreject package (https://autoreject.github.io/). To correct for ocular and muscle artifacts, an ICA 

decomposition with the FastICA method was performed(Hyvarinen, 1999) and artifactual components 

were removed. Previously removed channels were interpolated using a spherical spline interpolation 

before re-referencing using a common average reference. Additionally, the ERP component of all 

epochs was subtracted for the computation of all non-evoked markers. From this point on, only the 5 

epochs prior to a report (~10 s) were considered and labelled according to the category of thought 

reported. 

Analysis 

Univariate and multivariate pattern analyses were conducted over all 54 markers across two 

contrasts. The first contrast compared probe-caught on- and off-task conditions with the off-task 

condition consisting of combined intentional and unintentional TUT epochs to balance sample size (see 

Martel et al., 2019). The second contrast consisted of iTUT and uTUT reports from self-caught probes. 

For the univariate and multivariate analyses, we computed a total set of 27 markers drawn from Sitt et 

al. (2014) and Engemann et al. (2018) with each belonging to one of four conceptual families of 

markers: event-related potentials (ERPs), Spectral, Information Theory, or Connectivity (see Table 1). 

Although Sitt et al. (2014) employed a larger set of markers we used a subset since many were found 

to be redundant and/or yielding poor performance. The set of markers used here mirrors the selection 

by Engemann et al.(2018) with the addition of information theory and connectivity markers for all 

spectral bands, and excluding markers specific to their experimental methodology. For a detailed 

description and discussion of the markers see Sitt et al. (2014). All markers were computed using the 

NICE library (available at (https://github.com/nice-tools/nice) for each of the 5 epochs immediately 

preceding a thought probe and linked to the condition corresponding to the self-report category. This 

time window of approximately 12 sec preceding thought-probes is broadly consistent with previous 

analyses (Baird et al., 2014; Baldwin et al., 2017; Braboszcz & Delorme, 2011). 

 

The computation of each marker yielded multiple observations per channel, per epoch, per time 

point, and/or per frequency bins depending on the family of the marker. These observation points were 

aggregated first in the time/frequency/sensor domain depending on marker type, before being averaged 

across all sensors. Finally, the last 5 epochs corresponding to one condition were aggregated via an 

average and the standard deviation, the latter being a measure of the variations between epochs (see 

Fig. 2). This yielded two different measures per epoch and marker, giving a total of 54 markers (27 

average, and 27 variation measures). The markers were labeled according to their type and to the final 

processing step, i.e., 'mean' or 'std' (e.g., 𝛼𝑚𝑒𝑎𝑛  or 𝛼𝑠𝑡𝑑). All analysis scripts are publicly available in 

https://github.com/Nicobruno92/mw_markers_project.  
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Figure 2. EEG feature extraction pipeline for univariate and multivariate analyses. EEG markers were categorized into four 

conceptual families: evoked responses, spectral, information theory, and connectivity. These were aggregated in three steps 

for the five SART trials preceding a probe response. (1) EEG features from ERP, spectral, or connectivity families were 

averaged across time, frequency, or sensor dimensions, respectively. (2) Markers were averaged over all EEG channels to 

yield one unique value per epoch. (3) Two features were extracted from each marker (indicated by red dots) by calculating 

both mean and standard deviation. Markers were labeled according to type and final computation step, e.g., standard deviation 

of alpha oscillations was labeled ɑstd. Univariate analysis employed ROC-AUC metric for each of the 54 markers to assess 

individual classification performance for both contrasts (on-task/off-task and iTUT/uTUT). Multivariate analysis evaluated 

the collective discriminative ability of all markers for both contrasts using Extra Trees Classifier. 

Statistical analysis 

Univariate analysis 

The univariate analysis of individual markers followed the same procedure as Sitt et al.(2014). 

The area under the curve (AUC) of the receiving operating characteristic (ROC) curve served as an 

estimate of the discriminative ability for a given marker. The ROC curve depicts the false-positive rates 

(FPR) against the true positive rates (TPR), with each point of the curve representing an FPR/TPR pair 

for varying decision thresholds. A decision threshold with perfect discrimination would yield an FPR 

of 0 and a TPR of 1. The result of computing all possible decision thresholds, is the area under the curve 

(AUC) of the ROC as a metric of performance.  Any AUC value between 0.5 and 1 indicates positive 

discriminative ability of a given feature for the first category (on-task or iTUT) while AUC values 

between 0 and 0.5 denotes the reverse pattern, namely positive discriminative ability of a given feature 

for the second category (off-task or uTUT). And an AUC of 0.5 indicates chance levels of 

discrimination.  To assess the significance of the discrimination for each marker the Mann-Whitney U 

test for independent samples was computed. These analyses were applied for the entire set of 54 markers 

previously described, composed of 27 averages and 27 standard deviations. Given the number of 
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markers, statistical significance was corrected for multiple comparisons using the false discovery rate 

(FDR) method.  

Multivariate pattern analysis (MVPA) 

In keeping with the methods applied in Engemann et al. (2018), we used an Extra-trees 

classifier (Geurts et al., 2006) from the Scikit-learn python library (Pedregosa, 2011) for the MVPA. 

Extra-Trees classifiers are non-parametric models that perform robustly and are less sensitive to the 

scale of the input data (Engemann et al., 2018). This category of model is also more efficient at handling 

the type of dataset we obtained, called ‘wide’ because it contains more variables than observations. A 

further advantage of this type of model is the possibility of outputting feature importance scores which 

provide additional information on the discriminative capacity of individual features. In addition to the 

univariate correlation, this score also considers the interdependency with other variables. For the 

classifier, we used 1000 trees with entropy as impurity criterion and the other parameters set to default. 

The multivariate model was trained and tested based on the same 54 markers used during the univariate 

analyses.  

 

For cross-validation, Monte-Carlo cross-validation was used with the training set size of 80 % 

and a testing set of 20 % with 5 iterations. To test the statistical significance of our model, we applied 

a 1000-permutation test for the same cross-validation procedure, yielding 1000 samples with shuffled 

labels which were compared to the real cross-validation sample.  

 

Table 1. Description of the full list of EEG-markers used and the category to which they pertained. 

Acronym Marker Category 

CNV Contingent Negative Variation ERP 

P1 P100 evoked potential ERP 

P3a P3a evoked potential ERP 

P3b P3b evoked potential ERP 

⍺ Alpha PSD Spectral 

|⍺| Normalized Alpha PSD Spectral 

β Beta PSD Spectral 

|β| Normalized Beta PSD Spectral 

δ Delta PSD Spectral 

|δ| Normalized Delta PSD Spectral 

ɣ Gamma PSD Spectral 

|ɣ| Normalized Gamma PSD Spectral 

θ Theta PSD Spectral 

|θ| Normalized Theta PSD Spectral 

MSF Median Power Frequency Spectral 

SE90 Spectral Edge 90 Spectral 

SE95 Spectral Edge 95 Spectral 

SE Spectral Entropy Spectral 

K Kolgomorov Complexity Information Theory 

PE ⍺ Permutation Entropy Alpha Information Theory 

PE β Permutation Entropy Beta Information Theory 

PE δ Permutation Entropy Delta Information Theory 

PE ɣ Permutation Entropy Gamma Information Theory 

PE θ Permutation Entropy Theta Information Theory 
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wSMI ⍺ weighted Symbolic Mutual Information Alpha Connectivity 

wSMI β weighted Symbolic Mutual Information Beta Connectivity 

wSMI δ weighted Symbolic Mutual Information Delta Connectivity 

wSMI ɣ weighted Symbolic Mutual Information Gamma Connectivity 

wSMIθ weighted Symbolic Mutual Information Theta Connectivity 

 

Results 

Considered in the analysis were 306 probe-caught and 935 self-caught reports, of which 94 were 

categorized as on-task, 82 as off-task, 286 as iTUT and 250 as uTUT (see Table 2 for details). 

 

Table 2. Count of self-reports per thought category, separated by probe-caught and self-caught probes. 

Probe On-

task 

About-

task 

Distraction iTUT uTUT Total 

Probe-caught 94 82 48 39 43 306 

Self-caught - 200 199 286 250 935 

 

On- vs off-task: 

Univariate analysis of on-/off-task: 

The univariate analysis revealed that the most discriminative marker for the on-/off-task 

contrast was the normalized power of the theta frequency band, with both the average (|θ|mean: AUC = 

0.612, puncorrected = 0.01) and the standard deviation (|θ|std: AUC = 0.600, puncorrected = 0.023) reaching 

statistical significance (see Fig. 3A). Although effect sizes showed discriminative values (i.e., AUC 

values above/below 0.50), none of the measures for this contrast survived FDR correction. 

Multivariate Pattern Analysis (MVPA) of on-/off-task: 

To assess the collective discriminative ability of the markers for the on-/off-task contrast, an 

Extra trees classifier was trained on all the markers included in our prior univariate analysis. The 

accuracy of the classifier was computed via the mean of the 5-fold cross-validation. The classifier 

achieved above-chance performance with an AUC M = 0.603. The statistical significance of this model 

was determined using a 1000 permutations test revealing that the accuracy obtained was significantly 

above chance level p = 0.042 (See Fig. 3C). Moreover, we obtained the feature importance of this 

classifier as another measure of univariate discriminative ability for each marker (see Fig. 3D). 

Corroborating the results of our univariate analysis, theta mean, and theta standard deviation were 

amongst the most important features, with the second most important feature being the average of beta 

band normalized power (see Suppl. Fig. 2).  

Contrasting on-task with the other conditions 

To further explore whether the significant markers for on-/off-task were specific to this 

comparison or resulted from idiosyncrasies of the on-task condition, we contrasted on-task against the 

other four categories of thought (i.e., about-task, distracted, iTUT, and uTUT). To balance the samples 

across classes we used the Synthetic Minority Over-Sampling Technique (SMOTE) which generates 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533634doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533634


11 

synthetic values by linear interpolations of nearest-neighbor values. This approach has been previously 

used for TUT classification given that mind-wandering experiments typically have unbalanced samples 

(Dong et al., 2021). Subsequently, we repeated the same univariate procedure described in the previous 

section for each of the contrasts (on-task/about-task, on-task/distracted, on-task /iTUT, and on-

task/uTUT). 

 

This analysis yielded normalized theta power as the only significant marker against all 

unfocused states conditions (distracted, iTUT and uTUT; see Fig. 3B) and was consistently higher for 

on-task than for any other category of thought. Moreover, the variation measure of this marker reached 

significance after FDR correction for the contrasts of on-task against distracted and iTUT. Additionally, 

normalized beta power was found to be higher for all the unfocused states (distracted, iTUT and uTUT) 

compared to on-task but was only significant for uTUT. It is also interesting to remark that ERP 

component P1 was found to be significant after multiple comparison correction and higher for on-task 

when contrasted with uTUT. The one contrast for which no markers were significant, was between on- 

and about-task, most likely because of the similarity between these two categories.  

 

 
Figure 3. Discrimination measures for EEG markers using AUC. AUC>0.5 indicates higher measure for on-task than the 

other condition; AUC<0.5 indicates the opposite pattern; AUC=0.5 implies no discrimination. Filled circles represent p<0.05 

in a Mann-Whitney U test before multiple comparison correction; filled stars indicate significance after FDR correction. (A) 

AUC values of all markers for on-/off-task contrast, ranked by significant markers not surviving multiple comparison 

correction (filled circles) and non-significant markers (empty circles) in decreasing AUC order. (B) Scatter polar plot of 

AUC values for markers significant after correction (filled stars) in at least one comparison with on-task condition (about-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533634doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533634


12 

task, distracted, iTUT, or uTUT). (C) Histogram of permutation tests evaluating statistical significance of MVPA for on-/off-

task model, with histogram bins representing AUC of 1000 permuted models with shuffled labels; dashed line shows mean 

AUC for cross-validated models with correct labels. (D) Average feature importance measures from MVPA for top 10 

features in on-/off-task model. 

Intentional vs Unintentional TUT  

Univariate Analysis of iTUT/uTUT: 

The univariate analysis of the iTUT/uTUT contrast revealed permutation entropy in the theta 

frequency range averaged across trials (PEθmean: AUC = 0.625, pFDR < 0.001) as the most discriminative 

marker, with higher values for iTUT when compared to uTUT (see Fig. 4A). Next in order, both the 

normalized (|⍺|mean: AUC = 0.593, pFDR = 0.002) and non-normalized (⍺mean: AUC = .598, pFDR = .004) 

mean alpha power were found to be significantly higher for the iTUT condition than for uTUT. The 

most discriminative marker characterizing uTUT when compared to iTUT that was increased 

normalized delta power (|δ|mean: AUC = 0.411, pFDR = 0.005). Additionally, unnormalized beta power 

(βmean: AUC = 0.576, pFDR  = 0.026) and permutation entropy (PE βmean: AUC = 0.431, pcorrected = 0.006) 

were also found to be significant markers after FDR correction for the classification between iTUT and 

uTUT. For more details on this analysis see Supplementary Table 2. 

 

The same univariate analysis was repeated to test if there was any marker able to separate the 

three unfocused categories (i.e., distracted, iTUT and uTUT). Our analyses revealed that none of the 

significant markers were shared across the three contrasts (see Supplementary Fig.  3). However, most 

of the markers that were found to be significant for the contrast between iTUT and uTUT, were also 

significant for the iTUT and the distracted condition (e.g., PE θmean, PE βmean, PE ɣmean, |⍺|mean, ⍺mean, 

|δ|mean and βmean). Moreover, no marker was significant for the contrast of uTUT and the distracted 

condition after FDR correction.  

Comparison of univariate results for on/off-task and iTUT/uTUT: 

Finally, to examine whether similarities exist in discriminative markers across both contrasts, 

we mapped the two sets of significant measures the on-/off-task and the iTUT/uTUT contrast, in a polar 

plot (Fig.  4B). The resulting figure shows two distinct constellations of significant markers, suggesting 

that iTUT and uTUT are characterized by unique patterns of EEG markers. 

 

Furthermore, we assessed whether the computed average and standard deviation features were 

equally informative in terms of their classification power across the two contrasts (on-/off-task and 

iTUT/uTUT). For this analysis, we mirrored the AUC values for all the markers (i.e., computing the 

difference with 1 for each of the AUC < 0.5; see Suppl. Fig. 1) to obtain an absolute value of the 

classifications and avoid direction bias. Then, to determine whether AUC distributions were statistically 

different, we computed a Mann Whitney U test between the mirrored AUC values of each marker for 

each contrast (i.e., the AUC of the on-/off-task contrast against the AUC values for the iTUT/uTUT 

contrast) for the averaged features. This was also performed separately for the standard deviation 

features (see Suppl. Fig. 1). While this analysis yielded no significant differences for the average 

markers (U = 248; p = 0.362), significant differences were found when this was repeated over standard 

deviations (U = 169; p = 0.018). In the latter case, standard deviations were more discriminative for the 

on-/off-task comparison (Median AUC = 0.536) than for the iTUT/uTUT contrast (Median AUC = 

0.517).  
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MVPA of iTUT/uTUT: 

The MVPA for the iTUT/uTUT contrast revealed a modest increase in classification accuracy 

in comparison with the previous analysis, with an AUC M = 0.632 for the cross-validation results. 

Further, the permutation test determined the model classification performance to be higher than chance, 

p = 0.002 (see Fig. 4C). Moreover, the feature importance from this model was computed, as an added 

indicator of the discrimination of each of the measures. The results proved similar to those obtained 

with our univariate analysis; permutation entropy in the theta frequency band emerged as the most 

important feature, followed by beta and alpha power (see Fig. 4D).  

 

 
Figure 4. Discrimination measures for iTUT/uTUT and on/off-task contrasts using AUC. AUC>0.5 indicates higher measure 

for the first condition (iTUT or on-task) than the second (uTUT or off-task); AUC<0.5 indicates the reverse pattern; AUC=0.5 

implies no discrimination. Filled circles represent p<0.05 in a Mann-Whitney U test before multiple comparison correction; 

filled stars indicate significance after FDR correction. (A) AUC values of all markers for iTUT/uTUT comparison, ranked by 

significance after multiple comparison correction (filled stars), significant markers not surviving multiple comparison 

correction (filled circles), and non-significant markers (empty circles). (B) Scatter polar plot of AUC values for significant 

markers in on-/off-task or iTUT/uTUT contrasts. (C) Histogram of permutation tests evaluating statistical significance of 

MVPA for iTUT/uTUT model, with histogram bins representing AUC of 1000 models with shuffled labels; dashed line shows 

mean AUC for cross-validated models with correct labels. (D) Average feature importance measures from MVPA for top 10 

features in iTUT/uTUT model. 
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Table 3. Summary of significant EEG markers from univariate analyses for all three classifications and MVPA accuracy for 

each classification. Markers are listed in descending order of AUC. Results shown for probe-caught (PC) vs. self-caught (SC) 

probe classification correspond to the under-sample method. 

Classification On- vs. Off-Task   iTUT vs. uTUT 

FDR corrected 

markers 

- PE θmean; αmean; |α| mean; βmean; |δ|mean 

 

Uncorrected markers |θ|mean; |θ|std; αstd; |α|std; PE βmean; PE γmean 

 

MVPA (AUC) 0.60 0.63 

 

Discussion 

Amongst the confluence of factors that contributed to mind-wandering becoming a research focus, 

its prevalence as a mental activity and robust association with adverse functional outcomes have been 

particularly catalytic. The intrinsically covert nature of mind-wandering constitutes a central challenge 

to scientific inquiry and the main driver for the widespread adoption of experience sampling as the 

default method of collection. However, subjective reports are prone to biases prompting a growing 

number of studies to identify objective measures by, for example, developing machine learning models 

that can reliably detect attentional states based on EEG. Concurrently, recent views from both, 

psychology(Seli, Kane, et al., 2018) and neuroscience(Wang et al., 2018) have established mind-

wandering as a multifaceted construct that varies along several cognitive dimensions of which 

intentionality has emerged as a key predictor of functional outcomes(Julia W. Y. Kam et al., 2022). 

These circumstances call for more fine-grained self-reports incorporating the intentionality dimension 

to accurately study the complex mechanisms underlying off-task thought and help unravel the 

inconsistencies in electrophysiological correlates of TUT reported across EEG studies, in particular 

regarding oscillatory markers (Kam et al., 2022). 

 

Using the SART and EEG, our study aimed at identifying which, from a set of 52 predefined 

markers belonging to one of four families of EEG measures (ERP, spectral, connectivity, permutation 

entropy), were most characteristic of on- and off-task states, and of intentional and unintentional task-

unrelated thoughts (TUTs), respectively. Both our univariate and multivariate analysis demonstrated 

that on-task states are reliably characterized by greater normalized power and variance in theta range 

than off-task states, and that intentional TUT (iTUT) were characterized by increased theta permutation 

entropy and greater alpha power measures when compared to unintentional TUT (uTUT). More 

specifically, the most discriminative EEG marker for on-task states was normalized power in the theta 

frequency range (4-7 Hz) an outcome that was further corroborated by an MVPA feature importance 

analysis and by contrasting the on-task condition with the other categories of thought sampled (i.e., 

about-task, distracted, iTUT, uTUT). The same analyses performed on the iTUT/uTUT contrast 

revealed that iTUT was associated to greater permutation entropy at the theta frequency range and 

increased alpha spectral measures. Also, there was no overlap in discriminative markers across 

contrasts, suggesting that on-task, iTUT and uTUT have distinct electrophysiological signatures. This 

is consistent with a growing body of literature showing that intentional and unintentional mind-

wandering rely on separate cortical architectures with specific patterns of neural activity(Golchert et 

al., 2017; Martel et al., 2019; Seli et al., 2016). 
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One of the principal results of this study was that features of alpha activity did not differentiate on- from 

off-task states but did significantly discriminate between iTUT and uTUT (see Table 3). This finding 

runs contrary to the prevailing notion of increased alpha band activity as a marker of mind-wandering 

and stands in contrast with most previous work employing tasks imposing demands on externally 

oriented attention (Arnau et al., 2020; Baldwin et al., 2017; Compton et al., 2019; Jin et al., 2019; 

Macdonald et al., 2011; Wamsley & Summer, 2020). However, studies using tasks relying on internally 

oriented attention, all reported reduced alpha activity during mind-wandering (Benedek, 2018; 

Braboszcz & Delorme, 2011; Rodriguez-Larios & Alaerts, 2021; van Son, De Blasio, et al., 2019; van 

Son, de Rover, et al., 2019), while increased alpha during tasks which do not require visual attention 

has been linked with improved processing of internal states (Cartocci et al., 2018). In a recent eye-

tracking and EEG combined study, Ceh et al. (2020) observed a significant correlation between occipital 

alpha power and pupillary diameter during intertrial periods of rest, concluding that both are likely 

associated with a common gating mechanism in support of sustained internal attention with alpha 

increasing as a function of internal attention demands. This is in line with our results that intentional 

off-task thought is characterized by increased alpha measures, a pattern that is often observed when 

individuals are engaged in internal tasks (Benedek et al., 2014; N. R. Cooper et al., 2003; Hanslmayr et 

al., 2011; Katahira et al., 2018; Klimesch, 2012; Whitmarsh et al., 2014). Moreover, the patterns we 

observed in our data are broadly consistent with the hypothesis that iTUT and uTUT reflect differences 

in the role that top-down processes play in ongoing thought. More specifically, we hypothesize that 

iTUT is linked to the purposeful allotment of attention to internal processes and necessitates a 

neurophysiological mechanism for the top-down inhibition of irrelevant sensory input facilitated by 

alpha. Conversely, more unintentional TUTs are likely to result from intermittent failures to maintain 

attention on the task. A further indication supporting this interpretation is that the discriminative 

markers in the iTUT/uTUT contrast were similarly discriminative for the contrast between iTUT and 

the ‘distracted’ category of thought, while the contrast between uTUT and the ‘distracted’ category did 

not yield any significantly discriminative markers. Given that participants were instructed to report 

being distracted when they attended to the external environment besides the task, and that both states 

do not require active inhibition of sensory input, we speculate that the markers characterizing iTUT, 

e.g., alpha, reflect the application of control to organize an internal thought. In terms of markers 

characteristic of uTUT, delta normalized power was the most discriminative for this category compared 

to iTUT. Few studies have reported significant attentional state differences in the delta frequency range 

(for a review see J. W. Y. Kam et al., 2022) with one linking decreased frontal delta activity to off-task 

states when compared to on-task during SART (Wamsley & Summer, 2020). Notably, one recent study 

found that frontal delta activity predicted mind-wandering episodes (Andrillon et al., 2021). Given that 

slow cortical rhythms are typically characteristic of sleep, the increase of delta features we observed 

during uTUT may be indicative of a reduced alertness state. Interestingly, we also observed higher 

values of permutation entropy in the theta band as being discriminative of iTUT. Permutation entropy 

is an information complexity measure for time-series (Bandt & Pompe, 2002) which indexes the degree 

of conscious awareness in controls compared to anesthetized and minimally conscious state patients 

(Thul et al., 2016). Relatedly, Chen et al. (2020) used several different classifiers (e.g., SVM, random 

forest, naive Bayes, and k-nearest neighbors) with standard spectral measures as well as spectral entropy 

measures and found that the random forest classifier fared best with entropy-based features. Increased 

measures of complexity, including permutation entropy, have been suggested to be necessary for a 

specific representation to be selected for conscious processing (Sitt et al., 2014). Although we identified 

permutation entropy in the theta range as characteristic of iTUT, indicating increased conscious 

processing, the same measure of complexity in the beta and gamma range came out to be characteristic 

of uTUT, bearing out the relevance of such measures despite challenging interpretation.  
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The second relevant finding is that theta features were characteristic of on-task states in contrast 

with off-task states. Our data suggest that periods reported as on-task are mainly characterized by 

increased normalized power at theta frequency, a pattern consistent across all comparisons. This agrees 

with previous findings of increased theta activity observed during executive functioning tasks and 

cognitive control (Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015; P. S. Cooper et al., 2019). 

However, given discrepant findings about theta activity across studies using the SART - with some 

reporting increases and others decreases of theta activity during TUTs (see Kam et al., 2022 for a 

review) - and the small sample of on-task probe-caught reports in our study, it is difficult to draw any 

conclusive inference on the role of theta in the context of mind-wandering. Indeed, none of the 

discriminative markers for the contrast between on- and off-task survived correction for multiple 

comparison, most likely because of the low ratio of probe-caught reports to EEG markers. The 

iTUT/uTUT contrast did not suffer from the same issue and yielded multiple significant markers that 

survived correction, even though their discriminative power was comparable. Nevertheless, the AUC 

computation being less sensitive to sample size than p values, we suspect that the uncorrected significant 

markers presented here are reflective of underlying electrophysiological differences. Further 

demonstrating the discriminative ability of theta features, ERPs did not differentiate on- from off-task 

states, in opposition to our predictions based on prior studies that found reduced amplitudes of P1 and 

P3 components to be significant predictors of mind wandering (Dong et al., 2021; Groot et al., 2021; 

Martel et al., 2019). Nevertheless, our findings that oscillatory features were amongst the most 

discriminative for both contrasts are promising for the unobtrusive and continuous monitoring of EEG 

without the necessity for probing cognition to elicit and measure a brain response, as is the case for 

ERPs. 

 

Our work could be affected by several limitations. The first one concerns the possibility of 

overfitting of our models in the on- and off-task contrast. This is a common issue with wide datasets 

containing many features and a small set of observations. Despite the assumption that intentional and 

unintentional TUTs have more in common than on- and off-task states, we obtained better classification 

performance for the former with a much larger sample size which significantly reduces the possibility 

of overfitting. Second, some of the differences reported might be attributable to the two types of thought 

probes used for both contrasts, namely probe-caught for the on-/off-task contrast and self-caught for the 

iTUT/uTUT contrast. Indeed, self-caught probes require participants to monitor their attention while 

performing the task which could have potentially introduced confounds. Third, although online thought 

sampling is a well-validated method to assess attentional states (Schubert et al., 2020; Welhaf et al., 

2022), potential liability to biases (Seli, Jonker, et al., 2015; Weinstein et al., 2018) could have 

introduced noise and ultimately impacted classification accuracy. However, until robust, subject- and 

task-independent markers of attentional states are identified, self-reports remain indispensable. Lastly, 

although we were able to identify significant markers for the contrast between intentional and 

unintentional TUT, the discriminative markers for the on/off-task contrast did not survive correction 

for multiple comparisons, possibly due to the small sample size. Future work may include gathering 

more data points across different tasks to improve predictive performance and obtain task-independent 

EEG markers, with the goal of examining whether intentional and unintentional TUT can be predicted 

from ongoing EEG. Moreover, it is conceivable that the markers we obtained for attentional states are 

specific to the SART given that generalization of models typically leads to a drop in accuracy. With 

growing doubts concerning the utility of the SART in settling the ongoing debate surrounding the 

relationship between executive functions and mind-wandering (Boayue et al., 2020), future studies may 

want to extend our approach to paradigms with higher demands on executive resources such as the 

finger-tapping random generation task (Boayue et al., 2020; Groot et al., 2022). Future work may also 
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profitably examine whether generating multi-modal representation by supplementing EEG measures 

with indirect markers of mind-wandering, e.g., behavioral or pupillometric measures, improves 

performance given the moderate success of these measures in previous work (Groot et al., 2021). Lastly, 

a key future direction concerns the modulation of TUT with brain stimulation to determine the causal 

relevance of cortical regions in mind-wandering. Selectively downregulating maladaptive types of 

mind-wandering, e.g., unintentional TUT, and upregulating advantageous types such as intentional TUT 

(Kam et al., 2022) may prove particularly beneficial. Our work represents a step forward in the direction 

of developing systems capable of detecting distinct attentional states in real-time and mitigating the 

negative effects of unintentional mind-wandering with promising applications in clinical and practical 

settings. Models providing reliable, real-time detection of TUTs, would be instrumental for the 

development of clinical interventions and real-world applications capable of mitigating the detrimental 

consequences of mind-wandering, as well as accelerate mind-wandering research by gradually 

replacing unreliable and disruptive, subjective measures with valid, objective measures. 

 

To the best of our knowledge, ours is the first study to systematically contrast intentional and 

unintentional TUT by performing univariate and multivariate analyses on a broad and predefined set of 

EEG features, thus revealing distinct electrophysiological signatures characteristic for these two 

categories of thought. Intentional TUT was consistently disparate from other attentional states, as 

evidenced by significant differences across all comparisons in EEG markers linked to the top-down 

modulation of perception, e.g., increased alpha measures, presumably to shield internal processes by 

decoupling attention from sensory input. Together, our findings of unique electrophysiological 

signatures for conceptually distinct attentional states verifies the value of considering numerous EEG 

features, further substantiates the potential of EEG machine learning models for the detection of TUT, 

and adds to the ample evidence pointing to a distinction between intentional and unintentional mind-

wandering (Banks & Welhaf, 2021; Golchert et al., 2017; Martínez-Pérez et al., 2021; Seli, Maillet, et 

al., 2017; Seli et al., 2016).  
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Supplementary Material 

 

 

 
 

Supplementary Figure 1. The mirrored area under the curve for all measures is the discrimination measure for the on-/off-task 

and iTUT/uTUT contrasts. All AUC < 0.50 were computed as the difference with 1 in order to mirror all the values. The 

markers were grouped together into averages (left) and standard deviations (right). The filled stars indicate p < 0.05 after FDR 

correction for multiple comparisons and the filled circle indicates p < 0.05 for the Mann Whitney U test before correcting for 

multiple comparisons. The lower histograms shows the same  

AUC distribution for each contrast for averages and standard deviations. 
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Supplementary Figure 2. Comparison of univariate analysis and MVPA feature importance, with an ordinary least square 

line illustrating the trend between the two results. Upper quadrants display the comparison for on-/off-task (left) and 

iTUT/uTUT (right). Lower quadrants show the ROC univariate analysis with all AUC<0.50 values mirrored by calculating 

the difference from 1, aiding in visualizing potential trends. 
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Supplementary Figure 3. Scatter polar plot displaying all markers significant after multiple comparison correction for at least 

one of the iTUT/distracted, uTUT/distracted, and iTUT/uTUT comparisons. For the two comparisons involving iTUT, 

AUC>0.50 indicates a higher measure for iTUT than the other state; AUC<0.50 suggests the opposite pattern; and AUC=0.50 

denotes no discrimination. For the uTUT vs. distracted comparison, AUC>0.50 indicates a higher measure for distracted than 

uTUT. Filled stars represent p<0.05 after FDR correction for multiple comparisons, and filled circles indicate p<0.05 for the 

Mann-Whitney U test before multiple comparison correction. 

 

Supplementary Table 1: Comparison of On-Task and Off-Task Cognitive Markers: Means, Standard Deviations, AUC 

Values, and p Values (Uncorrected and Corrected) 

Marker Thought Report Mean SD AUC p p_corrected 

CNV_mean OFF-TASK 2.938 9.159 0.457 0.332 0.768 

CNV_mean ON-TASK 0.791 6.867 0.457 0.332 0.768 

CNV_std OFF-TASK 9.16 5.906 0.43 0.11 0.665 

CNV_std ON-TASK 7.809 5.152 0.43 0.11 0.665 

P1_mean OFF-TASK 0 0 0.563 0.148 0.665 

P1_mean ON-TASK 0 0 0.563 0.148 0.665 

P1_std OFF-TASK 0 0 0.43 0.111 0.665 

P1_std ON-TASK 0 0 0.43 0.111 0.665 

P3a_mean OFF-TASK 0 0 0.528 0.529 0.783 

P3a_mean ON-TASK 0 0 0.528 0.529 0.783 

P3a_std OFF-TASK 0 0 0.494 0.888 0.922 

P3a_std ON-TASK 0 0 0.494 0.888 0.922 

P3b_mean OFF-TASK 0 0 0.585 0.051 0.665 

P3b_mean ON-TASK 0 0 0.585 0.051 0.665 

P3b_std OFF-TASK 0 0 0.463 0.401 0.768 

P3b_std ON-TASK 0 0 0.463 0.401 0.768 

⍺_mean OFF-TASK -
102.886 

3.565 0.474 0.551 0.783 

⍺_mean ON-TASK -
103.249 

3.324 0.474 0.551 0.783 
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⍺_std OFF-TASK 2.058 1.239 0.472 0.529 0.783 

⍺_std ON-TASK 1.896 1.164 0.472 0.529 0.783 

|⍺|_mean OFF-TASK 0.228 0.094 0.452 0.275 0.768 

|⍺|_mean ON-TASK 0.215 0.091 0.452 0.275 0.768 

|⍺|_std OFF-TASK 0.06 0.04 0.5 0.999 0.999 

|⍺|_std ON-TASK 0.059 0.037 0.5 0.999 0.999 

β_mean OFF-TASK -
102.263 

2.505 0.442 0.189 0.767 

β_mean ON-TASK -
102.802 

2.475 0.442 0.189 0.767 

β_std OFF-TASK 1.087 0.659 0.504 0.933 0.95 

β_std ON-TASK 1.098 0.632 0.504 0.933 0.95 

|β|_mean OFF-TASK 0.228 0.054 0.415 0.052 0.665 

|β|_mean ON-TASK 0.208 0.052 0.415 0.052 0.665 

|β|_std OFF-TASK 0.045 0.022 0.513 0.773 0.914 

|β|_std ON-TASK 0.046 0.025 0.513 0.773 0.914 

δ_mean OFF-TASK -
102.451 

2.062 0.509 0.846 0.914 

δ_mean ON-TASK -
102.431 

1.974 0.509 0.846 0.914 

δ_std OFF-TASK 1.893 1.206 0.464 0.406 0.768 

δ_std ON-TASK 1.732 0.992 0.464 0.406 0.768 

|δ|_mean OFF-TASK 0.252 0.062 0.51 0.821 0.914 

|δ|_mean ON-TASK 0.258 0.073 0.51 0.821 0.914 

|δ|_std OFF-TASK 0.065 0.037 0.491 0.837 0.914 

|δ|_std ON-TASK 0.063 0.038 0.491 0.837 0.914 

ɣ_mean OFF-TASK -
107.538 

3.231 0.467 0.455 0.768 

ɣ_mean ON-TASK -
107.737 

3.39 0.467 0.455 0.768 

ɣ_std OFF-TASK 0.813 0.495 0.548 0.27 0.768 

ɣ_std ON-TASK 0.877 0.473 0.548 0.27 0.768 

|ɣ|_mean OFF-TASK 0.093 0.061 0.493 0.881 0.922 

|ɣ|_mean ON-TASK 0.095 0.067 0.493 0.881 0.922 

|ɣ|_std OFF-TASK 0.022 0.018 0.534 0.435 0.768 

|ɣ|_std ON-TASK 0.025 0.02 0.534 0.435 0.768 

θ_mean OFF-TASK -
103.129 

2.24 0.531 0.475 0.772 

θ_mean ON-TASK -
102.728 

2.33 0.531 0.475 0.772 

θ_std OFF-TASK 1.729 1.068 0.531 0.486 0.772 

θ_std ON-TASK 1.867 1.147 0.531 0.486 0.772 

|θ|_mean OFF-TASK 0.199 0.049 0.612 0.01 0.565 

|θ|_mean ON-TASK 0.223 0.064 0.612 0.01 0.565 

|θ|_std OFF-TASK 0.043 0.023 0.6 0.023 0.61 

|θ|_std ON-TASK 0.055 0.033 0.6 0.023 0.61 

MSF_mean OFF-TASK 9.722 2.635 0.434 0.134 0.665 

MSF_mean ON-TASK 9.366 2.815 0.434 0.134 0.665 

MSF_std OFF-TASK 1.408 1.033 0.537 0.398 0.768 

MSF_std ON-TASK 1.511 1.023 0.537 0.398 0.768 

SEF90_mean OFF-TASK 25.023 4.824 0.473 0.541 0.783 

SEF90_mean ON-TASK 24.502 5.084 0.473 0.541 0.783 

SEF90_std OFF-TASK 2.456 1.417 0.536 0.406 0.768 

SEF90_std ON-TASK 2.615 1.451 0.536 0.406 0.768 

SEF95_mean OFF-TASK 30.759 4.38 0.487 0.764 0.914 

SEF95_mean ON-TASK 30.339 4.786 0.487 0.764 0.914 

SEF95_std OFF-TASK 2.295 1.385 0.522 0.618 0.834 

SEF95_std ON-TASK 2.409 1.417 0.522 0.618 0.834 

SE_mean OFF-TASK 0.867 0.022 0.445 0.21 0.767 

SE_mean ON-TASK 0.861 0.025 0.445 0.21 0.767 

SE_std OFF-TASK 0.016 0.008 0.565 0.137 0.665 

SE_std ON-TASK 0.018 0.009 0.565 0.137 0.665 

K_mean OFF-TASK 0.775 0.009 0.465 0.42 0.768 

K_mean ON-TASK 0.774 0.011 0.465 0.42 0.768 

K_std OFF-TASK 0.005 0.003 0.581 0.065 0.665 

K_std ON-TASK 0.005 0.003 0.581 0.065 0.665 

PE⍺_mean OFF-TASK 0.911 0.016 0.429 0.105 0.665 

PE⍺_mean ON-TASK 0.906 0.02 0.429 0.105 0.665 

PE⍺_std OFF-TASK 0.011 0.005 0.522 0.616 0.834 

PE⍺_std ON-TASK 0.011 0.005 0.522 0.616 0.834 

PEβ_mean OFF-TASK 0.889 0.028 0.518 0.684 0.901 
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PEβ_mean ON-TASK 0.889 0.033 0.518 0.684 0.901 

PEβ_std OFF-TASK 0.013 0.01 0.548 0.277 0.768 

PEβ_std ON-TASK 0.014 0.009 0.548 0.277 0.768 

PEɣ_mean OFF-TASK 0.791 0.026 0.516 0.708 0.909 

PEɣ_mean ON-TASK 0.79 0.031 0.516 0.708 0.909 

PEɣ_std OFF-TASK 0.011 0.008 0.566 0.13 0.665 

PEɣ_std ON-TASK 0.013 0.009 0.566 0.13 0.665 

PEθ_mean OFF-TASK 0.928 0.021 0.466 0.441 0.768 

PEθ_mean ON-TASK 0.926 0.02 0.466 0.441 0.768 

PEθ_std OFF-TASK 0.016 0.01 0.516 0.724 0.909 

PEθ_std ON-TASK 0.016 0.008 0.516 0.724 0.909 

wSMI⍺_mean OFF-TASK 0.056 0.003 0.546 0.29 0.768 

wSMI⍺_mean ON-TASK 0.056 0.003 0.546 0.29 0.768 

wSMI⍺_std OFF-TASK 0.004 0.003 0.544 0.311 0.768 

wSMI⍺_std ON-TASK 0.004 0.003 0.544 0.311 0.768 

wSMIβ_mean OFF-TASK 0.033 0.001 0.533 0.45 0.768 

wSMIβ_mean ON-TASK 0.033 0.001 0.533 0.45 0.768 

wSMIβ_std OFF-TASK 0.002 0.001 0.458 0.335 0.768 

wSMIβ_std ON-TASK 0.002 0.001 0.458 0.335 0.768 

wSMIɣ_mean OFF-TASK 0.031 0.002 0.511 0.807 0.914 

wSMIɣ_mean ON-TASK 0.031 0.002 0.511 0.807 0.914 

wSMIɣ_std OFF-TASK 0.001 0.001 0.555 0.213 0.767 

wSMIɣ_std ON-TASK 0.001 0.001 0.555 0.213 0.767 

wSMIθ_mean OFF-TASK 0.11 0.006 0.546 0.295 0.768 

wSMIθ_mean ON-TASK 0.111 0.006 0.546 0.295 0.768 

wSMIθ_std OFF-TASK 0.006 0.004 0.491 0.839 0.914 

wSMIθ_std ON-TASK 0.007 0.005 0.491 0.839 0.914 

 

Supplementary Table 2: Comparative Analysis of Marker Values for iTUT and uTUT: Mean, Standard Deviation, AUC, and 

p Values (Uncorrected and Corrected). 

Marker Thought Report Mean SD AUC p p_corrected 

CNV_mean iTUT -0.761 6.928 0.496 0.888 0.941 

CNV_mean uTUT -0.846 6.852 0.496 0.888 0.941 

CNV_std iTUT 8.571 5.256 0.496 0.884 0.941 

CNV_std uTUT 8.808 6.018 0.496 0.884 0.941 

P1_mean iTUT 0 0 0.523 0.354 0.734 

P1_mean uTUT 0 0 0.523 0.354 0.734 

P1_std iTUT 0 0 0.538 0.13 0.539 

P1_std uTUT 0 0 0.538 0.13 0.539 

P3a_mean iTUT 0 0 0.457 0.086 0.422 

P3a_mean uTUT 0 0 0.457 0.086 0.422 

P3a_std iTUT 0 0 0.529 0.252 0.717 

P3a_std uTUT 0 0 0.529 0.252 0.717 

P3b_mean iTUT 0 0 0.53 0.236 0.717 

P3b_mean uTUT 0 0 0.53 0.236 0.717 

P3b_std iTUT 0 0 0.511 0.675 0.874 

P3b_std uTUT 0 0 0.511 0.675 0.874 

⍺_mean iTUT -102.962 2.53 0.598 0 0.002 

⍺_mean uTUT -103.86 2.914 0.598 0 0.002 

⍺_std iTUT 2.09 1.147 0.551 0.04 0.242 

⍺_std uTUT 1.895 1.093 0.551 0.04 0.242 

|⍺|_mean iTUT 0.217 0.071 0.593 0 0.004 

|⍺|_mean uTUT 0.197 0.07 0.593 0 0.004 

|⍺|_std iTUT 0.064 0.041 0.558 0.021 0.144 

|⍺|_std uTUT 0.057 0.037 0.558 0.021 0.144 

β_mean iTUT -102.261 2.787 0.576 0.002 0.026 

β_mean uTUT -102.741 2.33 0.576 0.002 0.026 

β_std iTUT 1.243 0.823 0.531 0.21 0.717 

β_std uTUT 1.156 0.758 0.531 0.21 0.717 

|β|_mean iTUT 0.225 0.053 0.521 0.398 0.734 

|β|_mean uTUT 0.221 0.054 0.521 0.398 0.734 

|β|_std iTUT 0.047 0.029 0.524 0.328 0.718 

|β|_std uTUT 0.044 0.027 0.524 0.328 0.718 

δ_mean iTUT -102.504 1.863 0.481 0.444 0.749 

δ_mean uTUT -102.374 1.88 0.481 0.444 0.749 

δ_std iTUT 1.72 0.905 0.525 0.317 0.718 

δ_std uTUT 1.683 1.016 0.525 0.317 0.718 

|δ|_mean iTUT 0.251 0.071 0.411 0 0.005 

|δ|_mean uTUT 0.272 0.065 0.411 0 0.005 
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|δ|_std iTUT 0.066 0.039 0.49 0.68 0.874 

|δ|_std uTUT 0.067 0.039 0.49 0.68 0.874 

ɣ_mean iTUT -107.652 4.024 0.515 0.559 0.816 

ɣ_mean uTUT -107.867 3.417 0.515 0.559 0.816 

ɣ_std iTUT 0.851 0.751 0.508 0.75 0.941 

ɣ_std uTUT 0.838 0.686 0.508 0.75 0.941 

|ɣ|_mean iTUT 0.097 0.084 0.475 0.327 0.718 

|ɣ|_mean uTUT 0.096 0.073 0.475 0.327 0.718 

|ɣ|_std iTUT 0.021 0.024 0.497 0.889 0.941 

|ɣ|_std uTUT 0.02 0.016 0.497 0.889 0.941 

θ_mean iTUT -102.927 1.952 0.54 0.114 0.513 

θ_mean uTUT -103.188 2.25 0.54 0.114 0.513 

θ_std iTUT 1.669 0.961 0.486 0.581 0.825 

θ_std uTUT 1.732 1.021 0.486 0.581 0.825 

|θ|_mean iTUT 0.21 0.052 0.489 0.65 0.874 

|θ|_mean uTUT 0.215 0.055 0.489 0.65 0.874 

|θ|_std iTUT 0.05 0.032 0.471 0.243 0.717 

|θ|_std uTUT 0.054 0.035 0.471 0.243 0.717 

MSF_mean iTUT 9.883 3.788 0.543 0.084 0.422 

MSF_mean uTUT 9.425 3.123 0.543 0.084 0.422 

MSF_std iTUT 1.45 1.123 0.531 0.215 0.717 

MSF_std uTUT 1.317 0.862 0.531 0.215 0.717 

SEF90_mean iTUT 24.632 5.193 0.479 0.399 0.734 

SEF90_mean uTUT 24.748 4.951 0.479 0.399 0.734 

SEF90_std iTUT 2.248 1.363 0.501 0.956 0.956 

SEF90_std uTUT 2.211 1.33 0.501 0.956 0.956 

SEF95_mean iTUT 30.315 4.469 0.476 0.333 0.718 

SEF95_mean uTUT 30.532 4.377 0.476 0.333 0.718 

SEF95_std iTUT 2.129 1.293 0.507 0.795 0.941 

SEF95_std uTUT 2.098 1.332 0.507 0.795 0.941 

SE_mean iTUT 0.865 0.023 0.513 0.605 0.838 

SE_mean uTUT 0.864 0.022 0.513 0.605 0.838 

SE_std iTUT 0.015 0.009 0.521 0.406 0.734 

SE_std uTUT 0.014 0.009 0.521 0.406 0.734 

K_mean iTUT 0.774 0.01 0.496 0.875 0.941 

K_mean uTUT 0.774 0.01 0.496 0.875 0.941 

K_std iTUT 0.005 0.003 0.483 0.486 0.75 

K_std uTUT 0.005 0.003 0.483 0.486 0.75 

PE⍺_mean iTUT 0.911 0.018 0.506 0.821 0.941 

PE⍺_mean uTUT 0.91 0.018 0.506 0.821 0.941 

PE⍺_std iTUT 0.011 0.007 0.499 0.954 0.956 

PE⍺_std uTUT 0.011 0.007 0.499 0.954 0.956 

PEβ_mean iTUT 0.889 0.026 0.431 0.006 0.052 

PEβ_mean uTUT 0.893 0.026 0.431 0.006 0.052 

PEβ_std iTUT 0.013 0.008 0.507 0.768 0.941 

PEβ_std uTUT 0.013 0.009 0.507 0.768 0.941 

PEɣ_mean iTUT 0.788 0.026 0.442 0.02 0.144 

PEɣ_mean uTUT 0.792 0.025 0.442 0.02 0.144 

PEɣ_std iTUT 0.012 0.007 0.518 0.476 0.75 

PEɣ_std uTUT 0.012 0.008 0.518 0.476 0.75 

PEθ_mean iTUT 0.928 0.016 0.625 0 0 

PEθ_mean uTUT 0.921 0.019 0.625 0 0 

PEθ_std iTUT 0.016 0.01 0.475 0.324 0.718 

PEθ_std uTUT 0.017 0.01 0.475 0.324 0.718 

wSMI⍺_mean iTUT 0.055 0.003 0.494 0.808 0.941 

wSMI⍺_mean uTUT 0.056 0.003 0.494 0.808 0.941 

wSMI⍺_std iTUT 0.004 0.003 0.52 0.424 0.739 

wSMI⍺_std uTUT 0.003 0.003 0.52 0.424 0.739 

wSMIβ_mean iTUT 0.033 0.002 0.498 0.948 0.956 

wSMIβ_mean uTUT 0.033 0.002 0.498 0.948 0.956 

wSMIβ_std iTUT 0.002 0.002 0.482 0.48 0.75 

wSMIβ_std uTUT 0.002 0.001 0.482 0.48 0.75 

wSMIɣ_mean iTUT 0.031 0.001 0.465 0.161 0.622 

wSMIɣ_mean uTUT 0.031 0.001 0.465 0.161 0.622 

wSMIɣ_std iTUT 0.001 0.001 0.474 0.305 0.718 

wSMIɣ_std uTUT 0.001 0.001 0.474 0.305 0.718 

wSMIθ_mean iTUT 0.109 0.005 0.521 0.408 0.734 

wSMIθ_mean uTUT 0.109 0.005 0.521 0.408 0.734 

wSMIθ_std iTUT 0.006 0.004 0.515 0.539 0.809 

wSMIθ_std uTUT 0.006 0.004 0.515 0.539 0.809 
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