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Various implementations of mesoscopes provide optical access for calcium imaging across 

multi-millimeter fields-of-view (FOV) in the mammalian brain. However, capturing the ac-

tivity of the neuronal population within such FOVs near-simultaneously and in a volumet-

ric fashion has remained challenging since approaches for imaging scattering brain tissues 

typically are based on sequential acquisition. Here, we present a modular, mesoscale light 

field (MesoLF) imaging hardware and software solution that allows recording from thou-

sands of neurons within volumes of � 4000 × 200 µm, located at up to 400 µm depth in 

the mouse cortex, at 18 volumes per second. Our optical design and computational ap-

proach enable up to hour-long recording of ~10,000 neurons across multiple cortical areas 

in mice using workstation-grade computing resources. 

Information flow across cortical areas is a hallmark of higher-level perception, cogni-

tion, and the neuronal network dynamics that underlie complex behaviors. Yet tracing 

this information flow in a volumetric fashion across mesoscopic fields-of-view (FOV), 
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at a cellular resolution and at a temporal bandwidth sufficient to capture the dynamics 

of genetically encoded calcium indicators (GECIs)1–6, i.e., 10–20 Hz, has remained chal-

lenging. In the realm of multi-photon microscopy7, several cellular-resolution 

mesoscopes have been presented that reach FOVs measuring up to ~5 mm in diame-

ter8–13 but typically, fast calcium imaging in these designs is constrained to smaller re-

gions-of-interests. More importantly, since the volumetric imaging rate achievable in 

serial scanning methods scales as the inverse third power of the side length of the im-

aged volume, scaling up sequential acquisition approaches to mesoscopic volumes has 

thus far remained limited and highly involved. Scan-free, mesoscopic widefield one-

photon imaging approaches on the other hand, often based on low-NA or photograph-

ic objectives14–16, have only provided coarse, low-resolution activity information, re-

solve only superficial neurons17,18, or require sparse expression of GECIs and their tar-

geting to superficial brain regions19 to achieve neuron-level discrimination. 

In light field microscopy (LFM)20–28, a microlens array is used to encode volumetric 

information about the sample onto a 2D camera sensor. These sensor images are sub-

sequently computationally reconstructed using the system’s point-spread-function 

(PSF) to obtain 3D sample information. By doing away with the need for scanning ex-

citation, these techniques offer the unique capability to scale up the acquisition vol-

ume both laterally and axially without sacrificing frame rate and thus, in principle, can 

enable fast mesoscopic volumetric imaging. However, due to the limitations imposed 

by scattering tissues and the computational cost of large-scale deconvolutions, the use 

of LFM has been restricted to only sub-millimeter FOVs and weakly scattering speci-

men. 
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We have recently extended LFM into the scattering mammalian brain29,30 by exploit-

ing the strongly forward-directed nature of light scattering in brain tissue and the ca-

pability of LFM to capture both angular and lateral position information contained in 

the incoming light field. Our Seeded Iterative Demixing (SID) approach29,30 was de-

signed to capture the remaining directional information present in the scattered light-

field and, together with the spatio-temporal sparsity of neuronal activity, exploit this 

information to seed a machine learning algorithm that provides an initial estimate of 

the locations of the active neurons. SID then iteratively refines both the position esti-

mates and the neuronal activity time series, thereby allowing for neuron localization 

and extraction of activity signals from depths up to ~400 µm in the mouse brain. 

LFM’s simplicity and scalability combined with SID’s potential to extend this approach 

into scattering brain tissues in principle makes LFM highly attractive for mesoscale 

volumetric recording of neuroactivity. However, actual experimental realizations of 

mesoscopic LFM imaging in the mammalian cortex have thus far been hampered by a 

lack of solutions for capturing mesoscopic fields-of-views at high optical resolution 

across multi-millimeter FOVs and appropriate computational tools. On one hand the 

required computational resources for such tools need to efficiently scale with the im-

aged volume size – and hence the number of recorded neurons – as well as the num-

ber of the recorded frames. On the other hand, these computational tools have to be 

able to address the unique challenges associated with faithful localization and extrac-

tion of neuronal signals at such scale.  

High-resolution imaging across multi-millimeter FOVs requires careful correction of 

optical aberrations, in particular spherical aberration, which scales with the fourth 
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power of the FOV radius and the sufficient correction of which often involves com-

promises in the correction of other optical aberrations. The computational reconstruc-

tion pipeline on the other hand, aside from being able to robustly extract remaining 

spatial and directional information from the ballistic and scattered photons, has to be 

able to account for varying tissue morphology and a range of different conditions, 

such as blood vessels and their pulsation and other sources of non-rigid tissue defor-

mation, while keeping computational cost at bay despite terabyte-scale raw data sizes.  

RESULTS 

Here we demonstrate a volumetric, one-photon-based approach that overcomes these 

challenges. Using a modular, Mesoscale Light Field (MesoLF) imaging hardware and 

software solution that combines mesoscale optical design and aberration correction 

with a scalable computational pipeline for neuronal localization and signal extraction 

we demonstrate volumetric recording from more than 10,500 active neurons across 

different regions of the mouse cortex within different volumes of � 4000 × 200 µm po-

sitioned at depths up to ~400 µm. We captured the activity of these neurons at 18 vol-

umes per second and over timespans exceeding one hour per session for which a sin-

gle workstation equipped with three Graphics Processing Units (GPUs) was sufficient 

to perform signal extraction and demixing in a matter of hours. 

We have designed the MesoLF optical system to be compatible with a widely used 

commercial mesoscopy platform31,32 which is designed for multiphoton scanning mi-

croscopy but lacks well-corrected wide-field imaging capabilities. The MesoLF optical 

path (Methods, Supplementary Note 1) is based on a custom tube lens consisting of 
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three doublet elements in a configuration akin to the Petzval objective design form33. 

The elements were numerically optimized to correct the output of the mesoscope ob-

jective to achieve diffraction-limited imaging of a � 4-mm-FOV at NA 0.4 and 10× 

magnification in the 515-535 nm emission range of the GCaMP calcium indicators. Our 

tube lens design offers a widefield (pre-LFM) optical resolution of ~600 line-pairs per 

millimeter across the entire FOV, thus enabling a wide range of high-resolution 

mesoscopy applications other than LFM, which are often limited by insufficient reso-

lution in large-FOV optics.  

To facilitate LFM recording, we placed a microlens array into the image plane of our 

custom-designed tube lens. An 80-Megapixel CMOS camera captures the resulting 

LFM raw images at 18 frames per second. All optical components of the MesoLF sys-

tem, including the 470 nm LED illumination arm, form a module that was integrated 

into the optical path of our mesoscope via a motorized fold mirror (Methods, Supple-

mentary Note 1, Supplementary Fig. 1). 

The MesoLF computational pipeline (Fig. 1a, Methods, Supplementary Notes 2-9, Sup-

plementary Video 1, Supplementary Software 1) is engineered from the ground up to 

maximize localization accuracy and signal extraction performance at depth in scatter-

ing tissue and addresses the challenges associated with scaling the current LFM recon-

struction approaches21,22 to mesoscopic volumetric FOVs. Briefly, after tiling the FOV 

into 6 × 6 patches, correcting for motion, subtracting the global dynamic background, 

and masking out vasculature pulsation, the MesoLF pipeline generates a temporally 

filtered activity summary image in which the weakly scattered LFM footprints of active 

neurons are emphasized relative to the strongly scattered background. A novel phase-
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space-based LFM deconvolution approach generates a volumetric estimate of the ac-

tive neuron locations while rejecting fluorescence background from above and below 

the imaged volume. Subsequent morphological segmentation allows shape-based 

identification of neuron candidates and their surrounding volumetric neighborhoods 

(“shells”), and the expected footprints of these neuron- and shell candidates in the 

LFM raw data are estimated. At the core of the pipeline lies an iterative demixing step 

in which the spatial and temporal components are alternatingly updated while keep-

ing the respective other fixed. Signals from core and shell components are demixed, 

and finally, the resulting traces are classified using a convolutional neuronal network. 

The pipeline is discussed in detail further below, in Supplementary Note 2-9 and Sup-

plementary Fig. 2-10 and illustrated in Supplementary Video 1. 

We verified the in vivo performance of our high-resolution MesoLF optical module 

and signal extraction pipeline by performing up to hour-long calcium imaging in the 

cortex of head-restrained mice. In representative ~7-minute recordings at 18 Hz 

(Fig. 2a-c, Supplementary Video 2) of a mouse expressing a modified version of the 

cell-body-targeted calcium indicator SomaGCaMP7f34 (Methods), within a volumetric 

FOV of � 4000 × 200 µm3 that was positioned at up to 400 um depth, we detected 

10,582 active neurons in the depth range of 0–200 µm, 8,076 active neurons in the 

depth range of 100–300 µm, and 4,746 active neurons in the range of 200–400 µm. The 

imaged volume contained all or the majority of the posterior parietal, primary soma-

tosensory, primary visual, anteromedial visual, and retrosplenial cortical area. In the 

extracted temporal signals, clear correlation between bursts of activity and whisker 
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stimulation onsets are observable (white and black triangles in Fig. 2b and Fig. 2c re-

spectively).  

The achievable neuron detection sensitivity, signal extraction quality, and neuron lo-

calization accuracy at depth in LFM is ultimately limited by reconstruction artifacts 

due to scatter-induced aberrations as well as by crosstalk between neurons, neuropil, 

and background activity above and below the imaged volume. In MesoLF, we have ad-

dressed these limitations through the following four key conceptual advances: 

First, to reduce reconstruction artifacts that are typical of conventional LFM recon-

structions21,22 – in particular those affected by light scattering – without resorting to 

computationally costly regularization constraints, the input data is transformed into a 

phase-space representation in which the different angular views of the source volume 

encoded in an LFM raw image are treated separately and thus can be filtered, weighed, 

and updated in an optimized sequence35 (Fig. 3a). In addition, we introduce a novel 

“background peeling” algorithm in which fluorescent contributions from above and 

below the target volume are estimated and subtracted. Such out-of-volume back-

ground fluorescence is a key limiting factor of the performance of reconstruction algo-

rithms, which try to explain the observed background signal by allocating it to within-

volume features and thus generating reconstruction artifacts. We show that phase-

space reconstruction together with background peeling visibly reduces artifacts com-

pared to conventional LFM reconstruction21,22 as well as to the previously published 

phase space reconstruction approach35 (Fig. 3b) and significantly improves the well-

known structure similarity index measure (SSIM, see Supplementary Note 5) between 

reconstruction and ground truth for a depth range of 300–400 µm by 88% while re-
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ducing the neuron localization error by 64% (Fig. 3c-e). Furthermore, the neuron 

identification precision (positive predictive value) is improved by 42% and sensitivity 

(true positive rate) by 144% (Methods, Supplementary Note 4-5, Supplementary Fig. 5-

7). 

Second, the implementation of our morphology-based segmentation (Fig. 3f-h, Sup-

plementary Fig. 8, Supplementary Note 6) allows for applying priors on neurons shape 

and is capable of robustly processing volumes with dense neuron content (Fig. 3f). 

Compared to the spatio-temporal matrix factorization approaches that have previously 

been suggested as a way of segmenting active neurons36,23, our purely shape-based ap-

proach is not prone to producing segments containing multiple neurons when their 

temporal activity is highly correlated because it does not rely on temporal independ-

ence (Fig. 3g) and overall achieves superior neuron detection performance relative to a 

comparable one-photon segmentation algorithm37 (Fig. 3h). Since segmentation is 

performed on a reconstruction of a filtered temporal activity summary image, the 

blurring effects of scattering are strongly suppressed. The reconstruction and segmen-

tation steps have been optimized based on simulations of a realistic optical tissue 

model (Supplementary Note 3-6, Supplementary Fig. 4-6, Supplementary Fig. 8). 

Third, for each of the detected neuron candidates, a spherical shell surrounding the 

neuron is generated, and both the neurons and shells are convolved with the LFM PSF 

to generate a library of initial LFM footprints (Fig. 3i). This library of spatial footprint 

components and associated temporal activity components is then iteratively refined 

through alternating updates of the spatial and temporal components. Each of the al-

ternated sub-problems is formulated as a so-called LASSO-constrained optimization38 
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which uses a numerical sparsity regularizer to stabilize solutions. The spherical shells 

are included in the demixing so that they can accommodate the local background that 

arises from crosstalk from neighboring neurons. After the main demixing stage, these 

local background contributions are demixed from the neuron activity temporal com-

ponents through a greedy search approach (Supplementary Note 7, Supplementary 

Fig. 9). Thereby we could reduce the average absolute correlation between signal pairs 

by 37% and effectively reject excessive correlations in the extracted signals (Fig. 3j-k). 

Finally, to further reject signals arising from non-neuron sources, such as blood vessel 

pulsation and residual motion, it is beneficial to classify the candidate traces based on 

whether their temporal activity patterns are compatible with the known response 

characteristics of GECIs. Several packages exist that allow fitting time series with 

models of the GECI response39,40,37,41, but we found them insufficiently selective to ro-

bustly reject artefact signals. We therefore designed and trained a convolutional neu-

ronal network (CNN) on a hand-curated dataset in two different modes, one that em-

phasizes high sensitivity and one that prioritizes precision, both while maintaining 

overall high F-score (Fig. 3l-m, Supplementary Note 9, Supplementary Fig. 10). Our 

CNN achieves a classification performance (F-score) of 93% (Fig. 3n, sensitive mode). 

Scaling computational functional imaging at neuronal resolution from sub-millimeter 

to mesoscopic FOVs in the mammalian brain poses unique challenges related to both 

the intrinsic properties of brain tissue at multi-millimeter scale and the computational 

scale of the task. Relative displacements due to non-rigid deformation of the brain 

that arise from animal motion and skull deformations can be as high as ~10 µm when 

imaging the brain over multi-millimeter distances. It is therefore imperative to care-
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fully correct for these deformations to enable mesoscale neuronal resolution imaging. 

Furthermore, while large blood vessels can usually be avoided in methods covering 

smaller FOVs, mesoscopic FOVs will always contain a number of large vessels, which 

cause, if unmitigated, non-rigid deformation and pulsating shadowing effects that will 

result in false neuronal signals. 

In our MesoLF pipeline, we have addressed these challenges as follows: Performing 

non-rigid motion correction in LFM has previously been hampered by the computa-

tional cost of frame-by-frame reconstruction as would be required to make LFM data 

compatible with established motion correction algorithms. We overcame this limita-

tion by performing non-rigid motion correction on raw LFM data and by transforming 

them into the so-called phase space representation in which raw image pixels are re-

ordered to form a set of sub-aperture images, each representing a different angular 

perspective onto the sample. We then corrected for motion and deformations of the 

phase space slice corresponding to the oblique perspective and applied the same cor-

rection to each of the other phase space slices (Fig. 3p-r, Supplementary Fig. 2, Sup-

plementary Note 2).  

To avoid artifacts generated by the periodic pulsation of the vasculature, we imple-

ment a four-pronged approach (Supplementary Note 8): First, blood vessels are de-

tected and masked based on their tubular shape42 (Fig. 3s). Second, all single-pixel 

time series are filtered to remove low-frequency oscillations originating from pulsa-

tion. Third, remaining spatial features that originate from blood vessel motion are re-

jected during morphological segmentation based on their shapes. Finally, the afore-
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mentioned CNN-based time series classifier serves to further reject blood vessel arti-

facts. 

To computationally extract neuronal signals and locations from the ~20 Gigabit/s raw 

camera data stream would require prohibitively large computational resources if per-

formed on the basis of the conventional LFM frame-by-frame reconstruction meth-

od21,22. Our vastly more efficient SID implementation can perform signal extraction on 

a smaller, 500 × 500 × 200 µm3 FOV within few hours on a multi-GPU workstation29. 

In MesoLF, however, the FOV area and hence dataset sizes are ~64× larger when imag-

ing at the same frame rate. Thus, to enable practical applications of our method, the 

computational efficiency was significantly enhanced in our MesoLF pipeline. To this 

end, we devised an accelerated and parallelized scheme that employs a custom GPU-

based implementation of the most performance-critical function, a special convolu-

tion-like operation required for propagating a light field from the sample to the LFM 

camera and vice versa (Supplementary Software 1). In addition, the full FOV is sub-

divided into 6 × 6 overlapping tiles that can be processed in parallel on multiple GPUs 

and subsequently merged to avoid duplicate neurons. When compared to the current 

release of our SID algorithm29 (which already requires three orders of magnitude less 

computation time than conventional frame-by-frame reconstruction of LFM record-

ings22,29), MesoLF achieves a 63% reduction in CPU core-hours and a 95% reduction in 

GPU runtime or, correspondingly, a 2.7-fold and a 20-fold speedup at the same com-

putational resources while performing a range of qualitatively new functionalities and 

achieving a quantitatively better performance. MesoLF thus elevates neuron-resolved, 

fast computational imaging capacity to the mesoscopic scale. 
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We previously quantitatively verified and established the performance of a number of 

key reconstruction and signal extraction modules in our pipeline29,30 using simultane-

ous LFM and functional ground truth recording via two-photon microscopy (2pM). 

Here we expanded on our previously established verification methodology using hy-

brid 2pM ground truth – MesoLF recordings and verified the performance of our en-

tire MesoLF reconstruction pipeline in three complimentary ways: First, by comparing 

statistical properties of our results to independently acquired 2pM data (Methods). 

Second, and most importantly, by directly validating our results using simultaneously 

acquired, volumetric functional MesoLF and 2pM ground truth data (Methods, Sup-

plementary Note 10). Third, by evaluating the performance of both, the individual 

modules as well as that of our entire MesoLF pipeline on highly realistic simulated da-

ta informed by cortical morphology and physiology (Supplementary Note 5, Supple-

mentary Figure 4, Supplementary Figure 11, Methods). 

To compare statistical properties of extracted neuronal signals, after performing 

MesoLF imaging, we recorded single-plane time series recordings from the same ani-

mal at four different depths (150, 200, 250, 300 µm; 6.4 frames per second, 2 × 2 mm 

FOV) using standard 2pM, followed by neuronal segmentation using the CaImAn 

package39 (Methods). We compared the pairwise distance distributions for neurons 

detected in each of the two recording modalities and found a high level of agreement 

at all mentioned depths (Fig. 3t). 

Further, to verify the fidelity of the extracted signals, we examined the cross-

correlations between all pairs of neuronal signals versus lateral neuron pair distance 

for the 2pM-recorded data and the signals from MesoLF recordings at the same depths 
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(Fig. 3u). Only at our greatest recording depth of 300 µm did we find that the median 

cross-correlation value for neuron pairs tends to increase for pair distances of less than 

~30 µm in MesoLF recordings compared to the 2pM data, indicating MesoLF’s ability 

to achieve accurate spatial discrimination and neuronal signal extraction compatible 

with cellular resolution recordings. 

However, since comparison of sequentially acquired datasets only allows for conclu-

sions on a statistical level, to perform a direct and quantitative validation of perfor-

mance and accuracy of the MesoLF pipeline in terms of neuron detection perfor-

mance, neuron localization error and fidelity of extracted neuronal signals, it is neces-

sary to simultaneously acquire MesoLF (LFM) data and volumetric functional ground 

truth data using 2pM. The direct generation of such volumetric hybrid 2pM–MesoLF 

functional datasets is fundamentally hampered by the planar nature of 2pM imaging. 

To overcome this limitation, we conceived a strategy for combining series of eight 

simultaneously acquired planar 2pM–MesoLF functional recordings each to form a to-

tal of five volumetric 2pM–MesoLF functional datasets covering the entire depth range 

of our method. To combine these single-plane hybrid 2pM–MesoLF recordings into 

volumetric functional datasets, we exploited the 3D nature of LFM acquisition and 

computationally shifted the axial location of the fluorescent source plane in the LFM 

raw data via a simple transformation known as refocusing (Methods, Supplementary 

Note 10). In this way we obtain volumetric functional datasets in which all temporal 

activity signals were simultaneously acquired in 2pM and LFM. Using the 2pM data, 

we then established what we henceforth considered the “ground truth” volumetric 
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functional dataset by automated signal extraction using the well-established CaImAn 

signal extraction package41, followed by manual annotation. 

Comparing this volumetric functional ground truth dataset to the output of our 

MesoLF pipeline applied to the simultaneously acquired LFM data from the same vol-

ume (Fig. 4a), we found that the well-known performance scores sensitivity (true posi-

tive rate), precision (positive predictive value) and F-score (harmonic mean of sensi-

tivity and precision) for neuron detection reach values of 0.79 ± 0.12, 0.78 ± 0.13, 

0.74 ± 0.10 (mean ± std. dev.), respectively, across our depth range (100–400 μm) 

(Fig. 4b), comparable to the performance achieved by state-of-the art signal extraction 

algorithms such as Suite2p40 and CaImAn41, applied to planar 2pM data (cf. Ref. 43 for 

a performance comparison). The mean neuron localization error (Fig. 4d) across all 

depth slices is 2.9 ± 1.2 µm laterally, and 8.0 ± 4.8 µm axially, indicating very good neu-

ron localization performance. In addition, we investigated the temporal matching of 

the extracted neuronal traces against our volumetric 2pM functional ground truth and 

found a mean temporal correlation between MesoLF and ground truth traces of 

0.75 ± 0.16 (n = 835) across all depths (Fig. 4c). 

To identify and quantify any artifacts introduced by imperfect demixing of neuronal 

signals and suppression of background as a function of spatial separation of neurons, 

we compared the pairwise correlations between pairs of neurons found in ground 

truth (i.e., physiological correlations) as a function of their lateral and axial distances 

to the pairwise correlations of the corresponding pairs found in MesoLF-extracted ac-

tivity traces (Fig. 4e-g). Laterally, only for neuron pair distances smaller than ~20 μm 

the mean pairwise correlations in the MesoLF-extracted traces (Fig. 4e) increase sig-
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nificantly (exceed the mean value for large pairwise distances by more than one stand-

ard deviation). This pair distance marks the limit down to which MesoLF can faithfully 

discriminate neuronal signals in the presence of scattering. We note that in the pres-

ence of scattering and for functional imaging, it is this “discriminability limit” that de-

termines the effective resolvability of active neuronal signals of MesoLF, and not pri-

marily the purely optical resolution of the light field acquisition system. 

To investigate the depth dependence of these pairwise correlations, we computed the 

excess correlation, defined as the difference in pairwise correlation between ground 

truth neuron pairs and the corresponding MesoLF neuron pairs, and plot their distri-

butions as a function of depth (Fig. 4f). At all depths, the modulus of the median and 

the standard deviation of the excess correlation values were below 0.06 and 0.15, re-

spectively, indicating robust demixing and discrimination of neuronal signals by the 

MesoLF pipeline. We further examined the axial neuron discrimination performance 

achieved by MesoLF by plotting distributions of excess pairwise correlation as a func-

tion of axial distance for neuron pairs with a lateral distance of less than 10 μm, i.e., 

pairs that are located on top of each other axially (Fig. 4g). This relative location of 

neurons represents a particularly challenging configuration due to the large spatial 

overlap in illuminated sensor area that results from two such neurons in the presence 

of scattering. The standard deviation of the excess correlation was below 0.22 across 

the axial distances examined, indicating that MesoLF can robustly demix neuronal ac-

tivity signals even in for this most challenging relative position of two neurons. 

The experimental functional ground truth datasets underlying these verification anal-

yses were recorded from animals expressing GCaMP6f throughout the cytosol, i.e., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.20.533476doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533476
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

without localization to the soma or the nucleus. This results in significantly less favor-

able conditions than those that apply to the data shown in our main results (Fig. 2) 

and as such the functional ground truth results represent a lower bound for the per-

formance of our MesoLF algorithm. 

To investigate the contribution of labeled neuropil to our above experimental results 

and the extent to which MesoLF would benefit from a localized expression of GCaMP, 

we evaluated MesoLF performance on datasets generated via highly realistic simula-

tions informed by cortical morphology and physiology of neuronal tissue, assuming a 

neuron density equivalent to the densest regions in our experimental specimen (Sup-

plementary Note 9). These simulations allowed us to selectively disable GECI labelling 

of neuropil and thus directly compare the effect of using soma-targeted GCaMP to 

non-localized indicators. The beneficial effect of using soma-targeted GCaMP in com-

bination with MesoLF is apparent from the strong, up to 300% relative enhancement 

of sensitivity and 200% enhancement of F-score at depth 400 μm (Fig. 4h) in simula-

tions in which labeling of neuropil was absent. Applying MesoLF to simulated datasets 

with labelled neuropil, we found neuron localization error, temporal activity correla-

tions and effects on pairwise correlation structure to be comparable to our experi-

mental results (Supplementary Figure 11), indicating that our simulations and experi-

mental ground truth verifications are valid complementary approaches for examining 

MesoLF performance. 
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DISCUSSION 

In summary, our MesoLF solution accomplishes mesoscopic high-speed functional 

imaging of up to 10,500 neurons within volumes of � 4000 × 200 µm located at up to 

~400 µm depth at 18 volumes per second in the mouse cortex, with only workstation-

grade computational resources. This performance is enabled by key advancements in 

our custom optical design and computational reconstruction and neuronal signal ex-

traction pipeline: Our novel background-rejecting phase-space reconstruction algo-

rithm that is optimized for robustness in the presence of scattering and thus improves 

reconstruction quality by 88% and reduces the 3D neuron localization error by 64% in 

tissue simulations. Second, our novel morphological segmentation approach that ef-

fectively rejects blood vessel-induced artifacts, does not rely on temporal independ-

ence of signals from neighboring neurons and outperforms a comparable one-photon 

segmentation algorithm37 by 22% and 44% in the F-score metric at depths 100 µm and 

300 µm, respectively (Fig. 3h; data for depth 300 µm not shown). Third, our core-shell 

local background demixing solution, which reduces neuropil-neuron crosstalk by 37%. 

Efficient parallel processing and a custom GPU-accelerated implementation of key 

processing steps decreases GPU computation time by 95% and CPU core-hours by 

63% compared to our previous LFM-based signal extraction solution while boosting 

the scope, functionality, and performance of signal extraction qualitatively and quanti-

tatively. 

By entirely avoiding the inverse cubic scaling relation between volumetric frame rate 

and side length of the imaging volume that is inherent to serial scanning approaches, 

the MesoLF concept is uniquely positioned to fully capture the higher temporal band-
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width (~500 Hz) offered by genetically encoded voltage indicators44,45, the majority of 

which are currently optimized for one-photon imaging only, across large volumes in 

scattering tissue. The achievable frame rate in MesoLF is limited by the number of 

photons that can be detected per frame while keeping the excitation power and result-

ing bleaching rate sufficiently low. MesoLF performance will therefore greatly benefit 

from cameras with improved quantum efficiency, reduced read noise, and faster 

readout speeds. Here we have shown the performance of MesoLF using GCaMP at up 

to ~400 µm depth in the scattering mouse brain, limited by loss of directional infor-

mation of the scattered photons. The obtainable depths can thus be expected to be 

further increased in the future by using more efficient and red-shifted indicators. 

While several aspects of the MesoLF pipeline are specifically designed to tackle issues 

arising from large-FOV imaging, the general performance improvements afforded by 

our implementation will also benefit smaller-scale LFMs, such as our head-mounted 

MiniLFM device30. The MesoLF optical and optomechanical design will be available 

under an open-source license and the custom tube lens will be commercially obtaina-

ble. To facilitate effortless dissemination of our computational pipeline, we will pro-

vide a readily deployable container that can be run on common cloud infrastructures, 

thus lowering the entrance barrier to performing long-duration and high-throughput 

recording of volumetric calcium activity at mesoscopic FOVs.  
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FIGURE LEGENDS 

Figure 1 | Mesoscopic Light Field (MesoLF) computational pipeline. 

(a) Schematic overview of key steps of the MesoLF computational pipeline (Main text, 

Methods, Supplementary Notes 1-9, Supplementary Fig. 1-10, Supplementary Video 1): 

Fluorescence from the sample is imaged through a custom-designed optical system 

(FOV � 4 mm, NA 0.4) and light-field microscope (LFM) detection arm, captured on a 

CMOS camera (~ 50M pixels per frame, 6 µm pixel size, 18 fps) and streamed to a flash 

disk array (i). For offline processing, the frames are tiled into 6 × 6 patches and subse-

quently processed in parallel on a multi-GPU workstation (ii). Patches undergo non-
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rigid motion correction (iii) and background subtraction (iv), and blood vessels are 

detected and masked (v). After temporal filtering of the individual pixel timeseries to 

remove low- and high-frequency noise, a temporal activity summary image is comput-

ed in which temporally active pixels are highlighted (vi). From the summary image, a 

3D volume containing the active neurons is reconstructed using a novel artifact-free 

phase-space reconstruction algorithm that performs background-“peeling”, i.e., the 

estimation and subtraction of temporally variable background above and below the 

target volume (vii). A custom morphological segmentation algorithm is applied to 

segment active neurons in the reconstructed volume (viii). For each candidate neuron 

and its local surrounding shell, a mask is generated that represents its anticipated spa-

tial footprint in the LFM camera data. In an iterative optimization scheme, these spa-

tial footprints and the corresponding activity time series are updated, thus demixing 

the neuronal activity signals present in the recording (ix). The resulting neuron- and 

background-shell signals are further demixed from each other by solving an optimiza-

tion problem that seeks to reduce crosstalk between neurons and the local back-

ground shell components (x). Finally, neuron positions and activity signals from each 

patch are merged (xi) and classified into high- and low-quality traces by a neuronal 

network (xii). 

Figure 2 | MesoLF calcium imaging in the scattering rodent cortex. 

(a) 3D rendering of single neuron positions within an overall volume of 

� 4 mm × 400 µm obtained by MesoLF from two subsequent 405-second recordings at 

18 volumes per second in mouse cortex. Neuron positions from two sequential record-

ings of different depth ranges are shown together. Color-coding indicates the record-
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ing depth range: blue, 0–200 μm; purple, 200–400 μm. Inset: Schematic of imaged field 

of view superimposed onto a perspective view onto Alan Mouse Brain Reference Atlas. 

Cortical areas contained in the imaged FOV include the posterior parietal, primary 

somatosensory, primary visual, anteromedial visual, and retrosplenial cortical area. 

(b) Heat maps of temporal signals extracted from three 405-second recordings at 

18 volumes per second in mouse cortex at three different depth ranges. Neurons are 

sorted by depth (lower neuron index corresponds to lower depth). Top panel, 10,580 

neurons detected in depth range 0–200 µm. Middle panel: 8,076 neurons found in 

depth range 100–300 µm. Bottom panel: 4,746 neurons found in 200–400 µm depth 

range. Top and bottom panels correspond to the neuron positions shown in a in blue 

and violet, respectively. Traces shown are those retained by the CNN trace candidate 

classifier in “sensitive” mode. Of the traces shown, 1817 (0–200 μm), 1112 (100–300 μm) 

and 709 (200–400 μm) were classified as high quality and the remainder as intermedi-

ate quality. The red rectangle indicates the zoom-in region shown in c. White arrows 

indicate whisker stimulus onset. Traces represent denoised fluorescence change (dF) 

normalized to the noise level, defined as the standard deviation of the residuals left 

after subtracting a low-pass-filtered version of each trace from itself. Color scales are 

clipped to 15th and 99.9th percentile of all values in each panel for visual clarity. 

(c) Stacked neuronal activity traces for the region indicated by the red rectangle in b. 

Traces are normalized by their noise level as in b. Spacing of the traces corresponds to 

9 standard deviations of the noise. Yellow lines: un-denoised output of MesoLF pipe-

line. Violet lines: Fit to un-denoised data with an autoregressive model of calcium in-

dicator response as implemented by the CaImAn package. Black arrows indicate 

whisker stimulus onset. Inset is zoom into area indicated with red rectangle.  
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Data in (a)–(c) representative of 31 recordings from 6 mice. See also Supplemen-

tary Video 2 and Supplementary Fig. 12. 

 

Figure 3 | Performance and verification of the individual modules of the MesoLF computa-

tional pipeline.  

(a) Illustration of MesoLF light field phase space reconstruction with background 

peeling (Supplementary Note 4): Raw camera pixels are re-ordered according to their 

positions relative to each microlens (colored pixels in raw frame), resulting in a set of 

angular views (large colored frames) that each represent a perspective from a different 

angle onto the sample. Reconstruction of the target volume is achieved by iteratively 

updating the estimate of the volume with weighted and filtered information contained 

in each of the angular views. To remove artifacts stemming from temporally variable 

and spatially inhomogeneous background fluorescence from immediately above and 

below the target volume, the contribution from these top- and bottom background 

volumes is estimated and subtracted (“peeled”) from the target volume estimate. 

(b) Comparison of different volumetric light field reconstruction methods and ground 

truth (see Supplementary Note 4-5). Top left: simulated ground truth volume contain-

ing neurons, blood vessels, and neuropil. This volume is numerically convolved with a 

scattered LFM point spread function to obtain the simulated raw data used as an input 

for three different reconstruction methods. Top right: Volumetric reconstruction of 

simulated LFM raw data using Richardson-Lucy deconvolution (Pixel space). Bottom 

left: Reconstruction using phase space deconvolution without background peeling 

(Phase space). Bottom right: Reconstruction using phase space deconvolution with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.20.533476doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.20.533476
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

background peeling (MesoLF). Red arrows highlight same positions in all panels 

where artefacts are present in one of the previous methods but absent in MesoLF re-

construction. Yellow arrows indicate position where a ground truth neuron was falsely 

suppressed in MesoLF. In all panels, the large image is a slice at z = 60 µm in the x-y 

plane, whereas the smaller images are maximum intensity projections of the recon-

structed volume along the x and y axes, respectively. Simulated depth of center of vol-

ume: 60 µm. Size of volumes: 600 × 600 × 200 µm3, depth range 0–200 µm  

(c) Structural similarity index between the simulated ground truth volume and the 

three different classes of reconstructed volumes shown in b (Supplementary Note 5), 

quantifying quality of reconstruction. n = 9 sets of reconstructions. Paired two-sided 

Wilcoxon signed rank test for equal median. p = 0.004 (pixel space vs. phase space), 

0.004 (pixel space vs. MesoLF), 0.004 (phase space vs. MesoLF). 

(d) Violin plot of 3D localization error, defined as minimum 3D distance between neu-

rons in simulated ground truth and neurons found in the three different reconstruc-

tions shown in b. White circle: median. Thick grey vertical line: Interquartile range. 

Thin vertical lines: Upper and lower proximal values. Transparent blue disks: data 

points. Transparent violin-shaped area: Kernel density estimate of data distribution. 

n = 60, 79, 94 data points, respectively. Two-sided Wilcoxon rank sum test for equal 

medians, p = 0.567 (pixel space vs. phase space), 0.003 (pixel space vs. MesoLF), 0.019 

(phase space vs. MesoLF). n.s., not significant. 

(e) Violin plot of lateral localization error, defined as minimum lateral distance be-

tween neurons in simulated ground truth and neurons found in the three different re-

constructions shown in b. Symbols as in d. n = 65, 87, 104 data points, respectively. 
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Two-sided Wilcoxon rank sum test for equal medians, p = 0.766 (pixel space vs. phase 

space), 0.009 (pixel space vs. MesoLF), 0.029 (phase space vs. MesoLF). n.s., not signif-

icant. 

(f) Segmentation performance in MesoLF (Supplementary Note 6 and Supplementary 

Fig. 8). Background: Slice from volume reconstruction of temporal summary image 

from SomaGCaMP7f-labelled mouse cortex, depth 100 µm, simulated data. Colored 

circles indicate MesoLF segmentation results compared to manual segmentation.  

(g) Comparison of MesoLF segmentation performance versus PCA/ICA-based segmen-

tation for four simulated neurons with highly correlated temporal activities (activity 

traces shown above segmented images). Ground truth neurons and corresponding 

time traces labelled with black digits. Individual segments shown as contour lines with 

different colors. Note the overlapping and under-segmented output from PCA/ICA.  

(h) Overall neuron detection scores for the MesoLF morphological segmentation algo-

rithm compared to the CNMF-E package (simulated SomaGCaMP7f-labelled mouse 

cortex, depth 100 µm). Error bars: Standard deviation. 

(i) Illustration of core-shell geometry for demixing neuropil activity from soma sig-

nals. Signals from segmented regions in f (cores, neurons) and a Gaussian shell region 

(extending from ~10 to ~20 µm diameter) surrounding the cores (background shell, 

neuropil) are identified and demixed. 

(j) Sets of representative example traces for core, shell, and demixing result, taken 

from a recording in mouse cortex at depths 200-400 µm. Arrows indicate crosstalk be-
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tween shell and core that is removed in the demixed traces. Experimental data from 

SomaGCaMP7f-labelled mouse cortex, depth 100 µm. 

(k) Matrices of Pearson correlation coefficients between 400 pairs of neuronal activity 

traces extracted from a MesoLF recording in mouse cortex, before and after core-shell 

demixing. The average absolute correlation between signal pairs is reduced by 37% in 

MesoLF. 

(l) Illustration of convolutional neural network (CNN) architecture used for classifica-

tion of candidate neural activity traces (Supplementary Note 9 and Supplemen-

tary Fig. 10) 

(m) Representative examples of 25 kept 10 rejected traces by CNN (Supplemen-

tary Note 9 and Supplementary Fig. 10). Traces are experimental data from 

SomaGCaMP7f-labelled mouse cortex, various depths. 

(n) Classification performance of two differently trained CNNs, one optimized for a 

trade-off that prioritizes high precision (“precise mode”, blue bars) and one that prior-

itizes high sensitivity (“sensitive mode”, violet bars), both while maintaining an overall 

high F-score. The CNN in “precise” mode achieves precision 0.98 ± 0.01, sensitivity 

0.60 ± 0.03, F-score 0.75 ± 0.02; CNN “sensitive” mode achieves precision 0.90 ± 0.02, 

sensitivity 0.96 ± 0.01, F-score 0.93 ± 0.01. Classification performance was evaluated on 

withheld data that was not used during training. Error bars: Standard deviation. (Sup-

plementary Note 9 and Supplementary Fig. 10). Black circles: n = 5 data points in each 

bar. 
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(p) Motion correction in MesoLF. Background is single frame from MesoLF experi-

mental raw data, central sub-aperture image, full FOV (scale bar: 500 µm). Orange ar-

rows indicate direction and magnitude (scaled for clarity, a.u.) of rigid motion correc-

tion applied to each of the 6 × 6 tiles into which the raw frame is split at the beginning 

of the MesoLF pipeline. Inset: Zoom into one of the tiles as indicated with white 

square. Width of tile: 680 µm. Orange arrows indicate non-rigid motion correction 

applied within tile.  

(q) Example of lateral displacement (blue line: x-direction, violet line: y-direction) 

versus time for one of the tiles in top left panel.  

(r) Violin plot of non-rigid displacements (i.e., displacements remaining after rigid 

motion correction). White circle: median. Thick grey vertical line: Interquartile range. 

Thin vertical lines: Upper and lower proximal values. Transparent blue disks: data 

points. Transparent violin-shaped area: Kernel density estimate of data distribution. 

n = 201 data points. 

(s) Left panel: Example slice from volume reconstruction of MesoLF temporal activity 

summary image, with vasculature mask overlaid in red. Right panel: Same slice as in 

left panel, with vasculature removed. Experimental data from SomaGCaMP7f-labelled 

mouse cortex, depth <50 μm. 

(t) Comparison of distributions of lateral distances between neuron pairs. Includes all 

pairs (up to a distance of 200 µm) that can be formed from all neurons in single-plane 

2pM recordings (blue bars) at four different depths (150, 200, 250, 300 µm), compared 

to neurons selected from MesoLF recordings (red bars) at the same depths. Histo-
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grams are normalized such that sum of all bin frequencies is one. n = 107,194 neuron 

pairs in total.  

(u) Cross-correlation between all pairs of neuronal activity traces versus neuron dis-

tance, for all neurons in a 20-µm depth slice centered at four different depths (150, 

200, 250, 300 µm) in MesoLF analysis results (red) and 2pM recording at the same 

depths (blue) (Methods). Solid lines: Median. Shaded areas: Standard deviation. 

n = 2,230 neurons (MesoLF) and n = 2,282 neurons (2pM) in total. 

Figure 4 | Experimental validation and quantification of performance of full MesoLF pipe-

line against simultaneously acquired volumetric functional ground truth data 

Simultaneously acquired volumetric hybrid 2pM–MesoLF functional ground truth da-

tasets were generated by recording series of planar simultaneous acquisitions in a hy-

brid 2pM–LFM setup (Methods), followed by refocusing of the axial location of the 

fluorescent source plane in the LFM raw data and combining eight planar recordings 

each into volumetric functional datasets (Methods, Supplementary Note 10). Volumet-

ric functional ground truth was established by automatically extracting signals from 

the 2pM data, followed by human annotation. 

(a) Left column: Ground truth (blue circles) and MesoLF-extracted neuron positions 

(red circles) overlaid on a 2pM temporal standard deviation image from a hybrid 2pM–

MesoLF recording, for two different example depths (top row: 175 μm; bottom row: 

300 μm). Middle column: MesoLF-extracted neuron positions (red circles) overlaid on 

slice from the reconstructed MesoLF temporal summary frame from the same hybrid 

2pM–MesoLF recording as in left column. Right column: Neuronal activity traces cor-
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responding to circles in left and middle column panels, as used for performance quan-

tifications, in experimental functional ground truth (blue traces, corresponding to 

blue circles in left column panel), recorded by standard 2pM and analyzed using CaI-

mAn package followed by human annotation, and simultaneously acquired LFM re-

cordings that were analyzed using the MesoLF computational pipeline (red traces, 

corresponding to red circles in left column panel), for same two depths as in left col-

umn. 

(b) Neuron detection scores precision, sensitivity and F-score achieved by MesoLF on 

experimental volumetric functional verification dataset as a function of depth. Shaded 

areas: mean ± std. dev. n = 80, 77, 69 data points, respectively 

(c) Distributions of temporal correlations between experimental ground truth activity 

traces and matched MesoLF traces versus depth. White circle: median. Thick grey ver-

tical line: Interquartile range. Thin vertical lines: Upper and lower proximal values. 

Transparent blue disks: data points. Transparent violin-shaped area: Kernel density 

estimate of data distribution. n = 693 data points. 

(d) Distributions of lateral (left panel) and axial (right panel) neuron localization error 

between MesoLF-extracted neuron positions and experimental functional ground 

truth. Violin plot symbols as in c. n = 832,676 data points, respectively. 

(e) Mean pairwise correlation between all pairs of traces in volumetric experimental 

functional ground truth (blue line) and mean pairwise correlation between corre-

sponding pairs of MesoLF-extracted traces (red line) as a function of lateral distance 

between the neurons in the pairs. Only for lateral separations smaller than ~20 μm, a 
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significant increase in excess correlation, i.e., in the difference between MesoLF-

extracted correlation and ground truth correlation, is observable. Shaded areas: Mean 

± std. dev. 

(f) Distribution of excess correlation between pairs of neuronal traces in experimental 

ground truth and corresponding pairs of MesoLF-extracted traces, as a function of 

depth. For all depths, the modulus of the median excess correlation is below 0.06, in-

dicating robust crosstalk rejection by the MesoLF pipeline. Violin plot symbols as in c. 

n = 752 data points. 

(g) Distributions of excess temporal correlations between pairs of experimental 

ground truth neuronal activity traces and matched MesoLF traces versus the axial sep-

aration of the neuron pair, for neuron pairs with lateral separation < 10 μm. Violin plot 

symbols as in c. n = 768 data points. 

(h) For realistically simulated cortical tissue and MesoLF imaging, relative improve-

ment of neuron detection scores achieved by MesoLF when suppressing neuropil la-

belling, versus depth. The beneficial effect of suppressing neuropil labelling is clearly 

observable at depths exceeding ~200 μm. Error bars: Standard error of the mean.  
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METHODS 

Experimental model and subject details 

All animal procedures met the National Institutes of Health Guide for Care and Use of 

Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee (IACUC) at The Rockefeller University, New York (protocol number 

15848H). 

Mice were obtained from The Jackson Laboratory (C57BL/6J) and typically group-

housed with a 12h/12h inverted light cycle in standard cages, with food and water ab 

libitum. 

Virus injection and cranial window surgery 

Mice were anesthetized with isoflurane (1–1.5% maintenance at a flow rate of 0.7–

0.9 l/min, RWD Life Science anesthesia machine) and placed in a stereotaxic frame 

(Kopf Instruments). Dexamethasone (0.4 mg/ml) was administered subcutaneously to 

manage brain swelling. A ~1 cm incision was made over the midline of the scalp and 

the underlying periosteum was cleared from the skull. The scalp was sterilized, then 

removed after administration of local anesthetic bupivacaine (0.125 mg/ml), and the 

underlying connective tissue was cleared from the skull. A custom-made stainless-

steel head bar was fixed behind the occipital bone with cyanoacrylate glue (Loctite) 

and covered with black dental cement (Ortho-Jet, Lang Dental). Circular craniotomies 

(5 mm diameter) were performed over the desired imaging site. 
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A glass pipette was first back-filled with mineral oil and then front-filled with a genet-

ically expressed calcium indicator adeno-associated virus (AAV9-syn-jGCaMP7s-

WPRE; cocktail of AAV9-TRE3-2xsomaGCaMP7f & AAV1-Thy1-tTA; AAV1-hSyn1-

GCaMP6f). The pipette was then slowly lowered to each injection site and virus was 

injected (100–125 nl per site, at 10–25 nl/min; titer 2 × 1012–2.6 × 1013 vgs/ml) into the 

brain parenchyma at 200 μm depth (single injection; up to 5 × 5 grid of injections cen-

tered at PPC: 2.5 mm AP, 1.8 mm ML, 0.2 mm DV or 0.4 mm DV). During multiple in-

jections, the exposed brain was soaked under cold sterile saline.  

After virus injection, a circular 5-mm glass coverslip (#1 thickness, Warner Instru-

ments) was lowered into the craniotomy site and sealed in place with tissue adhesive 

(Vetbond). The exposed skull surrounding the cranial window was covered with a lay-

er of cyanoacrylate glue and then dental cement. 

Post-operative care consisted of 3 days of subcutaneous delivery of meloxicam 

(0.125 mg/kg), antibiotic-containing feed (LabDiet #58T7), and meloxicam-containing 

(0.125 mg/tablet) food supplements (Bio-Serv #MD275-M). After surgery, animals were 

returned to their home cages and were given at least one week for recovery and viral 

gene expression before being subjected to imaging experiments. Mice with damaged 

dura or unclear windows were euthanized and were not used for imaging experiments. 
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Table of animals and preparation parameters 

Mouse 
ID Strain 

Cranial  
window  
diameter Virus Injection parameters 

Depth ranges & 
number of record-
ings 

 
mf184 C57/BL6 5 mm 

AAV9-TRE3-
2xsomaGCaMP7f2  
AAV1-Thy1-tTA 

1:1 titer ratio, 2.6 × 1013 vgs/ml 
10 injections on grid 
1000 μm apart 
100 nl/site, 10 nl/min 
250 μm depth 

0–200 μm: 1 recording 

mh150 C57/BL6 5 mm 

AAV9-TRE3-
2xsomaGCaMP7f2 
AAV1-Thy1S-tTA  

1:1 titer ratio, 2 × 10
12

 vgs/ml 
23 injections on grid 
750 μm apart 
125 nl per site, 25 nl/min 
200 μm depth 

0–200 μm: 4 rec. 
100–300 μm: 6 rec. 
200–400 μm: 2 rec. 
300–500 μm: 1 rec. 

mh155 C57/BL6 5 mm 

AAV9-TRE3-
2xsomaGCaMP7f2 
AAV1-Thy1S-tTA  

1:1 titer ratio, 2 × 1012 vgs/ml 
25 injections 750 μm apart 
5 × 5 grid  
125 nl per site, 25 nl/min 
200 μm depth 

100–300 μm: 1 rec. 
200–400 μm: 2 rec.  

mh159 C57/BL6 5 mm 
AAV9-syn-
jGCaMP7s-WPRE 

2 × 10
12

 vgs/ml 
25 injections 750 μm apart 
5 × 5 grid 
125 nl per site, 25 nl/min 
200 μm depth 

0–200 μm: 3 rec. 
100–300 μm: 4 rec. 
200–400 μm: 2 rec. 

mh160 C57/BL6 5 mm 
AAV9-syn-
jGCaMP7s-WPRE 

2 × 1012 vgs/ml 
25 injections 750 μm apart 
5 × 5 grid 
125 nl per site, 25 nl/min 
200 μm depth 

0–200 μm: 1 rec 

mh161 C57/BL6 5 mm 
AAV9-syn-
jGCaMP7s-WPRE 

2 × 10
12

 vgs/ml 
25 injections 750 μm apart 
5 × 5 grid 
125 nl per site, 25 nl/min 
200 μm depth 

0–100 μm: 1 rec. 
100–300 μm: 2 rec. 
200–400 μm: 1 rec. 
 

Hybrid 2pM–MesoLF functional ground truth verification recordings: 

m04 C57/BL6 5 mm 
AAV1-hSyn1-
GCaMP6f 

10
12

 vgs/ml 
2 × 2 injections, 400 μm apart 
25 nl per site, 10 nl/min 
400 μm depth 

100–400 μm: 1 rec 

x01 C57/BL6 5 mm 
AAV1-hSyn1-
GCaMP6f 

1012 vgs/ml 
2 × 2 injections, 400 μm apart 
25 nl per site, 10 nl/min 
400 μm depth 

100–300 μm: 1 rec 
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In vivo Ca
2+

 imaging with MesoLF optical system 

For MesoLF imaging, animals were head-fixed on a home-built treadmill underneath 

the HHMI Janelia/Thorlabs 2p-RAM mesoscope objective. The headbar clamp pair was 

mounted on a two-axis goniometer stage for precision tip/tilt adjustment. Using this 

goniometer and the 2p-RAM motorized gantry axes (x, y, z, tilt), the cranial window 

was adjusted to be orthogonal to the optical axis of the 2p-RAM objective. This was 

achieved using a home-built alignment tool that can be placed into the objective 

mount and provides a laser reflex from a reference glass plate that is used as the target 

for aligning the laser reflex from the cranial window. 

The MesoLF optical system used for Ca2+ imaging is described in detail in Supplemen-

tary Note 1 and Supplementary Fig. 1. Briefly, for MesoLF imaging, a motorized fold 

mirror was moved into the 2p-RAM emission arm to direct fluorescence towards our 

custom-built MesoLF path and also reflect incoming one-photon excitation light from 

the MesoLF path towards the 2p-RAM objective.  

The MesoLF excitation path consists of a mounted blue LED (Thorlabs M470L3, 

470 nm center wavelength, 650 mW), adjustable asphere collimator (Thorlabs 

SM2F32-A), an iris aperture for adjusting illumination NA, excitation filter (Chroma 

ET470/40x, � 2"), engineered diffuser for creating a flat-top intensity profile (RPC 

Photonics EDC-10-15027-A 2S, 2" square), relay lens (Edmund 45-418, f=300, � 3") and 

three fold mirrors. This arrangement provides telecentric, homogeneous illumination 

in the focal plane in the sample. Illumination power was ~15 mW post-objective, 

which corresponds to ~1.2 mW/mm2, a value comparable to our previous LFM imaging 

methods and typical wide-field imaging protocols. 
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The MesoLF emission path consists of an emission filter (Semrock Brightline FF01-

525/39, � 2"), microlens array (RPC Photonics MLA-S100-f12, square grid, pitch 100 µm, 

f = 1.2 mm, F-number 12.5, diced to 42 × 42 mm) and camera (Teledyne DALSA Falcon 

4-CLHS 86M, 86 Megapixels, 6 µm pixel pitch, 12 bit, global shutter, 16 fps full frame 

rate). The excitation and emission paths are combined using a dichroic beamsplitter 

(Semrock FF505-SDi01 short-pass dichroic, 80 × 50 mm). 

Both excitation and emission pass through a custom-designed tube lens (Supplemen-

tary Note 1, Supplementary Fig. 1) that corrects aberrations left uncorrected by the 2p-

RAM objective in the visible range to achieve diffraction-limited resolution at NA 0.4 

in the GCaMP-compatible emission window at 515-535 nm. 

For two-photon imaging, the motorized fold mirror mentioned above was moved out 

of the 2p-RAM detection path so that the system was operating as designed in two-

photon imaging mode. Two-photon data was analyzed using the CaImAn signal ex-

traction package41. 

Apparatus for stimulus delivery and behavioral tracking 

Visual and somatosensory stimuli were controlled via a pre-programmed pulse table 

generated by National Instruments DAQ cards in the experiment control PC. For 

whisker stimulation, an Arduino microcontroller with a motor shield and servo motor 

were employed to move a brush forward and backward over the animals’ whiskers at 

time intervals indicated by the stimulation protocol. The brush size and its proximity 

were chosen to stimulate all whiskers simultaneously (as opposed to stimulation of 
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specific whiskers), and stimulation was applied contralaterally to the hemisphere be-

ing recorded by the microscope. 

All rodents were head-fixed on a home-built treadmill with a rotation encoder affixed 

to the rear axle (Broadcom, HEDS-5540-A02) to measure the relative position of the 

treadmill during the recordings. Treadmill position, the microcontroller clock value, 

and the onset of a whisker stimulus were streamed to the control computer via a serial 

port connection and logged with a separate data logging script. The data logging script 

also read out frames from a camera (Logitech 860-000451) in order to capture addi-

tional animal behavior during recordings. Motion energy (Supplementary Fig. 12) for 

manually defined regions of interest (e.g., front paws, nose tip) were computed from 

the behavior videos using the Facemap Python package46 as the magnitude of the dif-

ference between each frame and a blockwise mean frame. 

Data management and signal extraction using MesoLF computational pipeline 

Data was acquired from the camera onto a control workstation (Intel Xeon W-2155 

CPU 3.30 GHz, 10 cores, 256 GB RAM, Windows 10) configured with two software-

defined RAID-0 arrays of two PCIe flash disks each (2× Samsung 970 EVO 2 TB and 2× 

Sabrent Rocket 2280 4 TB, respectively) using a custom data acquisition application 

written in VisualC# .NET. The magnified image covers an area of �40 mm on the cam-

era, which corresponds to ~7000 × 7000 pixels. This subset of pixels can be read out at 

18 fps, resulting in a raw data rate of ~1320 MB/s. 

At the end of each imaging session, the raw data was transferred via 10 Gbit/s network 

links to a network-attached storage server (Synology RS3618xs). 
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The MesoLF computational pipeline was run on a multi-GPU workstation (Titan 

Computers) equipped with two Intel Xeon Gold 6136 3.00GHz CPUs with 12 cores 

each, 260 GB RAM, three nVidia TITAN V GPUs with 12 GB RAM each, a 1 TB NVMe 

SSD hard disk, two 1 TB SATA SSD hard disks in a RAID-0 configuration, a 10 Gbit/s 

network card. Xubuntu 20.04 was used as the operating system and all data analysis 

was performed in MATLAB R2020a (The Mathworks).  

Running the MesoLF analysis shown in Fig. 2b (7-minute recording, 18 fps) took a total 

of 316 CPU core-hours and 4.1 GPU-hours, as tracked using the pidstat command. This 

includes loading the raw data from the network-attached storage server, which ac-

counts for approx. 20% of the total run time and can be accelerated by holding data on 

local SSD disks. The full analysis run was completed within 23 hours and 26 minutes. 

Hybrid 2pM–MesoLF functional ground truth recordings 

Direct verification of MesoLF compared to a ground truth is inherently limited by the 

comparably low voxel rates available in established methods such as 2pM, and due to 

the planar nature of 2pM. The hybrid 2pM–MesoLF functional ground truth record-

ings used for performance validation of the MesoLF computational pipeline were rec-

orded on a custom hybrid 2pM–LFM microscope. The instrument is based on 

Scientifica Slicescope 2pM platform with a custom LFM detection arm. Two-photon 

excitation pulses (920 nm, 140 fs pulse duration, 80 MHz pulse rate, Coherent Chame-

leon) were focused into mouse cortex and scanned in planes parallel to the cranial 

window at a series of depths, via the Slicescope’s galvo-galvo scan path and a Nikon 

16×/0.8NA objective mounted on a motorized stage that allowed for axial translation. 
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Fluorescence from the sample was split at a 10:90 ratio between the Slicescope’s non-

descanned PMT arm (emission filter: 525/50 nm, GaAsP PMT, Hamamatsu) and a cus-

tom-built LFM arm using a 10% beam sampler (Omega) inserted behind the objective. 

For LFM detection, fluorescence passed through the short-pass dichroic that couples 

the laser into the beam path, as well as a GFP emission filter. The image formed by a 

standard Olympus tube lens was then relayed via two 2-inch achromat lenses (f = 

200 mm, Thorlabs) onto a microlens array (MLA, Okotech, custom model, size 

1" square, f-number 10, 114 µm microlens pitch, quadratic grid, no gaps). The f-number 

of the MLA was matched to the output f-number of the microscope. The back focal 

plane of the MLA was relayed by a photographic macro objective (Nikon 105 mm/2.8) 

at unity magnification onto the sensor of an Andor Zyla 5.5 sCMOS scientific camera 

(2560 × 2160 px, 16 bit). To introduce an offset between the 2pM focal plane and the 

LFM native focal plane, the MLA and camera were translated backwards by a distance 

corresponding to 40 μm in sample space. The 2pM frame clock was used to trigger 

camera exposures. A FOV of 200 × 200 µm was scanned at a frame rate of 5 Hz. 2-

minute movies were recorded both in the PMT and the LFM camera channel at 13 

depths in steps of 25 μm, ranging from 100 to 400 μm in mouse cortex.  

In the LFM raw data recorded in this way, fluorescence appears to be emanating from 

an axial plane offset 40 μm from the axial center of the LFM volumetric field of view 

(due to the aforementioned displacement of LFM camera and MLA backwards from 

the rear focal plane of the microscope).  

To combine these single-plane hybrid 2pM–MesoLF recordings into volumetric func-

tional datasets, we exploited the 3D nature of LFM acquisition and computationally 
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shifted the axial location of the fluorescent source plane in the LFM raw data via a 

simple transformation known as refocusing47 (Supplementary Note 10). With the a-

priori knowledge that all light in the LFM raw data came from a single axial plane of 

known depth with respect to the native focal plane, this transformation is unambigu-

ous, relies only on elementary properties of LFM imaging and treats ballistic and scat-

tered light in an unbiased manner. This approach allowed us to refocus and add 8 sin-

gle-plane recordings such that they result in a single dataset that contains fluores-

cence emanating from throughout the entire LFM volumetric FOV of 200 μm axially. 

We built such volumetric LFM movies for two depth ranges, 100–300 and 200-400 μm, 

for each recorded session. 

The synthetic volumetric LFM functional datasets were then processed using the 

MesoLF pipeline. The 2pM data was analyzed plane by plane using the CaImAn pack-

age, followed by human annotation of the CaImAn results (removing false positives, 

adding false negatives).  This resulted in the set of neuronal positions and activity time 

traces that was subsequently considered the ground truth. 

The MesoLF-extracted neuron locations and time traces were then classified as true 

positives if the centroid of their spatial filter was within 30 μm to the centroid of a 

ground truth neuron and had a temporal correlation with the ground truth activity 

trace of > 0.4. The performance scores sensitivity, precision and F-scores were calcu-

lated from the resulting true/false positive rates found in the MesoLF data. The set of 

all matched MesoLF- and ground truth neurons was then further analyzed to obtain 

the distributions for localization errors, temporal correlation to ground truth, and ex-

cess correlations between pairs of traces presented in Fig. 4. Equivalent analyses were 
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performed on the data simulated using the NAOMi package with an active neuron 

density of 14,000 per mm3 (Supplementary Note 5) to yield the performance quantifi-

cations shown in Fig. 4 and Supplementary Fig. 11. 

 

DATA AVAILABILITY 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 

CODE AVAILABILITY 

The custom code that comprises the MesoLF pipeline is available in Supplementary 

Software. The MesoLF code, which includes including a complete demo script, is 

available at http://github.com/vazirilab/mesolf. A demo data can be downloaded 

automatically by the demo script, and is also available at 

https://doi.org/10.5281/zenodo.7306113. 
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