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Abstract 

Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e., less distinct, 

neural responses during memory encoding. However, less is known about retrieval-related 

dedifferentiation and its role in age-related memory decline. In this study, younger and older adults were 

scanned both while incidentally learning face and house stimuli and while completing a surprise 

recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural 

dedifferentiation during retrieval and asked whether this might explain interindividual differences in 

memory performance. Our findings revealed age-related reductions in neural distinctiveness during 

memory retrieval as well as in encoding-retrieval reinstatement in visual processing regions. We further 

demonstrated that the degree to which patterns elicited during encoding were reinstated during retrieval 

tracked variability in memory performance better than retrieval-related distinctiveness only. All in all, we 

contribute to meager existing evidence for age-related neural dedifferentiation during memory retrieval. 

We propose that the recognition task (as opposed to a cued recall task) may have revealed impairment in 

perceptual processing in older adults, leading to particularly widespread age differences in neural 

distinctiveness. We additionally provide support for the idea that well-defined reactivation of encoding 

patterns plays a major role in successful memory retrieval.  

 

Keywords: aging, episodic memory, fMRI, neural dedifferentiation, pattern similarity analyses 
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1 Introduction 

Cognitive decline in neurologically healthy aging is frequently associated with a phenomenon called age-

related neural dedifferentiation (for reviews, see Koen & Rugg, 2019; Koen et al., 2020; Sommer & 

Sander, 2022). Findings of neural dedifferentiation have been interpreted in relation to neurobiological 

models suggesting that cognitive aging results from impaired neurotransmitter function, predominantly 

affecting the dopaminergic system (S-C Li et al., 2001; S-C Li & Rieckmann, 2014). These models 

propose that as a result of insufficient dopamine modulation, neural information processing in older adults 

suffers from poor signal transmission leading to increased neural noise and reduced neural distinctiveness. 

In functional magnetic resonance imaging (fMRI) studies, neural distinctiveness is often operationalized 

by contrasting content-related neural activity between different visual categories (e.g., faces and houses) 

either using mean blood-oxygen-level-dependent (BOLD) signal (e.g., Park et al., 2004) or using 

multivoxel activity patterns (e.g., Hill et al., 2021). These studies have accumulated evidence for age 

differences in the distinctiveness of neural signals (S-C Li et al., 2001; DC Park et al., 2004; for review, 

see Koen & Rugg, 2019).  

Recently, the impact of age-related neural dedifferentiation on episodic memory performance has 

received particular interest due to the significance of highly specific neural representations for encoding 

and retrieving distinct events. Several studies have established a relationship between low 

representational specificity during memory encoding and memory decline in older adults (Zheng et al., 

2018; Koen et al, 2019; Srokova et al., 2020), suggesting that the formation of well-defined, non-

overlapping memory traces is important for memory performance. Most evidence examining neural 

dedifferentiation during memory retrieval comes from assessments of age differences in cortical 

reinstatement. The cortical reinstatement hypothesis suggests that cortical representations of information 

during memory retrieval are reactivated mirror-images of their respective representations during encoding 

(Norman & O’Reilly, 2003; Johnson & Rugg, 2007; for review, see Danker & Anderson, 2010). Age-

related declines in the precision of cortical reinstatement have been reported at both the item (St-Laurent 

et al., 2014; Bowman et al., 2019; Folville et al., 2020; Hill et al., 2021) and category (McDonough et al., 
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2014; Johnson et al., 2015; Abdulrahman et al., 2017; Bowman et al., 2019; Deng et al., 2021; Hill et al., 

2021) representational levels (but, see Wang et al., 2016; Thakral et al., 2017; Thakral et al., 2019, for 

absent age effects, and Deng et al., 2021, for age-related hyperdifferentiation). These age differences in 

reactivation have frequently been associated with senescent memory decline (St-Laurent et al., 2014; 

Abdulrahman et al., 2017; Bowman et al., 2019; Hill et al., 2021) underlining the mnemonic advantage 

afforded by strong representational distinctiveness in cortical reinstatement.  

 Recent evidence has suggested that, in addition to cortical reinstatement, neural representations 

during memory retrieval may also reflect spatial transformations of the representations initially formed 

during encoding (Xiao et al., 2017; Favila et al., 2018; for review, see Favila et al., 2020). For example, 

Xiao and colleagues (2017) demonstrated that the representational structure of stimuli in the ventral visual 

cortex during encoding were reactivated in the frontoparietal cortex during retrieval, indicating a spatial 

shift in content-related representations between encoding and retrieval. Furthermore, the integrity of the 

representational structure was best maintained through this transformation in comparison to reactivation 

within the ventral visual cortex. These findings suggest that neural representations supporting memory 

retrieval may not solely mirror encoding processes, but rather flexibly adapt to serve retrieval demands. 

This idea was supported by Favila and colleagues (2018) who manipulated the retrieval goal, such that 

they explicitly asked participants to retrieve the stimulus color and the stimulus object in separate 

retrieval trials. They found that both features were reliably reinstated in the occipitotemporal cortex 

regardless of retrieval goals, but the lateral parietal cortex represented the stimulus color during color 

trials and the stimulus object during object trials. In other words, activity patterns in the lateral parietal 

cortex representing retrieved content flexibly adapted to facilitate the current retrieval goal. This raises 

the question of whether manipulations of task goals or attention during retrieval may reveal additional 

regions of distinctiveness susceptible to age-related decline in addition to those observed during 

encoding-related reinstatement. So far, the literature on age-related neural dedifferentiation has largely 

ignored this possibility, which has focused almost exclusively on the reduced specificity of cortical 

reinstatement in older adults. A notable exception comes from Hill and colleagues (2021) who 
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demonstrated that older adults also reveal deficits in category-level distinctiveness during retrieval, not 

only during encoding. However, the analysis was restricted to two pre-defined regions of interest. As the 

transformation literature suggests (for review, see Favila et al., 2020), content-related representations 

during retrieval may lie outside the bounds of encoding representations. Accordingly, the investigation of 

potential age-related impairment during retrieval requires methods that allow for the exploration of neural 

patterns across the whole brain. To date, few studies have considered the impact of age-related neural 

dedifferentiation on memory retrieval independently of reinstatement effects using a whole-brain 

approach (Dulas & Duarte, 2012; St-Laurent et al., 2014; Johnson et al., 2015). All studies found 

evidence for an age-related decline in neural distinctiveness during retrieval. Crucially, both St-Laurent 

and colleagues (2014) and Johnson and colleagues (2015) reported age differences in neural 

distinctiveness during retrieval that could not be attributed to age differences during encoding, indicating 

that dedifferentiation during retrieval may not be fully captured by only looking at reinstatement.  

 There is substantial evidence suggesting that distinctive cortical reinstatement benefits memory 

performance (St-Laurent et al., 2014; Abdulrahman et al., 2017; Bowman et al., 2019; Hill et al., 2021). 

However, it is unclear whether the distinctiveness of representations during retrieval supports memory 

performance solely through reinstatement of encoding content or perhaps serves as an additional boost. In 

the aging brain, it has been suggested that less precise neural signaling during retrieval may have a 

compounded negative effect on mnemonic content already suffering from reduced distinctiveness during 

encoding (Sander et al., 2021). Accordingly, memory deficits in older adults may be even better explained 

by age differences in neural distinctiveness during retrieval than during encoding or reinstatement. Few 

studies have examined the link between reduced neural distinctiveness during retrieval and memory 

performance. Dulas and Duarte (2012) did not identify any brain regions demonstrating memory-related 

effects associated with age-related neural dedifferentiation for objects or words during memory retrieval. 

However, their search for a voxel-wise main effect using a univariate approach may not have been 

sensitive enough to pick up on mnemonic content stored in fine-grained neural activity patterns. Using a 

multivariate decoding model, Johnson and colleagues (2015) successfully linked distinctive retrieval 
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representations to subjective vividness ratings in both younger and older adults. Their findings showed 

that distinctiveness in the prefrontal cortex was more closely associated with subjective vividness in older 

adults compared with younger adults and that distinctiveness in the parietal cortex tracked subjective 

vividness better in younger adults compared with older adults. Subjective assessments of memory often 

differ from objective findings (Johnson, 2006), especially in older adults (Norman & Schacter, 1997). It 

therefore remains an open question as to whether retrieval-related neural distinctiveness reflected in 

multivariate representations would demonstrate a relationship with an objective measure of memory 

performance.  

 Here, we collected fMRI data while a group of younger and older adults learned images of faces 

and houses and subsequently performed an old/new recognition memory test. Using exploratory pattern 

similarity searchlight analyses, we looked for regions expressing high neural distinctiveness during 

memory retrieval as well as in encoding-retrieval reinstatement. Our key questions were whether we 

would find evidence of age-related neural dedifferentiation during retrieval and whether retrieval-related 

dedifferentiation contributes to senescent memory decline. We expected older adults to demonstrate 

reduced distinctiveness during retrieval, particularly in visual processing regions. We further predicted 

that lower distinctiveness during retrieval would be associated with poorer memory performance. 

Additionally, we compared our retrieval-related findings to encoding-retrieval reinstatement in order to 

understand whether age deficits in distinctiveness during retrieval extend beyond weakly reinstated 

encoding patterns. 
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2 Materials and Methods 

Encoding and retrieval data from this project were previously reported in two papers (Kobelt et al., 2021; 

Pauley et al., 2022) that were later retracted by the authors due to a preprocessing error. For the retracted 

manuscripts as well as comparison reports with the corrected findings, please see https://osf.io/t8dpv/ and 

https://osf.io/7n3mz/.  

 

2.1 Participants 

Data were collected from a total of 76 healthy adults. Participants were recruited within two age groups: 

younger adults (18–27 years, N = 39) and older adults (64–76 years, N = 37). Two participants were 

excluded due to too much motion in the scanner (1 younger adult and 1 older adult), 3 were excluded due 

to memory performance below chance level (2 younger adults and 1 older adult), and 1 younger adult was 

excluded due to poor MRI data quality. The final sample consisted of 35 younger adults (M (SD) age = 

22.3 (2.7) years, 16 females, 19 males) and 35 older adults (M (SD) age = 70.6 (2.4) years, 19 females, 16 

males). Participants were screened via telephone for mental and physical illness, metal implants and 

current medications. Additionally, all older adults were screened using the Mini-Mental State 

Examination (Folstein et al., 1975) and all exceeded the threshold of 26 points. The study was approved 

by the ethics committee of the German Society for Psychological Research (DGPs) and written informed 

consent was obtained from each participant at the time of the study. 

 

2.2 Stimuli 

Stimuli were comprised of 300 grayscale images belonging to 3 different categories: 120 neutral faces 

(adapted from the FACES database; Ebner et al., 2010), 120 houses (some adapted from DC Park et al., 

2004, and some obtained online), and 60 phase-scrambled images (30 faces and 30 houses, constructed 

from randomly selected face and house images) serving as control stimuli. An additional image from each 

category was selected to serve as target stimuli for the encoding target-detection task. All nontarget face 

and house images were randomly divided into 2 sets of 120 images (60 faces and 60 houses). One 
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stimulus set was presented during both encoding and recognition (old images) and the other set was 

presented only during recognition (new images). The same stimulus sets were used for all participants.  

 

2.3 Paradigm 

The following paradigm was part of a larger study spanning two days of data collection. The present 

study focuses only on the face-house task, which comprised an incidental encoding phase and a surprise 

recognition test, both conducted inside the fMRI scanner on the same day with a delay of approximately 

30 minutes (see Figure 1). The encoding phase consisted of 2 identical runs each with 9 stimulus blocks. 

Stimuli were randomly distributed into the blocks such that each block contained 20 images of a single 

category (faces, houses, or phase-scrambled) as well as the category’s corresponding target image. The 

block order was alternating and counterbalanced across participants, always starting with either a face or 

house block. The stimulus order within each block was pseudo-randomized with the condition that the 

target image was not presented in either the first 4 or last 4 trials of a block. Due to a technical problem, 

the same stimulus order was used for all participants who started with a face block and for 36 of the 

participants starting with a house block. In order to ensure the participants were paying attention to the 

stimuli, they were asked to perform a target-detection task in which they pressed a button when one of the 

3 target images was presented. Prior to the encoding phase, participants completed 5 practice trials of 

each stimulus category, including each of the target stimuli, to verify that they understood the target-

detection task. The nontarget training stimuli were excluded from the main experiment. Since the 2 

encoding runs were identical, participants were exposed to each stimulus twice during the encoding 

phase. Stimuli were presented for 1200 ms and separated by a fixation cross with a jittered duration 

between 500 and 8000 ms. In total, the encoding phase lasted approximately 22 minutes.  

 Following encoding, participants remained in the scanner briefly while structural scans were 

collected (see below). Then, they had a short break outside the scanner while they received instructions 

for the recognition test. They then returned to the scanner to complete the recognition test. The 

recognition test consisted of 6 blocks in total, alternating between 3 face and 3 house blocks and was 
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divided into 2 runs of 3 blocks each. Each block contained 20 old images (seen during encoding) and 20 

new images of the same stimulus category. For each trial, participants were asked whether the image was 

old or new, which they indicated via button press. The stimulus order was pseudo-randomized such that 

no more than 3 old or new images were presented consecutively. Due to a technical problem, the same 

stimulus order was used for 13 participants who started with a face block and 14 participants who started 

with a house block. Stimuli were presented for 1200 ms and followed by a gray screen for 3000 ms in 

which participants could give their response. Fixation crosses separated the trials with jittered durations 

between 500 and 8000 ms. In total, the recognition task lasted approximately 26 minutes.  

 

 

Figure 1. Face-house task design. This fMRI paradigm comprised an incidental encoding phase (top) and 

a surprise recognition test (bottom). During encoding, two identical runs of face, house, and phase-

scrambled images were presented in a block design with 9 stimulus blocks each (3 alternating blocks from 

each stimulus category). Each block had 21 trials (20 exemplars of the respective category and 1 pre-

learned target stimulus). Participants were instructed to press a button when a target stimulus appeared. 

During the recognition test, six alternating face and house blocks were presented with 40 trials each (20 

Face 
Face 

Face 

Face 
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old trials from encoding and 20 new trials). Participants indicated via button press whether each image 

was old or new. (Faces were made unidentifiable for the upload on Biorxiv.) 

 

2.4 fMRI data acquisition and preprocessing 

Brain imaging was acquired with a Siemens Magnetom TrioTim 3T MRI scanner with a 32-channel head-

coil. Functional images were collected using an echo planar imaging (EPI) sequence during both the 

encoding and recognition phases in 2 runs each. Each encoding run consisted of 270 volumes and each 

recognition run consisted of 372 volumes (voxel size = 3 x 3 x 3.3 mm3; TR = 2 s; TE = 30 ms). The first 

three volumes of each run were dummy volumes and were excluded prior to preprocessing. Following the 

encoding phase, a T1-weighted (T1w) magnetization prepared rapid acquisition gradient echo 

(MPRAGE) pulse sequence image was acquired (voxel size = 1 x 1 x 1 mm3; TR = 2.5 ms; TE = 4.77 ms; 

flip angle = 7°; TI = 1.1 ms). Additionally, turbo spin-echo proton density images (PDs), diffusion tensor 

images (DTIs), and fluid attenuation inversion recovery images (FLAIRs) were collected, but not 

included in the following analyses. Experimental stimuli, which participants viewed via a mirror mounted 

on the head-coil, were projected using the Psychtoolbox (Psychophysics Toolbox) for MATLAB 

(Mathworks Inc., Natick, MA).  

 MRI data were organized according to the Brain Imaging Data Structure (BIDS) specification 

(Gorgolewski et al., 2016) and preprocessed using fMRIPrep (version 1.4.0; Esteban et al., 2019) with the 

default settings. The T1w image was corrected for intensity nonuniformity, skull-stripped, and spatially-

normalized to the ICBM 152 Nonlinear Asymmetrical template version 2009c through nonlinear 

registration. Functional images were motion-corrected, slice-time corrected, and co-registered to the 

normalized T1w reference image. Finally, functional images were resampled to 2 mm isotropic voxels in 

order to enhance the signal-to-noise ratio (Dimsdale-Zucker & Ranganath, 2018). 

 

2.5 Behavioral data analyses 
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Behavioral analyses were performed using custom MATLAB scripts. Recognition memory performance 

(Pr) was measured as the difference between the hit rate (proportion of correctly identified old stimuli) 

and the false alarm rate (proportion of new stimuli incorrectly identified as old stimuli; Snodgrass & 

Corwin, 1988). An independent-samples t-test was used to assess age differences in memory performance 

and dependent-samples t-tests were used to determine whether memory performance differed between 

face and house stimuli and whether memory performance exceeded chance level. Age differences in 

response bias were assessed with independent-samples t-tests comparing the hit rates and false alarm rates 

across age groups.  

 

2.6 Pattern similarity searchlight analyses 

In order to perform pattern similarity analyses, a generalized linear model (GLM) was performed for each 

trial in both encoding and recognition, including one trial-specific regressor, one regressor for all other 

trials within the same run, and six motion regressors (Mumford et al., 2012). Trial regressors were 

modeled as 1.2 s duration boxcar functions convolved with a canonical hemodynamic response function. 

Pattern similarity analyses were based on the resulting b weights for each trial. Pattern similarity was only 

assessed between trials from different runs to control for time-dependent correlations in the hemodynamic 

responses (Dimsdale-Zucker & Ranganath, 2018) and was measured as Fisher z-transformed Pearson 

correlations. Searchlight similarity analyses were conducted using modified scripts from the MATLAB 

toolbox for representational similarity analysis (Nili et al., 2014) and with 8-mm-radius spherical 

searchlights. 

 Several searchlight similarity measures were computed (see Figure 2). First, in order to identify 

brain regions demonstrating high category specificity across all participants during memory recognition, 

we compared within-category similarity to between-category similarity for both faces and houses 

separately. For each stimulus, within-category similarity was calculated as the averaged across-voxel 

correlation of the activity pattern in response to the stimulus to the activity patterns in response to all 

other stimuli from the same category (e.g., mean similarity of the activity in response to a face stimulus to 
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that of all other face stimuli). For each participant, within-category similarity was then averaged across all 

stimuli within each category. Between-category similarity was calculated as the averaged across-voxel 

correlation of the stimulus’ activity pattern to the activity patterns of all stimuli from the other category 

(e.g., mean similarity of the activity in response to a face stimulus to that of all house stimuli). Between-

category similarity was then averaged across all stimuli for each participant. Within- and between-

category similarity were assessed in a searchlight centered on each voxel in the brain and the difference 

was calculated, resulting in a whole-brain map of category specificity for faces and a whole-brain map of 

category specificity for houses in each participant.  

 Next, we were interested in searching for brain regions exhibiting encoding-retrieval 

reinstatement both at the category level and at the individual stimulus level. In order to assess category-

level reinstatement, we compared within-category reinstatement to between-category reinstatement. 

Within-category reinstatement was calculated as the mean pattern similarity of all stimuli from a given 

category during encoding to all stimuli from the same category during recognition. Within-item 

reinstatement correlations (i.e., the similarity of a given stimulus’ activity pattern during encoding to the 

activity pattern of the same stimulus during recognition) were excluded from the measure of within-

category reinstatement. Between-category reinstatement was similarly calculated as the mean pattern 

similarity of all stimuli from a given category during encoding to all stimuli from the other category 

during recognition. Within- and between-category reinstatement were then averaged across all stimuli in 

each searchlight and the difference in each voxel was computed, resulting in a whole-brain map of 

category-level reinstatement for each participant. A whole-brain map of item-level reinstatement was 

created for each participant by calculating the voxel-wise difference between within-item reinstatement 

and within-category reinstatement. For both category- and item-level reinstatement, similarity values 

were calculated between recognition and each encoding run individually, then averaged across encoding 

run. 

 For each searchlight similarity measure, nonparametric, cluster-based, random permutation 

analyses adapted from the FieldTrip toolbox (Oostenveld et al., 2011) were used to identify brain regions 
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demonstrating significant effects across all participants (e.g., for the high category specificity measures, 

regions demonstrating greater within-category similarity than between-category similarity). First, 

dependent-samples t-tests were conducted within each voxel. Adjacent voxels with significance values 

lower than a threshold of p < 0.005 were grouped into clusters. The sum of all t statistics of the voxels 

included in each cluster was defined as the cluster test statistic. The Monte Carlo method was used to 

determine whether a cluster was significant by comparing the cluster test statistic to a reference 

distribution of t statistics across 1000 permutations. Each t statistic in the reference distribution was 

created by randomly reallocating the two conditions and calculating the cluster test statistic based on this 

random reallocation. Clusters were considered significant under a threshold of p < 0.05 and if they 

contained at least 10 voxels. 

 

 

Figure 2. Illustration of searchlight similarity measures calculated during encoding-retrieval reinstatement 

(left) and during recognition (right).  

 

2.7 Assessing age differences in searchlight similarity analyses 

Face
 

Face 

Face 

Face 

Face Face 

Face 

Face 
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We were also interested in searching for brain regions demonstrating age differences in each of our 

searchlight similarity measures. For our age comparison analyses, we limited the search space to the 

regions identified during the whole-group analyses (i.e., age differences were only assessed in regions 

demonstrating an effect across all participants). Since some of the clusters identified during the whole-

group analyses were fairly large (>8000 voxels), we again used nonparametric, cluster-based, random 

permutation analyses to search these clusters for regions exhibiting age differences. First, independent-

samples t tests were conducted within each voxel comparing younger and older adults on each searchlight 

similarity measure described previously. Adjacent voxels with significance values lower than a threshold 

of p < 0.005 were grouped into clusters and the sum of all t statistics of the voxels included in each cluster 

was defined as the cluster test statistic. The Monte Carlo method was again used to determine whether a 

cluster was significant. In this case, the reference distribution was created by removing the younger and 

older adult labels and randomly assigning participants to each age group across 1000 permutations.  

 

2.8 Relating searchlight similarity measures to memory performance 

We further assessed the relationship between our searchlight similarity measures and interindividual 

differences in memory performance. Therefore, permutation testing was performed again for each cluster 

identified during the whole-group analyses. For this, regressions were conducted predicting memory 

performance from the searchlight similarity measure in each voxel (i.e., recognition category specificity, 

category-level reinstatement, item-level reinstatement). As described previously, adjacent voxels below 

the threshold of p < 0.005 were grouped into clusters, the cluster test statistic was calculated, and the 

Monte Carlo method determined the significance of each cluster across 1000 permutations. In order to 

derive the correlation coefficient for significant clusters to better understand the relationships, we 

averaged the respective searchlight similarity measure across all voxels within the cluster for each 

participant and correlated this with Pr across participants using Pearson partial correlations controlled for 

group differences (these can be found in Table 3). Clusters identified during face analyses were correlated 

with Pr for faces and clusters identified during house analyses were correlated with Pr for houses.  
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 Additionally, we were interested in whether recognition category specificity or category-level 

reinstatement was better at tracking interindividual variability in memory performance. To this end, we 

computed two linear model comparisons predicting Pr. For the first model comparison, one linear model 

was computed using age and recognition category specificity (i.e., Pr ~ Age* RecSpec) and the other 

model added the interaction between age and category-level reinstatement (i.e., Pr ~ Age* RecSpec + 

Age*ReinSpec). The second model comparison included age and category-level reinstatement as 

predictors in one linear model and additionally the interaction between age and recognition category 

specificity in the other model. In this way, we were able to determine whether recognition category 

specificity or category-level reinstatement better explained memory-related variance. The models were 

compared using the anova() function in R.  

 

2.9 Trial-wise mixed effects analyses 

Recent work has pointed to the significance of both reinstatement as well as hippocampal activity in 

predicting within-person variability in memory performance in both younger and older adults (Trelle et 

al., 2020; Hill et al., 2021). In order to investigate this further, we performed generalized linear mixed-

effects models to determine whether item-level reinstatement specificity or trial-wise hippocampal 

activity were successful predictors of intraindividual differences in memory performance. To measure 

trial-wise hippocampal activity, we used a bilateral hippocampal mask defined by the automatic anatomic 

labeling atlas. For each participant, we averaged across all beta weights within the hippocampal mask for 

every trial and z-transformed across trials within each participant. Since we observed age differences in 

response bias, we also included a participant-wise measure of response bias in the model defined as 

FAR/(1 – (HR – FAR)), where FAR is the false alarm rate and HR is the hit rate (Snodgrass & Corwin, 

1988). We performed a separate model for each cluster resulting from our item-level reinstatement 

searchlight similarity analyses. For each model, binary recognition memory outcomes (hit or miss) were 

used as the dependent variable and age, response bias, hippocampal activity, and item-level reinstatement 

(operationalized as the difference between the similarity of an item to itself across encoding and 
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recognition and the mean similarity of the same item to all other items within the same stimulus category) 

were used as independent variables. The interactions between age and hippocampal activity as well as age 

and item-level reinstatement were included in the model. The model was analyzed using the R function 

glmer from the lme4 package with the following formula: Memory ~ Age + RespBias + Hipp + ItemRein 

+ Age*Hipp + Age*ItemRein + (1 + Hipp + ItemRein | Subject). 
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3 Results 

 

3.1 Behavioral results 

We first checked for age differences in memory performance (i.e., Pr = hit rate – false alarm rate). 

Memory performance did not differ between age groups (Myounger = 0.24, SDyounger = 0.12, Molder = 0.19, 

SDolder = 0.12, t(68) = 1.79, p = 0.08) and memory performance exceeded chance level in both younger 

(t(34) = 11.88, p < 0.001) and older adults (t(34) = 9.25, p < 0.001). Additionally, memory performance 

did not differ between face and house stimuli in either younger (t(34) = -0.88, p = 0.38) or older adults 

(t(34) = -1.60, p = 0.12). Older adults demonstrated a strong response bias, responding “old” more often 

than younger adults to both old stimuli (Myounger = 0.50, SDyounger = 0.14, Molder = 0.60, SDolder = 0.13, t(68) 

= -3.27, p = 0.002) and new stimuli (Myounger = 0.26, SDyounger = 0.11, Molder = 0.42, SDolder = 0.13, t(68) = -

5.42, p < 0.001).  

 

3.2 Category specificity during recognition and reinstatement in occipital and ventral visual regions 

Many studies have presented evidence for selective cortical reinstatement in sensory cortices associated 

with the encoded stimuli (for review, see Danker & Anderson, 2010). However, few studies have 

considered category specificity explicitly during memory retrieval, potentially missing the full picture of 

neural distinctiveness during retrieval. Therefore, we first searched for regions exhibiting greater within-

category similarity than between-category similarity in the whole sample of participants for both faces 

and houses during recognition. Our searchlight similarity analysis revealed four clusters demonstrating 

category specificity for faces in ventral visual, temporal, and frontal regions during recognition (ps < 

0.05; see Table 1 and Figure 3). We additionally identified one large cluster demonstrating strong 

category specificity for houses in ventral visual and occipital regions (p < 0.001).  

Next, we searched for regions demonstrating encoding-retrieval reinstatement at the category 

level for faces and houses. We found two clusters demonstrating strong category-level reinstatement for 

faces in temporal and occipital regions (ps < 0.001; see Table 1 and Figure 3) and two clusters 
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demonstrating strong category-level reinstatement for houses in occipital regions (p < 0.04). Importantly, 

there was a high degree of overlap between category-specific regions identified during recognition and 

reinstatement with 6827 voxels identified during recognition and reinstatement overlapping for houses 

and 640 voxels overlapping for faces (see Figure 3). Thus, specificity during recognition is largely 

dependent on reinstated encoding specificity, though with some variation.  

We also searched for regions demonstrating encoding-retrieval similarity at the item level for 

both faces and houses. These item-level reinstatement searchlight similarity analyses yielded two clusters 

in occipital regions for houses (ps < 0.02; see Table 1 and Figure 3), but no significant clusters for faces 

(ps > 0.08).  

 

Table 1. Clusters identified by searchlight similarity analyses revealing high category specificity during 

recognition and reinstatement  

   Peak MNI   

Searchlight Regions H X Y Z Peak t k 

Face 

Recognition 

(Category) 

Middle temporal gyrus, superior temporal gyrus, 

fusiform gyrus, inferior occipital gyrus, inferior 

temporal gyrus 

R 42 -43 -19 7.85 566 

 Fusiform gyrus, inferior temporal gyrus, inferior 

occipital gyrus 
L -46 -58 -16 7.93 233 

 Rectus, medial orbitofrontal gyrus B -1 54 -16 5.84 76 

 Middle temporal gyrus, superior temporal gyrus L -55 -52 14 4.85 64 

Face 

Reinstatement 

(Category) 

Middle temporal gyrus, fusiform gyrus, inferior 

temporal gyrus, inferior occipital gyrus, superior 

temporal gyrus 

R 42 -52 -16 9.85 659 

 Fusiform gyrus, inferior occipital gyrus, inferior 

temporal gyrus 
L -46 -58 -16 9.39 388 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

House 

Recognition 

(Category) 

Middle occipital gyrus, precuneus, parahippocampal 

gyrus 
B 27 -40 -9 13.37 8018 

House 

Reinstatement 

Middle occipital gyrus, lingual gyrus, precuneus, 

parahippocampal gyrus 
B 27 -40 -9 13.68 8630 

(Category) Middle cingulate cortex B -1 -19 27 4.51 81 

House 

Reinstatement 

Calcarine cortex, cuneus, lingual gyrus, inferior 

occipital cortex 
B 6 -88 -3 5.92 196 

(Item) Fusiform gyrus, inferior occipital cortex, lingual 

gyrus, middle occipital gyrus, calcarine cortex, 

superior occipital gyrus 

L -31 -76 -9 5.00 83 

H = hemisphere; k = cluster size in voxels 
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Figure 3. Regions demonstrating category specificity during recognition and reinstatement for both faces 

(A, B) and houses (C, D). Regions demonstrating item-level reinstatement specificity for houses (E). 

Overlapping voxels in category specificity for houses (F) and faces (G) between recognition and 

reinstatement. Blue = voxels only identified during category-level reinstatement; red = voxels only 

identified during recognition; yellow = voxels overlapping between recognition and reinstatement. 

 

3.3 Age differences in category specificity during recognition and category-level reinstatement 

Previous findings reveal clear age deficits in reinstatement specificity (St-Laurent et al., 2014; Johnson et 

al., 2015; Abdulrahman et al., 2017; Bowman et al., 2019; Trelle et al., 2020; Hill et al., 2021), 

particularly in occipital and temporal regions, but age deficits in retrieval-related specificity are relatively 

less documented (St-Laurent et al., 2014; Johnson et al., 2015). Accordingly, we tested for age differences 

in category specificity, limiting the search space to regions identified by the whole-group analyses. 

Cluster permutation testing revealed two clusters demonstrating age differences in category specificity for 

houses during recognition (ps < 0.001) and three clusters demonstrating age differences in category-level 

reinstatement for houses (ps < 0.05) in bilateral ventral visual cortices (see Table 2 and Figure 4). 

Younger adults exhibited greater category specificity than older adults in all clusters. No age differences 

were identified in category specificity for faces during either recognition or reinstatement (all clusters 

were smaller than 10 voxels). Furthermore, no age differences were identified in item-level house 

specificity. Although there was substantial overlap in age differences between retrieval and reinstatement, 

age differences during retrieval were spatially more widespread than age differences during reinstatement 

(see Figure 4). Age differences in the size of clusters during retrieval spanned 61,271 mm3. Of this 

volume, 41,432 mm3 (or 68%) were shared with age differences in reinstatement, while 19,839 mm3 were 

unique to retrieval. By contrast, age differences in reinstatement spanned 47,936 mm3, with 41,432 mm3 

(or 86%) overlapping with age differences in recognition and 6,504 mm3 reflecting age differences unique 

to reinstatement. Hence, age differences in category specificity are spatially more extended during 

retrieval processing, while age differences during reinstatement are more localized.  
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Table 2. Clusters revealing greater category specificity in younger adults than in older adults 

   Peak MNI   

Searchlight Regions H X Y Z Peak t k 

House 

Recognition 

Middle occipital gyrus, fusiform gyrus, lingual gyrus, 

cerebellum 
L -31 -58 -9 6.76 1034 

(Category) Fusiform gyrus, lingual gyrus, middle occipital gyrus, 

cerebellum, superior occipital gyrus, 

parahippocampal gyrus, precuneus 

R 21 -43 -13 6.75 1029 

House 

Reinstatement 

Middle occipital gyrus, fusiform gyrus, lingual gyrus, 

cerebellum 
L -24 -58 -16 6.62 867 

(Category) Fusiform gyrus, cerebellum, lingual gyrus, 

parahippocampal gyrus, calcarine cortex, superior 

occipital gyrus, hippocampus 

R 24 -34 -6 6.50 708 

 Fusiform gyrus, lingual gyrus, cerebellum R 24 -73 -9 3.88 39 

H = hemisphere; k = cluster size in voxels 
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Figure 4. Age differences in category specificity for houses. Younger adults demonstrated greater 

category specificity (within-category similarity > between-category similarity) than older adults during 

both recognition (A) and reinstatement (B) for house stimuli. Overlapping voxels in age differences in 

category specificity for houses between recognition and reinstatement (C). Blue = voxels only identified 

during category-level reinstatement; red = voxels only identified during recognition; yellow = voxels 

overlapping between recognition and reinstatement. 

 

3.4 Category-level reinstatement predicts interindividual differences in memory performance to a greater 

spatial extent than recognition 

Here, we asked whether category specificity in the regions identified by the whole-group analyses was 

linked to memory performance. In temporal cortices, we identified two clusters demonstrating a positive 

relationship between memory performance and category-level reinstatement for faces (ps < 0.001; see 

Table 3 and Figure 5). In occipital and ventral visual regions, we also found a cluster revealing a positive 

relationship between memory performance and category-level reinstatement for houses (p < 0.001). Two 
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clusters were also identified revealing a positive relationship between memory performance and category 

specificity during recognition for houses (ps < 0.001). However, we did not identify any regions 

demonstrating a relationship between memory performance and face specificity during recognition (all 

clusters had fewer than 10 voxels). Furthermore, we did not identify any clusters revealing a relationship 

between memory performance and item-level reinstatement specificity for houses. Therefore, only 

category-level distinctiveness was positively associated with interindividual differences in memory 

performance, particularly for house stimuli. Crucially, category reinstatement specificity tracked memory 

to a greater spatial extent than recognition specificity (see Figure 5). The size of the clusters revealing an 

association between memory performance and category specificity during retrieval spanned 10,514 mm3. 

Of this volume, 9,950 mm3 (or 95%) were shared with the correlation between memory and reinstatement 

specificity, while 564 mm3 were unique to retrieval. By contrast, the size of the clusters showing an 

association between memory performance and category-level reinstatement spanned 71,993 mm3, with 

9,950 mm3 (or 14%) overlapping with the correlation between memory and recognition specificity and 

62,043 mm3 reflecting a relationship unique to reinstatement. Therefore, we found that both category 

specificity during recognition and category-level reinstatement were associated with memory 

performance, such that participants with more specific neural representations also tended to have better 

memory performance. However, the volume of the regions identified as correlating with memory 

performance was greater for category-level reinstatement than recognition category specificity. 

 

Table 3. Clusters in which category specificity correlates with memory performance 

   Peak MNI   

Searchlight Regions H X Y Z k r 

Face Reinstatement Middle temporal gyrus R 54 -61 14 34 0.44*** 

(Category) Inferior temporal gyrus L -46 -40 -16 14 0.44*** 
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House Reinstatement 

(Category) 

Precuneus, lingual gyrus, calcarine cortex, 

fusiform gyrus 
B 9 -55 21 2424 0.61*** 

House Recognition Calcarine cortex, lingual gyrus, precuneus L -22 -58 1 228 0.47*** 

(Category) Precuneus, lingual gyrus, calcarine cortex R 9 -58 17 126 0.42*** 

H = hemisphere; k = cluster size in voxels; r = Pearson partial correlation coefficient; ***p < 0.001 

 

 

Figure 5. Regions indicating a relationship between category-level specificity and memory performance 

for reinstated faces (A), reinstated houses (B) and houses during recognition (C). Overlapping voxels in 

the correlation between category specificity and memory performance for houses between recognition and 
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reinstatement (D). Blue = voxels only identified during category-level reinstatement; red = voxels only 

identified during recognition; yellow = voxels overlapping between recognition and reinstatement. 

 

3.5 Category-level reinstatement tracks interindividual variability in memory performance better than 

recognition category specificity 

We additionally investigated whether either recognition category specificity or category-level 

reinstatement was better at explaining interindividual differences in memory performance using two 

linear model comparisons. The first model comparison revealed that adding reinstatement as a predictor 

improved the model fit on memory performance (R2 = 0.41) as compared with recognition specificity (R2 

= 0.24; F(64) = 9.64, p < 0.001). However, the second model comparison revealed that adding 

recognition specificity did not improve the model fit on Pr (R2 = 0.41) as compared with reinstatement 

(R2 = 0.39; F(64) = 1.21, p = 0.31). These findings suggest that between-participant variability in memory 

performance is best explained by category-level reinstatement as compared with recognition category 

specificity.  

 

3.6 Intraindividual variability in memory performance covaries with item-level reinstatement 

In the following, we were interested in whether the ability to reinstate item-level encoding information or 

hippocampal activity during retrieval were associated with within-person memory outcomes. Our item-

level reinstatement searchlight similarity analysis for houses revealed two significant clusters: one 

primarily located in the calcarine cortex and the other located in and around the fusiform cortex. For each 

cluster, we performed a general linear mixed effects model in order to test whether binary memory 

response outcome (hit or miss) could be predicted by trial-wise item reinstatement or trial-wise retrieval-

related hippocampal activity. Our results revealed a significant effect of response bias in both clusters 

(calcarine cluster: log odds = 27.27, 95% CI [16.72–44.46]; fusiform cluster: log odds = 26.51, 95% CI 

[16.09–43.69]), showing that a higher bias for “old” responses was related to a higher hit rate. We found 

that trial-wise item reinstatement predicted memory outcome in both clusters (calcarine cluster: log odds 
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= 2.37, 95% CI [1.38–4.05]; fusiform cluster: log odds = 1.68, 95% CI [0.99–2.84]), demonstrating that 

greater item-level reinstatement was beneficial for memory performance. We additionally found a trend 

interaction between age and item reinstatement in the calcarine cluster (log odds = 0.45, 95% CI [0.19–

1.03]), indicating that greater item reinstatement benefited memory performance in younger adults (see 

Figure 6; t = 3.39, p < 0.001, Mhit = 0.041, SDhit = 0.178, Mmiss = 0.015, SDmiss = 0.170), but not in older 

adults (t = 0.12, p = 0.90, Mhit = 0.031, SDhit = 0.145, Mmiss = 0.030, SDmiss = 0.145). No other fixed effects 

or interactions reached significance (see Table 4). Thus, item reinstatement, but not hippocampal activity, 

was predictive of intraindividual variability in memory performance. We additionally identified an age-

related interaction, such that younger adults’ memory benefited from precise item reinstatement, but older 

adults’ memory did not. 

 

Table 4. Results of general linear mixed effects models predicting trial-wise recognition memory 

accuracy 

Cluster Fixed effects predictors Log odds z p 95% CI lower 95% CI upper 

Calcarine 

(k = 196) 

Age 0.89 -1.58 0.11 0.76 1.03 

Hippocampal activity 0.99 -0.11 0.91 0.90 1.10 

Item reinstatement 2.37 3.15 0.002 1.38 4.05 

Response bias 27.27 13.25 <0.001 16.72 44.46 

Age * hippocampal activity 1.00 0.02 0.99 0.87 1.15 

Age * item reinstatement 0.45 -1.89 0.06 0.19 1.03 

Fusiform 

(k = 83) 

Age 0.90 -1.30 0.19 0.77 1.05 

Hippocampal activity 0.99 -0.12 0.91 0.90 1.09 

Item reinstatement 1.68 1.92 0.06 0.99 2.84 

Response bias 26.51 12.86 <0.001 16.09 43.69 

Age * hippocampal activity 1.00 -0.00 1.00 0.87 1.15 
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Age * item reinstatement 0.63 -1.12 0.26 0.29 1.40 

CI = confidence interval; significant and trend effects are shown in bold 

 

 

Figure 6. Increasing item-level reinstatement predicts a higher proportion of hits in the calcarine cluster 

(left) and fusiform cluster (right). Older adults are displayed with a dashed line, younger adults are 

displayed with a solid gray line, and an across-group average is displayed in black. For visualization, 

memory outcome was binned into quintiles according to trial-wise item reinstatement in each participant. 

Within each age group, the proportion of hits was averaged across participants. Error bars indicate ±1 

standard error. 
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4 Discussion 

The present study implemented exploratory multivariate pattern similarity searchlight analyses in order to 

investigate the influence of age-related neural dedifferentiation on category-sensitive neural 

representations during retrieval and encoding-retrieval reinstatement. Neural distinctiveness, reflected in 

less similar neural representations of items between different stimulus categories as compared to items 

within the same stimulus category, was observed during retrieval and reinstatement for both face and 

house stimuli. Importantly, younger adults demonstrated more distinctive (house) representations than 

older adults, in line with the age-related neural dedifferentiation hypothesis (Li et al., 2001; for review, 

see Koen & Rugg, 2019). The specificity of reinstated categorical representations was linked to better 

memory performance, providing evidence supporting the cortical reinstatement hypothesis (Danker & 

Anderson, 2010). Using a recognition paradigm, we were able to compare retrieval-related neural patterns 

of distinctiveness with reinstated encoding patterns and found that both overlapped highly. Despite this 

congruency, age differences in neural distinctiveness between younger and older adults were spatially 

more widespread during retrieval than during reinstatement. At the same time, reinstated neural patterns 

were more strongly linked to memory performance than retrieval-related distinctiveness. Thus, our 

findings suggest that while age-related neural dedifferentiation is more prominent during memory 

retrieval, the specificity with which neural patterns are reinstated seems to be more important for 

successful memory processing.  

 First and foremost, this study contributes to the scant literature on age-related neural 

dedifferentiation during memory retrieval. While many studies have highlighted the importance of 

representational distinctiveness during encoding (Zheng et al., 2018; Koen et al, 2019; Srokova et al., 

2020; Hill et al., 2021), a recent review discussed how imprecise neural signaling during retrieval may 

lead to further memory impairment in older adults (Sander et al., 2021). In this review, Sander and 

colleagues (2021) highlighted how age differences both in mechanisms and neural structures supporting 

consolidation and retrieval amplify age differences already observed during encoding, resulting in poor 
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memory quality. Therefore, our findings that reduced neural distinctiveness persists in older adults across 

memory stages reveal yet another hurdle for memory accuracy in older age.  

Our focus on neural dedifferentiation exclusively during memory retrieval, as opposed to 

encoding-retrieval reinstatement, was motivated by recent reports of spatial and representational 

transformations in information processing between encoding and retrieval (Xiao et al., 2017; Favila et al., 

2018; Srokova et al., 2022). These studies showed that, during retrieval, representations of encoding-

related content can be found in regions other than those identified during encoding. For example, peaks of 

neural activation during retrieval have been found to be located more anteriorly compared to peaks of 

neural activation during encoding, termed the anterior shift (Bainbridge et al., 2021; for review, see Favila 

et al., 2020). The magnitude of this anterior shift has been reported to be larger in older adults than in 

younger adults (Srokova et al., 2022). These findings suggested that age differences in categorical 

representations might be salient outside reinstated encoding patterns. While we observed overlapping 

effects of dedifferentiation between recognition and reinstatement, age deficits in specificity during 

retrieval in our recognition paradigm clearly extended beyond poor reinstatement specificity. These age 

deficits during retrieval were limited primarily to occipital and ventral visual regions. Since we used a 

recognition task in the present study showing old and new stimuli during the retrieval phase, the observed 

age effects in these regions may be closely related to similar effects observed during encoding, and thus 

may mostly reflect an impairment in active perceptual (re-)processing during recognition. It is important 

to note that the type of retrieval task plays a role in which brain areas are recruited. Accordingly, a 

different retrieval task may also recruit category-specific representations in areas outside visual 

processing regions and reveal age differences therein. For example, in a recent study revealing encoding-

retrieval transformation, Favila and colleagues (2018) asked participants to retrieve either the stimulus 

color or the stimulus object in separate retrieval trials. Irrespective of the type of retrieval trial, encoding 

patterns were reliably reinstated in the occipitotemporal cortex. However, the type of trial could be 

decoded from patterns in the lateral parietal cortex, which represented the stimulus color during color 

trials and the stimulus object during object trials, thus flexibly adapting to the current retrieval goal. 
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Therefore, manipulating task affordances during retrieval (e.g., attention, retrieval goal) may recruit 

additional regions in which distinctive neural representations are crucial to completing the task at hand. 

These additional regions may also be susceptible to age-related declines in neural distinctiveness, thus 

increasing the extent of observed age differences. However, more work is needed to investigate this 

hypothesis.  

 Above, we propose that retrieval-related age differences in neural specificity that are not 

attributable to reinstatement may be associated with a deficit in perceptual processing of stimuli during 

recognition in older adults. Active perceptual input during the old/new recognition task utilized in this 

study makes it difficult to definitively disentangle whether neural dedifferentiation during retrieval is 

related to poorly reinstated encoding patterns or poor sensory representations. While age effects of 

retrieval-related specificity partially overlapped with reinstatement age effects, age differences with 

regard to retrieval specificity were more widespread, potentially resulting from poor perceptual 

discriminability during recognition. Alterations in the neural representations of visual input in older adults 

may be a downstream consequence of poor sensory function (Lindenberger & Baltes, 1994; Schneider & 

Pichora-Fuller, 2000; Lindenberger et al., 2001; KZH Li & Lindenberger, 2002) and/or age differences in 

eye movements (Wynn et al., 2018; Wynn et al., 2019; Wynn et al., 2021). Age-related declines in both 

visual and auditory acuity have been associated with declines in cognitive performance (for review, see 

KZH Li & Lindenberger, 2002). Deterioration of sensory abilities likely leads to noisy and less specific 

neural representations in older adults (Schneider & Pichora-Fuller, 2000), which we may be observing in 

the decline in specificity during recognition. Similarly, age differences in eye movements may also be 

reflected in neural representations in visual areas. Wynn and colleagues (2021) observed that older adults 

had less distinctive gaze patterns across distinct images compared with younger adults, and when viewing 

the same image multiple times, older adults tended to gaze upon the same parts of the image with each 

presentation, while younger adults viewed new regions, thus updating and expanding their representations 

of the image. Both of these viewing behaviors in older adults were associated with poorer recognition 

memory performance (i.e., participants who had less distinctive gaze patterns tended to have worse 
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recognition memory). In our view, age differences in gaze patterns may potentially feed forward into the 

specificity of neural representations in visual cortices. It would therefore be an interesting avenue to 

explore whether age differences in neural distinctiveness of visual representations are potentially 

mediated by age differences in eye movements. 

Theories of cognitive aging (S-C Li & Lindenberger, 1999; S-C Li et al., 2001; for reviews, see 

S-C Li & Rieckmann, 2014; Koen & Rugg, 2019) hypothesize that neural dedifferentiation impairs 

memory performance. Although several studies have recently demonstrated a positive relationship 

between neural specificity during encoding and memory performance (Zheng et al., 2018; Koen et al, 

2019; Srokova et al., 2020), retrieval-related specificity has not yet been associated with an objective 

measure of memory performance. We sought to close this gap by relating memory performance to our 

multivariate measure of specificity during retrieval. We did indeed identify a positive relationship 

between specificity and memory during retrieval. However, our findings suggest a far more prominent 

role of reactivation of categorical representations for successful mnemonic processing than specificity 

during retrieval. This aligns with several previous aging studies also reporting the beneficial impact of 

precise reinstatement on memory performance (St-Laurent et al., 2014; Abdulrahman et al., 2017; 

Bowman et al., 2019; Hill et al., 2021; but see Wang et al., 2016). 

Further evidence pointing to the importance of reinstatement for successful memory comes from 

our trial-wise analyses showing that the strength of item-level reinstatement reliably predicted trial-by-

trial memory outcomes. We additionally revealed a slight interaction in this relationship with age group, 

showing that item reinstatement was a predictor of memory success for younger adults, but not for older 

adults. This outcome resembles findings reported by Hill and colleagues (2021), who also showed an 

analogous age-moderated relationship between trial-wise category-level reinstatement and source 

memory performance for scene stimuli (but, see Trelle et al., 2020, for findings of a trial-wise relationship 

between memory success and item reinstatement in older adults). In contrast to both Trelle et al. (2020) 

and Hill et al. (2021), we did not find that retrieval-related hippocampal activity predicted memory 

success. This may be yet another manifestation of how retrieval task influences the results, since both of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

the aforementioned studies used a source memory retrieval task, which is more likely to recruit 

hippocampal resources to support memory retrieval through pattern completion (McClelland et al., 1995). 

Age-related neural dedifferentiation has also been reported in terms of a decrease in the 

distinctiveness of item-specific reinstatement (Folville et al., 2020; Hill et al., 2021). Although we 

observed occipital regions demonstrating an effect of strong item-level specificity during reinstatement 

for houses, we found neither age differences in this effect nor an interindividual relationship with memory 

performance. The absence of age differences in item-level reinstatement is surprising and appears to 

contradict previous evidence for an age deficit at this representational level. However, while Hill and 

colleagues (2021) demonstrated an age-related decrease in item-level pattern similarity, their measure did 

not control for potential age deficits at the category level. Therefore, the observed age differences at the 

item level may not have been reflected more than a general categorical deficit. Nevertheless, our finding 

proves difficult to interpret in the context of the current literature — more studies will be needed to 

understand how age differences in neural distinctiveness vary across different representational levels. 

Finally, age differences in neural distinctiveness were found in this study for houses, but not for 

faces. Age-related neural dedifferentiation has frequently been documented for “place” stimuli, such as 

houses and scenes (Voss et al., 2008; Carp et al., 2011; Zheng et al., 2018; Koen et al., 2019; Srokova et 

al., 2020, Hill et al., 2021), with one exception (Berron et al., 2018). However, evidence for 

dedifferentiation for faces is more mixed, with some studies reporting age differences (D.C. Park et al., 

2004; J. Park et al., 2012; Voss et al., 2008) and some reporting absent age effects (Payer et al., 2006; 

Srokova et al., 2020; Hill et al., 2021). Our findings mirror those of Hill and colleagues (2021), who 

reported age differences in category-level reinstatement and category specificity during retrieval only for 

scene stimuli and not for face stimuli. The present discrepancy between face and house stimuli may be 

attributed to a couple of factors. First, it has been argued that age differences may be less salient for faces 

due to the lifetime experience hypothesis (Koen et al., 2019; Srokova et al., 2020), which posits that 

perceptual schemas may develop across the life course as a result of substantial exposure to particular 

categories, possibly allowing for more rapid integration of novel exemplars into these schemas. Thus, 
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absent age differences for faces may reflect that the face schema is already developed by young 

adulthood. In addition, categorical differences may stem from lower order feature-level differences. For 

example, houses have been shown to be more feature-rich than faces, which drives brain signal variability 

(Garrett et al., 2020) and may also impact measures of neural representations. Therefore, the neural 

dedifferentiation field could benefit from studies incorporating additional stimulus categories that vary at 

the feature level in order to disentangle whether these observed disparities between face and house stimuli 

are actually category-specific effects or rather related to lower-order stimulus features. 

Together, our findings reveal evidence for age-related neural dedifferentiation during memory 

retrieval. Importantly, these age deficits cannot be fully attributed to imprecise reinstatement of encoding-

related category representations and thus may also reflect impaired perceptual processing in older adults. 

Furthermore, while both retrieval- and reinstatement-related category specificity were positively 

associated with memory performance across participants, reinstatement specificity correlated with 

memory in substantially more neural regions than retrieval specificity. We propose that these outcomes 

highlight the significance of precise cortical reinstatement for the support of memory retrieval. We also 

suggest several avenues for future research, including investigation of how the retrieval task might play a 

role in manifestations of age-related neural dedifferentiation. 

 

Funding 

This work was supported by the projects “Lifespan Age Differences in Memory Representations (LIME)” 

(PI: M.C.S.) and “Lifespan Rhythms of Memory and Cognition (RHYME)” (PI: M.W.-B.) at the Max 

Planck Institute for Human Development. C.P. was a fellow of the International Max Planck Research 

School on the Life Course (LIFE). M.K. was supported by a German Academic Scholarship Foundation 

scholarship. M.W.B. was supported by the German Research Foundation (Deutsche 

Forschungsgemeinschaft; WE 4269/2-1 and WE 4269/5-1) and a Jacobs Foundation Early Career 

Research Fellowship. M.C.S. was supported by the MINERVA program of the Max Planck Society. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Acknowledgments  

We thank Verena R. Sommer and Attila Keresztes for programming and running the study, all student 

assistants who helped with data collection, Gabriele Faust and members of the LIME and RHYME 

projects for helpful feedback, Julia Delius for editorial assistance, and all study participants for their time.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

References 

Abdulrahman H, Fletcher PC, Bullmore E, Morcom AM. 2017. Dopamine and memory dedifferentiation 

in aging. Neuroimage. 153:211–220. 

Bainbridge WA, Hall EH, Baker CI. 2021. Distinct representational structure and localization for visual 

encoding and recall during visual imagery. Cereb Cortex. 31:1898–1913. 

Berron D, Neumann K, Maass A, Schütze H, Fliessbach K, Kiven V, Jessen F, Sauvage M, Kumaran D, 

Düzel E. 2018. Age-related functional changes in domain-specific medial temporal lobe pathways. 

Neurobiol Aging. 65:86–97. 

Bowman CR, Chamberlain JD, Dennis NA. 2019. Sensory representations supporting memory 

specificity: Age effects on behavioral and neural discriminability. J Neurosci. 39:2265–2275. 

Carp J, Park J, Polk TA, Park DC. 2011. Age differences in neural distinctiveness revealed by multi-voxel 

pattern analysis. Neuroimage. 56:736–743. 

Danker JF, Anderson JR. 2010. The ghosts of brain states past: Remembering reactivates the brain 

regions engaged during encoding. Psychol Bull. 136:87–102. 

Deng L, Davis SW, Monge ZA, Wing EA, Geib BR, Raghunandan A, Cabeza R. 2021. Age-related 

dedifferentiation and hyperdifferentiation of perceptual and mnemonic representations. Neurobiol 

Aging. 106:55–67. 

Dimsdale-Zucker HR, Ranganath C. 2018. Representational similarity analyses: A practical guide for 

functional MRI applications. In: Manahan-Vaughan, D, editor. Handbook of behavioral 

neuroscience. London (UK): Academic Press. Vol. 28, p 509–525. 

Dulas MR, Duarte A. 2012. The effects of aging on material-independent and material-dependent neural 

correlates of source memory retrieval. Cereb Cortex. 22:37–50. 

Ebner NC, Riediger M, Lindenberger U. 2010. FACES – a database of facial expressions in young, 

middle-aged, and older women and men: Development and validation. Behav Res Methods. 42:351–

362. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre 

E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. 2019. 

fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods. 16:111–116. 

Favila SE, Lee H, Kuhl BA. 2020. Transforming the concept of memory reactivation. Trends Neurosci. 

43:939–950. 

Favila SE, Samide R, Sweigart SC, Kuhl BA. 2018. Parietal representations of stimulus features are 

amplified during memory retrieval and flexibly aligned with top-down goals. J Neurosci. 38:7809–

7821. 

Folstein MF, Folstein SE, McHugh PR. 1975. “Mini-mental state”. A practical method for grading the 

cognitive state of patients for the clinician. J Psychiatr Res. 12:189–198. 

Folville A, Bahri MA, Delhaye E, Salmon E, D’Argembeau A, Bastin C. 2020. Age-related differences in 

the neural correlates of vivid remembering. Neuroimage. 206. 

Garrett DD, Epp SM, Kleemeyer M, Lindenberger U, Polk TA. 2020. Higher performers upregulate brain 

signal variability in response to more feature-rich visual input. Neuroimage. 217:116836. 

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, 

Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, 

Nichols TE, Pellman J, Poline JB, Rokem A, Schaefer G, Sochat V, Triplett W, Turner JA, 

Varoquaux G, Poldrack RA. 2016. The brain imaging data structure, a format for organizing and 

describing outputs of neuroimaging experiments. Sci Data. 3:1–9. 

Hill PF, King DR, Rugg MD. 2021. Age differences in retrieval-related reinstatement reflect age-related 

dedifferentiation at encoding. Cereb Cortex. 31:106–122. 

Johnson JD, Rugg MD. 2007. Recollection and the reinstatement of encoding-related cortical activity. 

Cereb Cortex. 17:2507–2515. 

Johnson MK. 2006. Memory and reality. Am Psychol. 61:760–771. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Johnson MK, Kuhl BA, Mitchell KJ, Ankudowich E, Durbin KA. 2015. Age-related differences in the 

neural basis of the subjective vividness of memories: Evidence from multivoxel pattern 

classification. Cogn Affect Behav Neurosci. 15:644–661. 

Kobelt M, Sommer VR, Keresztes A, Werkle-Bergner M, Sander MC. 2021. Retraction notice to 

“Tracking age differences in neural distinctiveness across representational levels”. J 

Neurosci. 41:3499–3511. 

Koen JD, Rugg MD. 2019. Neural dedifferentiation in the aging brain. Trends Cogn Sci. 23:547–559. 

Koen JD, Srokova S, Rugg MD. 2020. Age-related neural dedifferentiation and cognition. Curr Opin 

Behav Sci. 32:7–14. 

Li KZH, Lindenberger U. 2002. Relations between aging sensory/sensorimotor and cognitive functions. 

Neurosci Biobehav Rev. 26:777–783. 

Li S-C, Lindenberger U, Sikström S. 2001. Aging cognition: From neuromodulation to representation. 

Trends Cogn Sci. 5:479–486. 

Li S-C, Rieckmann A. 2014. Neuromodulation and aging: Implications of aging neuronal gain control on 

cognition. Curr Opin Neurobiol. 29:148–158. 

Li S-C, Lindenberger U. 1999. Cross-level unification: A computational exploration of the link between 

deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In: 

Nilsson, LG, Markowitsch, HJ, editors. Cognitive neuroscience of memory. Göttingen (Germany): 

Hogrefe. p 103–146. 

Lindenberger U, Baltes PB. 1994. Sensory functioning and intelligence in old age: A strong connection. 

Psychol Aging. 9:339–355. 

Lindenberger U, Scherer H, Baltes PB. 2001. The strong connection between sensory and cognitive 

performance in old age: Not due to sensory acuity reductions operating during cognitive assessment. 

Psychol Aging. 16:196–205. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

McClelland JL, McNaughton BL, O’Reilly RC. 1995. Why there are complementary learning systems in 

the hippocampus and neocortex: Insights from the successes and failures of connectionist models of 

learning and memory. Psychol Rev. 102:419–457. 

McDonough IM, Cervantes SN, Gray SJ, Gallo DA. 2014. Memory’s aging echo: Age-related decline in 

neural reactivation of perceptual details during recollection. Neuroimage. 98:346–358. 

Mumford JA, Turner BO, Ashby FG, Poldrack RA. 2012. Deconvolving BOLD activation in event-

related designs for multivoxel pattern classification analyses. Neuroimage. 59:2636–2643. 

Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. 2014. A toolbox for 

representational similarity analysis. PLOS Comput Biol. 10:e1003553. 

Norman KA, O’Reilly RC. 2003. Modeling hippocampal and neocortical contributions to recognition 

memory: A complementary-learning-systems approach. Psychol Rev. 110:611–646. 

Norman KA, Schacter DL. 1997. False recognition in younger and older adults: Exploring the 

characteristics of illusory memories. Mem Cogn. 25:838–848. 

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: Open source software for advanced 

analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 

2011:156869. 

Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR. 2004. Aging reduces neural specialization 

in ventral visual cortex. Proc Natl Acad Sci U S A. 101:13091–13095. 

Park J, Carp J, Kennedy KM, Rodrigue KM, Bischof GN, Huang CM, Rieck JR, Polk TA, Park DC. 

2012. Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the 

face network in a large lifespan sample. J Neurosci. 32:2154–2158. 

Pauley C, Sommer VR, Kobelt M, Keresztes A, Werkle-Bergner M, Sander MC. 2022. Retraction notice 

to "Age-related declines in neural selectivity manifest differentially during encoding and 

recognition". Neurobiol Aging. 112:139–150.  

Payer D, Marshuetz C, Sutton B, Hebrank A, Welsh RC, Park DC. 2006. Decreased neural specialization 

in old adults on a working memory task. Neuroreport. 17:487–491. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

Sander MC, Fandakova Y, Werkle-Bergner M. 2021. Effects of age differences in memory formation on 

neural mechanisms of consolidation and retrieval. Semin Cell Dev Biol. 116:135–145. 

Schneider BA, Pichora-Fuller MK. 2000. Implications of perceptual deterioration for cognitive aging 

research. In: Craik FIM, Salthouse TA, editors. The handbook of aging and cognition. Mahwah, NJ: 

Erlbaum. p 155–219. 

Snodgrass JG, Corwin J. 1988. Pragmatics of measuring recognition memory: Applications to dementia 

and amnesia. J Exp Psychol Gen. 117:34–50. 

Sommer VR, Sander MC. 2022. Contributions of representational distinctiveness and stability to memory 

performance and age differences. Aging, Neuropsychol Cogn. 29:443–462. 

Srokova S, Hill PF, Koen JD, King DR, Rugg MD. 2020. Neural differentiation is moderated by age in 

scene-selective, but not face-selective, cortical regions. eNeuro. 7:ENEURO.0142-20.2020. 

Srokova S, Hill PF, Rugg MD. 2022. The retrieval-related anterior shift is moderated by age and 

correlates with memory performance. J Neurosci. 42:1765–1776. 

St-Laurent M, Abdi H, Bondad A, Buchsbaum BR. 2014. Memory reactivation in healthy aging: 

Evidence of stimulus-specific dedifferentiation. J Neurosci. 34:4175–4186. 

Thakral PP, Wang TH, Rugg MD. 2017. Decoding the content of recollection within the core recollection 

network and beyond. Cortex. 91:101–113. 

Thakral PP, Wang TH, Rugg MD. 2019. Effects of age on across-participant variability of cortical 

reinstatement effects. Neuroimage. 191:162–175. 

Trelle AN, Carr VA, Guerin SA, Thieu MK, Jayakumar M, Guo W, Nadiadwala A, Corso NK, Hunt MP, 

Litovsky CP, Tanner NJ, Deutsch GK, Bernstein JD, Harrison MB, Khazenzon AM, Jiang J, Sha SJ, 

Fredericks CA, Rutt BK, Mormino EC, Kerchner GA, Wagner AD. 2020. Hippocampal and cortical 

mechanisms at retrieval explain variability in episodic remembering in older adults. Elife. 9:e55335. 

Voss MW, Erickson KI, Chaddock L, Prakash RS, Colcombe SJ, Morris KS, Doerksen S, Hu L, 

McAuley E, Kramer AF. 2008. Dedifferentiation in the visual cortex: An fMRI investigation of 

individual differences in older adults. Brain Res. 1244:121–131. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

Wang TH, Johnson JD, De Chastelaine M, Donley BE, Rugg MD. 2016. The effects of age on the neural 

correlates of recollection success, recollection-related cortical reinstatement, and post-retrieval 

monitoring. Cereb Cortex. 26:1698–1714. 

Wynn JS, Buchsbaum B, Ryan J. 2021. Encoding and retrieval eye movements mediate age differences in 

pattern completion. Cognition. 214:104746. 

Wynn JS, Olsen RK, Binns MA, Buchsbaum BR, Ryan JD. 2018. Fixation reinstatement supports 

visuospatial memory in older adults. J Exp Psychol Hum Percept Perform. 44:1119–1127. 

Wynn JS, Shen K, Ryan JD. 2019. Eye movements actively reinstate spatiotemporal mnemonic content. 

Vision. 3:21. 

Xiao X, Dong Q, Gao J, Men W, Poldrack RA, Xue G. 2017. Transformed neural pattern reinstatement 

during episodic memory retrieval. J Neurosci. 37:2986–2998. 

Zheng L, Gao Z, Xiao X, Ye Z, Chen C, Xue G. 2018. Reduced fidelity of neural representation underlies 

episodic memory decline in normal aging. Cereb Cortex. 28:2283–2296. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.533591doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533591
http://creativecommons.org/licenses/by-nc-nd/4.0/

